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Abstract: Gallium-based liquid metal alloys have been attracting attention from both industry
and academia as soft, deformable, reconfigurable and multifunctional materials in microfluidic,
electronic and electromagnetic devices. Although various technologies have been explored to
control the morphology of liquid metals, there is still a lack of methods that can achieve precise
morphological control over a free-standing liquid metal droplet without the use of mechanical
confinement. Electrochemical manipulation can be relatively easy to apply to liquid metals, but
there is a need for techniques that can enable automatic and precise control. Here, we investigate
the use of an electrochemical technique combined with a feedback control system to automatically
and precisely control the morphology of a free-standing liquid metal droplet in a sodium hydroxide
solution. We establish a proof-of-concept platform controlled by a microcontroller to demonstrate
the reconfiguration of a liquid metal droplet to desired patterns. We expect that this method will be
further developed to realize future reconfigurable liquid metal-enabled soft robots.

Keywords: liquid metal; morphology control; electrochemistry; feedback control system

1. Introduction

Gallium-based liquid metal alloys, such as Eutectic Gallium Indium (EGaIn, 75% gallium and
25% indium) [1] and Galinstan (68.5% gallium, 21.5% indium, and 10% tin) [2], have been gaining
momentum in recent years as promising soft-matter electronics and multifunctional materials [3–5].
This is due to their high electrical and thermal conductivities, high surface tension, extremely low
vapour pressure and melting points below room temperature [6,7]. Combining the unique properties
of both liquid and metal, gallium-based liquid metals provide unprecedented properties for a wide
range of applications, including prosthetics, soft robotics and reconfigurable circuits [3], which cannot
be achieved using conventional solid materials. In comparison to mercury (Hg), the most commonly
known liquid metal, liquid metal alloys based on gallium have much lower toxicity [8], making them
much safer to use for research and commercial purposes. Moreover, unlike mercury, gallium-based
liquid metal alloys can form a thin oxide layer on the surface [9], enabling these metals to be patterned
or re-configured into useful shapes, such as micro- or nano-sized droplets [10–13].

The capability to manipulate the morphology of liquid metals containing gallium is useful
for various applications [3,14,15], including switches, reconfigurable antennas, metamaterials
and plasmonics. Among different methods utilized to change the shape of the liquid metals,
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e.g., mechanical [16], pneumatical [17], and continuous electrowetting [18–21] techniques,
electrochemistry [22–25] may be one of the most popular methods due to its ease of operation and
manipulation, simplicity of the instrumentation, and low cost. Although the shape of liquid metals can
be manipulated by electrochemical deposition or removal of the oxide layer on its surface to decrease
or increase the interfacial tension, precise automatic control over the morphology is still challenging.
Moreover, previous electrochemical control of liquid metal morphology is always confined within
enclosed microchannels.

In order to overcome the aforementioned challenge, we proposed the use of a feedback control
system combined with electrochemical techniques to manipulate the morphology of an EGaIn
droplet within sodium hydroxide (NaOH) solution in a simple, fast, automatic and precise manner.
We established a feedback control system consisting of a microcontroller, a current sensor and a
switching circuit. We also optimized the parameters, such as electrochemical oxidation potential and
NaOH concentration, which affect the morphological control behaviours. To the best of our knowledge,
it is the first time that electrochemistry together with a feedback control system for the morphologic
control over liquid metals has been reported.

2. Results and Discussion

When a moderate voltage is applied to the liquid metal droplet, electrochemical oxidation occurs
on the surface of the metal, which can significantly decrease the interfacial tension [24]. Despite the
oxide normally acting as a physical barrier to flow, the metal can flow in the presence of a base,
which competes with the electrochemical deposition by dissolving the oxide [19,24]. Here we studied
the control over the morphology of liquid metals using electrochemical techniques together with a
feedback control system. The experimental setup is shown in Figure 1a; the control system has three
main parts: a microcontroller module (Arduino Mega 2560, Arduino, Mansfield, TX, USA), a current
sensing module, and a switching circuit module. The proof-of-concept platform used for controlling
the morphology of the EGaIn droplet consisted of two laser-patterned acrylic sheets. The bottom plate
has a chamber with a diameter and depth of 50 and 6 mm, respectively. The top plate has twelve
small holes (diameter of 1 mm) arranged in a circle for accommodating electrodes. Two plates were
assembled together using four M4 screws, and the chamber contains the NaOH solution, an EGaIn
droplet and a pair of electrodes (Figure 1a upper-right corner). We used a function generator (33250A,
Agilent, Santa Clara, CA, USA) to provide a direct current (DC) voltage. A relatively low DC voltage of
5 V was used to ensure that the EGaIn droplet could flow smoothly from the anode at the centre of the
chamber towards the cathodes at the sidewall. If a lower voltage was applied, the EGaIn droplet could
not reach the cathodes but flattened down and stopped moving instead. Also, we chose NaOH at a
concentration of 0.4 M to allow the EGaIn droplet to move smoothly without significant morphology
distortion. A thick oxide layer formed on the surface of the EGaIn droplet during the experiment at a
lower NaOH concentration, which prevented the EGaIn droplet from moving towards the cathodes.
While at a higher concentration, unnecessarily electrolysis occurred at the electrodes.

Figure 1b illustrates the scheme of the feedback control system. An Arduino Mega 2560 module
was chosen as the controller in the system. The controller works by (1) first taking in the current
value detected between the EGaIn droplet and one of the cathodes using the current sensing circuitry
(feedback signal), (2) comparing it with the current value detected between the EGaIn droplet and the
other cathode (reference signal), and (3) determining the pulse width of the pulse width modulation
(PWM) control signal via an N-channel power metal oxide semiconductor field effect transistor
(MOSFET, STMicroelectronics BUZ71, Geneva, Switzerland). One Ω shunt resistors were connected in
series with each electrode to sense the current applied to the EGaIn droplet, and an RC filter circuit was
developed to convert the PWM voltage signal obtained across the shunt resistors to analogue signals.
We next used a dual operational amplifier chip (Texas Instruments LM358p, Dallas, TX, USA) to
amplify the filtered voltage signal, which ensured that the values interpreted by the controller were of
high accuracy. Under the combined effect of electrochemistry and feedback control, we aimed to move



Micromachines 2019, 10, 209 3 of 7

the EGaIn droplet (volume of 1 mL), initially in the centre of the chamber, towards the two cathodes
arranged differently along the chamber sidewalls to form two protrusions (see Figure 1c). Such a
feedback control strategy attempts to balance the currents between each of the protrusion–cathode
pairs to form symmetric patterns.Micromachines 2019, 10, x FOR PEER REVIEW 3 of 7 
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Figure 1. (a) A photograph of the experimental setup. (b) A scheme of the feedback control system.
(c) Schematics illustrating the proposed morphological control of the EGaIn droplet using six different
configurations of electrodes.

The EGaIn droplet was demonstrated to be re-configured automatically and precisely to patterns
with two main protrusions that intersected at five different angles: 180◦, 150◦, 120◦, 90◦ and 60◦ (see
Video S1). We could see the formation and elongation of liquid metal protrusions towards the cathode.
The elongation of the liquid metal is due to the non-uniform oxidation of the liquid metal at the areas
facing towards the cathode, and this oxidation process can locally reduce its interfacial tension [24].
Therefore, this may generate a Marangoni flow travelling towards the area with a higher interfacial
tension (i.e., the centre of the chamber), which drags the liquid metal protrusions towards the cathode.
Figure 2 represents a series of snapshot images showing the variations in EGaIn droplet morphology
within 12 seconds after activating the control system. Before the experiment, the levelling of the
platform was carefully adjusted by rotating the M4 screws to remove the gravity-induced morphology
change. Also, calibration was performed by comparing current values measured by a multimeter
and obtained by the controller. The configurations of the EGaIn droplet are relatively stable and can
maintain their morphology as long as the control system is activated. We found that the EGaIn droplet
could not form stable protrusions if its volume is less than 300 µL.
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Figure 2. Automatic control of the morphology of the EGaIn droplet to five desired patterns (angles of
protrusions are 180◦, 150◦, 120◦, 90◦ and 60◦ from top to bottom) within 12 seconds after activating the
control system. A series of snapshot images captured at 0, 1, 4, 8 and 12 s are shown for each pattern.

Additionally, the limits of the developed system were explored by placing the cathodes at a smaller
angle of 30◦ (see Video S2). As shown in Figure 3a, the EGaIn droplet reached the cathodes after
activating the system for 3 seconds, a “Y” shaped pattern was observed instead of a “V” shape, and
the shape could be maintained. As the angle between the cathodes reduces, the interference between
the two cathodes increases, leading to a less stable pattern. In order to investigate the repeatability
of the system, three separate experiments were conducted to change the morphology of the EGaIn
droplet to a pattern with the angle between the two protrusions of 60◦. The photographs showing
the morphology of the EGaIn droplet at 8 s after activating the system are represented in Figure 3b.
EGaIn droplet morphology was almost the same in the three separate experiments, indicating that the
system has a relatively high repeatability and high accuracy. This system is also compatible with more
than two electrodes. Figure 3c shows the control of EGaIn droplet morphology using three cathodes, in
which a fan-shaped pattern with three protrusions was generated. The scheme of the feedback control
system is similar to the case given in Figure 1b, however, in this case the reference signal is the smallest
current value detected between the EGaIn droplet and the other two cathodes. It is expected that this
system can create more complex shapes using more electrodes.
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Figure 3. (a) Exploring the limit of the system by arranging two cathodes to a configuration of
30◦. A series of snapshot images captured at 0, 1, 3 and 5 s after activating the system are shown.
(b) Exploring the repeatability of the system by recording the morphology variations of the EGaIn
droplet at 8 s after activating the system in three separate experiments. (c) Morphological control of the
EGaIn droplet using three cathodes to yield a fan-shaped pattern with three protrusions.

Finally, we examined the capability of our technique of the dynamic control over the morphology
of the liquid metal droplet. By changing the applied potential to different cathodes, we demonstrated
that our technique is able to dynamically transform the patterned protrusions with an intersecting angle
of 180◦ to new patterns with two different intersecting angles: 120◦ (Figure 4a) and 60◦ (Figure 4b).
We also examined the leaching of the gallium and indium ions within the NaOH solution using
inductively coupled plasma mass spectrometry (ICP-MS, Thermo Scientific™ Neptune XT™, Waltham,
MA, USA). Two tests were performed before and after conducting the morphological transformation
experiments of the liquid metal droplet 100 times. Our results indicate that gallium can be dissolved
into the NaOH solution, with the concentration increasing from ~1.1 to 766.4 µmol/L.
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Figure 4. Exploring the dynamic morphological control of the EGaIn droplet by changing the angle
between the patterned protrusions from 180◦ to (a) 120◦, and (b) 60◦. A series of snapshot images
captured at 0, 5, 10, 15 and 20 s after applying potential to different cathodes are shown.

3. Conclusions

In summary, we have described a method to automatically control the morphology of a droplet
of EGaIn liquid metal using electrochemistry and a feedback control system. The ability to tune the
interfacial tension of the EGaIn droplet with moderate voltages allows the droplet to be deformed into
different shapes. By integrating with a feedback control system, automatic and precise control over
the morphology of the EGaIn droplet has been demonstrated. We have achieved the reconfiguration
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of the EGaIn droplet to patterns with two protrusions that intersect at five different angles, i.e., 60◦,
90◦, 120◦, 150◦ and 180◦. We found that the EGaIn droplet reached the cathodes after activating the
control system for 3 seconds, and maintained its morphology as long as the system was activated
within 12 seconds. We also showed that our technique is able to achieve dynamic control over the
intersecting angle between the two protrusions of the EGaIn droplet. We expect that this method
would enable stretchable and reconfigurable components with precise control that can be widely used
in Micro-Electro-Mechanical Systems (MEMS) and soft robotics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/3/209/
s1, Video S1: Automatic control over the morphology of the EGaIn droplet, Video S2: Exploring the limit of the
system by arranging the two cathodes to 30◦.
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