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1. Introduction 

Severe disc degeneration can be treated by spinal surgery, which involves implanting a Total 

Disc Arthroplasty (TDA), although these devices are not accepted by all surgeons or in all 

countries.
1-6 

There are different designs of TDA, but most have a ball-on-socket configuration 

where the bearing surfaces articulate against each other.  This articulation leads to friction. 

Friction needs to be minimised for two reasons; firstly, if friction is high there is the 

possibility of the implant becoming loose as a result of the fixation failure between the 

implant and bone. Secondly, friction should be minimised to prevent the generation of wear 

debris.  Although there is no simple relationship between wear and friction, it is expected that 

implants which offer less friction perform better
7 

and may create less
 
wear debris. The 

generation of wear debris can cause osteolytic loosening of implants; this is well known for 

hip arthroplasty
8-10

 and several studies have noted this for total disc arthroplasty.
11,12

 In hip 

implants the idea of “low friction arthroplasty” was initiated by Charnley; he designed a hip 

replacement with a metal femoral head articulating against polymer acetabular cup.
13,14 

TDAs 

have been designed with the material combination the other way round, with a polymer ball 

articulating against a metal socket. Typical examples include the Charité® Artificial Disc 

(Depuy Spine, Raynham, MA, USA) and the ProDisc-L® Total Disc Replacement (Synthes, 

West Chester, PA, USA). The material combination of hip implants has never been applied 

for ball and socket disc arthroplasty; hence, one may ask whether a similar approach to the 

Charnley hip implant (with a polymer socket and a metal ball) can benefit disc prostheses by 

means of generating less friction between the bearing surfaces. The aim of this work was to 

compare the friction between disc arthroplasty with a polymer ball/metal socket and metal 

ball/polymer socket.   
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2. Materials and Methods 

2.1 Disc design and manufacture 

Two ball-and-socket models of TDA were designed. One design had a metal socket/polymer 

ball and the other a polymer socket/metal ball. The metal in each design was Cobalt Chrome 

Molybdenum (Co-27Cr-5.5Mo-0.06C)
15

, while the polymer was Ultra High Molecular 

Weight Polyethylene (UHMWPE)
16

. In both groups two ball radii of 10 and 14 mm were 

used, with each radii having a radial clearance of 0.35 mm between the ball and socket, 

similar to the ProDisc-L® Total Disc Replacement device.
17

 The selection of the ball radii are 

based on existing designs of disc arthroplasty (Charité ®, Maverick™, ProDisc-L®) and the 

endplates were designed to fix to a spine simulator. 

 

The metal and polymer samples were manufactured by Westley Engineering Ltd. 

(Birmingham, UK).  The samples were machined from bar, using a MIKRON VCP600 and 

WS71D Machining Centres (Rottweil, Germany) and highly polished by a Black & Decker 

Bench Grinder (Berkshire, UK); for the final surface finish the grinding wheel was changed 

to a polishing mop. The manufactured discs are shown in Figure 1. Before testing, the 

specimens were washed with Virkon disinfectant (Antec International, Sudbury, UK), 

washed again with distilled water, then ultrasonically cleaned in a propan-2-ol bath 

(Scientific Laboratory Supplies, East Yorkshire, UK) and washed again with acetone (Sigma-

Aldrich, MO, USA). After being left at room temperature for 48 hours, the surface roughness 

of each sample was measured using a Taylor Hobson Form Talysurf-120L (Leicester, UK). 

The average surface roughness for the balls and sockets are shown in table 1 and were 

comparable to suggested values for metal and polymer hip implants
10,18

 as well as the in-

house measurements of the Maverick™ and the Charite® disc replacement devices, where 

the average surface roughness for metal and polymer bearing surfaces were 0.05 ± 0.001 and 
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0.80 ± 0.052 µm, respectively.  The polymer samples were soaked in distilled water and kept 

at 37° C for two weeks before the start of each test to allow for any fluid uptake to stabilise.  

 

2.2 Frictional torque 

Frictional torque tests were performed using a single station Bose SDWS-1 Spine Simulator 

(Bose Corporation, Minnesota, USA) fitted with a multi-axial load cell (Figure 2). The 

simulator has 6 degrees of freedom and enables ± 15° flexion/extension, ± 12° lateral bend, ± 

9° axial rotation and 3 kN axial load. Frictional torque was measured (with a precision of 

0.01 N.m) using an AMTI MC3-6-1000 load cell (Berkshire, England), supplied with the 

simulator, that was calibrated every 12 months. The simulator is fitted with a temperature 

controlled fluid bath. 

 

The specimens were mounted on custom-designed fixtures to allow the correct alignment 

within the simulator.  The fixtures were then placed inside the bath and mounted to the 

machine with the ball endplate connected to the base of the simulator and the socket to the 

top. The testing was guided by the standards ISO 18192-1:2008
19

 and ASTM F2423-05
20

, 

which were developed for the wear testing of disc arthroplasty. The specimens were tested in 

a solution of new born calf serum (SeraLab, West Sussex, UK) diluted with de-ionised water 

to a concentration of 30 ± 2 g protein per litre, at a controlled temperature of 37°C.
19

 Each 

specimen was tested under a constant axial compressive load of 1200 N and subjected to a 

sinusoidally varying axial rotation from 0° to 2° at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 

1.50, 1.75 and 2 Hz. Each test was carried out for 100 cycles and the frictional torque was 

measured.  The procedure was then repeated under flexion to +6°, extension to -3° and lateral 

bending to +2°. Flexion was also investigated from 0° to 2° so that a comparison could be 
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made with axial rotation and lateral bending. Each sample was tested four times in total; tests 

were not necessarily performed consecutively, to ensure reproducibility of the results.   

 

To determine the maximum torque generated in each test condition, a graph of frictional 

torque against angle was plotted for each test, using Excel software (Microsoft Office, 

Washington, USA). An average frictional torque was calculated based on the values from the 

last 10 cycles.  

 

In order to compare the effect of different material combinations and ball radii in similar 

frequencies, graphs of mean frictional torque against frequency were plotted. 

 

2.3 Statistical analysis 

To investigate significant differences between the material combinations, error bars to 

represent the 95% confidence intervals were added to the graphs of frictional torque against 

frequency. These confidence intervals represent the regions in which there is a 95% 

probability of finding the true mean value.
21 

Therefore, if there is an overlap between the two 

regions defined by the 95% confidence intervals, difference between them at the 5% level is 

not significant. 
22 

No overlap would indicate a significant difference. This method has been 

used previously to determine whether materials used for implantation have different 

mechanical properties.
23

  

 

3. Results 

The frictional torque was found to be significantly higher for a TDA with a metal 

socket/polymer ball compared with a disc with a polymer socket/metal ball for both the 10 

and 14 mm sample in axial rotation (Figure 3). At a frequency of 1 Hz (which is the 
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frequency used for wear testing disc arthroplasty, ISO 18192-1:2008) the frictional torque for 

the 10 mm radii was 1.49 N.m for the metal socket/polymer ball disc and 0.66 N.m for the 

polymer socket/metal ball disc. The 14 mm radii had frictional torque values of 2.31 N.m 

(metal socket/polymer ball) and 1.28 N.m (polymer socket/metal ball).  Similar results were 

also found for lateral bend and extension. The frictional torque in flexion (0° to 6°) was not 

found to be significantly different between the two different material combinations (Figure 

4). However, when the flexion motion was reduced to 0° to 2°, the metal socket/polymer ball 

was found to be significantly higher than the polymer socket/metal ball (Figure 5). At 1 Hz, 

the metal socket/polymer ball frictional torque was 2.34 N.m, while the polymer socket/metal 

ball was 1.39 N.m, for the 10 mm radii; values for the 14 mm radii were 3.21 N.m and 1.78 

N.m for the metal socket/polymer ball and polymer socket/metal ball, respectively.   

 

4. Discussion 

Current designs of disc arthroplasty with a ball and socket design, have a metal socket 

articulating against a polymer ball. This is the opposite way round to hip arthroplasty that 

have a polymer socket articulating against a metal ball. This study compared the friction 

between disc arthroplasty with metal socket/polymer ball and polymer socket/metal ball 

articulations. The frictional torques for metal socket/polymer ball devices were found to be 

significantly higher than frictional torques for polymer socket/metal ball devices in axial 

rotation, lateral bending and extension. A significant difference was also found in flexion, 

when the range of motion was limited from 0 to 2°. These findings have implications in the 

design of TDA, where friction should be minimised to prevent loosening and the generation 

of wear debris.
11

 Future designs of TDA may benefit from having a metal ball articulating 

against a polymer socket. This study has only investigated one aspect of mechanical testing, 

namely measuring friction. Further development and testing mechanical testing would be 
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required to fully investigate the concept, such as undertaking wear testing, to investigate if 

there were differences in the generation of wear debris between the polymer-on-metal or 

metal-on-polymer TDA. 

 

The reasons for the difference seen between TDA with a metal socket/polymer ball and a 

polymer socket/metal ball articulation are likely to be due to deformation of the polymer 

under load. For the design with a metal socket and a polymer ball, as the load is applied the 

polymer ball will deform to take up the shape of the metal socket (which has a radius of 

10.35 mm or 14.35 mm in this study). For the design with a polymer socket and a metal ball, 

as the load is applied the polymer socket will deform and take up the shape of the metal ball 

(which has a radius of 10 mm or 14 mm in this study). The radius for the metal 

socket/polymer ball combination will be larger than the polymer socket/metal ball and 

therefore the frictional torques will be higher.  The increase in radius from 10 mm to 10.35 

mm is 3.5 %, whereas there is an increase of 2.5% going from 14 mm to 14.35 mm.  

Therefore, a higher relative difference in frictional torque would be expected for the 10 mm 

radius polymer-on-metal/metal-on-polymer devices, compared with the 14 mm radius 

devices.  The results of this study are consistent with this expectation.  Although 

conventionally friction is assumed to be independent of area, it has been shown for total hip 

replacement (with a polymer socket and a metal head) that friction coefficient decreases with 

increasing contact stress.
24

 Therefore, for the metal socket/polymer ball device in this study, 

the contact stress will be low (as the radius is larger) and the friction will be higher. 

 

Regardless of the material combination, the implants with 10 mm ball radius showed lower 

frictional torque than the implant with 14 mm ball radius. This is in agreement with studies 

on polymer-on-metal hip implants.
25

 For example, Charnley designed a “low friction” hip 
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implant by reducing femoral head diameter;
13

 (similar results were observed by the authors 

on a study on metal-on-metal TDAs).
26

 

 

5. Conclusions 

TDA with a combination of a polymer socket/metal ball has lower friction than conventional 

total disc arthroplasty that have a metal socket/polymer ball. This finding has implications in 

the design of TDA since future designs may benefit from this material combination.  
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Table 1. Average surface roughness of the samples from 6 measurements   

Testing 

group 

Ball radius 

(mm) 

material specimen Average roughness Sa 

(µm) 

± standard deviation  

A 10 UHMWPE ball 1.04 ± 0.010 

A 10 CoCr socket 0.05 ± 0.003 

A 14 UHMWPE ball 1.05 ± 0.010 

A 14 CoCr socket 0.05 ± 0.001 

B 10 CoCr ball 0.05 ± 0.001 

B 10 UHMWPE socket 0.94 ± 0.075 

B 14 CoCr ball 0.05 ± 0.002 

B 14 UHMWPE socket 0.96 ± 0.006 
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Figures 

 

Figure 1. The generic model with polymer socket (top right) on metal ball (top left), and 

metal socket (bottom left) on polymer ball (bottom right) with 10 mm ball radius  

 

 

Figure 2. Bose Spine Simulator 
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Figure 3. Mean frictional torque plotted against frequency, in axial rotation, for the samples 

with 10 mm ball radius in polymer socket/metal ball () and metal socket/polymer ball () 

combination, and samples with 14 mm ball radius in polymer socket/metal ball () and metal 

socket/polymer ball () combination. Error bars represent 95% confidence intervals 
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Figure 4. Mean frictional torque plotted against frequency, in flexion between 0° to 6°, for 

the samples with 10 mm ball radius in polymer socket/metal ball () and metal 

socket/polymer ball () combination, and samples with 14 mm ball radius in polymer 

socket/metal ball () and metal socket/polymer ball () combination. Error bars represent 

95% confidence intervals  
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Figure 5. Mean frictional torque plotted against frequency, in flexion between 0° to 2°, for 

the samples with 10 mm ball radius in polymer socket/metal ball () and metal 

socket/polymer ball () combination, and samples with 14 mm ball radius in polymer 

socket/metal ball () and metal socket/polymer ball () combination. Error bars represent 

95% confidence intervals  

 

 


