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Abstract  34 

Study design: 35 

Method development 36 

Objectives: 37 

To develop a reliable protocol for automatic segmentation of Thoracolumbar spinal cord using MRI based on K-38 

means clustering algorithm in 3D images.  39 

Setting: 40 

University-based laboratory, Tehran, Iran 41 

Methods: 42 

T2 structural volumes acquired from the spinal cord of 20 uninjured volunteers on a 3T MR scanner. We proposed an 43 

automatic method for spinal cord segmentation based on the K-means clustering algorithm in 3D images and compare 44 

our results with two available segmentation methods (PropSeg, DeepSeg) implemented in the Spinal Cord Toolbox. 45 

Dice and Hausdorff were used to compare the results of our method (K-Seg) with the manual segmentation, PropSeg, 46 

and DeepSeg. 47 

Results: 48 

The accuracy of our automatic segmentation method for T2-weighted images was significantly better or similar to the 49 

SCT methods, in terms of 3D Dice coefficient (p<0.001). The 3D Dice coefficients were respectively (0.81 ± 0.04)  50 

and Hausdorff  Distance (12.3 ± 2.48) by the K-Seg method in contrary to other SCT methods for T2-weighted 51 

images. 52 

Conclusion: 53 

The output with similar protocols showed that K-Seg results match the manual segmentation better than the other 54 

methods especially on the thoracolumbar levels in the spinal cord due to the low image contrast as a result of poor 55 

SNR in these areas. 56 

 57 
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Introduction  58 

The spinal cord is a tubular structure of the central nervous system located in the vertebral column and surrounded by 59 

bony columns and soft tissues extending from the medulla oblongata. The spinal cord is undeniably involved in many 60 

functions of the nervous system, and its magnetic resonance imaging (MRI) in health and disease became very 61 

interesting for clinicians and researchers. For example, spinal cord injury (SCI) is one of the primary causes of motor 62 

disabilities in humans and Skeletal muscles experience deleterious physiological changes after an accident(1,2). Due 63 

to the highly variable nature of recovery following an injury to the cord, it is difficult to predict the outcome and 64 

prognosis(3,4). It is important to have an accurate assessment of injury severity in SCI as early as possible to plan the 65 

acute injury management and have a better idea about the prognosis of the patient that helps the procedures in later 66 

stages, clinical trials, and candidacy for novel therapies(4,5). However, due to the existing challenges such as brain 67 

trauma and pain, an objective assessment seems to be far to reach(4,5). Advances in the MR imaging promises new 68 

opportunities for the study of spinal cord injuries and other conditions and is becoming the standard technique for the 69 

assessment of the damage(4–7). However, to increase the impact there is a need for the improvement of techniques 70 

that may contribute to the validity and reliability of measures. Since SC segmentation is the first step in atlas-based 71 

SC analysis(7), improvement of this step can have a drastic influence on the outcome of the analysis. Manual 72 

segmentation techniques are time-consuming and subject to between and within rater variability(7,8). Accordingly, 73 

for large sample sizes and clinical purposes, manual segmentation is a vulnerability. The Spinal Cord Toolbox has 74 

contributed invaluably to the development of protocols for the automatic segmentation of the SC(8) but most of their 75 

focus was on the cervical cord in the human and lumbar cord has not received proper attention. Besides, the algorithm 76 

used in their protocol is more sensitive to coexisting pathologies that may influence the outcome of the segmentation 77 

and its accuracy. A segmentation protocol that can deal with these challenges in the SCI is required to improve the 78 

impact of MR imaging on the study of SCI by contributing to the validity and reliability of measures. Similarly, in 79 

other clinical populations like low back pain patients and patients with Multiple Sclerosis (MS) improved outcome of 80 

segmentation the lumbar cord can contribute to the use of MR imaging more accurately in the clinic. It has been 81 

shown that atrophy in the gray matter of the spinal cord is associated with disability in patients with MS(9,10). So, it 82 

is important for clinicians and researchers dealing with those patients to monitor the structural changes in the cord (its 83 

shape or its Cross-Sectional Area (CSA)). Hence, understanding the pathophysiological sequelae would help to 84 

prevent and reduce disease burden and would facilitate the development of effective regenerative and neuroprotective 85 

treatments. However, manual segmentation of the cord is time-consuming, unreliable and varies from person to 86 
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person(11). Raters need to segment each scan in parallel and for each subject, the associated consensus segmentation 87 

of the raters for the cord and canal must be estimated using majority voting. For this purpose, the Dice coefficient and 88 

Hausdorff  Distance between each rater’s segmentation usually is calculated and a consensus mask is produced across 89 

all the raters' marks as a gold standard. To overcome these issues, a segmentation model is required to find the 90 

severity of the injury and to predict the disease patterns along the segmented spinal cord regions. Automatic detection 91 

of spinal cord and calculation of the cross-sectional area metrics (the rate of volumetric changes and tissue atrophy) 92 

are complex due to changes in structure and size. Besides automatic segmentation of this area is an essential factor 93 

that influences the detection of spinal cord atrophy and its severity of the SCI. Although semi-or fully-automated 94 

methods are susceptible to the level of contrast to noise in the image, they use sophisticated methods that lead to 95 

robust outcomes and more reliable results which indeed can contribute to the reproducibility of studies. For example, 96 

among those hired semi-automated methods Tench and colleagues (12) improved this metric in their edge-detection 97 

based method by taking into account the spinal cord orientation and the partial volume effect between spinal cord and 98 

Cerebra-Spinal Fluid (CSF). However, these methods need more manual interventions (requires a few points along the 99 

spinal cord, identified by the user to initialize the segmentation process). Other Researchers developed techniques 100 

based on an active surface model(13,14), used a double threshold-based method on the 3D T2-weighted turbo spin-101 

echo MR scans of the spinal cord(15), proposed a protocol based on a globally minimal path optimization method 102 

using PCA to cluster the spinal cord shapes(16), or developed a method based on one-dimensional template 103 

matching(17). A significant limitation of all these methods goes back to them requiring the intervention of the user at 104 

different stages, which may influence the reliability at different levels. On the other hand, fully-automated methods 105 

are preferred because they are faster, suitable for bigger samples and not susceptible to the user's bias. For example, 106 

De Leener and colleagues(8,18) developed an automatic segmentation method (PropSeg) based on multi-resolution 107 

propagating of tubular deformation models on MR images. Consequently, Gros et al.(11) proposed an original and 108 

fully automatic framework (DeepSeg) based on Convolutional Neural Networks (CNNs) applied to the spinal cord 109 

morphometry for segmenting the spinal cord and/or intramedullary MS lesions, degenerative cervical myelopathy 110 

(DCM), neuromyelitis optica (NMO), traumatic spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), and 111 

syringomyelia (SYR) from a variety of MRI contrasts and resolutions. However, none of these methods are optimized 112 

from images acquired from the thoracolumbar spinal cord. Due to the specific structure of this part of the spinal cord 113 

and its involvement in damages related to lower limbs and lower back, it is important to have a reliable protocol for 114 

the segmentation of the cord and the canal.  115 
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In this paper, we present a fully automatic framework for the segmentation of the spinal cord and spinal canal, 116 

optimized for thoracolumbar segments. The main contributions of this paper are: i) providing an independent 117 

detection module to find the spinal cord and spinal canal location based on the circular shape. The symmetry of the 118 

body helps to perform Circular Hough Transform to find the circular shape better. ii) applying an anisotropic diffusion 119 

filter to remove noises and stabilize the optimization process on the results of images. iii) using the K-means 120 

clustering algorithm for segmentation of the spinal cord and spinal canal. Our method performs well in low SNR 121 

regions, and it is robust towards low contrast, especially in thoracolumbar areas. Since this technique is optimized for 122 

low contrast images, we predict a better match between manual segmentation and K-Seg output as compared to two 123 

established models implemented in the SCT. 124 

Methods 125 

Image acquisition  126 

The method described in this paper was tested on T2-weighted MRI images of the thoracolumbar spinal cord of 20 127 

uninjured volunteers (male, age = 24.48±4.62 years, range = 22-31 years). The imaging data were acquired on a 3T 128 

Siemens Prisma MR scanner at the National Brain Mapping Laboratory, the University of Tehran. Volunteers were 129 

positioned carefully, and pads were used to restrict foot and spine movements. A structural volume was acquired in 130 

the sagittal orientation using a T2 sampling perfection by using flip angle evolution (SPACE) sequence (TR = 1500 131 

ms; TE = 119 ms; FOVs = 320 × 320 mm; matrix size = 256 × 256 × 56 slices, slice thickness = 1.3 mm, in-plane 132 

resolution = 1×1mm). To demonstrate the efficiency of the K-Seg in the segmentation of the cord in the low contrast 133 

region, only the vertebrae below T7 were included. The K-Seg was implemented in MATLAB environment. The code 134 

and sample data are freely available at (see Supplementary Appendix 2 for MATLAB Code). 135 

Segmentation framework 136 

The K-Seg framework is illustrated in Figure 1. It consists of five major steps:  137 

1) recognition of region of interest (ROI) based on mutual information as a similarity measure in Left-Right 138 

direction 139 

2) applying a canny filter to extract the edges and Hough line transform to remove the extra parts from the ROI 140 

in the Anterior-Posterior direction 141 
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3) using a Circular Hough Transform to find appropriate circles around the SC and CSF along the cord. So the 142 

automatic CSF segmentation can be achieved as well as SC location 143 

4) resorting the circles by selecting a candidate circle close to the AP line (a circle with radius [7-9] is good 144 

enough to find the spinal cord curvature in each slice due to the spine has varying shape from top to bottom) 145 

5) applying an anisotropic diffusion filter to remove noises and segmentation of the spinal cord and canal by 146 

 K-means clustering algorithm to classify intensities.  147 

Extracting region of interest in the left-right direction 148 

Most methods rely on semi-automatic or manual approaches, getting one or more landmarks to detect the position of 149 

the ROI to extract the spine in images(13–15) and some groups do it automatically(8,11,18–22); We used an 150 

automatic method: an axial slice was automatically selected (e.g., the middle slice of the volume). Using the Mutual 151 

Information (MI) metric(23)  and presuming the human body as symmetric the medial anterior-posterior line (AP line) 152 

was detected (the AP line passes the spinal cord) (Figure 1, step 1). This step, in particular, reduced the computational 153 

time. Detection of the AP line using the MI was through the following equation(18,23): 154 

                                                         P = arg max {S (Ileft ,Iright)}                                                                                 (1) 155 

Where S (Ileft, Iright) represents the MI between images, and Ileft and Iright are two 2D axial planes in left and right sides. 156 

A restrained image is built here by cropping an area with eight slices in the left-right direction around the AP line.  157 

Removing unwanted regions inside of the ROI in the Anterior-Posterior direction 158 

Here we aimed to remove unwanted regions inside of the ROI obtained from the previous step in the Anterior-159 

Posterior direction(Figure 1, step 2). To extract the spinal canal position, finding more details of the edges on the ROI 160 

is essential. Among the many edge detection methods, we used the Canny method(24), because of its ability to detect 161 

more details of edges in an image. After the edge detection, the Hough Line Transform was used to find the vertical 162 

lines in the image to extract the edges of interest(25,26).  163 

The Hough transform is a technique to isolate features of particular shapes within an image. The most common use of 164 

the Hough transform is in the detection of curves, lines, circles, and ellipses. This method is robust and unaffected by 165 

the image noise. We assume that the Hough Lines Transform is parameterized in this form(25,26): 166 

                                                                     p= xcosθ+ ysinθ                                                                                      (2)  167 
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Where p is a perpendicular distance from the line to the origin, and θ is the angle of distance p from the x-axis.  168 

The Hough line transform (for removing unwanted tissues inside of the ROI in the AP direction) is based on the 169 

following steps:  170 

I) Binarizing the ROI in the sagittal view, and applying the Hough line transform to it;  171 

II) Finding fifty significant Hough transform peaks (enough to indicate vertical lines of the spinal cord) 172 

III) Detecting the initial and endpoints of lines, and linking these points on the restrained binary image. Linking 173 

these points obtained the spinal cord and canal’s range in the image and let us remove the area outside these 174 

lines.  175 

Detection of Spinal Cord and Canal Location 176 

The detection module, based on the circular Hough transform, is in three steps (Figure 1, step 3). A Circular Hough 177 

Transform(25,26) was applied to the restrained image in the axial view (considering the circular shape of the spinal 178 

cord and the canal). Among the many identified circles, the circle with the minimum distance to the AP line was 179 

selected as a candidate circle (Figure 1, step 4). The distance was measured by the Euclidean method. The circular 180 

Hough transform is parameterized in this form(25,26): 181 

                                                                           (x-a)2+ (y-b)2= r2                                                                                                                        (3)  182 

Where (a,b) is the center of the circle and r is its radius. The radius of the circle of interest was in the range of 7 to 9 183 

mm (as the spine has a varying shape from top to bottom), and the sensitivity was set on 0.97. Next, in each axial 184 

slice, we created a mask on the candidate circle and then assigned the gray level intensities from the original image to 185 

this circle (Figure 1, step 4). By estimating the center of the circle in each slice, the coordinate of the centerline could 186 

be continuously updated in each slice to estimate the cord’s curvature. In the slices where no optimal circle could be 187 

identified (e.g. due to the low contrast of the image), the algorithm used the coordinates of the circle of the previous 188 

slice. As the candidate circles include spinal cord and canal tissues as well, the K-means clustering algorithm (see 189 

section 2.2.5.) was applied to classify the intensities and segment the spinal cord and CSF regions (Figure 1, step 5). 190 

This clustering method is sensitive to the image noise, and therefore, the images were first spatially smoothed. To 191 

avoid the blurring of the edges while smoothing, the contrast of the image was enhanced by applying an anisotropic 192 

diffusion filter (Figure 1, step 5). 193 

 194 
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Anisotropic Diffusion Filter  195 

Diffusion algorithms by Perona-Malik formulation remove noise from an image using a Partial Differential Equation 196 

(PDE). The isotropic diffusion equation was: 197 

                                                
( , , ) = div(∇I)                                                                                        (4) 198 

Where I(x, y, 0) is the original image, (x,y) refers to the spatial position, t is an artificial time parameter and ∇I is the 199 

image gradient(27,28). Because of equivalency of the isotropic diffusion with a Gaussian filter, Perona and Malik(28)  200 

replaced the classical formula of an isotropic equation with:  201 

                                                         
( , , ) = div(  g |∇I| ∇I  )                                                                      (5) 202 

Where |∇I| is the gradient magnitude of the image and(g |∇I| ) is an “edge-stopping” function. This function is 203 

defined to satisfy g(x) 0 when x∞. So that the diffusion is stopped across the edges. This filter can smooth the 204 

original image without any edge blurring by preserving brightness discontinuities. 205 

Spinal cord and canal Segmentation by K-means clustering algorithm 206 

K-means is a powerful, simple, and fast clustering algorithm(29,30). A clustering method is used to divide a set of 207 

data points into several groups (Figure 1, step 5). The K-means algorithm on an image operates in these steps:  208 

I) initializing the number of clusters (k=3);  209 

II) calculating the Euclidean distance d between the center of the clusters and each pixel of an image, using the 210 

following equation(29,30): 211 

                                                           d= || p (x, y) - ck||                                                                                       (6) 212 

III) Assigning each pixel to the nearest center in a cluster based on distanced and recalculating the new position 213 

of the center using this equation: 214 

                                                   ck= ∑ ∑ p(x , y)∈∈                                                                             (7) 215 

IV) Repeating the process until it satisfies the tolerance or error value;  216 

V) Reshaping the cluster pixels into the image. 217 
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 218 

The number of clusters that we consider to segment spinal cord and canal areas is (k=3). The first cluster is related to 219 

the spinal cord region, the second class includes the spinal canal area and the third cluster is referred to keep the same 220 

false areas which added on both SC and CSF throughout the detecting circles. By switching among these clusters the 221 

automatic SC and CSF segmentation can be achieved as well.  222 

Inter-rater variability of the Spinal cord segmentation 223 

We estimated the inter-rater variability of the spinal cord segmentation between two raters on all volunteers (n=20). 224 

for each of these subjects, one scan was available, which allow the raters to segment each scan in parallel and combine 225 

their information at the end of the work. For this purpose, we calculated the Dice coefficient and Hausdorff Distance 226 

between each rater’s segmentation and a consensus mask produced as majority voting across all the raters’ marks for a 227 

gold standard (see Table 1) (11). 228 

Validation Methodology 229 

The segmented data by K-Seg was validated against (i) manual segmentation performed independently by two 230 

experienced individuals and also the consensus of two expert manual segmentations which was selected as a gold 231 

standard (ii) segmentation using the PropSeg(8,18),  implemented in C++ based on multi-resolution propagation of 232 

tubular deformation models and (iii) segmentation using the DeepSeg(11), implemented in Python 2.7 based on 233 

convolutional neural networks (CNNs). To assess the performance of the K-Seg, two measures were computed as 234 

below:  235 

A.  The 3D Dice coefficient (DC) defined in(31) by the following equation:  236 

                                                             Dice (X, Y) = 
| ∩ || |  | |                                                                                   (8) 237 

Where X, Y are the binary segmentation mask to compare. As stated, the consensus of two expert manual 238 

segmentations was considered as a gold standard, and the three methods were compared with that. The Dice 239 

coefficient range is between [0,1], and closing to 1 means more similarity to the gold standard.  240 

B. The Hausdorff distance (HD) (32), which is described as the maximum distance between two images. Two sets are 241 

close in the Hausdorff distance if every point of either set is close to some points of the other set. A low Hausdorff 242 

distance demonstrates good results in comparison.  243 
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                                                    H(X, Y) = max  {h(X , Y), h (Y , X)}                                                                (9) 244 

              Where h (X, Y) is the Hausdorff distance from the surface X to Y and is defined as:  245 

                                                      h(X , Y) = max {min {d(x , y)}}                                                                    246 

(10) 247 

x,y are two points from the surfaces X, Y and d (x,y) is the Euclidean distance between a and b. 248 

Two independent One-Way ANOVAs(33) with Dice Coefficient and Hausdorff Distance as the dependent 249 

variables and the segmentation method versus manual segmentation as the independent variable compared the 250 

outcome of the K-Seg versus DeepSeg and PropSeg. 251 

RESULTS 252 

Results of the spinal cord segmentation on T2-weighted images on 20 uninjured subjects are presented in Table 1. 253 

High Dice coefficient and low Hausdorff distance demonstrate good results of the K-Seg method. Additionally, we 254 

calculated the Dice coefficient and Hausdorff Distance between each rater’s segmentation and a consensus mask 255 

produced across all the raters' labels as a gold standard. As shown in Table 1, results have been compared to two 256 

independent experienced individuals and also the consensus of two expert manual segmentations as a gold standard. 257 

The accuracy of the proposed method was found to be close, comparable and in some situations better than a single 258 

rater, in terms of 3D Dice coefficient (p<0.001). The 3D Dice coefficients were respectively 0.81 and Hausdorff 259 

Distance 12.3 by the K-Seg method for T2-weighted images. Therefore, K-Seg shows the accurate result when 260 

compared to the SCT methods, as shown by the higher Dice coefficient and lower Hausdorff distance in Table 1. Two 261 

examples of K-Seg segmentation of the spinal cord are presented in Figure.2A and Figure.2B Our findings suggest 262 

better results by using the K-Seg as compared to both DeepSeg and PropSeg. These images have a loss of quality with 263 

distortion in the presence of magnetic material. So the proposed method manages the segmentation firmly even when 264 

CSF and SC contrast is at lowest on a specific part of the spinal cord. As illustrated in Figure.2A and Figure.2B, some 265 

segmentation errors can be observed by PropSeg and DeepSeg methods, particularly in the lumbar portions. 266 

Furthermore, for a typical T2-W acquisition (TR = 1500 ms; TE = 119 ms; FOVs = 320 × 320 mm; matrix size = 256 267 

× 256 × 56 slices, slice thickness = 1.3 mm, in-plane resolution = 1×1mm), the computation time on a workstation 268 

with WIN 10 OS system equipped with an (Intel core i7, 2.20 GHz processor and 6 GB RAM), was 40 seconds for K-269 

Seg versus 1 min 55s for DeepSeg and 32s for PropSeg. 270 
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        Cross-sectional areas 271 

Spinal cord measurements such as the cross-sectional area can be extracted by K-Seg framework. Cross-sectional 272 

areas were calculated for each slice of a binarized segmentation of the spinal cord. This measurement was calculated 273 

for three methods by counting the pixels in each slice and then comparing it with a gold standard. The differences in 274 

CSA observed at vertebrae levels in Figure 3 Significant differences were observed for multiple vertebral levels. The 275 

cross-sectional areas in T12 level are greater than other vertebral levels.  276 

 277 

Discussion 278 

In this paper, we described the development and validation of a framework for the automatic segmentation of the 279 

spinal cord and spinal canal. This framework also allows us to calculate the quantitative CSA metric along the spinal 280 

cord for multiple vertebral levels. As stated earlier, segmentation of the spinal cord, spinal canal and also calculation 281 

of the quantitative CSA metric along the spinal cord became very interesting for clinicians and researchers. So 282 

segmentation frameworks will develop for automated SC segmentation on subjects without any pathological damage 283 

besides patients with a range of spinal pathologies, including those with traumatic spinal cord injury(1–5) and 284 

multiple sclerosis(9,10). In this cohort, we extended the method (k-seg) by providing segmentation of both SC and 285 

CSF based on the concept of the K-means clustering algorithm. We demonstrated the ability of k-seg to accurately 286 

segment the SC and CSF on T2-W images based on t. he same initialization. The first step of the method initializes by 287 

using a Circular Hough Transform to find an appropriate circle around the SC and CSF along the cord. The second 288 

phase of the method is applying an anisotropic diffusion filter to remove noises and stabilize the optimization process 289 

on the curvature which was detected in the previous section. Finally, the k-means clustering algorithm is used to 290 

separate SC and CSF regions from each other. Also, the sensitivity of the location of initialization for spinal cord 291 

segmentation along the axial plane is important. So to initialize the algorithm, thoracic regions of the spine (e.g., the 292 

middle slices of the selected volumes) yielded better results because of the higher contrast and shape of the spinal 293 

cord. Therefore, detecting the spinal cord position (the first candidate circle) in these areas is more reliable than the 294 

other parts(18). Based on this, we concluded that the initialization of our method in the middle axial slices of the MR 295 

image would obtain better results. 296 

As we mentioned earlier, fully-automated methods are preferred because they are faster, suitable for bigger samples 297 

and not susceptible to the user's bias. For example, Koh et al(22)  proposed a 2D active contour on sagittal T2-W MRI 298 

scans using gradient vector flow. Neubert et al(20)  proposed an automated 3D segmentation method on vertebral 299 
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bodies and intervertebral discs from MRI based on statistical shape analysis and template matching of grey level 300 

intensity profiles. De Leener et al.(8,18,19) developed an automatic segmentation method (PropSeg) based on multi-301 

resolution propagating of tubular deformation models on MR images. Finally, Gros et al.(11) proposed an original and 302 

fully automatic framework (DeepSeg) based on convolutional neural networks (CNNs) applied to the spinal cord 303 

morphometry for segmenting the spinal cord and/or intramedullary MS lesions, degenerative cervical myelopathy 304 

(DCM), neuromyelitis optica (NMO), traumatic spinal cord injury (SCI), amyotrophic lateral sclerosis(ALS), and 305 

syringomyelia(SYR) from a variety of MRI contrasts and resolutions. Although many of the above-mentioned 306 

methods, and in particular the PropSeg and DeepSeg, perform the segmentation of spinal cord from images with 307 

different contrasts and fields of view very well, when it comes to the segmentation of the thoracolumbar cord as 308 

compared to the cervical and thoracic cord, these tools don't work as well since in thoracolumbar cord as compared to 309 

the cervical cord the SNR is much lower and variation in shape and length of the cord inside the vertebral column is 310 

higher(11,18). The segmentation process is highly dependent on the quality of images and works better on images 311 

with high contrast between SC and CSF regions. In images with a lower CNR both manual and automatic 312 

segmentation face a lot of difficulties. We hypothesized that k-seg outperforms the existing protocols for the 313 

automatic segmentation of the spinal in the regions with higher noise and lower SNR and CNR. We were able to 314 

compare the outcome of our segmentation protocol with other protocols in different slices across the thoracolumbar 315 

spinal cord.  Interestingly, we could see that as we move to lower slices in the lumbar cord, the gap between the 316 

performance of k-seg, deepseg and propseg tends to enlarge and we can see more errors in the results acquired from 317 

deepseg and propseg (Table 1). Besides, as shown in (see Supplementary Appendix 1 for  Supplementary Figures), by 318 

moving from thoracic segments to the lumbar spinal cord, the level of the noise increases significantly and SNR 319 

decreases consequently. These findings support our hypothesis on the better performance of k-seg than deepseg and 320 

propseg when it comes to the segmentation of images with a higher level of noise. Indeed, a better performance by k-321 

seg when it comes to the segmentation of the spinal cord in areas with a higher level of noise can be attributed to the 322 

utilization of a well-established denoising filter (Anisotropic Diffusion Filter). Applying a proper filter on MR images 323 

is worth being taken into account because most of the smoothing filters can suppress important details along with the 324 

spinal cord segmentation, such as edges and small scale atrophy. However, Anisotropic Diffusion Filter (AD) allows 325 

us to combine the two most important attributes of the denoising algorithm: edge preservation and noise removal. A 326 

comparison between selected filters in our method and other methods in SCT depicts that the propseg method uses 327 

adaptive contrast properties are included within the deformable model framework that appropriately deal with 328 
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potential lack of signal-to-noise ratio(19). However, this deformable framework only applies a Gaussian filter through 329 

the model which blurs the image and can hinder the edge detection process. Also, no smoothing filter was mentioned 330 

in deepseg method. The motivation behind the use of the AD filter in k-seg is to overcome the blurring effects of the 331 

Gaussian smoothing approach.  In this approach, the image is only convolved in the direction orthogonal to the 332 

gradient of the image, which ensures the preservation of edges. Taking this step often requires to remove image 333 

artifacts beforehand to make k-means clustering more robust and efficient to segment SC/CSF intensities. So, we 334 

showed that the k-seg algorithm could follow the shape of the spinal cord even when the cord and CSF contrast is 335 

minimal on a significant portion of the spinal cord. 336 

Limitations 337 

Despite the good precision of K-Seg in T2-W thoracolumbar 3D images especially in the lower part of the spine, 338 

which has poor contrast, our segmentation method failed in particular occasions (mostly in the initializing step by 339 

detecting a non-target circle among many circles, using the circular Hough transform method). Also, our segmentation 340 

framework is sensitive to the quality of the images, which could be partly overcome by choosing a suitable filter to 341 

remove noises.  342 

In addition, the selection of T2-W images as an MR imaging protocol is considered in the present study because the 343 

quality of T1W images in the thoracolumbar region is very low and many groups are not interested in doing so.  344 

Accordingly, in most databases, only T2-W images are included. Similarly, in our database, we only had access to T2-345 

W images and couldn’t get access to images with T1w contrasts. However, we could test the algorithm on diffusion 346 

images from two subjects tested on another scanner than ours, and the outcome was similar to what we could get for 347 

T2-W images. Since the number of subjects wasn’t enough for statistical analysis we decided not to present them in 348 

the current paper. 349 

 350 

         Conclusion 351 

The current study was aimed to present a fully automatic segmentation method supporting T2-weighted images which 352 

can work efficiently on the thoracolumbar levels in the spinal cord. We also compare the outcome of the segmentation 353 

using the K-Seg with the outcome of manual segmentation and existing widely used methods (i.e. PropSeg and 354 

DeepSeg). The output with similar protocols showed that K-Seg results match the manual segmentation better than the 355 
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other methods especially on the thoracolumbar levels in the spinal cord. Future works are needed to replicate these 356 

results on spine images in a different field of view. 357 

 358 
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 464 

Figure Legends 465 

Figure 1. The framework of the K-Seg method 466 

The framework includes 1) recognition of region of interest (ROI) based on mutual information as a similarity measure; 2) applying canny filter to 467 

extract edges and Hough line transform in order to remove the extra parts from ROI in Anterior-Posterior direction; 3) computing the centerline of 468 

spinal cord by using Hough circular transform; 4) resorting the circles by Select a candidate circle close to AP line with radius [7-9] to find the 469 

spinal cord curvature and 5) applying an anisotropic diffusion filter to remove noises and segmentation of spinal cord and canal by k-means 470 

clustering algorithm to classify intensities. 471 

Figure 2.A Example of automatic spinal cord segmentation  472 

The framework includes segmentation on T2-W MRI data in the sagittal view. This is a comparison between the original image from left to right 473 

with manual (yellow), PropSeg (green), DeepSeg (blue) and K-Seg(red). The Dice coefficient indicated below each method.  474 

Figure 2.B Example of Spinal cord segmentation in axial and sagittal views 475 

The framework includes segmentation in axial and sagittal views, each color corresponds to one method related to vertebrae level (lower slice --.> 476 

L2, middle slice -- > T12, upper slice -- > T10), the red color is related to K-Seg, green and the blue color correspond to DeepSeg and PropSeg 477 

segmentation. 478 

Figure 3. Cross-Sectional Areas (CSA) along the spinal cord for twenty subjects. Mean and standard error of the mean (SEM) extracted from 479 

T2-W images are plotted on the same scale by corresponding vertebral levels. Significant differences are visible among methods results. each color 480 

corresponds CSA to one method, the yellow color is presented the manual segmentation of spinal cord, the red color is related to K-Seg, green and 481 

the blue color corresponds to DeepSeg and PropSeg segmentation. Also, each axial slice corresponds to one vertebrae level (Left slice --.> L2, 482 

middle slice -- > T12, Right slice -- > T10) with manual segmentation. 483 

TABLE 1: Evaluation of spinal cord segmentation using K-Seg, DeepSeg and PropSeg methods, versus the manual segmentation. Results (mean ± 484 

standard division) are compared using the the 3D Dice coefficient (3D DC) and Hausdorff distance (HD) (N=20). Also, gold standard and the inter-485 

rater variability are computed for twenty subjects. The variation among individuals is presented in range (Min-Max). Significant differences 486 

between K-Seg and two methods from SCT are enhanced in bold. 487 













K-Seg  0.7-0.81 (0.77 ± 0.04) 17.7-32.6 (24.1± 2.02)

DeepSeg 0.58-0.79 (0.73 ± 0.05) 18.7-31.5 (24.5± 2.08)

PropSeg 0.48-0.78 (0.67 ± 0.14) 19.1-44.6 (26.4± 5.04)

F*(2,57) 7.4 6.2

K-Seg 0.72-0.85 (0.8 ± 0.04) 7.7-16.9 (12.5 ± 2.48)

DeepSeg 0.58-0.79 (0.72 ± 0.05) 10-21.1 (13.2 ± 2.49)

PropSeg 0.48-0.78 (0.66 ± 0.14) 11-22.1 (15.8 ± 3.32)

F*(2,57) 12.4 14.1

K-Seg 0.76-0.86 (0.81 ± 0.04) 7.3-16.5 (12.3 ± 2.48)

DeepSeg 0.58-0.76 (0.71 ± 0.05) 10.2-21.3 (13.4 ± 2.49)

PropSeg 0.43-0.7 (0.64 ± 0.14) 11.4-22.3 (16.1 ± 3.32)

Rater 1 vs Rater 2 0.9-0.98 (0.93) 3.5-8.8 (5.9)
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* p-value<0.0002
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TABLE.1

Evaluation of spinal cord segmentation using K-Seg, DeepSeg and PropSeg methods, versus the 
manual segmentation. Results (mean ± standard division) are compared using 3D Dice coefficient 
(3D DC) and Hausdorff distance (HD) (N=20). Also, gold standard and the inter-rater variability 
are computed for twenty subjects. The variation among individuals is presented in range (Min-
Max). Significant differences between K-Seg and two methods from SCT are enhanced in bold.

Raters Methods

Ra
te

r1

3D Dice coefficient  
Min-Max (Mean±SD)

   Hausdorff Distance(mm)  
Min-Max (Mean±SD)


	Article File
	Fig 1
	Fig 2
	Fig 3
	Figure 1
	Figure 2
	Table

