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intracellular energy Variability 
Modulates cellular Decision-Making 
capacity
Ryan Kerr  1, Sara Jabbari  1 & iain G. Johnston  2,3*

cells generate phenotypic diversity both during development and in response to stressful and changing 
environments, aiding survival. functionally vital cell fate decisions from a range of phenotypic choices 
are made by regulatory networks, the dynamics of which rely on gene expression and hence depend 
on the cellular energy budget (and particularly Atp levels). However, despite pronounced cell-to-cell 
ATP differences observed across biological systems, the influence of energy availability on regulatory 
network dynamics is often overlooked as a cellular decision-making modulator, limiting our knowledge 
of how energy budgets affect cell behaviour. Here, we consider a mathematical model of a highly 
generalisable, Atp-dependent, decision-making regulatory network, and show that cell-to-cell Atp 
variability changes the sets of decisions a cell can make. our model shows that increasing intracellular 
energy levels can increase the number of supported stable phenotypes, corresponding to increased 
decision-making capacity. Model cells with sub-threshold intracellular energy are limited to a singular 
phenotype, forcing the adoption of a specific cell fate. We suggest that energetic differences between 
cells may be an important consideration to help explain observed variability in cellular decision-making 
across biological systems.

Biological cells are faced with many decisions during their existence. Genetically identical single cells in a pop-
ulation choose different phenotypic strategies for survival; genetically identical cells in developing multicellular 
organisms make decisions to follow different developmental pathways, and hence towards one of a diverse range 
of possible phenotypes. Across organisms, gene expression variability leads to cell-to-cell variations in mRNA 
and protein levels in genetically identical cells, and can drive the generation of diverse phenotypes and strategies 
for survival1–5. The process of a cell assuming different functionally important fates from a range of phenotypic 
possibilities in response to or in anticipation of extracellular change, without genetic modifications, is known as 
a cellular decision6.

In multicellular organisms, phenotypic heterogeneity has been observed in a diverse range of cell types7 for 
a wide range of cellular decisions, from seed germination8–10 through the famous example of hematopoietic cell 
differentiation11,12, to mosaic development of retinal cells in the Drosophila eye13. Waddington’s famous ‘epige-
netic landscape’14 pictures these developmental decisions as bifurcating channels that a developmental ‘ball’ can 
roll down to select different possible cell fate decisions; bifurcations in the landscape correspond to multistabil-
ity, where a cell can support distinct, differentiated cell fates. These repeated differentiation decisions allow, for 
example, human pluripotent stem cells to differentiate into all cell types in the human body15,16, while modern 
technology allows reprogrammed cells to move back ‘up’ the epigenetic landscape15,17. These cellular decisions are 
central to development and knowledge of their dynamics offers useful applications in medicine and fundamental 
biology18.

Single-celled organisms also embrace the advantages of diverse cell behaviours. Cells in their natural environ-
ment have to deal with the challenges presented by changes in extracellular conditions. These may include tem-
perature changes, pH variability, nutrient limitation or, in some cases, the presence of antibiotics. To overcome 
such environmental fluctuations, genetically homogeneous cells can generate phenotypic diversity in order to 
increase the probability that some members of the population will survive19–21. This variability may enable a cell to 
support multiple, distinct phenotypes13,22,23 potentially helping a cell handle different environmental conditions; 
the resulting population heterogeneity may even increase the overall fitness of the species22,24.
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In microbiology, diversity and cell decision-making underlie a range of biologically and medically important 
behaviours. Large-scale studies have revealed the generation of phenotypic diversity in yeast through noisy gene 
expression, potentially benefitting the population in varying and often stressful environments4,25. The decision for 
bacteria to sporulate into robust endospores is a survival mechanism used by diverse genera including Bacillus 
and Clostridium26, contributing to foodborne disease and food spoilage27,28. The decision to become a persister 
cell (a phenotype more tolerant to external stress, including antibiotics), is made in several bacterial species29–32 
and can have a dramatic impact on the efficacy of medical treatments33–36.

Many of the mechanisms behind cellular decision making in eukaryotes and prokaryotes remain poorly 
understood, challenging our knowledge of fundamental biology and our ability to design cellular interventions 
to suit human purposes. Regulatory networks, representing the interactions between genes that govern these 
decisions, are often used to summarise our knowledge37. Typically, edges in a schematic network illustrate pro-
cesses such as transcription and translation, and nodes represent genes. However, this coarse-graining can often 
omit a substantial amount of important detail. In particular, the fact that the processes represented by these 
edges are energy dependent (Fig. 1) is rarely considered. Transcription and translation require a substantial ATP 
budget38,39, so there exists a core energy dependence in the dynamics of gene regulatory networks, potentially 
affecting the decisions supported by a given cell.

This energy dependence is important because different cells, particularly in microbiology, can have substan-
tially different levels of available energy. Energy variability has been observed within genetically-identical 
Escherichia coli cells in a population, where absolute concentrations of intracellular ATP were spread over at least 
half an order of magnitude, in a skewed distribution around . ± .1 54 1 22 mM40. Substantial intracellular ATP 
variability has also been observed in other branches of life, including yeast41, HeLa cells42 and plants43. Clearly, the 
dynamics, and thus potentially the outputs, of cellular decision-making networks may vary between cells due to 
these diverse energy levels.

Previous work has shown that energy availability can modulate the stability of decision-making circuits in 
eukaryotic cells44, supported by experimental observations linking, for example, mitochondrial content and qual-
ity (supporting high, stable ATP supply) to less differentiated cell outcomes16,45,46. However, the broader influence 
of energy variability on the behaviour of these circuits remains to be revealed, and a theoretical understanding of 
this potentially important modulator of cellular decision-making remains absent. Here, we seek to address this 
challenge using a theoretical approach that both provides highly generalisable understanding and circumvents 
the experimental difficulties in interrogating these complex systems. We use a mathematical representation of 
a regulatory network to model a genetic architecture observed as a decision-making motif across organisms. By 
including the effects of energy variability on physiological processes, we explore how the behaviour of the system 

Figure 1. Energy dependence in model genetic architectures. (A) Energy dependence in gene regulation. In 
an example schematic regulatory network (i), genes have positive and negative regulatory interactions. The 
expression of these genes, and thus their regulatory interactions, rely on transcription and translation, processes 
with substantial ATP requirements (ii). The dynamics, behaviour, and states supported by a regulatory network 
are thus expected to be ATP-dependent (iii). In this example, when ATP levels are high, activation by a positive 
promoter (blue) may lead to high levels of expression of a downstream target (black). However, when ATP 
levels are low, there may be insufficient energy to support this increased expression level, and the system’s 
behaviour is instead dominated by a repressive interaction (red). (B) The regulatory network for the general 
system considered in our model. The system involves two genes which self-activate and cross-repress, with both 
sets of processes being ATP-dependent (i). The energy dependence is often neglected in shorthand network 
representations of gene regulatory networks (ii). (iii) shows a possible arrangement of regulatory regions for one 
gene in the system that accomplishes this toggle-switch control.
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will change when cell-to-cell variability exists in intracellular energy supply, and how this variability affects the 
ability of cells to make diverse decisions.

Methods
Regulatory architecture. We consider a well-known cellular decision-making architecture consisting of 
two genes, their respective protein products, and the regulation occurring through their interactions  
(Fig. 1B; 44,47). To study a general model of cellular decision-making we designate the genes ‘Gene 1’ and ‘Gene 2’, 
as displayed in Fig. 1B. Protein 1 and Protein 2 (expression levels x1 and x2) are expressed by Gene 1 and Gene 2 
respectively, which then apply feedback control to the system through self-activation and cross-repression; both 
proteins also degrade. We define a cell fate as the level of these proteins at steady state.

We construct the governing ordinary differential equations (ODEs) with guidance from the literature47. We 
coarse-grain gene expression dynamics, avoiding an explicit representation of mRNA levels, and focussing on the 
levels of the protein products. The expression of each gene has contributions from self-activation (via the gene’s 
product activating a conditional promoter) and from a constitutive promoter (which can be repressed by the 
other gene’s product), Fig. 1B. For Gene i, the maximum expression level of the conditional promoter for Gene i 
is ai, and the basal expression level of the constitutive promoter is bi. Each protein product is degraded with rate 
ki. Overall we then obtain Eqs. (1) and (2) with initial conditions (3), previously studied by Huang et al.47, with 

∈ +x x,1,0 2,0  being some initial levels of proteins x1 and x2.

θ

θ

θ
=

+
+

+
−

x
t

a x
x

b
x

k xd
d

,
(1)

n

a
n n

b
n

b
n n

1
1

1

1
1

2
1 1

1

1

1

θ

θ

θ
=

+
+

+
−

x
t

a x
x

b
x

k xd
d

,
(2)

n

a
n n

b
n

b
n n

2
2

2

2
2

1
2 2

2

2

2

= = .x x x x(0) , (0) (3)1 1,0 2 2,0

The additive terms in Eqs. (1) and (2) reflect, from left to right, self-activation up to a maximum level of ai, 
cross-repression down from a basal level of bi, and degradation. The interaction processes are represented by Hill 
functions, with n and θ parameters determining the steepness and inflection point of the sigmoidal curves, 
respectively; θai

, θbi
 can be interpreted as the dissociation constants of the activator and inhibitor regulatory pro-

teins to the promoter regions, respectively.
Huang et al. suggest a default example parameter set47, with = = =a b k 1i i i , θ θ= = .0 5a bi i

, =n 4 ( =i 1, 2). 
These parameters give rise to a tristable system, where, depending on initial conditions, the steady state can take 
one of three values. Interpreting these protein level values as cell fates, this tristability corresponds to three possi-
ble cell fates for an organism and therefore, for example, a wider decision-making landscape compared to a mon-
ostable system.

energy dependence. Each step in transcription and translation requires energy in the form of ATP (Fig. 1), 
so we enforce that the rates of the corresponding gene expression processes in our model are dependent on an 
ATP concentration parameter. To this end, we first transform the parameters ai and bi to λ→a ai i and λ→b bi i 
( =i 1, 2) with λ being a function of intracellular ATP level. For simplicity and generality, we ignore the possible 
energy dependence of degradation as being of lower magnitude than these constructive processes. We will usually 
consider λ values between 0 and 1, reflecting the modulation of transcription rates from a theoretical maximum 
value (when ATP supply is not rate-limiting) to zero (in the absence of any available ATP supply), but consider 
relaxation of this scale later.

The rates of biophysical processes depend on corresponding free energy availability, a complicated quantity 
that for gene expression strongly depends on cellular ATP:ADP ratio, as well as other metabolic factors. Typical 
ATP:ADP ratio values have been shown to vary between 2–3 in mouse pancreatic β-cells48, and ±19 4 in 
wild-type E. coli cells49; variability has also been observed within and between different plant cells and cellular 
components50. To model this complex quantity and make it transferable across different biological species, we use 
a parameter A* to reflect a ratio of a cell’s free energy availability to a maximum possible value. This sets the upper 
and lower limits of A* to be 0 and 1 for each cell, and values of A* can be mapped to, for example, specific ATP 
concentrations for a given biological system of interest (Supplementary Fig. S1-S2).

To model the dependence of transcription rate λ on energy availability A*, we follow das Neves et al.38, who 
found a sigmoidal relationship between the total transcription rate in a cell and ATP concentration. As we are 
primarily concerned with the ATP dependence of gene expression, we modelled λ with a sigmoidal curve, yield-
ing monotonically increasing rates as energy increases (adoption of a linear rather than a sigmoidal relationship 
between scaled energy and dynamic rates did not change our qualitative observations, Supplementary Fig. S1). 
Specifically, we use Eq. (4), where =s 161 , = −s 82  are chosen to produce the monotonically increasing curve for 
λ ⁎A( ) in Supplementary Fig. S2.
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For biological reference, Supplementary Fig. S2 displays the known range of intracellular ATP concentration 
of E. coli ( . ± .1 54 1 22 mM40). By assuming a constant sum of ATP and ADP concentrations within an E. coli cell, 
as observed by Jensen and Michelson49 for wild-type and atp mutant cells, an increase in ATP concentration cor-
responds to an increase in free energy availability by changing the ATP:ADP ratio. At the lower bound of ATP 
concentration, 320 μM, λ is small, equating to a low maximum expression level. For the upper bound, 2760 μM, 
λ is at its maximum value and represents maximal expression level. Concentrations below 320 μM are outside the 
detected E. coli ATP range40, so we take this to be the critical intracellular energy to continue as a living cell and 
therefore may represent non-living or dying cells. Overall we thus obtain:
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Time-dependent and steady state numerical solutions of Eqs. (5) and (6), with Eq. (4), were generated in 
Python 3.6.5 using the integrate.odeint and optimize.root functions within the scipy module51; integrate.odeint is 
a stiff or non-stiff solver for a system of first-order ordinary differential equations which implements a Backward 
Differentiation Formula (stiff) or predictor-corrector (non-stiff) method, and optimize.root solves the system of 
nonlinear equations using a modification of the Levenberg-Marquardt algorithm. Prescribed initial conditions 
covered a grid of x1 and x2 at equally spaced points when calculating numerical solutions; bifurcation diagrams 
and heatmaps were constructed using the numerical solutions. In the case where multiple degenerate solutions 
are found, attractor quantity was confirmed using both Maple (2019) and Matlab (R2018a; Mathworks). All 
scripts used for this study are openly accessible through https://github.com/StochasticBiology/
energy-variability-decision-making.

For each parameter set, the stable steady states of the system correspond to cell fates. We do not consider 
unstable or metastable steady states to represent cell fates as small perturbations in expression due to noise will 
move the system towards a stable point; we consider both unstable and metastable steady states as ‘functionally 
unstable’ in our study. If multiple stable states exist, the level of proteins x1 and x2 at each steady state determine 
the different phenotypes a cell can generate, as shown by Huang et al.47; in their study, high x1 and low x2 corre-
sponded to a progenitor cell differentiating into an erythroid cell, rather than a myeloid cell.

As we are modelling the observed interactions in Fig. 1B rather than biochemical interactions, the analysis of 
our results considers the qualitative behaviour rather than observing quantitative results. From this point, we set 

= =a a a1 2, = =b b b1 2, = =k k k1 2, θ θ θ= =a a a1 2
, θ θ θ= =b b b1 2

 and each section will explicitly state the 
fixed and varied parameters for the work that follows.

Accession codes. No data were generated during this project.

Results
Our model system generally exhibits dynamic behaviour that, starting from some initial condition x x( , )1,0 2,0 , 
converges to a particular steady state characterised by values x x( , )1 2 . A limited number of these steady states exist 
for a given parameterisation of the system; these are attractors, so called because initial conditions are ‘attracted’ 
towards these stable states. A range of initial conditions will converge to the same attractor; this range of x x( , )1,0 2,0  
values is the attractor basin of that attractor.

We view distinct attractors, with distinct patterns of protein levels, as distinct cell fates. The attractor basin of 
each corresponds to the range of cell states that will return to that cell fate. This range makes each fate robust to 
fluctuations: for example, a small change in the level of one protein in one attractor state will likely still fall within 
that attractor’s basin, so the system will return there.

In the following sections, we consider the number and properties of distinct cell fates (attractors) supported by 
the system at different energy levels. As we increase energy levels we often observe bifurcation, where one stable 
state transitions to two new states (increasing the number of options for cellular decision making). We also con-
sider the “difficulty” of switching between attractors (moving from one cell fate to another); in biology this can be 
accomplished through noisy or controlled external influences52–54.

intracellular energy budget modulates cellular decision-making landscapes. We first sought to 
understand how increasing energy availability changes the number of decision-making options available to the 
cell. To this end, we explored the bifurcation behaviour of the steady-state protein levels in our model as we 
changed energy availability. As our parameterisation for now imposes a symmetric structure on the phase space 
of steady-state protein levels, we begin by simply using the diversity of  x2 levels to illustrate the range of attractors 
present in the system for given energy levels (example in Supplementary Fig. S3). Throughout this section, θa, θb 
and n are fixed at their default values, and parameters a, b and k are varied.

We explored the emergence of different attractors (hence, the emergence of different cell fates that can be 
decided between) with energy level A* under a variety of different parameterisations. A clear general trend 
emerged, whereby the number of distinct attractors supported by the system increases with increasing energy 
availability (Fig. 2). There is thus an increased diversity of stable protein states, and hence an increased number 
of options for cellular decisions, if energy levels are higher. The separation of these attractors also increased 
with increasing energy, with the attractor basin associated with the intermediate attractor becoming wider, in 
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agreement with Johnston et al. and Huang et al. 44,47. This suggests a biological stabilisation of states characterised 
by intermediate protein levels (see Fig. 2).

The quantitative properties of these attractor states vary with model parameters. Increased promoter activity a 
and b has the effect of increasing the separation of protein levels in distinct states, likely due to a simple elevation 
of maximum level. Correspondingly, increased degradation activity k has the opposite effect, diminishing the 
differences between distinct states. In particular, high values of k prevent the emergence of tristability, limiting 
the system to bistability even at high energy levels (Fig. 2(k,l)).

The bifurcation dynamics display some subtle variation in different cases. For example, at high levels of a (the 
maximum expression level of the conditional promoter), increasing energy availability drives the system through 
re-entrant behaviour, where the number of attractors (decision options) runs from 1 to 3 then down to 2 before 
returning to 3 (see Supplementary Figs. S4 and S5 for detailed views of this behaviour). We shall see below (for 
example in Figs. 3 and 4) that similar behaviour is also observed in other regions of parameter space.

Generally, a single stable branch exists below an A* threshold. Biologically this implies that a single cell fate 
exists below an intracellular energy level, restricting the decision-making ability of a cell under this architec-
ture. Once intracellular energy budget exceeds a threshold, multiple steady states are supported, enabling cel-
lular decision-making. All our results demonstrate that, for our decision-making architecture, an increase in 
A* generally has the effect of accumulating stable branches in the bifurcation diagrams. This means a broader 
decision-making landscape for a cell when it has high intracellular energy budget. If degradation, k, is too high 
the central stable attractor does not exist, and the system is limited to bistability. Therefore, the decision-making 
capabilities of a cell are reduced if the degradation level is sufficiently high. Re-entrant stable steady state behav-
iour exists for certain parameter sets, suggesting a potential optimum intracellular energy range for phenotypic 
diversity. This may give a cell an optimal range of intracellular energy levels to support an increased variety in 
cell phenotypes, enabling, for example, superior adaption to extracellular environmental changes. This behaviour 
could also have negative consequences for a cell due to phenotypes becoming unsupported with slight variances 
in energy, forcing a cell to establish a different phenotype which, due to being a time dependent process, may not 
be performed quick enough to tolerate an environmental change.

Figure 2. Attractor basins with increasing energy availability A*. Bifurcation diagrams show increasing values 
for: (a–d) maximum expression level from conditional promoter; (e–h) constitutive promoter level; (i–l) 
degradation. Plots display x2 values for stable steady states (blue circles) and unstable steady states (red circles) 
over A* ∈ [0, 1] in steps of size 5 × 10−3.
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In Fig. 3 we show this ‘phase portrait’ of attractor landscapes for varying energy A* and constitutive expression 
b, along with example structures of the corresponding attractor basins. The general observation of increasing 
number of fate options with energy holds throughout. There is a separatrix line in this phase portrait between 
regions supporting a single attractor basin and those supporting more than one. For a given dynamic parameter, 
this separatrix is crossed as energy availability increases, then further increase has the effect of expanding the 
attractor basin associated with the state where both genes are expressed symmetrically (as in Johnston et al.44).

What is the physical intuition behind these structural changes with energy and dynamic parameters? Start 
with the low activity, low energy case. Here there is simply not enough cellular ‘production capacity’ – the ability 
to express genes – to allow dynamic signalling interactions between gene products. The system is limited to low 
levels of expression for both products, favouring a single, low-expression state.

As we now increase b, the basal expression rate increases, and the high coefficient associated with the 
cross-repression term induces very high antagonism – any balance between the gene products is highly unstable. 
The system invests all available energy getting to either one state or another. The low energy levels and corre-
spondingly low expression levels mean that ‘small number’ effects are important: any small perturbations from 
symmetric expression will be amplified to favour one gene over the other.

In the alternative case, where we have low basal expression but high energy, we have substantial ‘production 
capacity’ that can now support an energetically more demanding intermediate state. Higher expression levels 
mean that fluctuations can be buffered and intermediate states are more stable. Here, there is constant tension 
between genes, requiring high energy levels; the fixed states are also still supported. In order to favour either gene 
product we need enough initial protein to jump-start the system (otherwise we reach the trivial zero or near-zero 
attractor).

This latter case remains true in the final case of high energy and high basal expression, except here the zero or 
near-zero attractor is unstable because from here, the substantial ‘production capacity’ means that some protein 
can always be produced, which is likely to drive the system towards one of the non-trivial attractors.

We next explored this behaviour varying both promoter levels a and b together (Fig. 4). At low values of the 
conditional promoter activity ( ≤ .a 0 5) the system is restricted to mono- or bistability for all values of b and a 
single stable attractor exists below an A* threshold. High values of a support the greater diversity of stable states 
previously seen in Fig. 3, however the attractor landscape changes minimally for higher a (Fig. 4(e,f)). For high a 

Figure 3. Decision-making capacity depends on cellular energy and dynamic parameters. Heatmap shows 
number of distinct attractors for =a 1, ∈b [0, 3] and A* ∈ [0, 1], with all remaining parameters fixed at their 
default values. Inset figures present examples of the attractor landscape with solution trajectories (coloured) and 
stable steady states (green circles with black circumference). The 4 categories are, when viewed in portrait 
orientation, 1 stable steady state (bottom left, turquoise), 2 stable steady states (bottom right, blue), 3 stable 
steady states (top right, purple) and 4 stable steady states (top left, pink).
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7Scientific RepoRtS |         (2019) 9:20196  | https://doi.org/10.1038/s41598-019-56587-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

and some values of b, we again see the re-entrant behaviour from the bifurcation diagrams (Supplementary 
Figs. S4 and S5), with the 4-attractor state supported only at some intermediate values of energy availability. 
Illustrations of the nature of these re-entrant steady states are given in Supplementary Figs. S6 and S7, for increas-
ing values of A* and b respectively.

This re-entrant behaviour for increasing values of A* or b (Supplementary Figs. S4–S7) merits further analysis. 
The reduction from 4 to 3 stable states with increasing energy is likely due to the destabilisation of the near-zero 
attractor (Supplementary Fig. S6), where expression levels of both genes is low. Above an energetic threshold, 
a baseline of production will be constantly occurring, and if the activity a of the conditional promoter is high 
enough, any small increases in protein level can rapidly self-amplify and drive the system to an attractor with 
higher expression of protein products. The 4-attractor system will then only be supported at low b and sufficiently 
low energies, as we observe. When the number of attractors (decision options) runs from 1 to 3 then down to 2 
before returning to 3, the central stable attractor is destabilised as energy increases (Supplementary Fig. S7). This 
is likely due to a higher contribution from the constitutively expressed promoter as a proportion of the overall 
expression when energy increases, enhancing the antagonism, increasing the overall expression of both proteins 
and therefore driving the system to one state or the other as the central state cannot be sustained.

In summary, when a is small (Fig. 4(a,b)), the system is limited to mono- or bistability, which may equate to 
a limited diversity in phenotypic possibilities for a cell. Increasing a lowers the separatrix and decreases the A* 
threshold for tristability. Biologically, this suggests that for our decision-making architecture, as the maximum 
expression level of the promoter under activator control increases, less energy is required for an expansion in a 
cell’s decision-making landscape. Independent of the value of a and b, a singular stable steady state always exists 
at low energy, in theory limiting a cell to generating a singular phenotype.

Cooperativity effects on system behaviour. We next asked how these relationships between attractor 
basin structure (number of decision options) and energy depends on the cooperative nature of our model inter-
actions (represented by the Hill coefficient n in our governing equations). We found that decreasing the Hill 
coefficient to =n 3 (Supplementary Fig. S8) led to some minor rearrangements of the phase portrait, decreasing 
to =n 2 (Supplementary Fig. S9) does not display any re-entrant behaviour, while the quasi-linear case of =n 1 
(Supplementary Fig. S10) removed any diversity in attractor basin structure for the parameters we consider.

Therefore, if there is noncooperative binding ( =n 1) of the proteins, the number of stable states is limited to 
one (Supplementary Fig. S10). This would relate to no decision-making capability for any cell, independent of 
intracellular energy level or gene expression levels, in the regimes we are considering. In contrast, if cooperativity 
is reduced from =n 4 (default value, Fig. 4) to =n 3 or =n 2 (Supplementary Fig. S8 or S9 respectively), the 

Figure 4. Decision-making landscapes depend on energy availability and dynamic rate parameters. Panels (a–f)  
display heatmaps of number of distinct attractors for 6 increasing values of a, when =n 4. Each panel exhibits 
the number of stable steady states for combinations of ∈b [0, 3] and A* ∈ [0, 1]. Throughout (a–f), all 
parameters, except a, b and A*, are fixed at their default values.
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observed behaviour is qualitatively similar, suggesting that a limited degree of nonlinearity in cellular interactions 
is sufficient to support decision-making and that energy dependence remains important even in these limited 
cases.

Regulatory protein binding strength can limit system behaviour. To understand how the binding 
strength of regulatory proteins affects the decision-making abilities of a cell, the influence of Hill parameters θa 
and θb on attractor basin structure was also analysed (Supplementary Fig. S11). θa and θb can be interpreted as 
the dissociation constants of the activator and inhibitor regulatory proteins to the promoter regions, respectively. 
Increasing θa (θb) corresponds to decreasing the binding affinity of the corresponding protein to the relevant pro-
moter site, thus requiring more protein to achieve the equivalent levels of activation (inhibition).

Changing θa changes the A* threshold required for tristability; there is a ‘sweet spot’ in θa that supports trista-
bility at higher A* values. This behaviour is not observed for θb; for low θb, single, double, and triple stable states 
are observed at different energy levels, while for high θb the system is limited to a single attractor.

Hence, the relationship between energy availability and decision-making capacity of the system depends dif-
ferently on the interactions encoded by θa and θb (Supplementary Fig. S11). There is an optimal range of θa for 
tristability, and outside of this range it is more probable for the system to be bistable, but it can also be limited to 
monostability. This suggests a cell requires a stronger activator binding strength to be less sensitive to changes in 
the number of activator proteins modulating expression levels. The optimal range for tristability is increased 
when parameter θb is varied. A cell would be less sensitive to changes in the number of inhibitor proteins modu-
lating expression for both weak and strong binding strengths of the inhibitor protein. When the inhibitor binding 
strength becomes too weak the system is limited to a single stable state, removing the decision-making ability for 
a cell.

External ATP effects on decision-making landscapes. We next asked how the presence of external 
ATP sources (for example, from the environment, other cells, or a host cell in the case of a parasite) affected 
decision-making behaviour in our model. The effect of uptake of external ATP is to raise the baseline level of 
energy available for transcription38. We capture this by enforcing the sigmoid function (λ) to be nonzero at 
A* = 0, and allowing its maximum to surpass 1 (Supplementary Fig. S12). This shift models an externally avail-
able ATP source for a cell. We found that external ATP supply shifted the profile of supported phenotypic states 
towards those with more stable phenotypes (Supplementary Fig. S13), suggesting that external ATP enables 
the cell to enter a higher-decision state-space more easily (for example, compare Fig. 4(c) and Supplementary 
Fig. S13(c)).

Stable steady-state transitions. The transition between phenotypes can be analysed by observing the 
‘difficulty’ of moving between attractors at each energy level. Here, we consider the minimum biochemical per-
turbation required to transition from one extreme attractor state to another, by calculating the distance required 
to transition directly or indirectly between extreme attractor basins. This distance qualitatively corresponds to the 
magnitude of an intrinsic fluctuation, or an externally induced change, in gene expression levels required to 
induce a permanent shift in phenotype. Specifically, we compute the minimum of the following quantities: (i) the 
shortest distance in x x( , )1 2  space between the high-x1 attractor and the high-x2 basin; (ii) the sum of shortest 
distances between the high-x1 attractor and an intermediate basin and the shortest distance from that intermedi-
ate attractor to the high-x2 basin. In (ii), an indirect transition within the 3 or 4 attractor landscape can occur 
through a move into an intermediate attractor basin, relaxing towards the intermediate attractor point, and then 
a movement into the second extreme attractor basin. This distance is only calculated for landscapes with 2 or 
more attractors, as a monostable system cannot transition.

The easiest transitions (shortest distances) occur as soon as the attractor landscape transitions from monosta-
ble to multi-stable (Fig. 4 and Supplementary Fig. S14), where extreme attractors are closest with little intermedi-
ate volume of phase space. The most difficult transitions (hence, most stable phenotypic states) appear for high 
values of the conditional promoter activity ( =a 3) where attractors in the landscape are spread apart (see 
Supplementary Fig. S14(f)). We consistently observe the most stable phenotypic states for large b, however, for 
intermediate a values (Supplementary Fig. S14(c,d)) the transition difficulty at large b values is reduced compared 
to low and high a (Supplementary Fig. S14(b,f) respectively).

Therefore, increasing energy availability both increases the number of phenotypic choices supported by our 
model architecture and stabilises the corresponding states (Fig. 4 and Supplementary Fig. S14). For a bistable 
system, moderate A* enables easier transitions, and an increase in energy availability shifts the transitions to be 
considerably more difficult, stabilising phenotypes. In a tristable landscape, the transition ‘difficulty’ is initially 
similar to the bistable case, but an increase in A* does not alter the transition distance to match that of the bistable 
landscape, unless a is very high, where transitions become considerably more difficult.

Discussion
We have used a simple and general regulatory model, representative of the core of several known decision-making 
motifs47,55–58, to explore how the decision-making capacity of a cell depends on the energy available to fuel the 
processes involved in this decision making. Our theory predicts that, across a broad range of biological con-
texts, differences in cellular energy levels will cause differences in the dynamics and stable outcomes of cellular 
decision-making, via modulation of the expression rates of interacting regulatory genes. More precisely, increased 
ATP levels both support the ability to transition into multiple stable states, and increase the separation between 
the attractors as energy increases, stabilising the decisions that can be made (Fig. 2). Concurrently, without a suf-
ficient energy supply, decision-making circuits lose the capacity to select different phenotypes (Figs. 2–4). Higher 
energy levels allow, and stabilise, separate and intermediate states.
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Our findings – that the fate choices supported by decision-making architectures depend on available energy 
– exist independently of the other metabolic requirements of given precursor or descendant cell types. It is fun-
damentally the influence of ATP variability on the dynamics of regulatory motifs that can cause this general 
dependence, which exists in addition to specific metabolic budgets and responses of the cell types in question.

The architecture we consider (Fig.  1B) can describe the behaviour of many naturally-occurring 
decision-making circuits, and our findings that energy availability influence this behaviour thus provide testable 
predictions for this class of systems. Accordingly, our prediction that phenotypic decisions depend on ATP is 
already supported by several experimental observations, discussed below. Our hypothesis can further be readily 
tested by, for example, tracking prokaryotic phenotype or eukaryotic fate decisions in a culture exposed to the 
same stimulus but titrated with different external concentrations of ATP.

This observation that different levels of ATP may induce different cellular behaviours comes as increasing cell 
heterogeneity in ATP levels is being experimentally characterised. Intracellular ATP has been quantified to vary 
between 0.32–2.76 mM in a bacterial population40, 3.7–3.9 mM in HeLa cells42, 3–4 mM in living yeast cells41 and 
over a several-fold change occurs in different tissues of a plant43. The connection between energy variability and 
cellular decision-making has also been discussed previously31,59, further supporting the hypothesis that energy 
diversity may modulate the number of regulatory states supported by a cell, playing an important causal role in 
inducing variability in cellular decision-making.

Setting = =a a 01 2  reduces the system to consist of a bistable switch with cross repression, known as a 
toggle-switch. This motif is found at the core of several known decision-making architectures throughout biology, 
with an extensive body of associated literature60–67. This motif famously occurs in the λ-bacteriophage switch 
from lysogenic to lytic state in Escherichia coli. The lysis-lysogen decision can generally be described as being 
determined by two genes, cI and cro, which mutually cross-repress through their products; the outcome of high 
cI (cro) expression is cro (cI) repression and cI (cro) transcription, resulting in the lysogenic (lysis) state68–71. The 
switch from lysogenic to lytic state occurs when the cI product is cleaved by RecA, a result of the response to DNA 
damage, derepressing cro, increasing Cro production and turning off cI68.

The cross-repressing motif is observed in eukaryotic development56,58, where, for example, cross-repressing 
mammalian transcription factors Cdx2 and Oct4 govern the branch point between the trophectoderm and the 
inner cell mass in pluripotent embryonic cells72, and the bistable p42 MAPK/Cdc2 system controls maturation of 
the Xenopus oocyte73. The situation a ≠ 0, including self-promotion in the regulatory motif, describes more archi-
tectures such as B cells promoting an antibody class switch74, gene regulatory networks with slow promoter kinet-
ics75 and cell-fate development and differentiation in eukaryotic cells55,57,76–79. A famous example is the 
GATA-1-PU.1 system controlling hematopoietic stem cell differentiation, studied theoretically47,75,80–83 (with 
some consideration of the influence of energy variability44). The relationship between pluripotent stem cell behav-
iour and energy metabolism has also been extensively studied16. Culturing human embryonic stem cells (ESCs) 
in low oxygen (suppressing oxidative phosphorylation and thus reducing energy production) prevents differenti-
ation84. Differentiation of pluripotent stem cells (PSCs) to cardiomyocytes requires a high oxidative phosphoryl-
ation capacity85, and human PSCs maintain higher mitochondrial membrane potential (ΔΨm) than their 
differentiated descendants86. In mouse ESCs, cells with high ΔΨm remained in a pluripotent state while cells with 
low ΔΨm largely adopted a single differentiated state46. These observations are all compatible with our prediction 
of reduced decision-making capacity at low energy levels due to the energy dependence of regulatory networks 
(although the different metabolic requirements of different cell types will also play a role in these observations).

This motif consisting of two genes with feedback loops is found at the core of several known decision-making 
architectures throughout biology, but of course, it will not exist in isolation in real biological systems (although 
theoretical studies have underlined how analysis of its dynamics can be valuable in understanding its downstream 
physiological significance8,44,47). However, our hypothesised link between energy variability and decision-making 
dynamics is not restricted to this motif. Relaxing the bistable picture used here, links between energy variability 
and cell fate are anticipated in a broad variety of other cell decisions. One pertinent example is the formation of 
bacterial persister phenotypes in the presence of antibiotics. One regulatory motif involved here is the hipBA 
module, which expresses HipA (toxin) and HipB (antitoxin), which can form a complex that represses their own 
expression. Rotem et al.87 found that cells become dormant if the level of HipA exceeds a threshold, and as the 
level of HipA exceeded the threshold further, it determined the duration of dormancy. This is similar to our 
model and architecture where the protein levels, x1 and x2, feed back into the system and establish the generated 
cell fate; we would then predict that intracellular energy budget is a factor involved in the persister decision. 
Further connections between intracellular energy budget and the persister cell decision have been observed in 
both S. aureus31 and E. coli59. T-cell fate decisions in immunology provide another example. After an antigenic 
stimulation, a T-cell switches from a resting catabolic state (naïve and memory T-cells) to an anabolic effector 
T-cell state which requires more energy and grows and proliferates88–90. Once activated, effector T-cells differen-
tiate into different lineages, each containing a distinctive phenotype, including functional properties and meta-
bolic changes91–94. In relation to our model, we predict that any ATP differences between cells (for example, 
arising through variability in metabolic poise91,95) will affect the expression levels and interaction dynamics of 
specific master regulators (including mTOR, cytokines, GATA3 and T-bet94,96–99), modulating the lineage to 
which an effector T-cell transitions.

We predict that ATP variability will influence fate decisions across this broad variety of systems, organisms 
and branches of life. Generally, the propensity to choose different cell fates will be intrinsically affected by ATP 
supply (in addition to extrinsic signals that may also be linked to nutrient and energy availability), and for bistable 
regulatory motifs, higher ATP levels will promote undifferentiated states from which more decisions are possible.

The influence of noise in gene expression52–54 on the behaviour and stability of this system will also be valuable 
to link to specific biological situations. Together, the inclusion of noise and additional genetic actors will help shed 
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further light on how decisions are made by the cell (in our model, how transitions between available attractor 
states are accomplished). Some subtle and re-entrant behaviour was observed in the bifurcation dynamics associ-
ated with transitions between different numbers of distinct stable states. If this behaviour is general across other 
architectures, it may provide a potential optimum intracellular energy range for phenotypic diversity, enabling a 
cell to have superior adaption to stochastic extracellular environmental change.

We hope that this study has opened a new line of enquiry in the current understanding of cellular deci-
sion making. Prior to this work, energy variability in cells had, to our knowledge, not been considered as a key 
determinant of the cellular decision-making landscape. Through consideration of the potential effect of energy 
variability on intracellular physiology, understanding the mechanisms behind cellular decision-making may 
improve. We hope that further knowledge on how intracellular energy budget changes a cell’s decision-making 
landscape could be a step towards understanding the fundamental mechanisms behind cellular decision-making 
and towards developing novel methods to either promote or inhibit the consequences.

Data availability
All scripts used for this study are openly accessible through: https://github.com/StochasticBiology/energy-
variability-decision-making.
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