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1 Introduction

With an increasing desire for energy efficiency, latent heat thermal energy stor-
age (LHTES) has gained increasing attention in recent years. In contrast to
sensible thermal energy storage, the latent heat of fusion of a phase change ma-
terial (PCM) is exploited in LHTES. Packed bed designs, involving spherical5

macrocapsules filled with PCM, are popular due to a relatively simple manufac-
turing and advantageous heat transfer properties. In these designs, the energy
input and output is achieved by flow of a heat transfer fluid (HTF) around the
capsules. For charging, the temperature of the HTF is higher than the melting
temperature of the PCM. For discharging, the temperature of the HTF is lower10

than the melting temperature of the PCM. To understand and predict the un-
derlying phenomena and to provide means for the design and dimensioning of
LHTES applications, melting and solidification processes of macroencapsulated
PCM are studied extensively, both experimentally and numerically.

15

Mathematical descriptions for melting and solidification problems can be di-
vided into two basic approaches: Variable and fixed grid methods. In contrast
to variable grid methods, fixed grid methods are characterized by not tracking
the solid-liquid interface explicitly—it appears a posteriori as a feature of the
solution and is expressed by a liquid or solid volume fraction field. The popular20

enthalpy method formulates the sets of governing equations for both phases and
the condition for the progression of the solid-liquid interface in one set of equa-
tions that applies to the whole computational domain. According to [1], the use
of enthalpy in the heat equation was first proposed by Eyres et al. [2] in 1946. In
a series of works, the enthalpy method was refined and expanded to melting and25

solidification problems that involve natural convection driven flow in the melt
([3] provides an overview). As the enthalpy method provides only one velocity
field for both phases, the consideration of melt flow requires dedicated treatment
of the solid and liquid velocity. This is commonly accomplished by assigning a
large viscosity to the solid [4], overwriting velocity values in the solid by zero30

[5] or by addition of a source term in the momentum equation that suppresses
momentum transport in the solid [6]. The latter is commonly realized by a
porosity function source term. The enthalpy-porosity method is implemented
in many commercial CFD packages and has been widely used for the investiga-
tion of melting and solidification of macroencapsulated phase change materials.35

Melting in macrocapsules can be divided into two phenomena: Constrained
melting and unconstrained melting, also referred to as unfixed melting. In con-
strained melting, the motion of the remaining solid is hindered by design of
the capsule or additional elements therein, such as slabs piercing the solid. In40

unconstrained melting, the solid PCM is not hindered from moving in the liq-
uid PCM. The direction and intensity of this motion depends on gravity, the
material properties of the PCM (in particular on the density difference between
solid and liquid state) and on the thermal boundary conditions at the capsule
wall. For instance, common paraffin based PCM have a positive solid to liq-45
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uid density ratio. In the case of uniform heating of the capsule, a downward
motion of the solid results, leaving a thin fluid layer, or melt gap, between the
bottom capsule wall and solid PCM. This phenomenon is referred to as close-
contact melting. It has been reported that the melting process of paraffin wax
in a spherical enclosure immersed in a water bath takes place 30% faster for50

unconstrained melting compared to constrained melting for the investigated pa-
rameters [7, 8]. Furthermore, as it spares any additional structures inside the
capsule, unconstrained melting is considered to be the most relevant process for
LHTES applications from a design and economical perspective.

55

However, by nature of the enthalpy-porosity method, the transition region
between liquid and solid, referred to as the mushy zone, is modeled by a porosity
source term that assumes the flow to behave similar like flow through a porous
medium. Typically, a Carman-Kozeny approach is utilized, where porosity is
replaced by the liquid volume fraction. As the liquid fraction decreases in the60

transition to solid, transport of momentum is increasingly suppressed and ve-
locity in the solid is thereby set to zero. By choice of the value of the large
coefficient in the Carman-Kozeny approach, also called the mushy zone con-
stant, the intensity of suppressing momentum transport in the mushy zone and
solid region is controlled. The higher the value of the mushy zone constant,65

the higher the suppression of momentum in the mushy zone and in the solid.
Thus, the enthalpy-porosity method is intrinsically limited to the simulation of
constrained melting.

In order to simulate unconstrained melting with the enthalpy method, vari-70

ous approaches have been reported. Most commonly, the mushy zone constant
is lowered to a value that does not fully suppress velocity in the solid (e.g.
[9, 10, 11]). However, this approach is problematic, as physically speaking, the
solid region is not a porous medium and therefore the porosity function is not
valid in the solid. By variation of the mushy zone constant, the intensity of75

momentum suppression in the solid cannot be varied without altering the flow
resistance in the mushy zone. The solutions show a strong dependence on the
value of the mushy zone constant, which is problem-specific, depends on multi-
ple physical and numerical factors and cannot be reliably determined a priori.
Therefore, different approaches for the extension of the enthalpy method to un-80

constrained melting problems have been proposed.

Asako et al. [12] implemented an enthalpy-viscosity method for the sim-
ulation of unconstrained, isothermal melting in a two-dimensional rectangular
domain with one degree of freedom of the solid body. Inertia, gravity, pressure,85

and shear forces on the solid are computed in each iteration. The resultant force
is assumed to be a nonlinear function of the solid velocity. By assuming a zero
resultant force, the solid velocity can be computed by finding the root of the
nonlinear function via Newton-Raphson method. The solid velocity is corrected
iteratively inside the solution loop for enthalpy, velocity and pressure.90

Rösler [13] adopted and expanded the approach of [12] to the enthalpy-
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porosity method. By modification of the porosity source term similar to those
found in mixture models that consider the velocity of floating dendrites in binary
solid-liquid phase change problems (e.g. [14]), a prescribed solid velocity is
incorporated. The solid velocity is obtained from a force balance on solid cell95

faces. Furthermore, by neglecting inertia forces, reformulation of the Newton-
Raphson method to include force and velocity from two previous time steps
was made possible, allowing for explicit and thus only one computation of the
solid velocity per time step. This leads to reduction of computational effort.
However, oscillations and difficulty of handling larger temperature gradients100

were reported [15].
Gudibande et al. [16] proposed an immersed boundary enthalpy method

for the simulation of unconstrained, isothermal melting. Based on the liquid
fraction field obtained by the enthalpy method, a continuous solid-liquid inter-
face is reconstructed. At the interface, the control volumes are split into solid105

and liquid control volumes and a no-slip boundary condition is imposed on the
interface. After solution of mass, momentum and energy equations, an integral
momentum balance on the solid is solved. Taking into account the interface
movement due to melting and solid motion, a remeshing step is carried out and
the procedure is repeated.110

Kozak et al. [17] proposed a forcing-function approach for unconstrained,
isothermal melting in two dimensions with one degree of freedom of the solid
body. The solid body motion is calculated based on a force balance considering
weight, viscous and pressure forces on the solid. The solid body motion is
accounted for by shifting solid cells according to the prescribed solid velocity.115

Energy conservation is imposed by decreasing, respectively increasing latent
heat in cells affected by the solid motion.

Faden et al. [15] proposed an advancement of the enthalpy-porosity method
by [13] with implicit incorporation of the equilibrium solid body velocity com-
putation. They reported considerable stability and convergence improvements.120

With regards to experimental investigations, in particular such that serve
as validation cases for numerical methods, paraffin based PCM are commonly
investigated. Paraffin based PCM are transparent in liquid state and opaque in
solid state, which allows optical tracking of the phase front progression. In order125

to exploit this property in experiments, the PCM is filled in transparent (e.g.
glass or acrylic) capsules and the heat for melting is introduced by immersing
the capsule in heated water baths ([7, 8, 9, 18, 19, 20]). In the experiments, a
uniform temperature in the water bath is intended. This is realized by monitor-
ing the water bath temperature and, based on the temperature measurements,130

controlling the water bath temperature by an electric heater and a stirrer (e.g.
[9]) or by introducing water with controlled temperature and flow rate into the
test section (e.g. [20]).

Despite the measures taken to obtain a uniform bath temperature, a natural
convection dominated mixed convection flow around the immersed object and a135

thermal boundary layer in the vicinity of the immersed object is to be expected.
Judging by the experimental data available in the literature, there is little infor-
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mation on the temporal and spatial flow and temperature field progression of the
HTF and the resulting wall temperature distribution of the PCM macrocapsules.
Therefore, for the simulation of the described scenarios, it is common practice140

to assume a constant and uniform capsule wall temperature that equals the bulk
water bath temperature (e.g. [7, 9, 11, 20]). This leaves a source for uncertainty
when validating numerical methods with the mentioned experiments. The un-
certainty aggravates in particular if the approach of small mushy zone constants
for the simulation of unconstrained melting with the enthalpy-porosity method145

is chosen. Therefore, for the validation of numerical methods for unconstrained
melting and for a step towards a more precise simulation and thus design and
dimensioning of LHTES applications, it is of great interest to consider flow and
heat transport in the HTF and heat conduction in the capsule wall.

150

This work provides a description of both solid body motion and boundary
conditions of unconstrained melting in macroencapsulated PCM subjected to
external convection. Based on this description, the scenario of a spherically
encapsulated PCM immersed in an initially stagnant water bath is investigated.
The validity of the assumption of constant and uniform capsule wall tempera-155

tures that equal the bulk water bath temperature is evaluated.

2 Mathematical Model

The thermal interaction of the unconstrained melting process, conduction through
the capsule wall and the flow and heat transport in the HTF is modeled. The
CHT model consists of a fluid model for the heat transfer fluid region around160

the capsule, a solid model for the heat conduction in the capsule wall region
and a solid-liquid phase change model for the region inside the capsule.

Transient heat conduction in the capsule wall is described by

∂(ρchc)

∂t
− div(αcρc grad hc) = 0, (1)

where ρ is density, h is sensible enthalpy and α is thermal diffusivity. Index165

c denotes that the quantities are associated with the capsule wall. The flow
and heat transport in the HTF is described by mass, momentum and energy
conservation equations

∂ρf
∂t

+ div(ρf ~Uf) = 0 (2)

∂(ρf ~Uf)

∂t
+ grad(ρf ~Uf)~Uf = −grad(pf) + div(τf) (3)

∂(ρfhf)

∂t
+div(ρf ~Ufhf)+

∂(ρfKf)

∂t
+div(ρf ~UfKf)+

∂pf
∂t

= div(αfρf grad hf)+ρf~g~Uf ,

(4)
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where ~U is velocity, K = |~U |2/2 is kinetic energy and p is static pressure
minus hydrostatic contribution ρ~g~x, where ~g and ~x denotes gravitational ac-170

celeration and position vectors, respectively. The viscous stress tensor is τ and
index f indicates that the quantities are associated with the HTF. The governing
equations for flow and heat transport in the PCM

∂ρ

∂t
+ div(ρ~U) = 0 (5)

∂(ρ~U)

∂t
+ grad(ρ~U)~U = −grad(p) + div(τ) + ~A+ ~B (6)

∂(ρh)

∂t
+ div(ρ~Uh) = div(αρ grad h) + S (7)

additionally include source terms ~A, ~B and S that arise from the enthalpy-
porosity method.175

Enthalpy-porosity method The solid-liquid interface is not tracked explic-
itly. Instead, a variable for the liquid volume fraction αliq is defined and related
to temperature T by [21]

αliq =

{
0 T < Tmelt

1 T > Tmelt

(8)

for isothermal phase change with a melting temperature Tmelt and

αliq =


0 T < Tsol
T−Tsol

Tliq−Tsol
Tsol ≤ T ≤ Tliq

1 T > Tliq

(9)

for a binary mixture, where indices sol and liq denote the solidus and liquidus180

temperature. To account for the latent heat contribution in the energy equation,
a source-based approach is adopted. The latent heat source term [21]

S = div(~Uαliq) L− ∂(ραliq)

∂t
L (10)

with L denoting the latent heat of fusion, is derived from the absolute en-
thalpy equation by expressing the absolute enthalpy as sum of sensible and latent
heat [22]. In the momentum equation, a source term for the velocity treatment185

of the solid region is added. Instead of the common form of the Carman-Kozeny
porosity source term

~A′ =
C (1− αliq)

2

α3
liq + q

~U, (11)

5



the modified form [14] to incorporate a prescribed velocity in the solid

~A =
C (1− αliq)

2

α3
liq + q

(~U − ~Us), (12)

is utilized. The large Carman-Kozeny, or mushy zone constant C, controls
the flow resistance through the transition region between solid and liquid PCM190

and q is a small constant to avoid division by zero. Index s, here describing the
velocity of the solid PCM ~Us, indicates that quantities are associated with the
PCM in its solid state. The modification results in the velocity field taking the
values of ~Us as αliq tends to zero rather than setting the solid velocity to zero as
achieved by Equation 11 with sufficiently large values assigned to C. Natural195

convection in the melt is taken into account by a Boussinesq approximation
source term

~B = −αliqρrefβ~g (T − Tref) , (13)

where β is the volumetric thermal expansion coefficient and index ref denotes
reference quantities. The solid PCM is modeled as a rigid body moving in the
surrounding liquid PCM with three translational degrees of freedom. Rotation200

of the solid body is neglected in this work. The motion of the solid PCM is
determined from the resultant force

~Fres =

∫
Vs

ρs~g dVs +

∫
As

(p+ ρ~g~x) d ~As +

∫
As

τ · d ~As (14)

as the sum of weight, pressure and viscous forces. The volume and surface
area is denoted by V and A, respectively. As per Newton’s second law of motion,
the temporal derivative of the solid body velocity is given by d~Us/dt = ~Fres/ms,205

where mass is denoted by m.

3 Numerical Solution

3.1 General solution procedure

The mathematical model was implemented in the open-source C++ library
OpenFOAMR© [23] (version 4.0) and was based on the original solver chtMul-210

tiRegionFoam. The solvers for the PCM, capsule wall and HTF regions are
executed in a segregated, sequential manner and coupled via mixed thermal
boundary conditions. The equations of each solver are discretized using the
finite volume method (FVM). The pressure-velocity coupling in the PCM and
HTF regions is solved in a segregated manner by the PISO algorithm [24], using215

a pressure correction equation obtained from the mass and momentum equations

div
(
ρA−1 grad p

)
=
∂ρ

∂t
+ div

(
ρA−1H− ρA−1 grad(ρ) ~g~x

)
, (15)

where A is a matrix containing the diagonal elements of the momentum
equation coefficient matrix, while matrix H contains the off-diagonal elements.
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3.2 Numerical Settings

All spatial terms were discretized by second-order schemes (linear upwind for220

divergence terms, central difference for gradient and Laplacian terms) while tem-
poral terms were discretized by the first-order accurate implicit Euler method.
Symmetric matrices were solved by a geometric algebraic multigrid solver with
a diagonal incomplete Cholesky smoother. Asymmetric matrices were solved by
a preconditioned biconjugate gradient solver with a diagonal lower-upper trian-225

gular factorization preconditioner. The mushy zone constant was set to 1010.
For the reconstruction of the solid body surface, the solid-liquid interface was
assumed to be located at a liquid volume fraction of 0.95. Solid velocity compu-
tation was enabled when a global liquid volume fraction of 0.02 was reached and
disabled at 0.99. The solid body motion was limited to one degree of freedom230

(y-direction). For the reference values in the Boussinesq approximation, the liq-
uid density and liquidus/melting temperature were chosen. The validation cases
were run with adaptive time steps to meet a Courant number of 1. In order
to decrease computation time for the use cases, the simulations were run with
an adaptive time step to meet a maximal Courant number of 2 in the PCM. A235

time step sensitivity test with a maximal Courant number of 1 for both PCM
and HTF yielded a maximal difference in liquid volume fraction of 0.05%.

3.3 Coupling of PCM, capsule wall and HTF region solvers

The solvers for each region run independently from each other but exchange
values at their respective boundaries, or interfaces, for every time step. This is240

realized by a mixed thermal boundary condition, that requires adjacent regions
to have common temperatures and heat fluxes ~q at the interface

T1 = T2 = Tif (16)

~q1 = −~q2, (17)

where index if denotes values at the interface and indices 1 and 2 denote the
regions adjacent to the interface, i.e. the HTF and capsule wall region or the
capsule wall and PCM region. By expressing the heat flux based on Fourier’s245

law of heat conduction

~q = k grad(T ), (18)

where thermal conductivity is k, and by considering cell center values de-
noted by index cl and the distance between cell center and cell faces δ, the
interface temperature is calculated by

Tif = Tcl,1

(
k1δ
−1
1

k1δ
−1
1 + k2δ

−1
2

)
+ Tcl,2

(
k2δ
−1
2

k1δ
−1
1 + k2δ

−1
2

)
. (19)
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3.4 PCM region solver250

Liquid volume fraction update The source-based enthalpy method [21]
requires an iterative solution of the liquid volume fraction and energy equation.
The liquid volume fraction is computed by

α′liq = αo−1
liq + λ

cp
L

[T − (2δT αliq + Tmelt − δT )] , (20)

where the value of the preceding iteration is denoted by superscript o− 1; λ is
a relaxation factor, cp is specific heat capacity and δT is zero for isothermal phase255

change and (Tliq−Tsol)/2 for mushy phase change. In the latter case, the melting
temperature is the arithmetic mean of solidus and liquidus temperatures. To
ensure boundedness, and for consideration of cells where phase change is not
occurring, a correction step is carried out:

αliq = max
[
0,min(α′liq, 1)

]
(21)

Solid body surface reconstruction and solid body motion The solid260

body velocity is computed for every time step. This is accomplished by the
generation of a discrete surface of the solid body surface, followed by the com-
putation of the weight, pressure and viscous forces exerted on the solid body.
From the resultant forces, the solid body velocity is determined.

265

The surface of the solid body is reconstructed by a triangulated isosurface
at a discrete liquid volume fraction value αs, above which the PCM is consid-
ered to be fully liquid (see Figures 1a and 1b). The quantities required for the
computation of the forces are linearly interpolated from the cell centers of the
computational mesh to the vertices of the triangulated surface, where they are270

averaged for each face of the triangulated surface (see Figure 1c). For the sur-
face reconstruction and value interpolation, a regularized marching tetrahedra
technique [25], which is readily available in OpenFOAMR©, is utilized.

The forces exerted on the solid body are computed by275

~Fres = ~gρs
∑
ce

(ψV )ce +
∑
fc

(~nA)fc(p+ ρ~g~x)fc +
∑
fc

(~nA · µτ)fc, (22)

where index fc denotes the faces of the reconstructed and triangulated solid
body surface; ~n is the unit normal vector and µ is the dynamic viscosity.

For the computation of the weight forces, a summation over all cells in the
PCM region is carried out. To distinguish between solid and liquid cells, a nodal
threshold variable ψ is introduced, which is 0 if αliq > αs and 1 if αliq ≤ αs.280

From the resultant forces and the mass of the solid body, acceleration of the
solid is computed:

~as = ~Fres [ρs
∑
ce

(ψV )ce]
−1 (23)

8



(a) Liquid volume fraction at x-y cross section. Detail view: Liquid volume fraction
field with values and intersection of the reconstructed solid surface with αs = 0.5.

(b) Computational mesh clipped at x-y cross section and protruding reconstructed
surface. Detail view: Reconstructed and triangulated surface.

(c) Volumetric pressure field clipped at x-y cross section and protruding reconstructed
solid body surface with pressure field mapped to the surface. Detail view: Quantities
for force computation.

Figure 1: Reconstruction of the solid body surface by example of a PCM in a
spherical capsule

The solid body velocity is obtained by execution of a Newmark integration

9



[26] step

~U∗s = ~U i−1
s +

∆t

2

(
~as + ~ai−1s

)
, (24)

incorporating solid body velocity and acceleration values of the preceding285

iteration i− 1 and the time step ∆t. The computation of the forces and the
solid velocity takes place in the inner loop. Due to the strong mutual coupling
of pressure equation and the solid body velocity computation, oscillations in the
pressure solution affect the solution of the solid body velocity and vice versa.
In order to avoid overshoots and to ensure stability, relaxation is applied to the290

solid velocity

~Us = ~U i−1
s + ω

(
~U∗s − ~U i−1

s

)
, (25)

where ω is a relaxation factor and where superscript ∗ denotes the unrelaxed
solution of the solid velocity at the current iteration. In order to accelerate
convergence, the relaxation factor is determined adaptively from the previous
relaxation factor and unrelaxed and relaxed solid velocity solutions based on295

Aitken’s ∆2-method [27, 28]

ω = ωi−1 + (ωi−1 − 1)
(~Ri−1 − ~R) · ~R
|~Ri−1 − ~R|2

, (26)

where ~R = ~U i−1
s − ~U∗s . The solution of the solid body velocity is considered

converged if the change between two subsequent iterations deceeds a user-defined
tolerance

max

(∣∣∣∣∣Uxs − Ux
i−1
s

Uxs

∣∣∣∣∣ ,
∣∣∣∣∣Uys − Uy

i−1
s

Uys

∣∣∣∣∣ ,
∣∣∣∣∣Uzs − Uz

i−1
s

Uzs

∣∣∣∣∣
)
≤ tol. (27)

Figure 2 gives an overview of the solution algorithm of the PCM region300

solver. After solution of the momentum equation, the energy equation is solved
and the liquid volume fraction field is updated in the outer loop until conver-
gence is reached. After reconstruction of the solid body surface, the inner loop is
entered. The solid body velocity, update of the momentum equation coefficients
and solution of the pressure equation is repeated until the solid body velocity305

is considered converged. If the outer loop is considered converged judging by
pressure and enthalpy residuals, the next time step is started.

4 Validation, Use Case and Discussion

4.1 Validation of the PCM region solver: Unconstrained
Melting in Cubic Enclosure310

For the validation of the PCM solver, a comparison to the works of Faden et
al. [15] was carried out. They investigated unconstrained melting of an organic
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Figure 2: Algorithm of the PCM region solver

PCM in a cubic enclosure with a side length of 0.04 m both experimentally and
numerically. For their numerical investigation, Faden et al. utilized the method
briefly described in Section 1.315

4.1.1 Simulation Setup

The problem was assumed to be two-dimensional. Structured quadrilateral
meshes with refinement at the boundaries were generated. The boundary regions
occupy 1 mm from the wall and contain 15% of the cells, while the width of320

the innermost cell of each boundary region amounts to 35 times the width of
the cell adjacent to the wall. The total cell count of the meshes is 12 769 (A1),
25 600 (A2), 51 076 (A3) and 102 400 (A4). Grid-dependence was judged by
global liquid volume fraction. It was found that finer grids lead to slightly lower
melting rates. Maximal differences in liquid volume fraction of 1% between A1325

and A2, 0.6% between A2 and A3 and 0.4% between A3 and A4 were obtained.
Mesh A2 was used for the validation.

The domain was initialized entirely filled with solid PCM at a temperature
of 303.15 K. The temperatures at all walls were set to 313.15 K, while a no-slip
boundary condition was applied for velocity. The pressure gradient at the walls330

was set to zero. The thermophysical properties (Table 1) were adopted from
Faden et al. [15]. For the liquid dynamic viscosity, a linear function according
to the measurements by Rösler [13] was derived.
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Property Unit Value/Function
Solidus temperature K 307.65
Liquidus temperature K 309.15
Latent heat of fusion J kg−1 220·103

Density (solid) kg m−3 830.90
Density (liquid) kg m−3 778.20
Volumetric thermal expansion coefficient K−1 8.65·10−4

Specific heat capacity (solid) J kg−1 K−1 5000
Specific heat capacity (liquid) J kg−1 K−1 2100
Thermal conductivity (solid) W m−1 K−1 0.65
Thermal conductivity (liquid) W m−1 K−1 0.166
Dynamic viscosity (T ≤ 309.15 K) Pa s 4.4·10−3

Dynamic viscosity (T > 309.15 K) Pa s −9.08333 · 10−5 · T + 0.032476

Table 1: Material properties used for the PCM region solver validation case

4.1.2 Results and Discussion

Figure 3 shows the obtained temporal progression of global liquid volume frac-335

tion in comparison to the experimental and numerical results by Faden et al. In
the very beginning of the melting process, approximately up to 50 seconds, the
present results differ visibly from both experimental and numerical comparison
results. Up to about 300 seconds, the present results lie in between the values
from the two experimental runs, while the numerical results start to exceed340

the experimentally obtained values from about 200 seconds on. From about
600 seconds on, the present results exceed the experimental results distinctly.
Compared to the numerical results, the presently obtained values are nearly
constantly and slightly lower. The melting process is completed slightly later
than according to the numerical results. As shown in Figure 4, the topology345

of the phase boundary agrees well with the experimental photographs. The
tilted solid seen in the photograph taken at 720 seconds is not reproduced by
the present results. Unphysically large mushy regions and deformations of the
phase boundary as seen for simulations with low mushy constant approaches
cannot be established. With respect to the two experimental runs, differences350

of 3 and 13% in melting time are found.
Figure 5 shows the obtained solid velocity in comparison to the experimental

and numerical results. Comparison is drawn to the numerical results. For a dis-
cussion on the experimental results, the reader is referred to [15]. With respect
to the numerical results, the present results show an overall good agreement.355

The model by Faden et al. assumes force equilibrium at every time step and
predicts a slightly smoother velocity progression than the present model. The
mean magnitudes agree well over the entire time span. The largest differences
are found between approximately 100 and 500 seconds and amount to about
5%.360

Under consideration of tendentially melting rate decreasing phenomena that
may occur in experiments (like gas bubbles in the melting gap, residual gas
inclusions in the solid or adherence of the solid to the bottom, see [15]) and that
neither gas phase nor possible three-dimensional effects were taken into account
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Figure 3: Global liquid volume fraction in comparison to the numerical and
experimental results by [15]

in the present model, very good validation is achieved.365

4.2 Validation of the HTF region solver: Natural Convec-
tion around a Heated Sphere immersed in a Water
Bath

To analyze suitability of the HTF region solver for natural convection problems,
the experiment by Amato and Tien [29] at a Rayleigh number of 1.7·108 and370

sphere diameter of 0.0762 m was simulated. They immersed a heated sphere
with uniform wall temperature in a water bath of uniform initial temperature
and measured temperature and radial velocity profiles along a line normal to
the sphere surface at different angles of the sphere. For further comparison,
the numerical results obtained by Yang et al. [30], who used the same case for375

validation purposes, were considered.

4.2.1 Simulation Setup

Unstructured hexahedron-dominant meshes with prismatic layers around the
sphere and volumetric refinement regions above the sphere were generated. To
investigate grid-dependency, three meshes with total cell counts of 188 008 (B1),380

466 896 (B2) and 799 754 (B3) were considered. A tendency of lower tempera-
tures with finer grids was observed. The maximum local difference in tempera-
ture was 3.6% between B1 and B2 and 1.5% between B2 and B3. Mesh B1 was
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(a) This work

(b) Photographs from the experiment by [15]

Figure 4: Phase boundaries at 120, 360, 720 and 1080 seconds (from left to
right)

considered sufficient and was used for the validation computations.
The fluid surrounding the sphere was initialized at rest and at the lower tem-385

perature that relates to the Rayleigh number of the experiment. The uniform
temperature of the sphere wall was fixed at the corresponding upper tempera-
ture. The tank walls were set to the lower temperature and a no-slip boundary
condition was applied for the velocity at all walls. The pressure gradient at all
walls was set to zero. The temperature-dependency of the thermophysical prop-390

erties of water was described by polynomials (Table 2) obtained by polynomial
fitting of the data given by [31].

Property Unit Function

Density kgm−3 739.29 + 1.9706 · T − 3.7134 · 10−3 · T2

Specific heat capacity J kg−1 K−1 10449 − 54.303 · T − 0.15492 · T2 − 1.4517 · 10−4 · T3

Thermal conductivity Wm−1 K−1 −2.5357 + 2.4196 · 10−2 · T − 6.1838 · 10−5 · T2 + 5.3795 · 10−8 · T3

Dynamic viscosity Pa s 0.12247 − 1.0572 · 10−3 · T + 3.0643 · 10−6 · T2 − 2.972 · 10−9 · T3

Volumetric thermal ex-
pansion coefficient

K−1 −2.8017 · 10−2 + 2.3699 · 10−4 · T − 6.6909 · 10−7 · T2 + 6.4495 · 10−10 · T3

Table 2: Material properties used for water
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Figure 5: Solid body velocity comparison to [15]

4.2.2 Results and Discussion

Figure 6 shows the temperatures probed along a line of 0.005 m length normal
to sphere surface at angles of 45, 90 and 135◦. For the temperatures at 90◦,395

very good agreement with the experiments is found, while for the remaining
angles, maximal local deviations up to roughly 20% are observed. For all probed
locations, the present computations predict lower values than the simulations
by Yang et al. Considering the uncertainty left in the experiments (e.g. the
measurements indicate a temperature lower than 1 at the wall, especially for400

45 and 90◦), an overall good agreement is found. The comparison to the radial
velocities (Figure 7) shows distinct differences, especially to the experimental
results. The locations of the maxima of the velocities are increasingly shifted to
positions farther away from the sphere with decreasing angles. The magnitude
of the maximal velocity is in good agreement at 90◦, but is overpredicted for405

45 and 135◦. The qualitative progression is predicted adequately. The results
are in fair agreement with the values reported by Yang et al. for 90 and 135◦,
whereby the present results show higher maximal magnitudes and the locations
of the maxima are closer to the experimental results. For 45◦, velocities were
not reported by Yang et al. In their discussion, they considered errors due410

to the interference of the velocity measuring probe and velocity fluctuations
in the experimental measurements to be potential sources for the deviations.
Satisfactory validation, in particular with respect to the thermal conditions
around the sphere, is achieved.
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Figure 6: Temperature along normal direction at 45, 90 and 135◦, comparison
to [29] and [30]

Figure 7: Radial velocity along normal direction at 45, 90 and 135◦, comparison
to [29] and [30]
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4.3 Use Case: Unconstrained Melting of Spherically En-415

capsulated Phase Change Material Subjected to Ex-
ternal Mixed Convection

A generic problem of unconstrained melting of a spherically encapsulated PCM
immersed in a water bath was simulated to demonstrate the proposed CHT
model. The problem was built along the lines of the discussed water bath ex-420

periments on unconstrained melting to gain new insights into the coupled flow
and heat transfer processes of PCM, capsule wall and HTF and in particular,
the resulting capsule wall temperature distribution.

Figure 8 shows the computational domain. A spherical capsule of diameter425

D = 0.105 m and wall thickness D/70 is located in the center of a cubic water
tank with a side length of 10 D. The capsule was initialized completely filled
with solid PCM; capsule wall and PCM were set to an initial temperature T0,
which lies 1 K below the melting temperature of the PCM. The HTF (water)
in the tank was initialized at temperature T∞. Velocity Uin, temperature T∞430

and a zero pressure gradient were defined at the inlet. At the outlet, ambient
pressure was prescribed. At the adiabatic bottom, side and top walls, a no-slip
condition for velocity was set.

Figure 8: Computational domain for the water tank case
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4.3.1 Simulation Setup435

Unstructured hexahedron-dominant meshes were created for the HTF region.
For the PCM and capsule wall regions, structured hexahedral meshes were gen-
erated. For the investigation of grid-dependence, three sets of meshes with
total cell counts of 1 000 339 (C1; HTF: 222 464, PCM: 741 125, capsule wall:
36 750), 1 390 455 (C2; HTF: 318 455, PCM: 1 024 000, capsule wall: 48 000)440

and 2 564 607 (C3; HTF: 564 607, PCM: 1 925 000, capsule wall: 75 000) were
created and analyzed. As in the melting validation case, finer meshes lead to
lower melting rates. The maximal differences in global liquid fraction were 4.7%
between C1 and C2 and 2.9% between C2 and C3. Considering computational
effort and accuracy, C2 was chosen for all further computations.445

The solid and liquid specific heat capacity of the PCM is 2000 J kg−1 K−1.
The latent heat of fusion is 240·103 J kg−1. The dynamic viscosity of the PCM
is 4·10−3 Pa s, the volumetric thermal expansion coefficient is 9·10−4 K−1, the
Prandtl number is 60. Melting temperature is 301 K, liquid and solid densities450

are 770 and 865 kg m−3, respectively. The thermal conductivity of the capsule is
1 W m−1 K−1. The temperature-dependency of the thermophysical properties
of water was described by the polynomials in Table 2.

4.3.2 Parameter variation

The parameter study is based on the Stefan number that will be approached455

with temporal progression of the melting process

Ste∞ =
cp (T∞ − Tmelt)

L
. (28)

Computations were carried out for Ste∞ 0.075, 0.1, 0.15, 0.2 and 0.25 by
variation of the HTF initial and inlet temperature. The initial Richardson
number

Ri0 =
gβT∞D(T∞ − T0)

U2
in

, (29)

where the thermal volumetric expansion coefficient is obtained from the poly-460

nomial in Table 2 at initial water bath temperature, was set to 50·103 for all
runs by variation of the inlet velocity.

4.3.3 Results and Discussion

Figure 9 shows the global liquid volume fractions obtained for Ste∞ of 0.075,
0.1, 0.15, 0.2 and 0.25. The times for completion of the melting process are465

7701, 5694, 3699, 2727 and 2145 seconds, respectively.
Figure 10 shows the solid velocities obtained for Ste∞ of 0.075, 0.1, 0.15, 0.2

and 0.25. The magnitudes of the solid body velocity found are in the range of
about 0.01 to 0.04 mm s−1. As expected, the solid body velocity increases with
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Figure 9: Global liquid volume fractions for Ste∞ of 0.075, 0.1, 0.15, 0.2 and
0.25

increasing Stefan numbers. After the very beginning of the melting process,470

the solid body velocity is nearly constant for each Stefan number with a slight
decrease towards the end of the melting process, where fluctuations arise as the
weight forces approach zero.

Figure 11 shows the heat transfer rates from the HTF to the outer capsule
wall obtained for Ste∞ of 0.075, 0.1, 0.15, 0.2 and 0.25. Three phases are475

observed: After a short period (about 250 seconds for all cases) in the beginning,
where large temperature gradients between capsule and HTF are present, the
heat transfer rate gradually decreases over time. This is the period where the
width of the melt gap is roughly constant and a quasi steady natural convection
in the HTF dominates the heat transfer from the HTF to the capsule (e.g. from480

500 to 4500 seconds for Ste∞ = 0.1). This phase is followed by a drop in heat
transfer rate as the width of the melt gap increases. Subsequently, the heat
transfer rate gradually approaches zero (about 4750 to 6000 seconds for Ste∞
= 0.1).

Figure 12 shows the heat transfer rate from HTF to the outer capsule wall485

for Ste∞ of 0.1 and three regions with equal surface area. It becomes apparent
that the largest amount of heat is transferred through the lower part of the
sphere, while the lowest amount is transferred through the upper part.

When normalized with respect to dimensionless temperature

θ =
T∞ − T
T∞ − T0

(30)
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Figure 10: Solid velocities in y-direction for Ste∞ of 0.075, 0.1, 0.15, 0.2 and
0.25

Figure 11: Heat transfer rate from HTF to the outer capsule wall for Ste∞ of
0.075, 0.1, 0.15, 0.2 and 0.25

and dimensionless time490

ξ = t/tmelt, (31)
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Figure 12: Heat transfer rate from HTF to the outer capsule wall for Ste∞ of
0.1 and three regions with equal surface area

where tmelt is the melting completion time, the solutions obtained for the
investigated range of Ste∞ are identical with slight variations due to the non-
linearities in the thermophysical properties of water. Therefore, for the sake of
transferability, results obtained for Ste∞ of 0.1 are shown under specification of
these dimensionless numbers. Figure 13 shows the temperature profiles along a495

line at the x-y cross section surface for the inner and outer capsule wall at three
different times ξ = 0.1, 0.5 and 0.9. First of all, it confirms the hypothesis of this
work and the observation made with respect to the heat transfer rate through
the lower, mid and upper sections of the capsule: The temperature distribution
at the capsule wall is transient and highly non-uniform. At low angles (the500

lower region) the lowest temperatures are found. Near the top of the sphere,
the capsule temperature is closer to the water bath temperature, even at early
times. With progression of the melting process, the temperature distribution
becomes more uniform. However, halfway through the melting progress the low-
est temperature at the inner capsule wall merely amounts to 0.1, while at the505

outer capsule wall roughly 0.3 is reached. The temperature gradient between
the inner and outer capsule wall becomes smaller with time and its minimum
shifts towards lower regions as time progresses.

Figure 14 shows temperature contours in the HTF and capsule wall and
the liquid volume fraction inside the capsule at the x-y cross section for ξ =510

0.005, 0.006, 0.0075, 0.008, 0.01, 0.025, 0.05, 0.1, 0.3, 0.5, 0.7 and 0.9. After the
immersion of the subcooled capsule into the water bath, high temperature gra-
dients are present and unsteady natural convection occurs. The temperature
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Figure 13: Temperature profiles along a line at the x-y cross section surface of
the inner and outer capsule walls at three different times ξ = 0.1, 0.5 and 0.9

fields show a clear transient characteristic up to about a dimensionless time
of 0.025. With progression of the melting process, the temperature gradients515

decrease and a quasi steady state is observed from ξ = 0.025 to 0.9. When
the melting process is almost completed, the non-uniformity of the capsule wall
temperature decreases and the capsule wall increasingly reaches water bath
temperature. With further decreasing temperature gradients, natural convec-
tion becomes weak enough that forced convection, even at the high Richardson520

number investigated, gains minor influence (see the slight deflection in direction
of the inlet velocity at ξ = 0.9).

Figures 15 and 16 show the temporal progression of temperatures in the
HTF taken at different diameters around the capsule. Figure 15 shows the
temperature probes beneath the sphere, while Figure 16 shows the probes in the525

remaining directions. In Figure 15, the expected tendencies become apparent:
The closer the probe is located to the sphere surface, the lower the temperature
becomes. With progression in time, the temperatures rise towards the initial
water bath temperature. Figure 16 shows that the water bath temperature in
any other direction is not affected significantly. In an experimental context,530

the temperature variations in any other water bath location than beneath the
sphere are well below the detection limit of common measurement techniques.

The analyses of the results carried out up to this point clearly emphasize
that the assumption of constant and uniform capsule wall temperatures, equal to
the bulk water bath temperatures, does not hold for the investigated scenarios.535

However, the question arises to which extent the assumption affects the simu-
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Figure 14: Temperature contours in HTF and capsule wall and PCM liquid
volume fraction at the x-y cross section for ξ = 0.005, 0.006, 0.0075, 0.008, 0.01,
0.025, 0.05, 0.1, 0.3, 0.5, 0.7 and 0.9

lation results. Therefore, computations with uniform capsule wall temperature
at Stefan numbers

Ste =
cp (Twall − Tmelt)

L
(32)

of 0.075, 0.1, 0.15, 0.2 and 0.25 were carried out under the assumption in
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Figure 15: Temperatures taken at probes in the HTF, negative y-direction

Figure 16: Temperatures taken at probes in the HTF, positive and negative x
and z-directions and positive y-direction

question. For the comparison, the PCM region solver of the proposed CHT540

model was used without being coupled to the HTF and capsule wall solvers.
Besides that, the simulation was performed applying identical boundary condi-
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tions and by use of the identical settings and mesh.
Figure 17 compares the global liquid volume fraction curve obtained by the

CHT model against the results obtained under the assumption Twall = T∞ for545

Ste or Ste∞ of 0.075, 0.15, 0.25. The expectation that the assumption leads to
higher melting rates is confirmed and the influence is found to be significant.
The times for completion of the melting process are 3816, 2988, 2028, 1611 and
1277 seconds for Stefan numbers of 0.075, 0.1, 0.15, 0.2 and 0.25, respectively,
amounting to errors of 50.4, 45.4, 45.1, 40.9 and 40.5%.550

Figure 17: Comparison of the liquid fraction curves between conjugate heat
transfer model and fixed capsule wall temperatures that equal the bulk water
bath temperature

5 Summary and Conclusions

A conjugate heat transfer model for the simulation of unconstrained melting of
macroencapsulated PCM subject to external convective heat transfer was pre-
sented. In the PCM region of the CHT model, a modified form of the enthalpy-
porosity method for considering solid body velocity in unconstrained melting555

was proposed. The modified method comprises reconstruction of the solid sur-
face by an isosurface and solid body velocity computation via integration of the
acceleration obtained from the forces exerted on the solid body. Convergence
of the solid body velocity computation is accelerated by Aitken’s relaxation.

After validation of the PCM and HTF region solvers, a generic case of the560

popular experiments of a spherically encapsulated PCM immersed in a water
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bath was simulated. New insights on the progression of flow and heat trans-
port in the HTF and capsule wall have been gained. For unconstrained melting
processes where the spherical capsule is subject to external heat transfer dom-
inated by natural convection, the temperature distribution on the capsule wall565

is transient and highly non-uniform. The assumption of constant and uniform
wall temperatures leads to significant errors for the investigated scenarios. To
provide an adequate basis for validation of numerical methods, experiments of
encapsulated PCM subject to external convection necessitate detailed monitor-
ing of the temporal and spatial progression of flow and temperature fields in the570

HTF and capsule wall.
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