

University of Birmingham

Can we create large k-cores by adding few edges?
Chitnis, Rajesh; Talmon, Nimrod

DOI:
10.1007/978-3-319-90530-3_8

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Chitnis, R & Talmon, N 2018, Can we create large k-cores by adding few edges? in VV Podolskii & FV Fomin
(eds), Computer Science - Theory and Applications : 13th International Computer Science Symposium in
Russia, CSR 2018, Moscow, Russia, June 6–10, 2018, Proceedings. Lecture Notes in Computer Science , vol.
10846, Springer Verlag, pp. 78-89, 13th International Computer Science Symposium in Russia, CSR 2018,
Moscow, Russian Federation, 6/06/18. https://doi.org/10.1007/978-3-319-90530-3_8

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-90530-3_8

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1007/978-3-319-90530-3_8
https://doi.org/10.1007/978-3-319-90530-3_8
https://birmingham.elsevierpure.com/en/publications/38598e36-de0a-4b5e-954b-9fe0adde0da3

Can We Create Large k-Cores by Adding Few
Edges?

Rajesh Chitnis1? and Nimrod Talmon2??

1 Department of Computer Science, University of Warwick, UK.
Email: rajeshchitnis@gmail.com

2 Ben-Gurion University of the Negev. Email: talmonn@bgu.ac.il

Abstract. The notion of a k-core, defined by Seidman [’83], has turned
out to be useful in analyzing network structures. The k-core of a given
simple and undirected graph is the maximal induced subgraph such that
each vertex in it has degree at least k. Hence, finding a k-core helps to
identify a (core) community where each entity is related to at least k
other entities. One can find the k-core of a given graph in polynomial
time, by iteratively deleting each vertex of degree less than k. Unfor-
tunately, this iterative dropping out of vertices can sometimes lead to
unraveling of the entire network; e.g., Schelling [’78] considered the ex-
treme example of a path with k = 2, where indeed the whole network
unravels.
In order to avoid this unraveling, we would like to edit the network
in order to maximize the size of its k-core. Formally, we introduce the
Edge k-Core problem (EKC): given a graph G, a budget b, and a goal
p, can at most b edges be added to G to obtain a k-core containing at
least p vertices? First we show the following dichotomy: EKC is polytime
solvable for k ≤ 2 and NP-hard for k ≥ 3. Then, we show that EKC is
W[1]-hard even when parameterized by b + k + p. In searching for an
FPT algorithm, we consider the parameter “treewidth”, and design an
FPT algorithm for EKC which runs in time (k + tw)O(tw+b) · poly(n),
where tw is the treewidth of the input graph. Even though an extension
of Courcelle’s theorem [Arnborg et al. , J. Algorithms ’91] can be used
to show FPT for EKC parameterized by tw + k + b, we obtain a much
faster running time as compared to Courcelle’s theorem (which needs
a tower of exponents) by designing a dynamic programming algorithm
which needs to take into account the fact that newly added edges might
have endpoints in different bags which cross the separator.

1 Introduction

Graphs are very useful for modeling networks which describe relationships and
interactions between sets of people or entities, in various disciplines, such as so-

? Supported by ERC grant CoG 647557 “Small Summaries for Big Data”. Part of
this work was done when the author was at the Weizmann Institute of Science and
supported by Israel Science Foundation grant #897/13.

?? Part of this work was done when the author was at the Weizmann Institute of
Science.

cial sciences [17], life sciences [10], medicine [20], etc. Usually, we assign a vertex
to each entity, and there is an edge between two entities if they are related or
affect each other in some way. Analyzing graph structure has found applica-
tions in several important real-world problems such as targeted advertising [24],
fraud detection [18], missing link prediction [16], locating functional modules of
interacting proteins [14], etc.

An important problem in analyzing the structure of big networks is to detect
large communities of vertices that are “related” to one another. This problem
has been widely considered in various sub-areas of computer science [12, 13, 19].
A reasonable and well-studied notion for a vertex to be “related” within a com-
munity is to have a large number of neighbors within the community. Bhawalkar
et al. [4] considered the following model of user engagement within a network:
there is a single product and each individual has two options of “engaged” or
“drop out”. We assume that all individuals are initially engaged, and there is
some given threshold parameter k such that a person finds it worthwhile to
remain engaged if that person has at least k engaged friends.

In this model of user engagement all individuals with less than k friends
will drop out immediately. Unfortunately, this can propagate and even those
individuals who initially had more than k friends in the network may end up
dropping out. An extreme example of this was given by Schelling [22, page 214]:
consider a path on n vertices and let k = 2. Note that, while n−2 vertices initially
have degree two in the network, there will be a cascade of iterated withdrawals
since each endpoint has degree one, thus it drops out and now its neighbor in the
path has only one friend in the network and it drops out as well; eventually, the
whole network drops out. Indeed, at the end of the iterated withdrawals process
the remaining engaged individuals form a unique maximal induced subgraph
whose minimum degree is at least k. This subgraph is called the k-core and is a
well-known concept in the theory of networks; it was introduced by Seidman [23]
and also been studied in various social sciences literature [8, 9]. The concept of
k-core decompositions (where for each vertex v we find the max k such that v
belongs to the k-core in G) has been used in the analysis and visualization of
large scale networks [1–3].

A Game-Theoretic Model for k-Core: Consider the following game-
theoretical model from [4]: each user in a graph G = (V,E) pays a cost of
k to remain engaged, and she receives a profit of 1 from every neighbor who
is engaged. If an individual is not engaged, then she receives a payoff of zero.
Hence, she remains engaged if she has non-negative payoff, i.e., she has at least
k neighbors who are engaged. Then the k-core can be viewed as the unique
maximal equilibrium in this setting. Assuming that all the players make decisions
simultaneously the model can be viewed as a simultaneous-move game where
each individual has two strategies viz. remaining engaged or dropping out. For
every strategy profile δ ∈ {0, 1}|V | let Sδ = {i : δi = 1} denote the set of
players who remain engaged. We can easily characterize the set of pure Nash
equilibria for this game: a strategy profile δ is a Nash equilibrium if and only if
the following two conditions hold:

2

– No engaged player wants to drop out, i.e., minimum degree of the induced
graph G[Sδ] is ≥ k

– No player who has dropped out wants to become engaged, i.e., no v ∈ V (G)\
Sδ has ≥ k neighbors in Sδ

In general there can be many Nash equilibria. For example, if G itself has min-
imum degree ≥ k then Sδ = ∅ and Sδ = V (G) are two equilibria (and there
may be more). Owing to the fact that it is a maximal equilibrium, the k-core
has the special property that it is beneficial to both parties: it maximizes the
payoff of every user, while also maximizing the size of the network. Chwe [8, 9]
and Sääskilahti [21] suggest that one can reasonably expect this maximal equi-
librium even in real-life implementations of this game.

The Anchored k-Core problem (AKC): The unraveling described above
in Schelling’s example of a path might be highly undesirable if the goal is to
keep as many people engaged as possible. One possibility of preventing this is
by “buying” the two end-point players into being engaged. This ensures that the
whole path remains engaged. Correspondingly, Bhawalkar et al. [4] formalized
this notion and defined the Anchored k-Core problem (AKC). In AKC, they
overcome the issue of unraveling by allowing some “anchors”: these are vertices
that remain engaged irrespective of their degree. This can be achieved by giving
them extra incentives or discounts. The question in AKC is the following: given
three integers b, k, and p, can one use at most b anchors and ensure that there
is an anchored k-core of size at least p?

Besides defining the AKC problem, Bhawalkar et al. [4] showed that AKC
is solvable in polynomial time for k ≤ 2 but NP-hard for k ≥ 3. Also it is NP-
hard to approximate the approximate the size of the optimal k-core to within an
O(n1−ε) factor3 for any ε > 0. From the viewpoint of parameterized complexity,
they showed that for every fixed k ≥ 3 the p-AKC problem is W[2]-hard with
respect to b, and, on the positive side, they gave a polynomial-time algorithm for
graphs of bounded treewidth. In a follow-up work, Chitnis et al. [7] showed that
it remains NP-hard on planar graphs for all k ≥ 3, even if the maximum degree
of the graph is k + 2; that it becomes FPT on planar graphs (unlike on general
graphs) parameterized by b for all k ≥ 7; and, strengthening the intractability
result of Bhawalkar et al. [4], they showed W[1]-hardness of it with respect to p
(which is always greater than or equal to b).
The Edge k-Core problem (EKC): In this paper we consider an alterna-
tive way to maximize the size of the k-core. For example, in Schelling’s example,
instead of anchoring the two end-point players, one could also add an edge be-
tween these two vertices; this again ensures that the whole path remains engaged.
While this changes the structure of the network, it has the desirable property
of ensuring a “pure” k-core, i.e., where each vertex has degree at least k. Corre-
spondingly, we ask the following question: can we add “few” edges to the given
network and obtain a “large” k-core? Formally, the problem we study in this
paper is as follows.

3 That is, distinguishing whether the size of the optimal k-core is O(b) or Ω(n)

3

The Edge k-Core Problem (EKC)
Input : A simple, undirected graph G = (V,E) and integers b, k, and p.
Question: Is there a set of vertices H ⊆ V of size ≥ p such that there is a set
B ⊆ (

(
V
2

)
\ E) with |B| ≤ b and every v ∈ H satisfies degG′[H](v) ≥ k, where

G′ = (V,E ∪B)?

EKC arises naturally in several scenarios concerning network resiliency such as:

– Peer-to-Peer (P2P) networks: In P2P networks, users share common
resources (bandwidth, disk storage, etc.). For any user to benefit from the
network they should be connected to at least a certain threshold k number
of other users. EKC then tells the parent company which connections shall
be added between the users so that a large number of users can successfully
use the P2P network.

– Distributed networks: Suppose there is an existing network of computers,
connected by some topology. Over time the complexity of the tasks to be
executed increases, and one may need more computers to perform the task
in a distributed fashion. The Edge k-Core problem then guides us on how
to edit the network (which connections to add between computers) assuming
that we know the threshold k number of computers needed for any task.

Our Results. Besides introducing EKC, we first, in Section 2, describe a
polynomial-time algorithm for k ≤ 2 and show NP-hardness for k ≥ 3, thus
providing a complexity dichotomy. Then, in Section 3, we begin by showing that
EKC is W[1]-hard parameterized by b + p even when k = 3. This tells us that
we need to consider more parameters if we seek fixed-parameter tractability.
As a natural network parameter, we consider the treewidth tw and design a
dynamic program to show that EKC is fixed-parameter tractable with respect
to tw + k + b. In our view, this is the most technical part of the paper.

Comparing Anchored k-Core and Edge k-Core. While AKC has been
studied before [4, 7, 6], in this paper we introduce and study the EKC problem.
Below we briefly show that these two problems are unrelated in the following
sense: there are examples of graphs where for the same values of p and k we need
very different number of anchored vertices or edge additions to achieve a k-core
of size at least p.

– Edge Additions > Anchored Vertices: Let G be a disjoint union of two
components G1 and G2, where G1 = Kz1 (i.e., a clique on z1 vertices) and
G2 is a z2-regular graph on n2 vertices. Choose z1 � z2 � n2. If k = z2
and p = z1 + n2, then the number of vertices which need to be anchored
for an anchored k-core of size p is bv = z1. However, to get a pure k-core of
size p we need to add z2 − (z1 − 1) edges on each vertex of G1, and hence

be ≥
z1 · (z2 − z1 + 1)

2
� z1 = bv. This example is asymptotically tight since

adding (k − deg) new edges to a vertex of degree k simulates anchoring the
vertex.

4

– Edge Additions < Anchored Vertices: We build a graph G as follows:
let G1 = K2n, let G2 be K2n with a perfect matching removed, and add a
matching of size 2n between G1 and G2. If k = 2n and p = 4n, then the
number of vertices which need to be anchored to obtain an anchored k-core
of size p is bv = 2n. However, to get a pure k-core of size p it is enough
to add the n edges of the perfect matching which were removed from G2.
Hence be = n < 2n = bv. This example is strictly tight since anchoring two
endpoints of an edge simulates adding the edge.

2 Classical Complexity: Polytime algorithms and
NP-hardness

In this section we first describe a polynomial-time algorithm which solves Edge
k-Core whenever k ≤ 2 (Theorem 1). Then, we show that this result is tight
with respect to k, by showing that Edge k-Core is NP-hard whenever k ≥ 3
(Theorem 2).

Theorem 1. [?]4 Edge k-Core is polynomial-time solvable for k ≤ 2.

Theorem 2 (?). Edge k-Core is NP-hard for k ≥ 3.

3 Parameterized Complexity: W[1]-hardness and FPT
algorithms

In this section, we analyze EKC via the framework of parameterized complexity.
EKC is para-NP-hard parameterized by k since Theorem 2 shows that EKC is
NP-hard for k = 3. In fact, taking a closer look at the proof of Theorem 2, we
observe the following.

Corollary 1. EKC is NP-hard for k = 3, even on planar graphs of max degree
5.

Now we show that EKC admits a simple XP algorithm parameterized by b.

Observation 3 The EKC problem admits an XP algorithm parameterized by b.

Proof. Since any graph on n vertices can have at most
(
n
2

)
edges (recall that we

do not allow parallel edges or self-loops), we can try all possible subsets of non-

edges (which are not already present) to be added. This gives an
((n

2)
b

)
= nO(b)

algorithm.

4 Proofs of results marked with [?] are deferred to the full version of the paper due to
lack of space.

5

Consider a yes-instance I of EKC for which p ≤ k. Since the minimum degree
of any subgraph containing at most k vertices is at most k − 1, it follows that
the size of the k-core created in the solution of I is at least k + 1 (recall the
definition of EKC, which asks for a k-core containing at least p vertices). Thus,
we assume henceforth that instances of EKC satisfy p > k. Next, we show that
Theorem 3 translates to an XP algorithm for EKC parameterized by p.

Proposition 1. The EKC problem has an XP algorithm parameterized by p.

Proof. We can convert any set of p vertices (assuming w.l.o.g. that p > k) into a
k-core by adding at most

(
p
2

)
edges. Hence, if b ≥

(
p
2

)
, then we can answer YES;

otherwise, i.e., if b <
(
p
2

)
, then the nO(b) algorithm from Theorem 3 is also an

nO(p2) algorithm for the EKC problem. ut

Next we show that if one wants to design an FPT algorithm for the EKC
problem, then even combining the three parameters p, k, and b is not enough.

Theorem 4. The Edge k-Core problem is W[1]-hard parameterized by p+ b,
for k = 3.

Proof. We reduce from the W[1]-hard Clique problem [11] which, given a graph
G and an integer `, asks for the existence of ` pairwise adjacent vertices in G.
Consider an instance (G = (V,E), `) of Clique where V = (v1, v2, . . . , vn) and
construct a new graph G′ = (V ′, E′) as follows.

For each 1 ≤ i 6= j ≤ ` make a copy Gij of the vertex set V (do not add any
edges). Each of these vertices is black. Let the vertex vr in the copy Gij be labeled
vrij . Add the following edges to G′ (we use the notation [n] = {1, 2, . . . , n}):

– For each 1 ≤ i 6= j ≤ ` and r, s ∈ [n] we add an edge between vrij and
vsji if and only if vrvs ∈ E. Subdivide each such edge twice by adding two
new green vertices xrsij and xsrji . We refer to xrsij as a brother of xsrji and
vice-versa.

– For each i ∈ [`], r ∈ [n] add the cycle vri1−vri2−. . . vri,i−1−vri,i+1−. . .−vri`−vri1.
Let us denote this cycle by Cri .

This completes the construction of G′. Let k = 3, b =
(
`
2

)
and p = 4b. In the

full version of the paper, we show the correctness of the reduction.

3.1 FPT Algorithm Parameterized by tw + k + b

Next we sketch the proof of our main technical result, namely that EKC is
fixed-parameter tractable for tw + k + b. Notice that Theorem 4, which shows
that EKC is W[1]-hard even for k + p + b, indeed motivates studying further
parameters.

Let T be a tree and B : V (T) → 2V (G). The pair (T,B) is called as a valid
tree decomposition of an undirected graph G, if T is a tree in which every vertex
x ∈ V (T) has an assigned set of vertices Bx ⊆ V (G) (called a bag) such that
the following properties are satisfied:

6

– (P1):
⋃
x∈V (T)Bx = V (G).

– (P2): For each u− v ∈ E(G), there exists an x ∈ V (T) such that u, v ∈ Bx.
– (P3): For each v ∈ V (G), the set of vertices of T whose bags contain v

induces a connected subtree of T .

The width of the tree decomposition (T,B) is maxx∈V (T) |Bx|−1. The treewidth
of a graph G, usually denoted by tw(G), is the minimum width over all valid
tree decompositions of G.

We will use a special type of tree decompositions called nice tree decompo-
sitions.

Definition 1. A tree-decomposition (T,B) of G is said to be nice if T is a rooted
binary tree such that each vertex t ∈ T is one of the following four types:

– Leaf Node: t is a leaf in T and Bt = {v} for some v ∈ G.
– Introduce Node: t has exactly one child t′ and Bt = Bt′ ∪ {v} for some
v /∈ Bt′ .

– Forget Node: t has exactly one child t′ and Bt = Bt′ \ {v} for some vertex
v ∈ Bt′ .

– Join Node: t has exactly two children t′, t′′ such that Bt′ = Bt = Bt′′ .

The advantage of nice tree-decompositions is that when writing a dynamic
program we only need to handle four types of nodes. It is known [5, 15] that a
general tree decomposition (T,B) (of treewidth tw) can be converted, in linear
time, into a nice tree decomposition (T ′, B′) of the same width such that |T ′| =
O(tw · n).

Our main result in this section, and what we believe is the most technically-
involved result in this paper, is a dynamic programming based FPT algorithm
for EKC parameterized by tw + k+ b. We remark here that the fixed-parameter
tractability of EKC parameterized by tw + k + b can be shown to follow from
Courcelle’s theorem, albeit with much worse running time (i.e., tower of exponen-
tials); further, we argue that our dynamic programming is interesting because
the operation of adding edges is an “inter-bag” operation: given a bag which
separates the graph into two parts, a new edge might have one endpoint in each
part. Usually, FPT algorithms parameterized by treewidth are for “inter-bag”
operations, where each recursive call in the dynamic program is confined to its
subtree, while in our case the structure is more involved. In the interest of space,
we provide here a description with some intuition for the proof of Theorem 5.
The complete formal proof of correctness and the analysis of the running time
is deferred to the full version.

Theorem 5. The Edge k-Core problem can be solved in (k + tw)O(tw+b) ·
poly(n)) time.

Proof (Sketch). Given a nice tree decomposition of a given graph (notice that
finding a tree decomposition, or at least an approximation of it, can be done
in FPT time) we design a dynamic program for solving EKC on it. First we

7

fix an (arbitrary) ordering on the vertices of V , say φ = (v1, v2, . . . , vn). We
will view the vertices in this order when we consider them in a bag of the tree-
decomposition; to this end, for a node t in the tree decomposition which is a
bag containing x vertices, let us arbitrarily order those x vertices (while fixing
this ordering) and denote them by [v1, . . . , vx]. For a node t ∈ T let Tt denote
the subtree of T which is rooted at t. Also let Vt denote the union of vertices
in all bags of the nodes in the subtree of T rooted at t, i.e., Vt = ∪t∈Tt

Bt. For
i ∈ N let 0i,1i denote the multiset which has i zeroes and i ones respectively. For
q ≥ s let H(q, s) = {z ∈ {0, 1}q : z has Hamming weight exactly s}. Similarly,
H∗(q, s) = {z ∈ {0, 1, . . . , k}q : z has at most s non-zero entries}. Finally, for
z ∈ H(q, s) we define the set H∗z(q, s) = {y ∈ H∗(q, s) : y[i] 6= 0⇒ z[i] 6= 0}.

For a node t ∈ T in the tree decomposition, we define the following boolean
quantity

BOOL[t, bin, bout, pin, pout,y, z, q0, Q]

for each choice of

– bin, bout, pin, pout ≥ 0
– bin + bout ≤ b
– pin ≤ |Bt| and pout ≤ |Vt \Bt|
– y ∈ H(|Bt|, pin) and z ∈ H∗y(|Bt|, pin)
– 0 ≤ q0 ≤ pout (actually, pout − b ≤ q0 ≤ |Q|)
– Q = {q1, q2, . . . , qpout−q0} is a (multi)set of size pout − q0 such that each

element in Q is positive and at most k, i.e., 1 ≤ qi ≤ k for each i ∈ [pout−q0]

We set BOOL[t, bin, bout, pin, pout,y, z, q0, Q] = 1 if and only if there exist sets
Ht ⊆ Vt and Et ⊆ Ht ×Ht such that the following conditions hold:

– |Ht ∩Bt| = pin
– |Ht ∩ (Vt \Bt)| = pout
– Number of edges of Et which have both endpoints in Bt is bin
– Number of edges of Et which have at most one endpoint in Bt is bout
– |Et| ≤ bin + bout
– y[v] = 1 if and only if v ∈ Bt ∩Ht

– If v ∈ Bt ∩ Ht then the degree of v in the graph G∗[Ht] = G[Ht] ∪ Et is
≥ z[v]

– There is a bijection φt : ((Vt \ Bt) ∩ Ht) → (Q ∪ 0q0) such that for every
w ∈ (Vt \Bt) ∩Ht we have degG∗[Ht](w) + φt(w) ≥ k

We say that (Ht, Et, φt) is a witness for BOOL[t, bin, bout, pin, pout,y, z, q0, Q] = 1.

Intuition: Instead of solving the Edge k-Core problem in recursion, we design
a dynamic program which solves a more general problem. Specifically, this gen-
eral problem is such that (1) we specify more concretely how this given budget
is to be used and which structure the k-core shall have; and (2) we allow some
“help” from the “outside world”. Let us mention that, for (1), we specify how

8

the budget b shall be split into bin (budget to be used solely in the bag vertices)
and bout (budget to be used not solely in the bag vertices); how the p vertices of
the k-core shall be split between pin (k-core vertices in the bag vertices) and pout
(k-core vertices not in the bag vertices); where we even specify, by the 1-entries
of the vector y, exactly which vertices of the bag shall be k-core vertices. Now,
recall that in the Edge k-Core problem, each vertex in the k-core must have
degree at least k; for (2), we allow some “help” from the “outside world”, by
relaxing this “at least k” requirement for some of the vertices; specifically, we
specify the needed degrees for the vertices of the k-core in the bag vertices (those
pin vertices whose corresponding y values are 1), since we require for them to
have only degrees as specified by the z vector; and, for the vertices of the k-core
which are not in the bag vertices, we use two multisets Q and 0q0 (which are
together of size pout). We view this as some “degree help” that we allow those
vertices to use (in order to make their degree ≥ k): the exact way by which we
specify the amount of “degree help” that the vertices of the k-core could use is
defined by the bijection φ. The multiset Q corresponds to those vertices which
actually need some “degree help” (and we maintain all such numbers), while the
number q0 corresponds to the number of vertices of Ht ∩ (Vt \Bt) which do not
need any help at all.

The crucial idea is that although pout can be as large as n, we have that |Q| ≤ b
since we only have b edges in the budget to help. (In fact, even

∑
x∈Q x ≤ b holds.)

Let r be the root of T . Next, we will show how to recursively compute the
values of the boolean quantity BOOL; for now, let us mention that we will decide
that the given instance (G, b, k, p) of Edge k-Core is a yes-instance if and only
if the following holds:∨

bin+bout≤b
0≤pin≤|Br|

0≤pout≤|Vr\Br|
pin+pout≥p

y∈H(|Br|,pin)

BOOL[r, bin, bout, pin, pout,y, z = k|Br|, q0 = pout, Q = ∅] = 1

Below we briefly give some intuition on how to recursively compute the values of
BOOL for each type of node in the nice tree decomposition. We defer the formal
recurrence, proof of correctness, and analysis of the running time to the full
version.

3.1.1 Leaf node

Intuition: For leaf nodes, there are no further recursive calls; thus, it is enough
to check the “sanity” of the given values.

3.1.2 Forget node

9

Fig. 1. Recursion on a forget node (left) and on an introduce node (right).

Intuition: Refer to Figure 1. There are two possibilities for forget node, namely
whether the forgotten vertex v is part of the k-core or not. If it is not, then
we can call the child with almost exactly the same values; if it is in the k-core,
then we guess the exact connections that the forgotten node will have to other
vertices in the bag. Given those guesses, we can issue a recursive call almost
without worrying about the forgotten node; notice that we guess whether or not
v receives non-zero “help” from the outside, since, in the child, v is a bag vertex,
and thus does not have a corresponding Q-value or is counted in q0.

3.1.3 Introduce node

Intuition: Refer to Figure 1. Let t′ be the child of t such that Bt = Bt′ ∪ {v}.
There are two cases to consider, namely whether v is in the k-core or not. If v is
not in the k-core then we can safely issue a recursive call to the child t′. Other-
wise, we can fully guess the “new” connections between v to the other vertices
in the bag Bt, and then call the child with different z-values, since their degrees
will be increased by v. By the definition of a tree-decomposition there cannot be
any edges already present between v and any vertex of Vt′ \Bt′ . However, while
staying within FPT time we cannot guess the exact set of vertices from Vt′ \Bt′
which get a “help” edge from v. Instead we just guess the number of such edges,
and issue the recursive call for t′ with the appropriate changes in some Q-values.

3.1.4 Join node

Intuition: Refer to Figure 2. First we can guess how the bin edges that will
be introduced in the bag of t so we can then call t and t′ with bin=0. Then we
guess the partition of bout into three parts: two parts correspond to the bout edges
for t′, t′′ respectively and the third part corresponds to edges between Vt′ \ Bt′
and Vt′′ \Bt′′ . Note that by the properties of tree decompositions, it follows that
there are no edges already present between Vt′ \Bt′ and Vt′′ \Bt′′ .

10

Fig. 2. Recursion on a join node.

4 Conclusions and Future Directions

In this paper, we introduced the Edge k-Core problem (EKC), where the
goal is to create a “large” k-core by adding only “few” edges, and provided
several hardness and algorithmic results. Specifically, we showed that EKC is
polynomial-time solvable for k ≤ 2 but NP-hard for k ≥ 3; further, we showed
that EKC is W[1]-hard for k+p+b, but fixed-parameter tractable for tw+k+b.

For future research, one might look at EKC for directed graphs: similar work
was done by Chitnis et al. [6] for the AKC problem. Another direction is to
study the (in)approximability of EKC. Finally, one can consider a version which
combines AKC with EKC: in it, a “large” anchored k-core would be created by
anchoring at most bv vertices and adding at most be edges.

Acknowledgments

The authors would like to thank Fedor Fomin, Petr Golovach, and Bart M.P.
Jansen for helpful discussions.

References

1. J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. Large scale
networks fingerprinting and visualization using the k-core decomposition. In NIPS
2005, pages 41–50.

2. V. Batagelj, A. Mrvar, and M. Zaversnik. Partitioning approach to visualization
of large graphs. In Graph Drawing, 7th International Symposium, GD’99, Stiŕın
Castle, Czech Republic, September 1999, Proceedings, pages 90–97, 1999.

3. M. Baur, U. Brandes, M. Gaertler, and D. Wagner. Drawing the AS graph in
2.5 dimensions. In Graph Drawing, 12th International Symposium, GD 2004, New
York, NY, USA, September 29 - October 2, 2004,, pages 43–48, 2004.

4. K. Bhawalkar, J. M. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Pre-
venting Unraveling in Social Networks: The Anchored k-Core Problem. SIAM J.
Discrete Math., 29(3):1452–1475, 2015.

11

5. H. L. Bodlaender and A. Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008.

6. R. Chitnis, F. V. Fomin, and P. A. Golovach. Parameterized complexity of the
anchored k-core problem for directed graphs. Inf. Comput., 247:11–22, 2016.

7. R. H. Chitnis, F. V. Fomin, and P. A. Golovach. Preventing unraveling in social
networks gets harder. In Proceedings of AAAI ’13, 2013.

8. M. Chwe. Structure and Strategy in Collective Action 1. American Journal of
Sociology, 105(1):128–156, 1999.

9. M. Chwe. Communication and Coordination in Social Networks. The Review of
Economic Studies, 67(1):1–16, 2000.

10. Z. Dezső and A. Barabási. Halting Viruses in Scale-free Networks. Physical Review
E, 65(5):055103, 2002.

11. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

12. N. Du, B. Wu, X. Pei, B. Wang, and L. Xu. Community detection in large-
scale social networks. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis, pages 16–25. ACM, 2007.

13. S. Fortunato. Community detection in graphs. Physics reports, 486(3):75–174,
2010.

14. T. Gutiérrez-Bunster, U. Stege, A. Thomo, and J. Taylor. How do biological
networks differ from social networks? (an experimental study). In ASONAM, pages
744–751, 2014.

15. T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer, 1994.

16. N. Korovaiko and A. Thomo. Trust prediction from user-item ratings. Social
Network Analysis and Mining, 3(3):749–759, 2013.

17. R. T. Mikolajczyk and M. Kretzschmar. Collecting social contact data in the
context of disease transmission: Prospective and retrospective study designs. Social
Networks, 30(2):127 – 135, 2008.

18. S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe: a fast and scalable
system for fraud detection in online auction networks. In Proceedings of the 16th
international conference on World Wide Web, pages 201–210. ACM, 2007.

19. S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos. Community
detection in social media. Data Mining & Knowledge Discovery, 24(3):515–554,
2012.

20. R. Pastor-Satorras and A. Vespignani. Epidemic Spreading in Scale-free Networks.
Physical review letters, 86(14):3200–3203, 2001.

21. P. Sääskilahti. Monopoly Pricing of Social Goods. Technical Report. University
Librray of Munich, 2007.

22. T. Schelling. Micromotives and Macrobehavior. WW Norton, 1978.
23. S. Seidman. Network Structure and Minimum Degree. Social networks, 5(3):269–

287, 1983.
24. W.-S. Yang and J.-B. Dia. Discovering cohesive subgroups from social networks

for targeted advertising. Expert Systems with Applications, 34(3):2029–2038, 2008.

12

