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ABSTRACT 

 

Railway ballast is one of the main components in ballasted railway track systems. It is installed under the 

railway sleeper to absorb dynamic wheel/rail interaction forces, preventing the underlying railway track 

subgrade from excessive stresses, enabling the interlocking of skeleton track onto the ground and providing 

lateral track stability. Generally, the dynamic modelling of ballast gravels relies on the available data, which are 

mostly focused on the condition at a dry condition. Recent findings show that railway track could significantly 

experience extreme climate such as long-term flooding. This phenomenon gives rise to a concern that the ballast 

may experience higher level of moisture content than anticipated in the past. On this ground, a test rig for 

estimating the dynamic properties of rail ballast has been devised at the University of Birmingham. A non-

destructive methodology for evaluating and monitoring the dynamic properties of the rail ballast has been 

developed based on an instrumented hammer impact technique and an equivalent single degree-of-freedom 

system approximation. This investigation focuses on the dynamic SDOF model of rail ballast submerged under 

the flood where the dependent effects of frequency can be distinguished. Based on the impact-excitation 

responses, the analytical state-dependent model was applied to best fit the experimental modal measurements 

that were performed in a frequency range of 0-500 Hz. The curve fitting gives such dynamic parameters as the 

modal mass, dynamic stiffness and dynamic damping constant, all of which are required for modern numerical 

modelling of a railway track. 

 

Keywords: Dynamic properties, railway ballast, flood condition, climate change. 

 

 

INTRODUCTION 

 

Railway ballast or granular media is a major 

track component used in ballasted railway tracks 

worldwide. It is mostly derived from crushed rock-

based local materials from various sources such as 

crushed igneous rocks (granite, rhyolite, decite, 

basalt, quartzite or latite), crushed metamorphic 

rocks, crushed sedimentary rocks, crushed gravel 

(from river, lake), or sometimes even from waste 

products (such as crushed slag, chitter) [1-4]. Early 

railways did not place ballast as being highly 

significant to the makeup of a successful design of 

the permanent way. This position gradually changed 

and the performance of the ballast material is now 

highly regarded in the design process. Ballast is 

required to fulfil the task of maintaining the track in 

good alignment both horizontally and vertically. To 

provide this it must have the following 

characteristics: 

 Durable to be able to absorb the loads 

imposed by the sleepers and transmit the 

loads to the sub-grade without undue 

breakdown. 

 Hard wearing with high abrasion resistance in 

both wet and dry conditions. 

 Angular with sufficient bulk density to resist 

movement of the track both longitudinally 

and laterally. 

 Particle size to allow packing and transfer of 

the loads of the track but with sufficient void 

space to allow free draining to assist shedding 

of all moisture. 

Both the ballast and capping layer material can 

be seen in Fig. 1. 

 

 
 

Fig. 1 Ballast and capping layer [2]. 

 

The functions or roles expected of the ballast 

layer have changed with time and the evolutional 

development of railway technology.  There is some 



GEOMATE - Kuala Lumpur, Malaysia, Nov. 20-22, 2018 

2 

 

discussion of the functions of ballast in the 

references, “Railroad Engineering” (Ch 21) by WW 

Hay, “British Rail Track” (Ch 2), by the Permanent 

Way Institution, “A Review of Track Design 

Procedures” (Vol 2, Ch 4) by Jeffs and Tew, and 

“Track Geotechnology and Substructure 

Management”, by Selig and Waters [1]. The 

functions of ballast can be divided into two criteria: 

 Primary Functions, - the original purpose of 

ballast; and, 

 Secondary Functions, - the characteristics of 

the material that enable the ballast to fulfil and 

continue to fulfil its primary function and those 

functions that have been added with technology 

improvements and community expectations. 

The primary functions of the ballast are to 

provide a uniform elastic vertical support; to fix the 

track in position laterally and longitudinally; and to 

facilitate the correction of the track level and line 

enhancing constructability and maintainability of 

railway network [2-4]. 

The secondary functions of ballast are to allow 

surface water to drain rapidly; to inhibit the growth 

of vegetation; to compensate for the presence of 

fouling material, to reduce noise; to provide 

electrical insulation of one rail from the other; and, 

to moderate the effect of frost heave in cold climates 

and the movement due to climate uncertainties [5-8]. 

Railway ballast is installed under railway 

sleepers to transfer the quasi-static stress (already 

filtered by rail pads and sleepers) from axle loads 

and wheel loads from both regular and irregular train 

movements, as shown in Fig. 2. In accordance with 

the design and analysis, numerical models of a 

railway track have been employed to aid the track 

engineers in failure and maintenance predictions [9-

12].  

 

 
 

Fig. 2 Typical track structure [9]. 

 

The current numerical models or simulations of 

railway tracks mostly consider the track components 

in perfect situation or in a normal weather condition. 

The effect of flooding on the dynamic behaviour of 

railway ballast has never been investigated, although 

it is evident that climate uncertainty has a significant 

influence on railway networks that affect the 

serviceability and performance of railway tracks 

[13-20]. The primary reason is due to a lack of 

information, either about the dynamic characteristics 

of railway ballast under variable flooding conditions, 

or about the dynamic train-track modelling to 

capture the flooding conditions. This paper is the 

world first to present dynamic behavior of railway 

ballast in flooding conditions. It also discusses the 

experimental results obtained as part of the railway 

engineering research activities at the University of 

Birmingham (UoB) aimed at improving the dynamic 

performance and modelling of railway tracks 

globally. The proposed relationships could be 

incorporated into track analysis and design tools for 

a more realistic representation of the dynamic train-

track interaction and load transfer mechanisms.    

 

ANALYTICAL MODELLING  

 

Majority of train-track dynamic simulations 

adopt a multi-degree-of-freedom system (MDOF) 

approach for modelling train and track components. 

MDOF system or so-called ‘multi-body simulation’ 

idealises the structural and mechanical components 

into nodes of freedom and string elements (spring 

and dashpot). This structural idealisation concept is 

very common in practice and academia in order to 

reduce computation time and resources. Fig. 3 

illustrates the train-track simulation and track 

idealisation for the numerical simulation [21].  

 

 

a) Train-track simulation 
 

 

b) Ballast idealisation 

Fig. 3 MDOF train-track idealisation [21] 

https://www.tandfonline.com/doi/full/10.1080/14488353.2015.1116364
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The dynamics of resilient track have been 

studied mostly based on a two-degree-of freedom 

(2DOF) model. In this paper, a SDOF-based method 

has been developed to help track engineers to 

evaluate the realistic dynamic behavior of railway 

ballast required for the design using the numerical 

simulation. An analytical solution has been used to 

best fit the vibration responses. Considering the 

SDOF system in Fig. 3, the dynamic behavior of 

ballast in the vertical direction can be described by 

the well-known equation of motion: 

 

𝒎�̈� + 𝒄𝒑�̇� + 𝒌𝒑𝒙 = 𝒇(𝒕)   (1) 

              

 

                       , or                   

                                                                                  

(2a, b, c) 

 

 

 

 

where mp, cp, and kp generally represent the effective 

sleeper mass, damping and stiffness of ballast, 

respectively. By taking the Fourier transformation of 

(1), the frequency response function can be 

determined. The magnitude of the frequency 

response function ( )H f  can be represented as 

follows: 

 

 

(3) 

 

 

 

 

where, 

 

(4) 

 

 

This expression contains the system parameters 

mp, kp and cp that will later be used as the curve-

fitting parameters. 
Considering Eq. (2), the fundamental frequency 

of railway ballast is relatively low if the track mass 

is significant. This implies that significant energy is 

required to excite the vibration of the SDOF system. 

By lowering the effective mass over a representative 

area of ballast (similar to a falling weight method 

with relatively small diameter of proctor, e.g. 

50mm), the fundamental frequency of the SDOF 

system can be lifted to a higher range and it will 

require relatively lower energy to excite the system 

in order to obtain a realistic vibration response. In 

this study, a block of concrete (150mm x 150mm x 

150mm) is used to represent the effective mass in 

the system. This enables the effective use of a modal 

hammer to excite the system [22-26].  

EXPERIMENTAL SETUP 

 

Fig. 4 demonstrates the experimental setup in 

this study. Pilot studies (over 200 data sets) using a 

modal hammer (PROSIG) were carried out to 

evaluate the accuracy and precision of the vibration 

responses. The modal vibrations show excellent 

agreement between each test. The resonant 

frequency of the system is around 50-60 Hz, which 

are significantly above the minimum requirement for 

the calibrated, instrumented modal hammer (> 4 Hz). 

The boundary condition of the box is twice the side 

of the concrete block to avoid reflected shear wave. 

Since only vertical vibration is excited and measured, 

it was found that the boundary condition can be 

negligible and twisting and Rayleigh modes of 

vibration cannot be detected (as small-amplitude 

resonances). This pilot result allows further research 

into the effect of flooding condition on the dynamic 

behavior of railway ballast.  

 

 

Fig. 4 A test setup 
 

To measure the vibration response of the ballast, 

an accelerometer was placed on the top surface of 

the upper segment, as illustrated in Fig. 4. The mass 

of the upper segment is 8.2kg. It should be noted 

that a test rig was mounted on a “strong” or 

“isolated” floor, the frequency responses of which 

are significantly higher than those of interest for the 

ballast. During the tests, the floor also isolates 

ground vibration from surrounding sources. To 

impart an excitation on the upper mass, an impact 

hammer was employed within a capable frequency 

range of 0–3,500 Hz. The FRF could then be 

measured by using the PCB accelerometer 

connected to the PROSIG modal testing system, and 

to a computer. Measurement records also included 

the impact forcing functions and the coherence 

functions.  
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DYNAMIC RESPONSES 

 

The aim of this study is to establish a better 

insight into the dynamic behavior of railway ballast 

in flooding condition. The insight will help track 

engineers to develop appropriate models of flooded 

railway ballast [27-28].   

The dynamic responses of railway ballast in 

flood conditions can be seen in Fig. 5 (in time 

domain) and in Fig. 6 (in frequency domain). Fig. 5 

shows that the vibrational amplitude of the 

representative mass is reduced with the increased 

level of water or flooding condition. The level of 

water also reduces the secondary amplitude of 

vibration over the time. It is clear that the flood level 

can also increase the energy dissipation capacity of 

the track when stagnant water fills the pore of 

gravels or clog the ballast.  

Fig.6 also confirms the insight into the 

dynamic behavior of the ballast in flooding 

conditions. The dynamic receptance (H) decreases 

with the increment of flood level. Also, the flooding 

condition can also shift the natural frequency of the 

ballast layer (of the SDOF system). Considering that 

the representative mass is relatively constant, it 

implies that the water level can also reduce the 

stiffness of the system. 

 

CONCLUSION 

 

Railway ballast is one of the critical 

components widely used in modern ballasted 

railway track systems. It is generally installed under 

 

Fig. 5 Dynamic responses to impact hammer loading (normalised by the maximum impulse) 

 

Fig. 6 Frequency response functions of flooded ballast 
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the railway sleeper to absorb dynamic wheel/rail 

interaction forces, preventing the underlying railway 

track subgrade from excessive stresses, enabling the 

interlocking of skeleton track onto the ground and 

providing lateral track stability. Current practices in 

numerical simulations make use of MDOF systems 

that adopt merely the dry ballast condition. Recent 

findings show that railway track could significantly 

experience extreme climate such as long-term 

flooding. Therefore, there is a need to identify 

appropriate models as well as to investigate the 

realistic dynamic behavior of railway ballast 

exposed to flooding conditions. This study is the 

world first to highlight such critical effect. 

Analytical and experimental studies have been 

carried out to address such the pressing issue. The 

experimental studies reveal an unprecedented insight 

into the dynamic behavior of the flooded ballast. The 

flood condition can reduce the instant stiffness of the 

track system, whilst also increase the damping or 

energy dissipation of the track. It is important to 

note that this study considered a flash flood case 

only. In reality, the flood condition can also reduce 

the load carrying capacity and stiffness of the 

subgrade layer too. Future work will highlight the 

modal identification and the development of new 

SDOF model that is more realistic and more capable 

to define dynamic characteristics of the railway 

tracks submerged under flood conditions. The 

influence of impulse energy as well as the track 

mass will also be investigated in the near future. 
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