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Abstract. Nowadays, railway infrastructure is a valuable asset throughout the world. Due to the 
increase in railway traffic, these may lead to the increase in the possibility of railway track 
deterioration. Thus, the investment in railway infrastructure improvement is growing to prevent 
disruption, deterioration and reduce maintenance. There are many methods to mitigate these 
problems. The use of elastic materials has been proposed as an alternative method to improve 
track resilience. It is seen that if these materials are used properly, track deterioration is 
decreased. This lead to expanding the service life of railway track and its components. However, 
track maintenance still needs to be carried out to maintain a railway asset. This paper presents 
the benefits of rail pad, under sleeper pad, and under ballast mat. Firstly, this study aims to 
discuss the main method of mitigation for those matters using elastic materials. The main features 
of these materials are to modify the vertical stiffness of the track, increase damping, reduce 
vibrations and noise, reduce impact load etc. It should be noted that different types of each elastic 
material are used for different locations and purposes based on the stiffness of the material. 
Moreover, elastic materials have a short lifespan as the temperature can affect their properties. 
This paper analyses the life cycle cost over a 30years time span of railway track with and without 
elastic materials. The construction and maintenance costs are considered. Based on the previous 
project, the use of elastic materials can significantly reduce the overall maintenance cost. The 
result shows that the use of elastic materials can give a fast payback within 4 years, which are 
still in the service life of elastic materials. However, it is recommended to consider more factors 
for further research.    

1.  Introduction  
Presently, railway industry has played a significant role in transportation networks around the world. 
Due to the increase of freight and train speed, these lead to the growth of load applied to railway track 
[1-4]. It has been observed that railway track has easily experienced impact loading due to the track 
irregularities. The prone areas of the occurrence of impact loading are the area that the sudden change 
of track stiffness is observed such as bridge end [5], turnout and crossing [8], and track with irregularities 
[1, 9]. Moreover, track deterioration can be a results of component degradation, vibrations causing noise 
and track vibrations etc. To tackle these problems, many methods have been applied. The use of 
resilience materials, which are elastic materials, have proposed as an alternative method to attenuate 
those issues. The benefits of using elastic materials are the ease in material processing. Moreover, light 
weight, high ductility is also the adventurous of these materials [10]. 

Based on literature, it is clearly seen that elastic materials have advantages mainly in adapting the 
vertical stiffness of railway track. The other aims of using elastic materials are to attenuate noise and 
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vibration in railway track. It is noted that dynamic load generated by train running on abnormal wheel 
or rail is reduced by installing these elements. Elastic materials can improve track resilience, which is 
likely to reduce the maintenance cost. However, these elements have a short life span of about 20 years 
due to the effect of temperature, oxidation or hydrolysis [11]. Thus, it is necessary to evaluate the long-
term economic effect and the feasibility of using these materials in railway system.  

Life cycle cost analysis (LCCA) [12] has been introduced to the transportation decision-making 
process to help evaluate the feasible and outcome of the project. The purpose of this method is to 
evaluate the overall cost for the project. This method is adapted for determining the benefit of using 
resilience elements in long term. Moreover, this method provides the economic effects during the life 
span of the resilience materials. This paper presents an example of LCCA of railway track with and 
without elastic material considering annual maintenance cost and discount rate.  

2. Elastic materials 

2.1 Rail pad 
Rail pads, which are located beneath the rails, are often used to reduce the differential track stiffness in 
the prone area. It is interesting that rail pads have become a standard practice when concrete sleepers 
are used. The benefits of rail pad are to provide a better train ride comfort, improve load distribution, 
and reduce track maintenance. Moreover, this can reduce track vibration transmitted from rails to 
sleepers as this is a one of the good vibration damping elements [13-14]. Rail pad also provides electrical 
and signalling insulation between track circuits. Cracking and wear rates of concrete sleepers can be 
reduced since rail pad can prevent concrete breakage [9].  

Table 1 shows the materials used for rail pad with their vertical stiffness. The vertical stiffness is 
used to identify the type of rail pad. The thickness of rail pad is in the range between 4.5 and 15.0 mm. 
While, the dimensions of rail pad are usually 180 mm long and 140 mm wide for rail type UIC54. As 
for rail UIC60, the dimension of 180 mm long and 47/ mm wide is used.  

 
Table 1. Dynamic stiffness of commercial railway pads [4, 15-17] 

Type Stiffness (MN/m) Visual Identification 

Rubber 20-100 Soft 
Studded polymer 200-800 Soft 
Polyurethane 800-1200 Medium 
High density polyethylene (HDPE) 800-2500 Hard 
EVA 3000-3500 Hard 
Steel 5000+ Very stiff 

2.2 Under sleeper pad (USP) 
Under sleeper pads (USP), which can be made of polyurethane, elastomers, rubber, EVA etc., are 
installed under the sleepers to distribute the axle load over a larger number of sleepers as shown in figure 
1. USP usually have two layers, upper layer for attenuating vibration and lower layer for protecting the 
sleepers from repeated impact load with ballast [18-21]. USP can increase the contact surface between 
sleepers and ballast. This can help stabilize the top layer of ballast. Moreover, one of the most benefits 
of USP is to reduce the dynamic load on ballast, which lead to the reduction of shifting of ballast and 
track settlement [22].  
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a) 

 
b) 

Figure 1. Load distribution of railway track a) with under sleeper pads b) without under sleeper pads 

 
The USP can be classified by static bedding modulus into stiff, medium, soft and very soft, as shown 

in table 2. The benefits of USP presented by [23-24] are shown as follows: 
• Improve track quality by reducing dynamic loading, 
• Reduce ballast thickness while keeping track performance, 
• Reduce ground borne vibration especially in the frequency range above 50 Hz, and 
• Reduce long pitch rail corrugation in tight curves as rail pad can modify the natural frequencies 

of track components. 
 
To be concluded, based on these benefits, the maintenance cost of railway track can be reduced. 

Table 3 concludes the USP applications and characterisations in order to fit the USP for those 
applications. 

Table 2. Classification USP stiffness [25] 
USP Stiffness (N/mm3) 

Stiff 0.25 < Cstat ≤ 0.35 
Medium stiff 0.15 < Cstat ≤ 0.25 
Soft 0.10 < Cstat ≤ 0.15 
Very soft Cstat ≤ 0.10 

 
Table 3. USP applications and characterisations [25] 

Fields of application of USP USP 
Very soft Soft Medium stiff Stiff 

Improve track quality (reduce ballast 
breakage and track/turnout pressure) 

    

Transition zones     
On existing structures with reduced 
ballast thickness 

    

Reduction of long-pitch low-rail 
corrugation in tight curves 

    

Reduction of ground-borne vibration     

2.3 Under ballast mat 
Under ballast mats (UBM), which can be made of natural rubber, polyurethane, rubber granulate etc., 
are used in ballasted track placed between ballast and sub-ballast. UBM can attenuate dynamic load, 
vibration and noise [9], and protect ballast breakage [26]. However, the main aim of using UBM is to 
reduce the stiffness of track especially placed on the stiffer portions such as bridge, tunnel, open track 
etc [27-30]. Moreover, can be applied in various operational environments such as conventional main 
lines, urban or high-speed lines or light rail and metro lines. The thickness of UBM are usually in the 
range of 15-30mm. The types of UBM can be classified into stiff, medium stiff, soft and very soft. It 
depends on dynamic bedding modulus, as shown in table 4. Table 5 shows the different types of UBM, 
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which are used for different locations and purposes. Even though UBM has many benefits in track, this 
can also cause problem when the same type of UBM are used for different purposes. For instance, very 
soft and soft UBMs can be used for high-speed track as these cause ballast dilation and destabilization. 
Moreover, the use of UBM on curved track is not recommended because UBM is likely to reduce lateral 
track resistance. 

 
Table 4. UBM characterization [32] 

Type of UBM Expected increase of the vertical track deflection up to 
225 kN axle load (measurement [SBB]) mma 

Dynamic bedding modulus 
N/mm3bcde 

Stiff 1.5 – 2.0 0.03 < Cdyn ≤ 0.05 
Medium stiff 1.0 – 1.5 0.05 < Cdyn ≤ 0.09 
Soft 0.5 – 1.0 0.09 < Cdyn ≤ 0.22 
Very soft ≤ 0.5 0.22 ≤ Cdyn 

a Measured with an SBB moving measuring car at 10 km/h (200 kN axle load “Einsenkungsmesswagan”). 
b Estimated values for the dynamic bedding modulus Cdyn are only valid for very stiff foundations (e.g. concrete). 
c For sleepers with smaller dimensions the Cdyn are shifted towards higher values. Lower axle loads imply a shift 
of the reference dynamic bedding modulus towards lower values. In contrast, higher train speeds in principle 
require a higher UBM bedding modulus in order to control ballast destabilization phenomena. 
d SBB: with 0.06 N/mm3 preload and ± 0.04 N/mm3 load at 20 Hz, using a flat steel plate. 
e Lower Cdyn values are expected using a ballast plate. 
 

Table 5. UBM applications and characterisations [32] 

Fields of application of UBM 
UBM 

Very soft Soft Medium Hard 
Vibration reduction and 
ground-borne noise 

    

Ballast breakage protection     
On existing structures with 
reduced ballast thickness 

    

Transition zones     
 
3. Economic analysis 
The comparisons of construction and maintenance cost of railway track between track with under sleeper 
pads and without under sleeper pads were described in [33]. The 700km ballasted track with the axle 
load of 32T for high-speed train was considered. The construction cost of this track with and without 
sleeper pads is shown in table 6. It should be noted that the construction cost of under sleeper pads is 
about 10% of construction cost of other parts.   

Table 6. Initial cost construction [33] 
 Initial cost per km (€) Total construction cost (€) 

Construction rail track without 
sleeper pad 

500.000 350.000.000 

Construction of sleeper pad only 50.010 35.007.000 
 
Table 7 shows the annual maintenance cost of railway track with and without under sleeper pads. It 

is interesting to note that the use of under sleeper pads can significantly reduce maintenance cost for 
about 50%. The annual depreciation can be also decreased by using under sleeper pads. Surprisingly, 
about 11.083.333€ of total cost reduction is noted. To be concluded, even though the construction cost 
of under sleeper pads is high, the use of under sleeper pads can significantly reduce an annual 
maintenance cost of railway track.  
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Table 7. Maintenance cost [33] 
Cost Annual maintenance cost (€)  

Annual maintenance cost without USP 17.500.000 
Annual maintenance cost with USP 8.750.000 
Annual depreciation cost without USP 14.000.000 
Annual depreciation cost with USP 11.666.667 
Annual maintenance cost reduction 8.750.000 
Depreciation cost reduction 2.333.333 
Total cost reduction (annual earning) 11.083.333 

 
4. Life-cycle cost analysis (LCCA) 
An example of LCCA of railway system shown in previous section is presented. In this study, the UK 
discount rate of 6% is considered in order to determine the present value of future cash flows [34]. Two 
railway tracks, with and without USP, are compared to determine the outcome of USP. The initial costs 
(construction costs) are 350.000.000€ and 385.007.000€ for rail track without and with USP, 
respectively. It is assumed that only annual maintenance and depreciation costs are taken into account. 
The present values of these projects considering discount rate are present in figure 2. It is seen that 
railway track with USP obviously has lower annual maintenance cost even the investment cost is higher. 
However, annual maintenance costs of both projects reduce significantly. 

 

Figure 2. Costs of railway projects over a 30years time span 

Figure 3 shows the cumulative net present value (NPV) of both projects in 30years. This represents 
the cumulative costs of the projects throughout its life cycle, including construction and maintenance 
costs. There is a crossing between both projects at about year 3.26, which means that it will take about 
3.26 years to compensate the initial construction cost by using USP. The net present value of railway 
track with USP is slightly offset by a reduction in maintenance cost over time. If only construction cost 
of sleeper pad is considered as investment cost, while the annual cost reduction (table 7) is considered 
as annual benefits, NPV is shown in figure 4. This can also be calculated from the differential of NPV 
between both projects from figure 3. It is confirmed that the USP can give a fast payback time. 
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Figure 3. Net present value (NPV) (costs) of railway projects over a 30years time span 

 

 

Figure 4. Differential NPV between railway projects with and without USP over a 30years time span 

5. Conclusions 
Elastic elements have been used as a component in railway track to improve resilience. These can help 
improve track performance and attenuate noise and vibration, impact load etc. The elastic materials 
presented in this study are rail pad, under sleeper pad (USP) and under ballast mat (UBM). However, 
economics of track resilience has become a concern due to the short life span of elastic materials. Life 
cycle cost analysis (LCCA) is a decision making process to help determine the future value of projects. 
This method is adapted for railway system in order to make decision and possibility of using improved 
methods or components. This study presents the life cycle and feasibility of using elastic material in 
railway track. It can be concluded that although the railway track with USP has higher initial cost, the 
maintenance cost decrease significantly. Economics of track is important over a long term period 
including all the stages of project as the value of project can be changed all the time. The future outcome 
of the project can be evaluated using LCCA. However, it is recommended that more factors, such as 
uncertainty, risk, operation cost etc., should be taken into account in further research. 
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