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Abstract The remarkable expedience of human learning is thought to be underpinned by meta-

learning, whereby slow accumulative learning processes are rapidly adjusted to the current learning

environment. To date, the neurobiological implementation of meta-learning remains unclear. A

burgeoning literature argues for an important role for the catecholamines dopamine and

noradrenaline in meta-learning. Here, we tested the hypothesis that enhancing catecholamine

function modulates the ability to optimise a meta-learning parameter (learning rate) as a function of

environmental volatility. 102 participants completed a task which required learning in stable

phases, where the probability of reinforcement was constant, and volatile phases, where

probabilities changed every 10–30 trials. The catecholamine transporter blocker methylphenidate

enhanced participants’ ability to adapt learning rate: Under methylphenidate, compared with

placebo, participants exhibited higher learning rates in volatile relative to stable phases.

Furthermore, this effect was significant only with respect to direct learning based on the

participants’ own experience, there was no significant effect on inferred-value learning where

stimulus values had to be inferred. These data demonstrate a causal link between

catecholaminergic modulation and the adjustment of the meta-learning parameter learning rate.

Introduction
The remarkable expedience of human learning has given rise to the theory of meta-learning, or

‘learning to learn’ (Botvinick et al., 2019; Duan et al., 2016; Wang et al., 2016), which postulates

hierarchically nested learning systems wherein ‘slow’ trial-and-error-based learning systems consoli-

date abstract rules, while meta-learning mechanisms rapidly adjust to the current learning environ-

ment. This combination enables humans to learn generalities that commonly occur across spatial and

historical contexts whilst also being able to rapidly optimise learning within a specific context. To

date, the human neurobiological implementation of meta-learning remains unclear. A burgeoning lit-

erature argues that the catecholamines dopamine and noradrenaline play an important modulatory

role in meta-learning, and thus predicts that altering catecholamine function should change the abil-

ity to adjust learning to suit the prevailing context. The current study tests this hypothesis.

Relatively simple learning algorithms may be sufficient to predict choice behaviour in a static envi-

ronment. In real life, however, learning environments are almost always dynamic. Thus, learners must
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‘meta-learn’, that is they must adjust their learning strategies to suit the current environment

(Lee et al., 2004; Lee et al., 2014; Soltani et al., 2006). A classic example of human meta-learning

concerns the adjustment of learning rate as a function of environmental volatility. In environments

where payoff probability fluctuates (volatile environments), learning rate should be high, favouring

recent over (outdated) historical outcomes. However, in stable environments, a low learning rate is

optimal since recent and historical outcomes provide similarly useful information and a low learning

rate prevents spurious, contradictory, outcomes having a disproportionate impact. Indeed, numer-

ous studies have demonstrated that human participants adjust learning strategies depending on the

volatility of their environment (Behrens et al., 2007; Behrens et al., 2008; Lee et al., 2014;

McGuire et al., 2014), typically adopting higher learning rates in volatile relative to stable environ-

ments (Browning et al., 2015; Krugel et al., 2009; Nassar et al., 2010). Thus, humans adjust learn-

ing rates to suit the current level of environmental volatility.

Although the neural mechanisms underpinning this example of meta-learning are unclear, various

neuro-computational models have been proposed. These models differ in terms of their precise

computational mechanisms. However, they converge on the hypothesis that catecholamines play a

central role in human meta-reinforcement learning. One example concerns a class of models that

propose that the prefrontal cortex comprises a meta-learning system that, via striatal dopaminergic

prediction error signals (Montague et al., 1996; Schultz et al., 1997), learns task structure and

extracts abstract rules (Badre and Frank, 2012; Collins and Frank, 2013; Collins and Frank, 2016;

Frank and Badre, 2012; Lieder et al., 2018; Massi et al., 2018; Pasupathy and Miller, 2005;

Wang et al., 2018). This class of models proposes a critical role for dopamine in training the dynam-

ics of the prefrontal meta-learning system. A parallel theory developed by Doya and colleagues also

highlights the importance of dopamine: Doya and colleagues propose that learning rate should be

selected based on a formal comparison between medium- and long-term running averages of

reward rate (Doya, 2002; Schweighofer and Doya, 2003), which are hypothesised to be carried in

the phasic and tonic firing of dopamine neurons, respectively (Schweighofer and Doya, 2003).

Finally, Silvetti et al. (2018) emphasise the importance of noradrenaline, suggesting that the locus

coeruleus (the main noradrenergic nucleus of the brain) is the primary driver in computing learning

rates. In sum, the neuro-computational modelling literature proposes that the catecholamines are

central to human meta-reinforcement learning.

In keeping with theory, preliminary empirical evidence from the human psychopharmacological

literature is beginning to confirm the suggested role for the catecholamines in the adjustment of

learning rates. For example, a number of studies have shown that learning rates increase with

increasing catecholamine availability (Howlett et al., 2017; Jepma et al., 2016; Marshall et al.,

2016), and decrease with reduced catecholamine availability (Diederen et al., 2017). However,

meta-learning theories (Collins and Frank, 2016; Schweighofer and Doya, 2003; Silvetti et al.,

2018; Wang et al., 2018) predict that enhancing catecholamine function should not simply increase

(or decrease) learning rate but rather modulate the ability to adjust the learning rate to suit the cur-

rent learning environment, potentially via effects on the ability to learn the abstract rules governing

the structure of the environment (Collins and Frank, 2016; Wang et al., 2018). Indeed, Wang et al.

(2018) have demonstrated that, when trained on a two-armed bandit task featuring volatile and sta-

ble phases (Behrens et al., 2007), their computational model can rapidly infer the volatility of the

current environment and adjust learning rate accordingly. Existing studies of catecholaminergic

effects on learning rate adjustments have either explicitly signalled changes in the learning environ-

ment (Diederen et al., 2017), and therefore removed any need to learn the task structure, or have

used volatile learning environments where constant high, but not low, learning rates are adaptive,

that is where no learning rate adjustments are required (Howlett et al., 2017; Jepma et al., 2016;

Marshall et al., 2016). In contrast, here we use a task with changing levels of volatility (e.g.

Behrens et al., 2007), such that low learning rates are optimal in stable phases and higher learning

rates are optimal in volatile phases. This allowed us to test the prediction that enhancing catechol-

amine function modulates the ability to adjust learning rate as a function of environmental volatility.

The abovementioned studies implicate catecholamines in the adjustment of learning rate with

respect to direct ‘experienced-value’ learning, where choices are based only on participants’ own

previous experience with outcomes given their actions. Experience-value learning can be contrasted

with indirect ‘inferred-value’ learning, in which stimulus value must be inferred from integration of

one’s own experience of outcomes with knowledge of the environment. For example, advice from a

Cook et al. eLife 2019;8:e51439. DOI: https://doi.org/10.7554/eLife.51439 2 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.51439


colleague may not have inherent value (i.e. may not be directly rewarding/punishing), but the col-

league’s advice may promote an action which is directly rewarded. Using the knowledge that the

colleague’s advice promoted the rewarded action, one can infer the utility of the advice and update

its corresponding value estimate. Existing studies implicate the catecholamines in this process

(Langdon et al., 2018; Sharpe and Schoenbaum, 2018). For instance, in reversal tasks where a

change in a directly experienced stimulus value indicates that the value of an unchosen option has

also changed, dopamine neurons in the monkey brain signal both the experienced-value, and the

inferred-value of the unchosen option (counterfactual updating; Bromberg-Martin et al., 2010).

Recent meta-learning simulations also produce this ‘inferred-value effect’ (Wang et al., 2018).

Despite this nascent literature, human psychopharmacological studies have not empirically investi-

gated catecholaminergic modulation of learning rates with respect to inferred-value learning, but in

theory it should be the case that catecholamines are also involved in the modulation of learning rate

with respect to inferred-value.

Participants in our study completed a modified version of the two-armed bandit task

developed by Behrens et al. (2008) (see also Cook et al., 2014). On each trial, participants chose

between two bandits which fluctuated between stable phases in which the probability of reinforce-

ment was held constant for 50–60 trials, and volatile phases in which probabilities changed every

10–30 trials. Preceding the response phase, a frame surrounded one of the two bandits, ‘advising’

participants to select the highlighted bandit. The veracity of the frame’s ‘advice’ similarly fluctuated

between stable and volatile phases which were independent of the fluctuating volatility of the ban-

dits. Experience with outcome information directly informed participants about the reward value of

each bandit and indirectly informed participants about the value of the advice. That is, we instructed

participants that the frame represents ‘advice’ and that this ‘advice’ can be either correct or incor-

rect. Informed by a parallel literature concerning differences between social and non-social learning

(Heyes, 2012), half of the participants were informed that the frame represented social information,

while the other half received a non-social cover story. This latter manipulation enabled us to test for

any social-specificity regarding the source of the ‘advice’. To investigate the effect of a catechol-

amine challenge on learning rate adjustment for experienced- and inferred-value learning, partici-

pants completed the task once under placebo (PLA) and once after 20 mg of the catecholamine

transporter blocker methylphenidate (MPH; order counterbalanced). Whilst potential differences

between social and non-social advice were our initial concern (which we discussed in depth in

Cook et al., 2018), in response to major recent advances in the meta-learning literature, we here

focus on the effects of the catecholaminergic challenge on meta-learning and briefly discuss compar-

isons between social and non-social groups for completeness.

To estimate learning rate adjustment as a function of environmental change, we fitted an adapted

Rescorla-Wagner learning model (Rescorla and Wagner, 1972). Our adapted model estimates

learning rate for directly-experienced- and indirectly-inferred-value learning, for volatile and stable

learning environments. To foreshadow our results, we observed that MPH improved participants’

ability to adjust learning rate as a function of environmental volatility. However, this effect was signif-

icant only with respect to experienced-value learning: MPH had no significant effect on (either social

or non-social) inferred-value learning. This pattern of results was also reflected in increased use of a

win-stay, lose-shift strategy in volatile relative to stable environments, under MPH, relative to PLA.

Again, we observed that MPH only significantly affected the use of a win-stay lose-shift strategy for

experienced-value learning. In sum, these results demonstrate the causal role of catecholamines in

meta-reinforcement learning as evidenced by enhancement of the adjustment of learning rate to suit

the level of environmental volatility.

Results
102 participants took part on two separate test days. The study followed a double-blind cross-over

design such that 50% of participants received 20 mg MPH on day 1 and PLA on day 2, for 50% of

participants the order was reversed. On each test day, participants completed the two-armed bandit

task (Figure 1) (Behrens et al., 2008; Cook et al., 2014). On each trial participants chose between

a blue and a green stimulus to accumulate points. The probability of reward associated with the blue

(p(blue)) and green stimuli (p(green)) varied according to a probabilistic schedule (max. 0.8, min 0.2).

P(green) was always equal to 1 - p(blue). Participants were randomly allocated to one of four
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possible probabilistic schedules (see Materials and methods: Learning task). All probabilistic sched-

ules were comprised of stable phases, in which the probability of reinforcement was held constant

for 50–60 trials, and volatile phases, in which probabilities reversed every 10–30 trials. Outcomes

were pre-determined according to these schedules. Although the probabilistic schedule was the

same across the two study days, there was variation in the trial-wise outcomes. Participants could

use their direct experience of the reward history to track these changing probabilities (experienced-

value learning). On each trial, before participants made a response, they saw an ‘advice’ frame sur-

rounding one of the two options. The veracity of this information followed one of four different

probabilistic schedules (Figure 1—figure supplement 1) that participants could track throughout

the course of the experiment. As with the blue and green stimuli, the probabilistic schedule

Figure 1. Task design. Participants selected between two bandits (blue and green boxes) in order to win points. On each trial, participants saw the

direct sources (boxes, 1–4 s), subsequently either the blue or green box was highlighted with a red frame (the indirect source, 1–4 s). Participants were

instructed that the frame represented either the most popular choice made by a group of participants who had completed the task previously (Social

Group) or the choice from rigged roulette wheels (Non-social Group). After participants had responded, their selected option was framed in grey. After

0.5–2 s participants received feedback in the form of a green or blue box between the two bandits. A new trial began after 1–3 s. Success resulted in

the red reward bar progressing towards the silver and gold goals. The probability of reward associated with the blue and green boxes and the

probability that the red frame surrounded the correct box varied according to probabilistic schedules which comprised stable and volatile phases.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Probabilistic schedules.
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underpinning the veracity of the frame comprised stable phases in which the probability that the

frame surrounded the correct option was held constant for 50–60 trials, and volatile phases in which

probabilities changed every 10–30 trials. Participants were randomly allocated to one of two experi-

mental groups, ‘Social’ or ‘Non-social’. There were no significant differences between groups in age,

gender or socioeconomic status (Appendix 1). Participants in the Social Group were informed that

the frame represented the most popular choice selected by a group of participants who

had previously played the task. They were also told that the experimenter had ‘mixed up’ the order

of the other participants’ trials so that their advice follows useful and less useful phases. Participants

in the Non-social Group were instructed that the red frame represented the outcome from a system

of rigged virtual roulette wheels, which fluctuated between providing useful and less useful advice

(see Appendix 2 for instruction scripts). Outcome information was represented by a blue or green

indicator which directly informed participants about whether they had made the correct choice on

the current trial (i.e. if the outcome indicator was blue, then the blue stimulus was correct) and from

which they could indirectly infer the veracity of the frame: If the outcome was blue AND the frame

surrounded the blue stimulus, then the advice had been correct. Unbeknownst to participants,

reward was probabilistic, so that in a stable blue phase (e.g. p(blue) = 0.75), green responses were

occasionally rewarded (e.g. on 25% of trials).

Accuracy analysis
To account for the probabilistic nature of feedback, correct responses were defined as those choices

that were likely to be rewarded according to the probabilistic schedule and incorrect responses as

those that were unlikely to be rewarded. Overall accuracy was mean (standard error) (�x s�xð Þ) = 0.69

(0.01; min. 0.44, max. 0.89) under PLA and 0.69 (0.01; min. 0.52, max. 0.87) under MPH. A repeated

measures ANOVA with within-subjects factors drug (MPH, PLA) and volatility (stable, volatile), and

between-subjects factor group (social, non-social) revealed a significant main effect of volatility (F

(1,100) = 20.904, p < 0.001), with accuracy being significantly higher for stable (�x s�xð Þ ¼ 0.711

(0.011)) relative to volatile phases (�x s�xð Þ ¼ 0.664(0.009)), and no other main effects or interactions

(all p>0.05).

Win-stay, lose-shift analysis
A simple learning strategy is the win-stay and lose-shift (WSLS) strategy. A participant who unerringly

follows a WSLS strategy is completely guided by their performance on the previous trial: If they

choose blue and win they stay with a blue choice; if they choose blue and lose, they shift to a green

choice. In a classic reinforcement learning model (e.g. Rescorla and Wagner, 1972) such a partici-

pant would exhibit a learning rate equal to 1. That is, they would be completely ‘forgetting’ about

past events and reacting only to trial t-1. The extent to which participants employ a WSLS strategy

typically correlates with their learning rate, thus WSLS can be (cautiously) used as a proxy for learn-

ing rate. Our first analysis therefore investigated the influence of catecholaminergic modulation of

meta-learning by quantifying the effect of MPH on the use of this simple learning strategy in volatile

and stable environments. In stable phases, performance depends on ignoring misleading probabilis-

tic feedback, thus lose-shifting would result in worse performance as participants would stray from

the optimal action every time they receive a spurious (probabilistic) punishment. In contrast, in a vol-

atile phase a punishment is relatively more likely to signal a true change in the underlying probabilis-

tic schedule and thus lose-shifting is adaptive and should be more likely than in a stable phase. We

predicted that, relative to PLA, MPH should enhance the use of a WSLS strategy in volatile com-

pared to stable environments.

WSLS behaviour was quantified using a regression on individual participant choices (green/blue;

follow/deviate from advice), to assess the degree to which a WSLS strategy guided these choices.

For each participant, a regressor was created representing the choice that they would have made,

for each trial, if they were strictly adhering to a WSLS strategy, for each of the eight cells of the

2x2x2 factorial design (drug x volatility x learning type). The resulting estimated bWSLS values were

analysed with a repeated measures ANOVA with within-subjects factors drug (MPH, PLA), volatility

(stable, volatile), and learning type (experienced, inferred) and between-subjects factor group

(social, non-social). We observed a significant drug x volatility x learning type interaction (F(1,100) =

8.171, p = 0.005; Figure 2C). Post-hoc ANOVAs conducted separately for experienced-value and
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inferred-value learning (Figure 2A, B) revealed a significant drug x volatility interaction for experi-

enced-value learning (F(1,100) = 5.130, p = 0.026), and no significant interaction (or main effect of

drug) for inferred-value learning (F(1,100) = 2.310, p = 0.132; BF01 = 3.5). Simple effects analyses

revealed that, for experienced-value learning, bWSLS values were higher for volatile relative to stable

phases under both PLA (volatile �x s�xð Þ = 0.408(0.023), stable �x s�xð Þ = 0.342(0.023), F(1,100) = 8.803, p

Figure 2. Drug effects on win-stay, lose-shift beta values. (A) Win-stay, lose-shift betas, for experienced-value learning, in stable and volatile periods,

under MPH (purple) and PLA (green). (B) Win-stay, lose-shift betas, for inferred-value learning, in stable and volatile periods, under MPH and PLA. (C)

There was a significant interaction between drug and volatility for experienced-value learning, but not for inferred-value learning. (D) Drug effect on

win-stay, lose-shift betas for volatile minus stable blocks, for experienced-value (orange) and inferred-value (blue) learning. There was no difference

between the social and non-social (roulette) groups. Boxes = standard error of the mean, shaded region = standard deviation, individual datapoints are

displayed, MPH = methylphenidate, PLA = placebo, * indicates statistical significance.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Illustration of relationship between experienced-value bWSLS_vol-stable and accuracy.
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= 0.004) and MPH (volatile �x s�xð Þ = 0.422(0.020), stable �x s�xð Þ = 0.293(0.025), F(1,100) = 29.164, p <

0.001). Simple effects analyses also showed that, for experienced-value learning, there was a non-

significant trend towards lower bWSLS values for MPH compared to PLA within stable (F(1,100) =

3.405, p < 0.068) but not volatile phases (F(1,100) = 0.427, p = 0.515). As demonstrated by the sig-

nificant interaction, the difference between volatile and stable was greater under MPH (�x s�xð Þ =

0.129(0.024)) compared with PLA (�x s�xð Þ = 0.067(0.022).

There was no significant drug x volatility x learning type x group interaction (F(1,100) < 0.001,

p = 0.994; Figure 2D) suggesting that the drug effect did not vary as a function of (social/non-social)

group. In addition, there was no drug x group (F(1,100) = 0.095, p = 0.758) or drug x volatility x

group (F(1,100) = 0.356, p = 0.552) interaction. To provide a test of whether it is accurate to claim

that drug effects did not differ as a function of group, results were also analysed within a Bayesian

framework using JASP (JASP Team, 2018) with a prior of a medium effect size using default priors.

Bayes Factors provide a ratio of the likelihood of the observed data under the null versus alternative

hypothesis (Dienes, 2016). Bayes Factors (BF01) are reported. By convention, values of 0.33–0.1 and

3–10 are taken as moderate evidence in favour of the alternative and null hypotheses, respectively,

0.33–1 and 1–3 are taken as anecdotal evidence, while values of 1 are judged to provide no evi-

dence to favour either the null or alternative hypothesis (Lee and Wagenmakers, 2014). We com-

puted one single difference score representing the differential effects of MPH on experienced- and

inferred-value learning in stable and volatile environments. This score was calculated separately for

Social and Non-social Groups and submitted to a Bayesian independent samples t-test. The BF01
value was 4.3 thus providing support for the null hypothesis that the groups do not differ.

There were no other significant interactions involving the factor drug and no main effect of drug

(all p>0.05). See Appendix 3 for all other main effects and interactions and separate analyses of WS

and LS scores. The interaction between drug, volatility and learning type remained significant (F

(1,98) = 7.004, p = 0.009) when order of drug administration (MPH Day 1, PLA Day 1) was included

as a factor in the ANOVA. There was no drug x volatility x learning type x order interaction (F(1,98)

= 1.100, p = 0.297) and no main effect of order (F(1,98) = 0.218, p = 0.641).

MPH significantly affects learning rate adaptation for experienced-, not
inferred-, value learning
Learning rate analysis
The above analysis demonstrates that, relative to PLA, MPH increased the use of a WSLS strategy in

volatile versus stable phases. As noted above, a participant who unerringly follows a WSLS strategy

is completely guided by their performance on the previous trial. In a classic reinforcement learning

model (e.g. Rescorla and Wagner, 1972), this is equivalent to a learning rate equal to 1, where the

participant would be completely ‘forgetting’ about past events beyond the preceding trial. In con-

trast, a lower learning rate indicates more equal weighting of recent and distant past. Consequently,

the WSLS analysis (above) may indicate that MPH enhances the difference in learning rate between

volatile and stable phases such that learning rates are higher in volatile compared with stable envi-

ronments. To explore this possibility, we estimated learning rate by fitting an adapted Rescorla-

Wagner learning model (Rescorla and Wagner, 1972). This learning model consisted of two

Rescorla-Wagner predictors (Rescorla and Wagner, 1972), one that estimated the utility of a blue

choice based on experienced-value learning in volatile and stable phases, and one that estimated

the utility of going with the red frame (i.e. ‘following the advice’) using inferred-value learning in vol-

atile and stable phases. These modelled choice values were translated into choices using a unit

square sigmoid function, where the inverse temperature parameter b controls the extent to which

action value differences influence choice. This function also included a free parameter z, which con-

trols the weighting of experienced relative to inferred values (see Materials and methods for further

details). Thus, per participant, we estimated four learning rates (a), per drug condition:

astable_experienced, avol_experienced, astable_inferred, avolatile_inferred plus b and z (see Materials and methods

for details regarding model fitting and model simulations. See Appendix 4 for results of model com-

parison). Paired samples t-tests showed no difference in b and z estimates between MPH and PLA

conditions: b (MPH �x s�xð Þ = 3.354(0.209), PLA �x s�xð Þ = 3.088(0.167); t(101) = 1.152, p = 0.252); z

(MPH �x s�xð Þ = 0.499(0.027), PLA �x s�xð Þ = 0.512(0.027); t(101) = -0.554, p = 0.581).
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We tested the effect of MPH on learning rates using a repeated measures ANOVA with within-

subjects factors drug (MPH, PLA), volatility (stable, volatile), and learning type (experienced,

inferred) and between-subjects factor group (social, non-social). Supporting our WSLS analyses, we

found a significant drug x volatility x learning type interaction (F(1,100) = 6.913, p = 0.010;

Figure 3C). Again, post-hoc ANOVAs conducted separately for experienced-value and inferred-

value learning (Figure 3A, B) revealed a significant drug x volatility interaction for experienced-value

learning (F(1,100) = 6.151, p = 0.015), and no interaction (or main effect of drug) for inferred-value

learning (F(1,100) = 1.588, p = 0.211, BF01 = 3.3). Simple effects analyses showed that, for experi-

enced-value learning, there was a non-significant trend towards lower aexperienced values for MPH

Figure 3. Drug effects on learning rates. (A) Learning rate for experienced-value learning, in stable and volatile periods, under MPH (purple) and PLA

(green). (B) Learning rate for inferred-value learning, in stable and volatile periods, under MPH and PLA. (C) There was a significant interaction between

drug and volatility for experienced-value learning, but not for inferred-value learning. (D) The interaction between drug and volatility was specific to

experienced-value learning even for a sub-sample of participants who were keen inferred-value learners. Boxes = standard error of the mean, shaded

region = standard deviation, individual datapoints are displayed, MPH = methylphenidate, PLA = placebo, * indicates statistical significance.
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compared to PLA within stable (F(1,100) = 3.218, p < 0.076) but not volatile phases (F(1,100) =

1.387, p = 0.242). Simple effects analyses also revealed that, for experienced-value learning, learning

rates were higher for volatile relative to stable phases under MPH (avolatile_experienced �x s�xð Þ = 0.353

(0.020), astable_experienced �x s�xð Þ = 0.299(0.017), F(1,100) = 8.116, p = 0.005) but not PLA

(avolatile_experienced �x s�xð Þ = 0.329(0.019), astable_experienced �x s�xð Þ = 0.331(0.018), F(1,100) = 0.020, p =

0.888). There was no significant difference between volatile and stable learning rates for inferred-

value learning under MPH (avolatile_inferred �x s�xð Þ = 0.187(0.013), astable_inferred �x s�xð Þ = 0.214(0.015),

simple main effect of volatility F(1,100) = 2.848, p = 0.095), or PLA (avolatile_inferred �x s�xð Þ = 0.187

(0.013), astable_inferred �x s�xð Þ = 0.189(0.013), F(1,100) = 0.025, p = 0.876). Furthermore, as illustrated

by the significant interaction, the difference between volatile and stable was greater under MPH

(MPH difference �x s�xð Þ = 0.053(0.019), PLA difference �x s�xð Þ = – 0.002(0.016)).

There was no significant drug x volatility x learning type x group interaction (F(1,100) = 0.435,

p = 0.511). Indeed, Bayesian statistics provided moderate support for the null hypothesis that the

Social and Non-social groups did not differ (BF01 = 4.66; see Appendix 3 for further analysis demon-

strating an absence of group differences even in a subgroup that are particularly sensitive to the

effects of MPH on inferred-value learning). There were no other significant interactions involving the

factor drug (all p > 0.05). See Appendix 3—table 2 for all other main effects and interactions. The

interaction between drug, volatility and learning type remained significant (F(1,98) = 5.806,

p = 0.018) when drug administration order (MPH Day 1, PLA Day 1) was included as a factor in the

ANOVA. There was no drug x volatility x learning type x order interaction (F(1,98) = 0.203,

p = 0.653) and no main effect of order (F(1,98) = 1.538, p = 0.218).

MPH selectively affects experienced-value learning in ‘keen inferred-
value learners’
The red frame is a highly salient and behaviourally relevant cue. Optimal performance on this task

requires participants to learn about the veracity of the frame and use this information to help choose

amongst the boxes. Thus, the absence of a significant effect of MPH on inferred-value learning is

particularly striking. Nevertheless, to guard against the possibility that the lack of a significant effect

of MPH on inferred-value learning is driven by overall reduced reliance on inferred-value, relative to

experienced-value, learning (i.e. that participants learn primarily from the blue/green boxes and

ignore the frame) we ran the following post-hoc analysis. First, we identified whether experienced-

or inferred-value learning was the primary driver of responses for each of our participants. This was

achieved by regressing a Bayesian Learner Model (Behrens et al., 2007) of optimal responses

against each participant’s behaviour under PLA using the same method employed by Cook et al.

(2014). This produced two beta values for each participant representing the extent to which their

responses were driven by experienced- (bexperienced) and inferred-value learning (binferred). ’Keen

inferred-value learners’ were defined as participants for whom binferred > bexperienced (N = 45). Under

PLA, these participants primarily use the indirect information (the frame) to make their decisions. In

this subgroup, we observed the same significant drug x volatility x learning type interaction (F(1,44)

= 12.186, p = 0.001; Figure 3D) as in the overall population. Under MPH avolatile_experienced (�x s�xð Þ =

0.367(0.027)) was significantly greater than astable_experienced (�x s�xð Þ = 0.275(0.023); F(1,44) = 12.229,

p = 0.001), there was no significant difference under PLA (avolatile_experienced �x s�xð Þ = 0.272(0.026),

astable_experienced �x s�xð Þ = 0.293(0.026), F(1,44) = 0.587, p = 0.448). Importantly, also in this subpopula-

tion of keen inferred-value learners, for inferred-value learning the interaction between drug and vol-

atility (F(1,44) = 2.418, p = 0.127, BF01 = 3.25) and the main effect of drug (F(1,44) = 2.043, p =

0.160) were not statistically significant. Thus, we observed a selective effect of MPH on experienced-

value learning even for participants whose responses under PLA were primarily driven by the advice.

Optimal learner analysis
In the above section (Learning rate analysis), we report that the difference in avolatile_experienced and a

stable_experienced is greater under MPH compared to PLA. To investigate whether, in this particular

task, a greater difference between avolatile_experienced and astable_experienced can be considered ‘more

optimal’ we created an optimal learner model with the same architecture and priors as the adapted

Rescorla-Wagner model employed above. By generating 100 synthetic datasets, which followed our

probabilistic schedules, and fitting the optimal learner model to the synthetic data, we estimated
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that the average optimal learning rates were aoptimal_experienced_stable = 0.16, aoptimal_experienced_volatile

= 0.21, aoptimal_inferred_stable = 0.17, aoptimal_inferred_volatile = 0.19. Optimal values for zoptimal (the

weight of inferred- relative to experienced-value learning) and boptimal were 0.23 and 1.44,

respectively.

‘Distance from optimal’ indices (the difference between a and aoptimal) were submitted to a 2

(drug: MPH, PLA) x 2 (volatility: volatile, stable) x 2 (learning type: experienced, inferred) x 2 (group:

social, non-social) ANOVA. We observed a significant drug x learning type x volatility interaction (F

(1,100) = 6.913, p = 0.010; Figure 4). Only for experienced-value learning was there a significant

drug x volatility interaction (F(1,100) = 6.151, p = 0.015; inferred-value learning F(1,100) = 1.588, p =

0.211). Simple effects analyses demonstrated that experienced-value learning rates under PLA were

further from the optimal value in the stable compared to volatile phase (avolatile_experienced-

optimal �x s�xð Þ = 0.119(0.019), astable_experienced-optimal �x s�xð Þ = 0.171(0.019), F(1,100) = 11.227, p =

0.001). The difference between volatile and stable was not significant under MPH (avolatile_experienced-

optimal �x s�xð Þ = 0.143(0.020), astable_experienced-optimal �x s�xð Þ = 0.139(0.017), F(1,100) = 0.051, p =

0.823). Numerically, stable learning rates were closer to optimal under MPH relative to PLA; how-

ever, this effect only approached statistical significance (F(1,100) = 3.218, p = 0.076). The distance

from optimal for volatile learning rates was not significantly affected by MPH (F(1,100) = 1.387, p =

0.242). In sum, there was a trend such that under PLA participants systematically over-estimated the

volatility of the stable environment and MPH counteracted this systematic bias.

Relationship between accuracy scores and model-based analyses
Despite the absence of a significant drug effect on accuracy (see Accuracy analysis), we observed

that experienced-value bWSLS_vol-stable was significantly positively correlated with accuracy under

Figure 4. Experienced-value learning rates under PLA, but not MPH, were further from the optimal value in the stable compared to volatile phase.
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both MPH (Pearson’s r = 0.236, p = 0.017) and PLA (Pearson’s r = 0.453, p < 0.001; see Figure 2—

figure supplement 1 for scatterplots). Thus, increased use of a WSLS strategy under volatile com-

pared with stable phases was associated with better performance (more optimal choices) on this

task.

The lack of a significant overall drug effect on accuracy was somewhat surprising given the signifi-

cant (interaction) effect on learning rates. To investigate potential explanations, we conducted

exploratory analyses concerning the relationship between estimated model parameters and accu-

racy. A backwards regression with MPH-PLA accuracy as dependent variable, and astable_experien-

ced_MPH-PLA, avol_experienced_MPH-PLA, astable_inferred_MPH-PLA, avolatile_inferred_MPH-PLA, bMPH-PLA and zMPH-

PLA as predictors, revealed that MPH-PLA accuracy was significantly predicted by the full model (R =

0.798, F(6,95) = 27.805, p < 0.001; Table 1). Removing predictors did not significantly improve the

fit of the model (R2change < 0.001, F change (1,95) = 0.030, p = 0.864). Including interaction terms

for astable_experienced_MPH-PLA x avol_experienced_MPH-PLA, and astable_inferred_MPH-PLA x avol_ inferred _MPH-PLA

did not significantly improve the fit of the model (R2change = 0.003, F change (2,93) = 0.367, p

= 0.694). Within the model the only significant predictors were avolatile_experienced_MPH-PLA, bMPH-PLA,

and zMPH-PLA (Table 1).

Hierarchical regression showed that for zMPH-PLA the R2change value was 0.378 (F change

(1,95) = 98.862, p <0.001) indicating that zMPH-PLA accounts for an additional 38% of the vari-

ance compared to the other regressors in the model. The corresponding value for bMPH-PLA was

13% (R2change = 0.127, F change (1,95) = 33.211, p <0.001) and 7% for avolatile_experienced_MPH-

PLA (R2change = 0.073, F change (1,95) = 19.151, p <0.001). Hierarchical regression models con-

ducted separately for PLA and MPH conditions also demonstrated that z scores are the best

predictors of accuracy (Appendix 5).

Regressing model parameters against MPH-PLA accuracy demonstrates that any differences in

accuracy scores between MPH and PLA conditions were predominately driven by effects of MPH on

z (38%) and, to a lesser extent, b (13%) and avolatile_experienced (7%). In other words, participants who

showed the greatest benefit of the drug in terms of accuracy scores were those who experienced

the greatest decrease in z under MPH (where a decrease corresponds to a greater bias towards the

use of experienced, as opposed to inferred, learned values). As noted above, there was no signifi-

cant effect of drug on z across all participants (zMPH �x s�xð Þ = 0.499(0.027), zPLA �x s�xð Þ = 0.512(0.027); t

(101) = -0.554, p = 0.581). The finding that changes in accuracy are accounted for by only a very

small proportion of the variance in learning rate is consistent with the observation that the drug

altered learning rate without altering accuracy.

Summary of results
MPH increased participants’ ability to adapt to environmental volatility, such that they exhibited

increased learning rates (and increased use of a WSLS strategy) under volatile relative to stable con-

ditions (Figure 3). This effect was only present in the case of direct, experienced-value learning.

MPH did not modulate participants’ ability to adapt to the volatility of the inferred utility of an indi-

rect source of information. Although the drug significantly affected learning rate adaptation it did

not affect accuracy, potentially because, for the current task, accuracy is predominantly influenced

by the weighting of experience-value relative to inferred-value learning (i.e. z values).

Table 1. Coefficients from regression model with MPH-PLA accuracy as dependent variable.

b b(std. Err.) standardised b t p

constant �0.008 0.006 �1.3 0.197

bMPH-PLA 0.014 0.002 0.36 5.763* <0.001

zMPH-PLA �0.241 0.024 �0.658 �9.943* <0.001

astable_experienced_MPH-PLA 0.005 0.032 0.011 0.172 0.864

avol_experienced_MPH-PLA 0.126 0.029 0.285 4.376* <0.001

astable_inferred_MPH-PLA 0.014 0.041 0.023 0.345 0.731

avolatile_inferred_MPH-PLA 0.02 0.041 0.03 0.483 0.63

* indicates statistical significance.
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Discussion
Participants completed a learning task, requiring them to concurrently learn from their own direct

experience, and from an additional indirect source of information. Participants completed the task

once under PLA and once after MPH administration. Results confirmed the hypothesis that MPH,

which blocks both noradrenaline and dopamine transporters, enhances participants’ ability to adapt

learning rate as a function of environmental change. This result advances the existing literature that,

to date, has linked catecholamines to context-independent increases or decreases in learning rate,

but not with volatility-based adjustments. In addition, we demonstrated that MPH only had a signifi-

cant effect on direct, experienced-value learning: MPH had no significant effect on inferred-value

learning and this was true irrespective of whether the indirect source was believed to be social or

non-social in nature.

MPH enhances learning rate adaptation as a function of environmental
volatility
The current study established that MPH enhances the adaptation of experienced-value learning rates

as a function of environmental volatility. Interestingly, we observed that under PLA, participants

exhibited a bias towards over-estimating volatility (learning rates were generally greater than the

corresponding optimal learner estimates). This bias was significantly greater for stable relative to vol-

atile phases. MPH reduced learning rates in the stable context thereby bringing the stable learning

rate closer to the optimal value. MPH did not bring learning rates closer to the optimal values in the

volatile context. It is thus possible that, in line with a meta-learning account, MPH optimises learning

rate but that, across the group, this effect could only be observed in the stable context where learn-

ing rates were especially non-optimal.

Our optimal learner analysis also demonstrated that for optimal performance avolatile should be

greater than astable. Consequently, it is striking that under PLA our participants did not exhibit a sig-

nificant difference between avolatile and astable. By fitting learning models to participants’ responses,

previous studies have demonstrated higher learning rates in volatile compared to stable phases (e.g.

Browning et al., 2015; Diaconescu et al., 2014). However, such studies, differ from ours in that

demands for learning were lower than those in the current study: Participants learned from only one

source of information (Browning et al., 2015) or were provided with explicit outcome probabilities

(Diaconescu et al., 2014). To the best of our knowledge, the current experiment is the first to esti-

mate learning rates, for volatile and stable phases, when participants are simultaneously learning

from two sources of information. Here, we demonstrated a lack of adaptation to the volatility of the

environment under PLA, (possibly due to high demands for learning from dual sources), which is res-

cued by MPH.

Our results comprise an important step in understanding the neurochemical drivers of learning

rate adjustment. Potential exact neurobiological mechanisms include meta-learning models which

suggest a critical role for phasic dopamine in training the dynamics of a prefrontal system, which

then learns about the structure of the environment (Collins and Frank, 2016; Massi et al., 2018;

Pasupathy and Miller, 2005; Wang et al., 2018). The implication of such models is that better

learning of the structure of the environment, for example current levels of volatility, results in more

adaptive learning rate adjustment. In terms of neurobiological implementation, by blocking dopa-

mine reuptake, MPH likely prolongs the impact of phasic dopamine signals (Volkow et al., 2002).

This could then potentially enhance learning rate adjustment by improving learning about the struc-

ture of the environment.

A different theory suggests that learning rate is optimised based on a formal comparison

between medium- and long-term running averages of reward rate (Doya, 2002;

Schweighofer and Doya, 2003), carried by the phasic and tonic firing of dopamine neurons

respectively (Schweighofer and Doya, 2003). According to this model, learning rates are low

when the difference between phasic and tonic signals is small, and high when the difference is

large. Typically, phasic bursting has negligible effects on tonic dopamine levels (Floresco et al.,

2003), thus the two are relatively independent: tonic firing can be high whilst phasic is low or

vice versa. However, under MPH, dopamine reuptake is inhibited thus phasic bursting likely

increases tonic levels via dopamine overflow from the synaptic cleft (Grace, 1991). Recent evi-

dence also suggests that phasic bursting can promote dopamine transporter internalisation
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(Lohani et al., 2018), thus further creating dependency, and potentially reducing differences,

between tonic and phasic rates. Consequently, we speculate that MPH may increase the depen-

dency between phasic and tonic dopamine levels. Whilst this would have negligible effects on

the difference between phasic and tonic levels in reward-poor (potentially volatile) environments,

in reward-rich (potentially stable) environments increases in phasic signals would result in higher

tonic levels and thus low learning rates.

Evidence from studies linking dopamine with the modulation of learning rates

(Marshall et al., 2016), or individual differences therein (Krugel et al., 2009; Set et al., 2014),

supports the hypothesis that MPH might adapt learning rates via modulating dopamine. How-

ever, it is also plausible that the effects we observed reflect MPH’s influence on the noradrener-

gic system. Indeed, studies that have tried to disentangle the roles of dopamine and

noradrenaline in complex learning tasks have argued that, though dopamine is linked to ‘lower

level’ modulation of motor responses as a function of learned probabilities, noradrenaline is

associated with ‘higher level’ learning about environmental changes such as changes in volatility

(Marshall et al., 2016). Indeed, previous work supports a role for noradrenaline in learning rate

adaptation. Theoretical and modelling work has suggested that noradrenaline acts as a ‘neural

interrupt signal’ which alerts the learner to an unpredicted change in the learning environment

(Dayan and Yu, 2006; Yu and Dayan, 2005) and performs a ‘network reset’ (Bouret and Sara,

2005). In other words, noradrenaline is important in ‘change detection’. In line with this, phar-

macological manipulations and lesions of the noradrenergic system affect performance on tasks

such as reversal learning and attentional-set shifting which require detection of, and adaptation

to, environmental changes (Devauges and Sara, 1990; Lapiz and Morilak, 2006; Lapiz et al.,

2007; McGaughy et al., 2008; Newman et al., 2008; Seu et al., 2009; Tait et al., 2007). In

humans, uncertainty about environmental states (Muller et al., 2019), learning rates

(Browning et al., 2015; Nassar et al., 2012; Silvetti et al., 2013) and prediction errors

(Lavı́n et al., 2013; Preuschoff et al., 2011) are correlated with pupil size, often considered an

indirect index of locus coeruleus (the main noradrenergic nucleus of the brain) activity (Aston-

Jones and Cohen, 2005; Gilzenrat et al., 2010; Joshi et al., 2016; Murphy et al., 2014), and

are modulated by pharmacological manipulation of the noradrenaline system (Jepma et al.,

2016; Marshall et al., 2016). In the context of our task, the ‘unpredicted change in learning

environment’ corresponds to a switch from stable to volatile phase. By administering MPH, we

may have increased participants’ synaptic noradrenaline levels (Kuczenski and Segal, 1997) and

reduced spontaneous activity in locus coeruleus neurons via noradrenaline action at a-adrenergic

receptors on locus coeruleus cells (Devilbiss and Berridge, 2008). Thus, perhaps MPH shifted

locus coeruleus activity toward a phasic mode, in which cells respond more strongly (and specifi-

cally) to salient events (Aston-Jones et al., 2007), such as the switch from stable to volatile

environments.

The potential neurobiological mechanisms described above are not mutually exclusive. It is possi-

ble that, via effects on both dopaminergic and noradrenergic systems, MPH enhances a) learning

about environmental structure, b) learning rate optimisation and c) change detection, and that these

three processes work in concert. Active debate, however, highlights potential redundancies:

Farashahi et al. (2017), for example, argue that adjustment of learning rate can be achieved in the

absence of explicit optimisation or learning of environmental structure, via dopamine-dependent

meta-plasticity at the level of the synapse (Moussawi et al., 2009; Yagishita et al., 2014). Indeed,

Farashahi and colleagues demonstrate that their biophysically inspired model, which adjusts learning

parameters via metaplastic synapses that can occupy states with different levels of synaptic efficacy,

accurately predicts learning rate adjustment as a function of volatility. Whilst this debate remains

unresolved, it is possible that MPH affects multiple processes which all contribute to the adjustment

of learning rate as a function of environmental volatility.

Furthermore, it should be acknowledged that other neuromodulators, for example acetylcholine,

have also been linked with change detection and volatility processing (Yu and Dayan, 2005;

Marshall et al., 2016). In the current study, a single pharmacological agent was employed. Thus,

our results may, in principle, reflect general effects of neuromodulation. Using a design, such as that

employed by Marshall et al. (2016), who compared the effects of a noradrenergic modulator (pra-

zosin), a cholinergic modulator (biperiden) and a dopaminergic modulator (haloperidol), would

enable us to make neuromodulator-specific claims. Indeed, based on this comparison, Marshall and
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colleagues propose that acetylcholine guides probabilistic learning within environmental contexts,

while noradrenaline has a more circumscribed role in learning about differences in volatility across

different environmental contexts.

MPH significantly affects experienced-, but not inferred-, value learning
The absence of a significant effect of MPH on inferred-value learning is particularly striking given

that a) the red frame is a highly salient, behaviourally relevant, attentional cue, and b) meta-learning

theories do not, in principle, predict differential effects of catecholaminergic modulation on experi-

enced versus inferred-value learning. Why would MPH significantly affect experienced-, but not

inferred-value learning? One possibility is that our participants simply ignored the information that

was represented by the frame, in other words, that the current paradigm is poorly suited to detect

variation in inferred-value learning. Refuting this, we have demonstrated that MPH significantly

affects experienced-value learning even for participants whose responses are primarily driven by

inferred-value learning (see results section ‘MPH selectively affects experienced-value learning in

keen inferred-value learners’). Thus, the lack of significant effect of MPH on inferred-value learning is

not driven by a tendency to ignore the frame.

Another potential explanation for the lack of significant effects of MPH on inferred-value learning

relates to the complex effects of MPH on working memory. Fallon et al. (2017) have demonstrated

that MPH improves distractor resistance while impairing working memory updating. More specifi-

cally, in a delay phase between initial presentation of to-be-remembered information and recall, Fal-

lon and colleagues presented additional information which participants should sometimes ignore

and sometimes use to replace (update) the original to-be-remembered information. MPH improved

ignoring, but not updating - an effect that Fallon and colleagues interpret in the context of dual

state theory (Durstewitz and Seamans, 2008). According to this theory, intermediate levels of

dopamine favour stabilisation of representations, whereas excessively high or low levels of dopamine

favour representation destabilisation. The current task can be conceptualised in a similar fashion to

Fallon and colleagues’ paradigm. Participants first see the direct source (blue and green boxes), pro-

viding the opportunity to reflect on the history of outcomes and estimate the value associated with

each box. In the ‘delay phase’ between seeing the boxes and making their response, participants

see the indirect source (frame). By reflecting on the history of the veracity of the frame, they can esti-

mate the probability that the frame provides correct advice, and decide whether to update their

choice or ignore the frame. Consequently, because the direct source (boxes) always came first, and

the indirect source (frame) second, positive effects of MPH on ignoring, not updating (as shown by

Fallon et al., 2017), would only benefit experienced-value, not inferred-value learning. Such positive

effects of MPH on ignoring may improve experienced-value learning by making it more robust

against misleading information from the frame.

Comparable effects of MPH for social and non-social groups
It is notable that our results do not provide evidence in support of a dissociation between social

and non-social learning. Note that the lack of a difference between social and non-social groups

cannot be due to poor comprehension of the cover story: Participants were prohibited from

starting the task until they scored 100% correct in a quiz which included questions about the

nature of the red frame (see Materials and methods: learning task). Furthermore, using the same

task, we have previously demonstrated that social dominance predicts learning for participants

that are given the social, but not the non-social, cover story (Cook et al., 2014). Thus, belief

about the origin of the information represented by the frame modulates the way in which this

information is processed. The absence of an effect of MPH on inferred-value learning from an

additional source, even when the indirect source is believed to be social in nature, is perhaps

surprising given positive effects of MPH on social influence (Campbell-Meiklejohn et al., 2012),

reports that social learning activates catecholamine rich areas of the brain such as the striatum

(Biele et al., 2009; Braams et al., 2014; Campbell-Meiklejohn et al., 2010; Delgado et al.,

2005; Diaconescu et al., 2017; Klucharev et al., 2009), and evidence that ventral striatal pre-

diction errors during social learning are influenced by a gene involved in regulating dopamine

degradation (Diaconescu et al., 2017). An important consideration, however, is that in studies

that have linked social learning to signals in catecholamine-rich areas of the brain, the social
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information is not an additional source to be learned about in concert with learning from one’s

own experience, rather, the social source is the only source that participants must learn from. In

other words, in existing studies the social information is typically not ‘inferred’, and is therefore

more comparable to our experienced-value condition.

Conclusion
We show that relative to placebo, methylphenidate modulates the ability to adapt learning rate

from a direct source of information but does not modulate learning from an indirect, inferred,

source. This observation was consistent when indirect information was from either a social or

non-social source. These results advance existing literature by documenting a causal link

between catecholaminergic modulation and the adjustment of learning rate as a function of envi-

ronmental volatility.

Materials and methods
The general study design is identical to that reported in Swart et al. (2017) and Froböse et al.

(2018) and is included here for completeness.

General procedure and pharmacological manipulation
The study consisted of two test sessions with an interval of one week to 2 months. The first test day

started with informed consent, followed by medical screening. Participation was discontinued if par-

ticipants met any of the exclusion criteria. On both test days, participants first completed baseline

measures. Due to previous work demonstrating baseline-dependent effects of MPH, we included

two assessments (Listening Span Test: Daneman and Carpenter, 1980; Salthouse and Babcock,

1991; Barratt Impulsiveness Scale (BIS-11): Patton et al., 1995) that have been demonstrated, with

positron emission tomography, to relate to dopamine baseline function (Cools et al., 2008;

Landau et al., 2009; Buckholtz et al., 2010; Kim et al., 2014; Reeves et al., 2012). Next partici-

pants received a capsule containing either 20 mg MPH (Ritalin, Novartis) or PLA, in a double-blind,

placebo-controlled, cross-over design. MPH blocks the dopamine and noradrenaline transporters,

thereby diminishing the reuptake of catecholamines. When administered orally, MPH has a maximal

plasma concentration after 2 hr and a plasma half-life of 2–3 hr (Kimko et al., 1999). After an interval

of 50 min, participants started with the task battery containing the learning task preceded by a task

adapted from Geurts et al. (2013) and succeeded by tasks reported in Swart et al. (2017),

Froböse et al. (2018) and adapted from Fallon et al. (2017). On average, the learning task

reported here was performed 1 hr 20 min after capsule intake, well within the peak of plasma con-

centration. Both test days lasted approximately 4.5 hr, which participants started at the same time

(maximum difference of 45 min). Blood pressure, mood and potential medical symptoms were moni-

tored thrice each day: before capsule intake, upon start of the task battery and after finishing the

task battery. Participants were asked to abstain from alcohol and recreational drugs 24 hr prior to

testing and from smoking and drinking coffee on the days of testing. Participants completed self-

report questionnaires at home between (but not on) test days. Upon completion of the study, partic-

ipants received monetary reimbursement or study credits for participation. The study was in line with

the local ethical guidelines approved by the local ethics committee (CMO protocol NL47166.091.13;

trial register NTR4653) and in accordance with the Helsinki Declaration of 1975. Baseline measures,

baseline-dependent effects of MPH, self-report questionnaires, mood-ratings and medical symptoms

are reported in Appendix 6.

Participants
Data was collected from 106 native Dutch volunteers (aged 18–28 years, �x sð Þ = 21.5 (2.3); 53

women; 84 right-handed; sample size calculation reported in CMO registered protocol

NL47166.091.13). Four participants dropped out after the first test day (due to excessive delay

between test days, loss of motivation, nausea, and mild arrhythmia). Of the resulting 102 partici-

pants, 50 participants received MPH on the first day. Exclusion criteria comprised a history of psychi-

atric, neurological or endocrine disorders. Further exclusion criteria were autonomic failure, hepatic,

cardiac, obstructive respiratory, renal, cerebrovascular, metabolic, ocular or pulmonary disease, epi-

lepsy, substance abuse, suicidality, hyper/hypotension, diabetes, pregnancy/breastfeeding, lactose
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intolerance, regular use of corticosteroids, use of psychotropic medication or recreational drugs 24

hr before each test day, and first degree family members with schizophrenia, bipolar disorder, ven-

tricular arrhythmia or sudden death. Excluded volunteers received e10,- as a compensation for their

time and effort.

Learning task
Participants completed a modified version (Cook et al., 2014) of a probabilistic learning task devel-

oped by Behrens et al. (2008). The task was programmed using the Psychophysics toolbox (Brai-

nard, 1997; Pelli, 1997) in Matlab R2014b (The MathWorks, Natick, MA; RRID:SCR_001622). On

each trial, participants made a choice between a blue and a green box. Correct choices were

rewarded with points represented on a bar spanning the bottom of the screen. Participants’ aim was

to accumulate points to obtain a silver (e2) or gold (e4) reward. Throughout the experiment, the

probability of reward associated with each box (blue or green) varied according to a probabilistic

schedule. Participants were informed that the task followed ‘phases’ wherein sometimes blue, but at

other times green, would be more likely to result in reward.

In addition to the reward history, a second source of information was available to participants. On

each trial, before participants made their choice, a frame appeared. Participants in the Social Group

were instructed that this frame represented choices made by a group of participants who had com-

pleted the task previously. Participants in the Non-social Group were instructed that the frame rep-

resented the outcome from a system of rigged roulette wheels. Both groups were informed that the

frame would fluctuate between providing predominantly correct and predominantly uninformative

‘advice’ (see Appendix 2 for instruction scripts).

Participants in both the Social and Non-social Groups were pseudorandomly allocated to one of

four different randomisation groups, group membership determined the probabilistic schedule

underpinning outcomes (blue/green) and the veracity of the frame (correct/incorrect). These were

based on the schedules used by Behrens et al. (2008). However, the schedules were counterbal-

anced between participants to ensure that superior learning of direct over indirect information could

not be explained in terms of superior learning of schedules with increased/decreased, or early/late

occurring, volatility (Figure 1—figure supplement 1). Although probabilistic schedules for Day 2

were the same as Day 1, there was variation in the trial-by-trial outcomes and advice. To prevent par-

ticipants from transferring learned stimulus-reward associations from Day 1 to Day 2 different stimuli

were also employed: 50% of participants viewed yellow/red triangles with advice represented as a

purple frame on Day 1 and blue/green squares with advice as a red frame on Day 2, for 50% of par-

ticipants this order was switched. Before participation all participants completed a self-paced step-

by-step on-screen explanation of the task in which they first learned to choose between two options

to obtain a reward, and subsequently learned that the advice represented by the frame could help

them in making an informed decision about their choice. Following the task explanation, participants

were required to complete a short quiz testing their knowledge of the task. Participants were

required to repeat the task explanation until they achieved 100% correct score in this quiz. Conse-

quently, we could be sure that all participants understood the structure of the task and were aware

that the red/purple frame represented either social information (Social Group), or information from a

rigged set of roulette wheels (Non-social Group).

All participants completed 120 trials on Day 1 and Day 2. The task lasted approximately 25 min,

including instructions. At the end of the task, participants were informed whether they had scored

enough points to obtain a silver/gold award.

Statistical analyses
Analyses were conducted using Matlab R2014b (The MathWorks, Natick, MA) and IBM SPSS Statis-

tics version 22 (IBM Corp., Armonk, NY). Bayesian analyses were run in JASP (JASP Team, 2018). All

raw data and analysis scripts can be accessed here: https://osf.io/z59us.

Win-stay, lose-shift analysis
WSLS behaviour was quantified using a logistic regression on individual participant choices (green/

blue; follow/deviate from advice), to assess the degree to which a WSLS strategy guided these

choices. For each participant, for each of the eight cells of the 2x2x2 factorial design (drug x
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volatility x learning type), a regressor was created representing the choice that they would have

made, for each trial, if they strictly adhered to a WSLS strategy. For experienced-value learning, if on

the previous trial the participant had chosen blue and won, the regressor would predict that the par-

ticipant should stay with a blue choice (coded as 1); if, however, the participant had chosen blue and

lost, the regressor would predict a shift to a green choice (coded as 0). Similarly, for inferred-value

learning, if the participant had previously followed the frame’s advice and lost, the regressor would

predict that the participant should shift such that they do not follow the frame’s advice in the current

trial. Regressing these predictors against each participant’s actual choices, in a series of 8 separate

univariate regressions, provided 8 beta values (bWSLS) per participant where high values indicate that

a WSLS strategy accounts for a large amount of variance in the participant’s choices. bWSLS were

entered into a single repeated measures ANOVA with within-subjects factors drug (MPH, PLA), vola-

tility (stable, volatile), learning type (experienced, inferred) and between-subjects factor group

(social, non-social).

Learning rate analysis
Learning rates for stable and volatile phases were estimated by fitting a simple learning model

to participants’ choice data. This learning model consisted of two Rescorla-Wagner predictors

(Rescorla and Wagner, 1972) (one which estimated the utility of a blue choice (r direct iþ1ð Þ) and

one which estimated the utility of going with the red/purple frame (r indirect iþ1ð ÞÞÞ coupled to an

action selector (Browning et al., 2015; Behrens et al., 2007). Model fitting was performed

using scripts adapted from the TAPAS toolbox (http://www.translationalneuromodeling.org/

tapas), study-specific scripts are available at https://osf.io/z59us. Data were initially analysed with

three different models: Model 1 comprised a classic Rescorla-Wagner model, Model 2 extended

Model 1 with separate learning rates a for volatile and stable blocks and Model 3 extended

Model 2, with (four) separate learning rates for stable and volatile blocks for both experienced-

and inferred-value learning. Bayesian model selection (Daunizeau et al., 2014) - where log

model evidence was approximated with F values - demonstrated that Model 3 provided the

best fit to the data (Appendix 4).

Rescorla-Wagner predictors
Our Rescorla-Wagner predictors comprised modified versions of a simple delta-learning rule

(Rescorla and Wagner, 1972). This rule typically has a single free parameter, the learning rate að Þ

and estimates outcome probabilities using Equation (1).

V iþ1ð Þ ¼ Viþ a ri�Við Þ (1)

where V iþ1ð Þ is the predicted value (probability of reward) for (i+1)th trial, ri is reward received on the

ith trial, and the prediction error ri�Við Þ is used to update the stimulus value, using the learning rate

a. Different values for a will result in different learnt values of that stimulus. Our modified version

separately estimated a for stable and volatile phases. Furthermore, we simultaneously ran two

Rescorla-Wagner predictors such that we could estimate a values relating to both experienced- and

inferred-value learning. Subsequently, our model generated the predicted value of a blue choice

based on previous experience (V experienced iþ1ð Þ) and of the choice to go with the red/purple frame

(V inferred iþ1ð ÞÞ based on inference about whether the frame’s recommended choice has been reliably

the same as the choice that the participant has reliably experienced to be correct, and provided four

a estimates: astable_experienced, avolatile_experienced, astable_inferred, avolatile_inferred.

Action selector
As participants had access to both information from experienced-value learning and inferred-value

learning, our response model assumed that participants integrated both sources of information in

order to predict the probability that a blue choice would be rewarded. Based on work by

Diaconescu et al. (2014) and Diaconescu et al. (2017), we calculated the estimated value of a blue

choice according to Equation (2), where we combine the value of inferred advice and the value of

experienced information:

vB iþ1ð Þ ¼ z V inferred advice weighted iþ1ð Þ

� �

þ 1� zð Þ V experienced iþ1ð Þ

� �

(2)
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In Equation (2), z is a parameter that varies between individuals and which controls the weighting

of indirect relative to direct sources of information. V inferred advice weighted iþ1ð Þ comprises the advice pro-

vided by the frame weighted by the probability of advice accuracy (V inferred iþ1ð Þ) in the context of

making a blue choice (Equation (3)).

V inferred advice weighted iþ1ð Þ ¼ advice�V inferred iþ1ð Þj j (3)

where advice = 0 for blue and advice = 1 for green. Thus, if the frame advised ‘green’ and the prob-

ability of advice accuracy was estimated at 80% (V inferred iþ1ð Þ = 0.80), the probability of a blue choice

being rewarded, inferred from inferred-value learning, would be 0.2 (V inferred advice weighted iþ1ð Þ =

1� 0:8j j ¼ 0:2). Conversely the probability, inferred from inferred-value learning, that the correct

choice is green would equal 0.8.

The probability that the participant follows this integrated belief (vB iþ1ð ÞÞ, was described by a unit

square sigmoid function (Equation (4)); here, responses are coded as y iþ1ð Þ ¼ 1 when selecting the

blue option, and y iþ1ð Þ ¼ 0 when selecting green.

P y iþ1ð Þ ¼ 1 k vB iþ1ð Þ

� �

¼
vB

b

iþ1ð Þ

vB
b

iþ1ð Þþ 1� vB iþ1ð Þ

� �b
(4)

b is a participant-specific free parameter representing the inverse of the decision temperature: as

bfi¥, the sigmoid function approaches a step function with a unit step at vB iþ1ð Þ = 0.5 (i.e. no deci-

sion noise).

Model fitting
Optimisation was performed using a quasi-Newton optimisation algorithm (Broyden, 1970;

Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) as specified in quasinewton_optim_config.m. The

objective function for maximization was the log-joint posterior density over all parameters, given the

data and the generative model. a values were estimated in logit space (see tapas_logit.m) where

’Logit-space’ is a logistic sigmoid transformation of native space (tapas_logit(x) = ln(x/(1-x)); x = 1/(1

+exp(-tapas_logit(x)))). The prior for a was tapas_logit(0.2, 1), with a variance of 1. Which was chosen

to be uninformative and allow for substantial individual differences in learning. Initial values were

fixed at tapas_logit(0.5, 1). The prior for b was log(48), with a variance of 1, and the prior for z which

controls the weighting between direct and indirect sources of information was set at 0 with a vari-

ance of 10̂2 (logit space) which corresponds to an equal weighting for information derived from

experienced-value and inferred-value learning. Priors were selected based on pilot data and previ-

ous work. Given the priors over parameters and the input sequence, maximum-a-posteriori (MAP)

estimates of model parameters were calculated using the HGF toolbox version 3. The code used is

freely available as part of the open source software package TAPAS at http://www.translationalneur-

omodeling.org/tapas.

Model validation
An illustration of the ability of the model to recapitulate participant responses is provided

in Figures 5 and 6 below, which juxtapose participants’ accuracy and choices (running average,

across five trials) next to accuracy and choices derived from model simulations (using the mod-

el’s parameter estimates to simulate choices according to tapas_simModel.m). For illustrative

purposes, we present data from the four different randomisation schedules separately. To more

formally test the model’s predictions of participant behaviour, we calculated, for each partici-

pant, the average value that the model estimated for the options chosen by the participant (col-

lapsed across days 1 and 2), and the average value that the model estimated for the options

that were not chosen by the participant. If the model accurately describes participants’ choice

behaviour, then average values for chosen options should be significantly higher than for

unchosen options. Indeed, a paired samples t-test illustrated that, model-derived values for cho-

sen options (�xðsÞ = 0.628(0.077)) were significantly greater than values for unchosen options

(�xðsÞ = 0.381 (0.086); t(101) = 22.524, p < 0.001).
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Optimal learner analysis
To calculate the optimal parameters for the above described adapted Rescorla-Wagner model, 100

synthetic datasets were created, each of which followed one of the four pre-programmed probabilis-

tic schedules. An optimal learner model, with the same architecture and priors as the adapted

Rescorla-Wagner model, was fit to each synthetic dataset. Parameters estimates were averaged over

the 100 model fits to synthetic data.

Figure 5. Participant data (left) juxtaposed against model simulations (right). Top: Accuracy, in stable and volatile phases, under MPH (purple) and PLA

(green). Boxes = standard error of the mean, shaded region = standard deviation, individual datapoints are displayed. Middle and Bottom: Running

average, across 5 trials, of blue choices for probabilistic randomisation schedules 1 (middle) and 2 (bottom). Shaded region = standard error of the

mean. MPH = methylphenidate, PLA = placebo.
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Appendix 1

Social and non-social group demographics

Appendix 1—table 1. There were no significant differences between the social and non-

social groups in age, gender or socioeconomic status as measured using the Barratt

Simplified Measure of Social Status (Barratt, 2012).

Social Non-social

Age in years (�x sð Þ) 21.8 (2.6) 21.3 (2.0) t(100) = 1.1, p = 0.3

Socioeconomic status (�x sð Þ) 60.4 (7.8) 59.2 (8.4) t(100) = 0.5, p = 0.6

N(Male:Female) 50 (26:24) 52 (25:27) �
2(1) = 0.16, p = 0.7
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Appendix 2

Instruction scripts
(choice of English or Dutch)

Welcome. You have a choice: either choose the blue shape or the green shape. One shape

is correct - guessing which one it is will give you points. When the question mark appears try

picking a shape by pressing the left or right button on the response box. [Participant

responds]

Feedback: After you make a choice, the correct shape appears in the middle. You didn’t

really have a lot of information though. When the question mark appears have another go,

maybe the same shape will be right again? [Participant responds]

Blue was right again! Things happen in phases in this game. Right now, it looks like you are

in a phase where blue is most likely to be correct. Have another go. [Participant responds]

And blue again! It certainly looks as though you are in a blue phase but make sure you pay

attention to what the right answers are because the phase that you are in can change at any

time. TIP: Here’s a tip - ignore which side of the screen the shapes are on - it’s the colour that

is important! Try again. Perhaps the other shape is right this time? [Participant responds]

Green! This time the green shape was right! The chance of each shape being right or wrong

will change as you play, so pay attention! Have another go. ... [Participant responds]

Social Group
To help you decide - one of the shapes will be highlighted. This is the most popular choice

selected by a group of 4 people who previously played this task. Here they think the green

shape will be correct. Try picking a shape now [participant responds].

You see? This time the others got it right! Be careful though because we have mixed up the

order of the other people’s trials so that their choices will also follow phases. Have another go.

... [Participant responds]

It looks like, right now, you could be in a phase where the group’s information is pretty

useful - perhaps these are trials from the end of their experiment where they had developed a

good idea of what was going on. [Participant responds]

Yep it certainly looks like the group information is pretty useful right now but be careful,

this could change! Sometimes you will see less useful information - for example from the

beginning of their experiment where they didn’t have a very good idea of what was going on.

[Participant responds]

Getting it right, gives you points. Get enough points and you could earn a silver (extra e2!)

or even a gold (extra e4!) prize! Underneath the shapes there is a tracker which shows how

close you are to either a gold or silver prize. Every time you get it right the tracker moves a bit

closer to the prizes. Pick one more shape and then we’ll head to the real game! [Participant

responds]

Non-social Group
To help you decide - one of the shapes will be highlighted. The computer has generated this

suggestion using virtual roulette wheels. On each trial the computer spins the roulette, if the

ball lands on black the computer will put a frame around the correct answer. If the ball lands

on red the computer will frame the incorrect answer. Have another go. .. [Participant

responds]

You see? This time the roulette wheel got it right! Be careful though because there are

different types of roulette wheel. Some roulette wheels are half red and half black. This type of

roulette is equally likely to give you correct and incorrect suggestions. However, others are

biased. This type of roulette will give you mostly correct suggestions. [Participant responds]

It looks like, right now, you could be in a phase where the roulette’s information is pretty

useful - perhaps these are trials from a biased roulette wheel that gives mostly correct

information? [Participant responds]
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Yep it certainly looks like the roulette’s information is pretty useful right now but be careful,

this could change! Sometimes you will see less useful information - for example from a roulette

wheel that is equally likely to give you correct and incorrect suggestions. [Participant

responds]

Getting it right, gives you points. Get enough points and you could earn a silver (extra e2!)

or even a gold (extra e4!) prize! Underneath the shapes there is a tracker which shows how

close you are to either a gold or silver prize. Every time you get it right the tracker moves a bit

closer to the prizes. Pick one more shape and then we’ll head to the real game! [Participant

responds].
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Appendix 3

Extended statistical analyses

Appendix 3—table 1. Win-stay, lose-shift analysis. Main effects and interactions not involving

the factor drug.

Main effect/
interaction Statistics Further information

Learning type F
(1,100) = 58.595,
p < 0.001

bWSLS for experienced (�x s�xð Þ = 0.366(0.017)) > inferred (�x s�xð Þ = 0.188
(0.012))

Volatility F
(1,100) = 70.671,
p < 0.001

bWSLS for volatile (�x s�xð Þ = 0.327(0.010)) > stable (�x s�xð Þ = 0.227(0.011))

Group F(1,100) = 4.001,
p = 0.048

bWSLS for non-social (�x s�xð Þ = 0.295(0.013)) > social (�x s�xð Þ = 0.259
(0.013))

Learning type
x group

F(1,100) = 7.729,
p = 0.006

bWSLS for social (�x s�xð Þ = 0.138(0.017)) < non-social (�x s�xð Þ = 0.239
(0.017)) for inferred (F(1,100) = 17.743, p < 0.001).
No difference between groups for experienced (social �x s�xð Þ = 0.381
(0.024), non-social �x s�xð Þ = 0.352 (0.024), F(1,100) = 0.694, p = 0.407)

Exploration of differences between win-stay and lose-
shift behaviour
To explore potential differences between win-stay and lose-shift behaviour we calculated

separate scores for win-stay and lose-shift trials. For experienced value learning a trial was

denoted as a win-stay if the participant had won on the previous trial and if their response on

the current trial was the same (e.g. they selected blue and won on the previous trial, and

subsequently re-selected blue). A trial was denoted as a lose-shift if the participant had lost

on the previous trial and if they subsequently shifted their response. Win-stay and lose-shift

trials were summed and divided by the total number of win/lose trials to control for differing

numbers of win/lose trials between randomisation schedules and (volatile/stable) phases.

Shapiro-Wilk tests showed that averaged win-stay and lose-shift scores, for experienced-

value and inferred-value learning, volatile and stable conditions, and for social and non-social

groups, did not significantly deviate from the normal distribution (all p>0.05).

Win-stay and lose-shift scores were entered into a single repeated measures ANOVA with

within-subjects factors drug (MPH, PLA), volatility (stable, volatile), learning type

(experienced, inferred) and index (win-stay, lose-shift) and between subjects factor group

(social, non-social). The interaction between drug, volatility and learning type remained

significant (F(1,100) = 7.393, p = 0.008). There was no drug x index interaction (F(1,100) =

0.100, p = 0.470), drug x volatility x index interaction (F(1,100) = 0.096, p = 0.757), or drug x

learning type x index interaction (F(1,100) = 1.303, p = 0.256). However, we did observe a

main effect of index (F(1,100) = 244.016, p < 0.001) driven by higher win-stay (�x s�xð Þ = 0.735

(0.004)) relative to lose-shift scores (�x s�xð Þ = 0.567 (0.010)). A main effect of learning type (F

(1,100) = 52.705, p < 0.001) driven by higher win-stay and lose-shift scores for experienced-

value (�x s�xð Þ = 0.691 (0.009)) relative to inferred-value learning (�x s�xð Þ = 0.611 (0.006)), and a

marginal main effect of group, which approached significance (F(1,100) = 3.742, p = 0.056),

driven by higher win-stay and lose-shift scores for the Non-social (�x s�xð Þ = 0.661 (0.007))

relative to Social Group (�x s�xð Þ = 0.641 (0.007)). These main effects were modulated by a

learning type x group interaction (F(1,100) = 6.231, p = 0.014) driven by reduced win-stay

and lose-shift scores for the Social relative to Non-social Group for inferred-value learning

(social �x s�xð Þ = 0.587 (0.009), non-social �x s�xð Þ = 0.635 (0.009), F(1,100) = 14.995, p < 0.001),

but no difference between groups for experienced-value learning (social �x s�xð Þ = 0.695

(0.013), non-social �x s�xð Þ = 0.687 (0.012), F(1,100) = 0.177, p = 0.675). A drug x learning type

x index x volatility interaction also approached significance (F(1,100) = 3.634, p = 0.059).

Post hoc ANOVAS conducted separately for win-stay and lose-shift scores revealed that the
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drug x learning type x volatility interaction was primarily driven by effects on lose-shift (drug

x learning type x volatility interaction F(1,100) = 7.589, p = 0.007 (Bonferroni-corrected

p = 0.014)) rather than win-stay scores (F(1,100) = 0.073, p = 0.787).

Appendix 3—table 2. Learning rate analysis. Main effects and interactions not involving the

factor drug. Note that the learning type x volatility interaction is consistent with previous

studies of experienced-value learning which have reported higher learning rates in volatile

relative to stable environments (Behrens et al., 2007; Behrens et al., 2008; Browning et al.,

2015; Krugel et al., 2009; Nassar et al., 2010).

Main effect/
interaction Statistics Further information

Learning type F
(1,100) = 65.409,
p < 0.001

adirect (�x s�xð Þ = 0.328(0.014)) > ainferred (�x s�xð Þ = 0.194(0.010))

Learning type
x volatility

F(1,100) = 4.882,
p = 0.029

avol_experienced (�x s�xð Þ= 0.341(0.017)) > astable_experienced (�x s�xð Þ = 0.315
(0.015); F(1,100) = 3.916, p = 0.051).
No significant difference between astable_inferred (�x s�xð Þ = 0.201(0.012))
and avol_inferred (�x s�xð Þ = 0.187(0.011); F(1,100) = 1.675, p = 0.199)

Learning type
x group

F(1,100) = 4.097,
p = 0.046

asocial (�x s�xð Þ = 0.161(0.014)) < anon-social (�x s�xð Þ = 0.227(0.014)) for
inferred (F(1,100) = 11.349, p = 0.001).
No difference between groups for experienced (social �x s�xð Þ0.329
(0.021), non-social �x s�xð Þ 0.328(0.020); F(1,100) = 0.002, p = 0.966)

Exploration of group differences for participants
sensitive to the effect of MPH on inferred-value learning
To guard against the possibility that the lack of a group difference is caused by an

insensitivity of inferred-value learning to the effects of MPH, we selected a subgroup of

participants who numerically were sensitive to the effects of MPH on inferred-value learning

((MPH-PLA astable_inferred + MPH-PLA avolatile_inferred)>(MPH-PLA astable_experienced+ MPH-

PLA avolatile_experienced)). For this subgroup (Social Group N = 26, Non-social Group N = 27)

we ran a repeated measures ANOVA with within-subjects factors drug (MPH, PLA), volatility

(stable, volatile), and learning type (experienced, inferred) and between-subjects factor

group (social, non-social). The interaction between drug, volatility and learning type

remained significant (F(1,51) = 5.506, p = 0.023). There was no drug x volatility x learning

type x group interaction (F(1,51) = 0.813, p = 0.371), no main effect of group (F(1,51) =

1.415, p = 0.240) and no other significant interactions involving group (all p > 0.05; Bayesian

t-test comparing groups on scores representing the experienced-inferred difference in the

MPH-PLA a difference between volatile and stable BF01 = 2.588). Under MPH avol_experienced

(�x s�xð Þ = 0.306(0.026)) was greater than astable_experienced (�x s�xð Þ= 0.266(0.020)), though this

difference only approached significance F(1,51) = 3.474, p = 0.068). Under PLA

avol_experienced (�x s�xð Þ = 0.379(0.027)) and astable_experienced (�x s�xð Þ = 0.397(0.025)) were

comparable (F(1,51) = 0.714, p = 0.402). There were no differences between avol_inferred and

astable_inferred under MPH (avol_inferred �x s�xð Þ= 0.208(0.019), astable_inferred �x s�xð Þ = 0.237(0.019), F

(1,51) = 2.559, p = 0.116), or PLA (avol_inferred �x s�xð Þ = 0.170(0.017), astable_inferred �x s�xð Þ =

0.166(0.016), F(1,51) = 0.060, p = 0.807).
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Appendix 4

Model comparison
Data were initially analysed with three different models. Bayesian model selection (BMS), using

the VBA toolbox (http://mbb-team.github.io/VBA-toolbox/; Daunizeau et al., 2014), was used

to evaluate which model provided the best fit to the data. This procedure rests on computing

an approximation to the model evidence or pðyjmÞ the probability of the data y given a model

m (MacKay, 2003). Here we approximate the log model evidence with F values. The random-

effects BMS approach we use here rests on a hierarchical scheme introduced by

Stephan et al. (2009), which enables us to estimate the posterior probability that a given

model generated the data for any randomly selected participant, relative to all other models

considered (for details see Stephan et al., 2009) and compute the ‘‘exceedance probability’’

that a particular model is more likely than any other model in the comparison set. This

exceedance probability represents the amount of evidence that, in the population studied, a

given model is more frequent than the others.
. Model 1 comprised a classic Rescorla-Wagner model:

V iþ1ð Þ ¼ Vi þ a"i
. Model 2 extended model 1 with separate learning rates a for volatile and stable blocks.

V iþ1ð Þ ¼ Vi þ a volatile"i þ a stable"i ,

where "i ¼ ri � Við Þ
. Model 3 extended model 2, and had (four) separate learning rates a for stable and volatile

blocks for both experienced-value and inferred-value learning:
V experienced iþ1ð Þ ¼ V experienced ið Þ þ a volatile"i þ a stable"i

V inferred iþ1ð Þ ¼ V inferred ið Þ þ a volatile"i þ a stable"i

Between-conditions random effects Bayesian model comparison (http://mbb-team.github.

io/VBA-toolbox/wiki/BMS-for-group-studies/; using function VBA_groupBMC_btwConds.m)

was used to test the hypothesis that the same model explained the data produced under both

MPH and PLA. For model 3 the exceedance probability was ~1, demonstrating evidence in

favour of the conclusion that the data likely originate from the same model (model 3) both

under MPH and PLA conditions (Appendix 4—figure 1).

Appendix 4—figure 1. pðyjmÞ = posterior model probability, f = exceedance probability,

MPH = purple, PLA = green.
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Appendix 5

The relationship between accuracy and model parameters
To further explore the relationship between accuracy and model parameters we conducted

separate regression models for PLA and MPH conditions. PLA accuracy was significantly

predicted by a regression model including

astable_experienced_PLA, avol_experienced_PLA, astable_inferred_PLA, avolatile_inferred_PLA, bPLA and zPLA as

predictors (R = 0.85, F(6,95) = 42.44, p < 0.001; Appendix 5—table 1). Within the model the

significant predictors were avolatile_experienced_PLA, avolatile_inferred_PLA, bPLA, and zPLA

(Appendix 5—table 1). Hierarchical regression showed that for zPLA the R2change value was

0.399 (F change (1,95) = 164.889, p <0.001) indicating that zPLA accounts for an additional

40% of the variance compared to the other regressors in the model. The corresponding value

for bPLA was 18% (R2change = 0.176, F change (1,95) = 72.741, p <0.001), 2% for

avolatile_experienced_PLA (R2change = 0.017, F change (1,95) = 7.105, p = 0.009) and 2% for

avolatile_inferred_PLA (R2change = 0.020, F change (1,95) = 8.063, p = 0.006).

Appendix 5—table 1. Coefficients from regression models with MPH and PLA accuracy as

dependent variables.

b b(std. Err.) standardised b t p

PLA

constant 0.67 0.02 30.15* <0.001

bPLA �0.25 0.02 �0.66 �12.84* <0.001

zPLA 0.03 0.00 0.43 8.53* <0.001

astable_experienced_PLA 0.05 0.04 0.09 1.35 0.18

avol_experienced_PLA 0.10 0.04 0.18 2.67* 0.01

astable_inferred_PLA �0.03 0.04 �0.03 �0.56 0.58

avolatile_inferred_PLA 0.13 0.05 0.16 2.84* 0.01

MPH

constant 0.69 0.02 39.88* <0.001

bMPH �0.26 0.02 �0.78 �15.92* <0.001

zMPH 0.02 0.00 0.44 9.15* <0.001

astable_experienced_MPH 0.03 0.03 0.06 1.05 0.30

avol_experienced_MPH 0.10 0.03 0.22 4.05* <0.001

astable_inferred_MPH 0.05 0.03 0.08 1.49 0.14

avolatile_inferred_MPH 0.03 0.04 0.05 0.92 0.36

* indicates statistical significance at p < 0.05.

MPH accuracy was significantly predicted by a regression model including

astable_experienced_MPH, avol_experienced_MPH, astable_inferred_MPH, avolatile_inferred_MPH, bMPH and zMPH

as predictors (R = 0.88, F(6,95) = 55.50, p < 0.001; Appendix 5—table 1). Within the model

the significant predictors were avolatile_experienced_MPH, bMPH, and zMPH (Appendix 5—table 1).

Hierarchical regression showed that for zMPH the R2change value was 0.551 (F change (1,95)

= 253.468, p <0.001) indicating that zMPH accounts for an additional 55% of the variance

compared to the other regressors in the model. The corresponding value for bMPH was 18%

(R2change = 0.182, F change (1,95) = 83.738, p <0.001), and 4% for avolatile_experienced_MPH

(R2change = 0.036, F change (1,95) = 16.400, p < 0.001).
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In sum, regressing model parameters against PLA accuracy demonstrates that under PLA

z and, to a lesser extent, b, avolatile_experienced and avolatile_inferred values were predictive of

accuracy scores. z and b values were also predictive of accuracy scores under MPH but the

only learning rate that was predictive of accuracy was avolatile_experienced.
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Appendix 6

Baseline measures and mood ratings
Details of baseline measures and mood ratings are identical to those reported in Swart et al.

(2017) and are included here for completeness.

Prior to capsule intake, participants completed a Dutch reading test (NLV, Schmand et al.,

1991) as a proxy of verbal intelligence on day 1, and the Listening Span Test (Daneman and

Carpenter, 1980; Salthouse and Babcock, 1991), to assess working memory capacity on day

2. Subsequently participants completed a Digit Span Test (forward and backward;

Wechsler, 2008) and the training phase of a Pavlovian-Instrumental Transfer task (PIT)

(Geurts et al., 2013; Huys et al., 2011) of which data will be reported elsewhere.

Between test days participants completed a number of self-report questionnaires including

the Barratt Impulsiveness Scale (BIS-11) (Patton et al., 1995) which indexes trait impulsivity.

The group that received MPH on day 1 did not differ significantly on any of the baseline

measures from the group that received PLA on day 1 (p < 0.05). See Appendix 6—table 1 for

an overview of the neuropsychological test scores and self-report questionnaires.

Mood ratings, heart rate and blood pressure were monitored thrice during each test day, i)

before capsule intake, ii) upon start task battery, and iii) upon completion of the task battery.

The mood ratings consisted of the Positive and Negative Affect Scale (PANAS) (Watson et al.,

1988) and the Bond and Lader Visual Analogues Scales (calmness, contentedness, alertness;

Bond and Lader, 1974), as well as a medical Visual Analogues Scale.

Appendix 6—table 1. Mean(standard deviation) scores for neuropsychological tests and self-

report questionnaires for the groups that received PLA and MPH on day 1. Significance level for

the between group differences are reported. Self-report questionnaires include the Barratt

Impulsiveness Scale (BIS-11; Patton et al., 1995), the Behavioural Inhibition Scale/Behavioural

Activation Scale (BISBAS) (Carver and White, 1994), Need for Cognition Scale (NCS)

(Cacioppo et al., 1984), Multidimensional Scale of Perceived Social Support (MSPSS)

(Zimet et al., 1988), Barratt Simplified Measure of Social Status (BSMSS) (Barratt, 2012),

Sociable and Aggressive Dominance Questionnaire (SADQ) (Kalma et al., 1993), Beck

Depression Inventory II (BDI-II) (Beck et al., 1996), Spielberger Trait Anxiety Inventory (STAI)

(Spielberger et al., 1983).

Group 1
PLA Day 1

Group 2
MPH Day 1

Neuropsychological tests Listening span 5.0 (0.9) 4.6 (1.2) p = 0.160

NLV 94.4 (7.6) 92.6 (7.6) p = 0.230

Digit span – forward 17.2 (3.7) 16.2 (3.6) p = 0.158

Digit Span - backward 14.7 (3.4) 13.9 (2.7) p = 0.219

Self-report questionnaires Impulsivity (BIS-11) 63.5 (8.9) 60.2 (7.9) p = 0.052*

Behavioural inhibition (BIS) 16.4 (3.7) 16.3 (3.5) p = 0.899

Behavioural activation (BAS) 22.8 (3.9) 23.9 (4.0) p = 0.166

Need for cognition (NCS) 64.5 (10.5) 62.2 (10.5) p = 0.264

Social support (MDSPSS) 71.1 (10.1) 69.3 (9.6) p = 0.349

Social status (BSMSS) 49.8 (12.1) 45.9 (12.7) p = 0.114

Social dominance (SADQ) 4.1 (0.9) 4.1 (0.8) p = 0.823

Aggressive dominance (SADQ) 2.6 (0.6) 2.6 (0.6) p = 0.691

Depressive symptoms (BDI) 3.5 (3.7) 3.6 (3.9) p = 0.969

Anxiety symptoms (STAI) 32.4 (6.6) 32.4 (7.2) p = 0.995
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*One participant had an outlying score on the BIS-11. Without outlier: p = 0.090.

Drug effects on mood and medical symptoms
For this control analysis we performed a repeated measures MANOVA using Pillai’s trace

with the within-subject factors Time (baseline/start testing/end testing) and Drug (MPH/

placebo), and dependent variables Positive Affect, Negative Affect, Calmness,

Contentedness, Alertness, and Medical Symptoms. Significant effects were further explored

with Bonferonni corrected repeated measures ANOVA, where alpha = 0.05/6 » . 008.

Greenhouse-Geisser correction was applied when the assumption of sphericity was not met.

MPH affected self-report ratings (V = 0.38, F(12,90) = 4.7, p < 0.001), in the absence of

baseline differences (V = 0.07, F(6,96) = 1.1, p = 0.359). After capsule intake MPH increased

Positive Affect (F(1,101) = 17.5, p < 0.001), Alertness (F(1,101) = 15.2, p < 0.001), and

Medical Symptoms (F(1,101) = 11.1, p = 0.001), and decreased Calmness (F(1,101) = 8.6,

p = 0.004), relative to PLA.

Drug effects as a function of impulsivity and working
memory capacity
Effects of drugs, like MPH, which act on the dopamine system have previously been reported

to vary as a function of baseline dopamine levels (Cools and D’Esposito, 2011; van der

Schaaf et al., 2013). To assess these potential sources of individual variability in MPH

effects, we took into account two measures that have been demonstrated with positron

emission tomography to relate to dopamine baseline function: working memory capacity for

its relation to striatal dopamine synthesis capacity (Cools et al., 2008; Landau et al., 2009)

and trait impulsivity for its relation to dopamine (auto)receptor availability (Buckholtz et al.,

2010; Kim et al., 2014; Reeves et al., 2012). Working memory capacity was assessed using

the Listening Span Test (Daneman and Carpenter, 1980; Salthouse and Babcock, 1991)

and impulsivity was assessed using the BIS-11 (Patton et al., 1995) as detailed above.

Z-scored BIS-11 and Z-scored listening span were entered as covariates into two separate

ANCOVAs with bWSLS as dependent variable, within-subjects factors drug (MPH, PLA),

volatility (stable, volatile), and learning type (experience, inferred) and between-subjects

factor group (social, non-social). This analysis showed no main effects of, or interactions

involving, BIS-11 (all p > 0.05). There was, however, a marginally significant interaction

between listening span scores and drug (F(1,99) = 3.912, p = 0.051). This was driven by a

significant positive relationship between listening span and bWSLS_MPH-PLA (Pearson’s r =

0.225, p = 0.023). In other words, participants with a high listening span (putatively high DA

synthesis capacity) showed the greatest increases in WSLS strategy under MPH compared to

PLA. More specifically, there was a negative relationship between listening span and

bWSLS_PLA (r = -0.273, p = 0.005), which was ameliorated under MPH (no correlation between

listening span and bWSLS_MPH; r = -0.03, p = 0.765). There were no other significant

interactions involving listening span and no main effect of listening span (all p>0.05).

Dominance and social learning
In previous work (Cook et al., 2014) we reported a positive relationship between social

learning and social dominance (SD), and a negative relationship between social learning and

aggressive dominance (AD) as indexed by the Sociable and Aggressive Dominance

Questionnaire (SADQ; Kalma et al., 1993). To create an analogous analysis we focused

solely on the PLA condition for the Social Group. Social learning was indexed by regressing a

Bayesian Learner Model (Behrens et al., 2007) of optimal responses based on the social

information (the red frame) alone against each participant’s responses. SD and AD we

measured using the SADQ. Although we replicated the negative relationship between (z-

scored) AD and social learning (r = �0.30, p = 0.034), there was no significant correlation

between (z-scored) SD and social learning (r = �0.14, p = 0.339). However, it should be

noted that the current study used an un-validated Dutch translation of the SADQ. In contrast

with our previous work (Cook et al., 2014) and work of others (Kalma et al., 1993), a
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correlation between SD and AD was observed in the current sample (r = 0.346, p < 0.001).

Further work is necessary to understand whether the non-replication of the significant SD

and social learning relationship is due to the use of the un-validated translation.
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