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Holant clones and the approximability of conservative holant

problems

Miriam Backens Leslie Ann Goldberg

6 January 2020

Abstract

We construct a theory of holant clones to capture the notion of expressibility in the
holant framework. Their role is analogous to the role played by functional clones in the
study of weighted counting Constraint Satisfaction Problems. We explore the landscape
of conservative holant clones and determine the situations in which a set F of functions is
“universal in the conservative case”, which means that all functions are contained in the
holant clone generated by F together with all unary functions. When F is not universal
in the conservative case, we give concise generating sets for the clone. We demonstrate
the usefulness of the holant clone theory by using it to give a complete complexity-theory
classification for the problem of approximating the solution to conservative holant problems.
We show that approximation is intractable exactly when F is universal in the conservative
case.

1 Introduction

A computational counting problem is typically defined with respect to a graph. A configuration
is an assignment of “spins” to the vertices or edges of this graph. Each configuration has a
weight, which is obtained by assigning local weights to small (constant-sized) sub-configurations,
and taking the product of these local weights. The goal is to compute or to approximate the
partition function, which is the sum of the weights of all configurations. Here are three well-
known examples of computational counting problems.

The Ising Model: This statistical-physics model has a parameter λ which is a function of the
temperature and the strength of edge interactions. Each assignment assigns a spin from
{−1,+1} to each vertex of the given graph G = (V,E). Each edge provides a local weight
which is λ if its endpoints have the same spin, and 1 otherwise. Thus, the partition
function is

∑
σ : V→{−1,+1} λ

m(σ), where m(σ) is the number of monochromatic edges in
configuration σ.

The Ising Model with Local Fields: The configurations are the same as those of the Ising model,
but, in addition to the local weights already described, each vertex v provides a local
weight which is some value µv if the spin of v is +1, and is 1 otherwise. Thus, the
partition function is

∑
σ : V→{−1,+1} λ

m(σ)
∏
v∈V : σ(v)=+1 µv.

The Monomer-Dimer Model: The model has a parameter γ. Again, there are two spins – we
will call them 0 and 1. This time, a configuration assigns a spin to each edge of the given
graph G = (V,E). Each vertex v provides a local weight, which is defined as follows.

• If no edges adjacent to v have spin 1, it provides weight 1.

• If one edge adjacent to v has spin 1, it provides weight γ1/2.

• If more than one edge adjacent to v has spin 1, it provides weight 0.
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Suppose, for some subset M of E, that a configuration assigns spin 1 to edges in M and
spin 0 to edges in E \M . The weight of the configuration is γ|M | if M is a matching of G
and 0 otherwise. The partition function is therefore

∑
M γ|M |, where the sum is over all

matchings of G.

All three of these examples have their own literature. However, in this paper we will be
most interested in their roles as representatives of broad classes of counting problems. The Ising
Model (with or without local fields) is an example of a problem in a class of problems called
weighted counting Constraint Satisfaction Problems (CSPs). The Monomer-Dimer model is an
example of a related class of problems called holant problems. Although this paper will be
most concerned with holant problems, it will be useful to define counting CSPs so that we can
explain the research agenda in this area, the techniques, and ultimately, our contributions.

A counting CSP is parameterised by a finite set F of functions over some domain D. An
input to the problem consists of a set V of variables and a set C of constraints. Each constraint c
consists of a function fc ∈ F with some arity arity(fc) and a “scope”, which is just a tuple of
arity(fc) variables, so vc ∈ V arity(fc). An assignment x : V → D induces a weight

∏
c∈C fc(x|c),

where x|c denotes the restriction of the assignment x to the scope of c. The relevant computation
problem is defined as follows.

Name #CSP(F)
Instance A tuple (V,C), where V is a finite set of variables and C is a finite set of constraints

over F .
Output The value

∑
x:V→{0,1}

∏
c∈C fc(x|c).

Given the definition of #CSP(F), it is easy to see that the Ising model corresponds to the
case where D = {−1,+1}, f is the binary function over D which is λ if its arguments are the
same and 1 otherwise, and F = {f}. In the case of the Ising model with local fields, F has
additional unary functions uµ such that uµ(+1) = µ and uµ(−1) = 1.

An important research direction is to try to determine for which sets F the problem
#CSP(F) is tractable. Building on and generalising quite a bit of research [21, 9, 23, 13,
20, 10, 7, 22], the exact-computation version of this problem was finally completely solved by
Cai and Chen [12]. They gave three conditions for tractability. Their theorem applies to any
finite set F of algebraic complex-valued functions defined on an arbitrary finite domain D.
They show that #CSP(F) is solvable in polynomial time if all three conditions are satisfied,
and #P-hard otherwise. This type of theorem is called a dichotomy theorem because of the
dichotomy that it provides between polynomial-time solvability and #P-hardness.

Much less is known about the approximation version of #CSP(F). Although a trichotomy
is known in the Boolean relational case, where the domain is Boolean and the functions in F
are 0-1 valued [19], the only general classifications that do not restrict the range of functions in
F in this way are in the so-called “conservative” case, where we consider all finite subsets of the
set of functions containing F and all unary functions. We will be working in the conservative
case in this paper. The conservative case has also been studied in the context of decision
and optimisation CSPs [6, 25]. Building on and generalising work in the Boolean case [8], the
following dichotomy theorem was given in [16]. It applies to any set F of algebraic functions
with non-negative rational values defined on an arbitrary finite domain D as long as F contains
all unary functions.

• If a certain condition is satisfied, then for any finite G ⊂ F , #CSP(G) can be (exactly)
solved in polynomial time.

• Otherwise, there is a finite G ⊂ F such that even approximating the output of #CSP(G)
is intractable, in the sense that it is #BIS-hard.
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The problem #BIS is a canonical approximate counting problem which is not believed to have
an efficient approximation algorithm. We will not need it further in this paper, so we do not give
the details here – the interested reader is referred to [16]. The Ising model with local fields is an
example where the set F is conservative (since it contains every possible local vertex weight).
Thus, the result of [16] includes as a special case the fact that approximating the partition
function of the Ising Model with Local Fields is #BIS-hard [24].

The important thing, from our point of view, is the methods that were used to derive the
result of [16]. An important idea in the study of decision CSPs was the notion of a relational
clone [17]. The idea is that, if you want to understand the complexity of the decision analogue of
#CSP(F), the right thing to do is to characterise the set of functions that can be “expressed”
by F – and the right tools for this (in the decision context) are relational clones, which are
the sets of relations expressible using certain kinds of formulas called pp-formulas. Informally,
relational clones formalise the notion of “gadgets” in reductions. The first proposal for extend-
ing pp-formulas to the setting of (Boolean) weighted counting CSPs is the T-constructibility
notion of Yamakami [30]. In [8] it was discovered that a more close-fitting formulation for
studying Boolean weighted counting CSPs in the setting of approximation and approximation-
preserving reductions is the notion of “ppsω-definability”. Just as pp-definability is closely
related to polynomial-time reductions between decision CSPs, the authors of [8] showed that
ppsω-definability with its corresponding functional clones captures approximation-preserving
reductions between weighted counting CSPs. The paper [8] explored the space of functional
clones in the Boolean case, and used this to partly classify the complexity of the approxima-
tion version of #CSP(F) in the Boolean conservative case. These functional clones were again
used in [16] (along with other key ideas from optimisation CSPs) to derive the more general
classification.

In this paper, we will be concerned primarily with problems such as the Monomer-Dimer
model, which cannot be captured using the weighted counting CSP framework. As is well known,
it can be captured in the holant framework. To see this, let us first consider the problem of
expressing the Monomer-Dimer Model in the weighted counting CSP framework. Clearly, the
domain is D = {0, 1} and the variables are the edges of the graph, since these are assigned the
spins. For each possible vertex degree d, we would like to include a constraint function fd which
has value 1 if all of its arguments are 0, has value γ1/2 if exactly one of its arguments is 1, and
has value 0 otherwise. For some degree bound ∆, let F be the collection of F = {f1, . . . , f∆} of
these constraint functions. However, it is easy to see that the Monomer-Dimer Model on graphs
of degree at most ∆ is not the same as the problem #CSP(F) because each edge appears
in exactly two constraints in the Monomer-Dimer Model, but the #CSP(F) problem has no
such restriction. Indeed, the Monomer-Dimer Model on bounded-degree graphs is the same as
the #CSP(F) problem with the additional restriction that every variable appears in exactly
two constraints. The holant framework is equivalent to the counting CSP framework with this
restriction.

Here is a more convenient definition of the holant framework (see [11] for much more detail
and discussion). Since we will work within the Boolean domain, we restrict attention to this
domain from now on. A signature grid Ω = (G,F , σ) over some set of functions F consists of
a finite (multi-)graph G = (V,E) and a map σ which assigns to each vertex v ∈ V a function
σ(v) = fv ∈ F such that the arity of fv is equal to the degree of v. One should think ofG as being
the graph associated with the counting problem. The two spins are 0 and 1. Configurations
assign spins to the edges of G. The value σ(v) gives the function fv which will provide the local
weight at vertex v. The map σ also determines which edge incident on v corresponds to which
input of fv. Thus, a configuration is an assignment x : E → {0, 1} of Boolean values to the
edges of G and this induces a weight wx =

∏
v∈V fv(x|E(v)), where x|E(v) is the restriction of x

to the edges incident on v (ordered according to their correspondence with the inputs of fv).
The partition function, or holant of Ω, denoted ZΩ, is the sum of wx over all assignments
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of values x to the edges:

ZΩ =
∑

x:E→{0,1}

∏
v∈V

fv(x|E(v)).

In the Monomer-Dimer model, the function fv has value 1 if all of its arguments are 0, value γ1/2

if exactly one of its arguments is 1 and value 0 otherwise.
First contribution: The first contribution of this paper is to develop a theory of holant

clones. Just as the functional clone theory captures expressibility in the weighted CSP frame-
work, the new theory of holant clones captures expressibility in the holant framework. As the
reader will see, the theory differs substantially from the theory of functional clones for weighted
counting CSP. The difference arises partly because of the crucial role of holographic transforma-
tions in holant problems, partly because of the different kind of summation over variables that
turns out to be relevant, and partly because of the key role of the bipartite case. In general, the
holant clone generated by a given set of functions is a subset of the functional clone generated
by the same set. However (see Corollary 20), as would be expected, if the ternary equality
function is contained in a particular holant clone, then the two clones are the same. Section 4
explores the connection between certain polynomial-time reductions between holant problems
and holant clones.

Second contribution: Our second contribution is to explore the landscape of conser-
vative holant clones. In order to describe this, we need some notation. Let A be the set of
algebraic complex numbers. For each non-negative integer k, let Υk be the set of all functions
{0, 1}k → A. Finally, let Υ =

⋃
k∈N Υk be the set of all algebraic-complex valued functions of

Boolean variables. For consistency with the literature, we also use U = Υ1 to denote the set
of unary functions. We use 〈F〉h to denote the holant clone generated by a set F (this will be
defined in Section 3.2). We say that F is universal in the conservative case if 〈F ∪ U〉h = Υ.
We can now give an informal description of our theorem.

Theorem 1 (Informal statement of Theorem 67). Suppose that F is a subset of Υ. Unless F
satisfies one of four (explicit) conditions, it is universal in the conservative case.

If F is not universal in the conservative case, then we also give a concise generating set for
〈F ∪ U〉h (see Lemmas 46 and 47).

Third contribution: Our third contribution is to use our theory of holant clones to
completely classify the approximation version of the Boolean conservative holant problem. Be-
fore describing this contribution, we discuss the relevant literature. Given any finite set F ⊆ Υ,
the holant problem is defined as follows.

Name Holant(F)
Instance A signature grid Ω = (G,F , σ).
Output ZΩ.

A complete dichotomy for the exact version of Holant(F) is not known, but such a di-
chotomy has been discovered (between tractable and #P-hard) in the Boolean conservative
case [15]. Their precise dichotomy is stated as Theorem 50 of this paper – it turns out that
the exact problem is tractable exactly when F fails to be universal in the conservative case.
Note that the result of [15] has been improved by one of the authors [2], who has weakened the
“conservativity” assumption – requiring only certain unary “pinning” functions to be in F . In a
different direction, progress was made by Lin and Wang, who drop the conservativity restriction
entirely, though their classification applies only to non-negative real-valued functions [27]. See
[11] for other progress which avoids restricting to the Boolean domain, or to the conservative
case, by considering other restrictions such as symmetry.

In the (Boolean) holant framework, as in the counting CSP framework, much less is known
about the complexity of approximating the partition function. The main result that is known
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is a theorem of Yamakami [31, Theorem 3.5], which shows that, for every ternary function f in
a certain class, which he calls SIG1, one of the following is true (depending on f):

• for any finite F containing f and unary functions, Holant(F) is tractable, or

• there exists a finite set S of unary functions such that a certain complex-valued satisfia-
bility problem reduces in polynomial time to Holant(S ∪ {f}).

We use our holant clone theory in order to develop the following complete approximation
classification for conservative Boolean holant problems.

Theorem 2 (Informal statement of Theorem 68). Suppose that F is a finite subset of Υ.

• If F satisfies one of the four conditions of Theorem 67 then, by the result of [15], for any
finite subset S ⊆ U , the problem Holant(F ∪ S) is solvable exactly in polynomial time.

• Otherwise, [15] shows that there exists a finite subset S ⊆ U such that Holant(F ∪ S)
is #P-hard. We show that there is a finite subset S ⊆ U such that even approximating
the norm of the output of Holant(F ∪ S) within a factor of 1.01 is #P-hard and so is
approximating the argument of the output of Holant(F ∪ S) within an additive ±π/3.

Our Theorem 2 extends Yamakami’s partial classification in two ways: First, it applies to
all conservative sets of functions (instead of to sets of functions containing a single ternary
function from SIG1, along with unary functions). Second, the hardness that we obtain is
#P-hardness, meaning that an approximate solution to the holant problem would allow some
#P-hard problem to be solved exactly. This is in contrast to hardness based on a reduction
from a particular satisfiability problem.

As [4] explains in a different context, the exact number “1.01” in the statement of Theorem 2
is not important. For any ε > 0, the theorem may be combined with a standard powering
argument to show that it is #P-hard to approximate |ZΩ| within a factor of 2n

1−ε
. The “π/3”

can also be improved, though it cannot be improved by adding an arbitrary constant, since
HolantArg(F ; 2π) is a trivial problem for any F .

2 Preliminaries

Recall from the introduction that A is the set of algebraic complex numbers. For each non-
negative integer k, we denote by Υk the set of all functions {0, 1}k → A. The set of all
algebraic-complex valued functions of Boolean variables is Υ :=

⋃
k∈N Υk. We often identify the

set of nullary functions, Υ0, with A. Given a function f ∈ Υk, we use arity(f) to denote the
arity of f . If arity(f) = k, then we refer to f as a “k-ary function”.

Given any positive integer n, let [n] := {1, . . . , n}. Given any k-ary function f and any
permutation π : [k]→ [k], let fπ(x1, . . . , xk) := f(xπ(1), . . . , xπ(k)).

Definition 3. Suppose that f is a k-ary function and g is an `-ary function with k, ` ≥ 1, then
the tensor product of f and g is the (k + `)-ary function

h(x1, . . . , xk+`) = f(x1, . . . , xk)g(xk+1, . . . , xk+`).

This definition can be extended straightforwardly to tensor products of more than two functions.

A function h′ of arity k ≥ 2 is decomposable as a tensor product if there exists some permu-
tation π : [k]→ [k] such that h′π is a tensor product. We say that a function of arity at least 2
is degenerate if it is a tensor product of unary functions. Borrowing terminology from quantum
theory, a function of arity at least 2 is called entangled if it is not decomposable as a tensor
product.
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A function is symmetric if it depends only on the Hamming weight of its input, i.e. its value
is invariant under any permutation of the arguments. If f is a k-ary symmetric function, we
write f = [f0, f1, . . . , fk], where fj is the value that f takes on inputs of Hamming weight j.

Observation 4. Any symmetric function of arity at least 2 is either degenerate or entangled.

A binary function g is sometimes written as a 2 by 2 matrix

g =

(
g(0, 0) g(0, 1)
g(1, 0) g(1, 1)

)
.

This matrix is invertible if and only if g is non-degenerate, i.e. g is not a tensor product of unary
functions.

Denote by EQk the k-ary equality function defined as EQk = [1, 0, . . . , 0, 1] with (k−1) zeroes
in the list. In other words, EQ1 is the constant-1 function and for k > 1, EQk is the function
that is 1 if all inputs are equal and 0 otherwise. The binary disequality function is denoted by
NEQ, i.e. NEQ = [0, 1, 0] and the binary NAND function is NAND = [1, 1, 0]. The function
ONEk is the function that is 0 except on inputs of Hamming weight 1, i.e. ONEk = [0, 1, 0, . . . , 0]
with (k − 1) zeroes at the end. Note that this function is sometimes given different names in
other papers.

2.1 Boolean holant problems

Recall from the Introduction that a signature grid Ω = (G,F , σ) over some set of functions
F ⊆ Υ consists of a finite multigraph G = (V,E) and a map σ which assigns to each vertex
v ∈ V a function σ(v) = fv ∈ F such that the arity of fv is equal to the degree of v inG. The map
σ also determines which edge incident on v corresponds to which input of fv. Any assignment
x : E → {0, 1} of Boolean values to the edges induces a weight wx =

∏
v∈V fv(x|E(v)), where

x|E(v) is the restriction of x to the edges incident on v (ordered according to their correspondence
with the inputs of fv). The holant of Ω, denoted ZΩ, is ZΩ =

∑
x:E→{0,1}

∏
v∈V fv(x|E(v)). The

holant problem for a finite set of functions F is defined as follows.

Name Holant(F)
Instance A signature grid Ω = (G,F , σ).
Output ZΩ.

Remark. Although we study infinite sets F for the purpose of defining holant clones, we
restrict the definition of the computational problem Holant(F) to situations in which the set F
is finite. The reason that we do this is to avoid issues about how to represent the functions in
the computational input. This is typical in the CSP literature and also in some of the holant
literature. When infinite sets F are allowed, it is common to use the notation Holant∗(F) to
refer to the conservative holant problem; this notation implies that all unary functions are added
to the set F . Since we have restricted the computational problem to finite sets, we instead treat
the conservative case by quantifying over finite subsets S of F , as in the statement of Theorem 2.

In order to analyse the complexity of approximately solving holant problems, we define
two additional computational problems in the style of [4]. For any complex number c ∈ C,
denote by Arg(c) the principal value of the argument of c in the range [0, 2π) and let arg(c) :=
{Arg(c) + 2kπ | k ∈ Z}. The first of the approximation problems is parameterised by a real
number κ ≥ 1, and the second by ρ ∈ [0, 2π).

Name HolantNorm(F ;κ)
Instance A signature grid Ω = (G,F , σ).
Output If |ZΩ| = 0 then the algorithm may output any rational number. Otherwise it must

output a rational number N̂ such that N̂/κ ≤ |ZΩ| ≤ κN̂ .
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Name HolantArg(F ; ρ)
Instance A signature grid Ω = (G,F , σ).
Output If |ZΩ| = 0 then the algorithm may output any rational number. Otherwise it must

output a rational number Â such that for some a ∈ arg(ZΩ), |Â− a| ≤ ρ.

Given two computational problems A and B (in this paper, these will be computational
counting problems), we write A ≤PT B to denote the fact that there exists a polynomial-time
Turing reduction from A to B. If A ≤PT B and B ≤PT A, we write A ≡PT B and say that the
two problems are inter-reducible.

Suppose that F1, . . . ,Fn are finite sets of functions and that g1, . . . , gm are functions. Where
no confusion is likely to arise, we often use the shorthand F1, . . . ,Fn, g1, . . . , gm to mean F1∪. . .∪
Fn∪{g1, . . . , gm}, so, for example, Holant(F1, . . . ,Fn, g1, . . . , gm) is a shorthand for Holant(F1∪
. . . ∪ Fn ∪ {g1, . . . , gm}).

2.2 Holographic transformations and holant problems on bipartite graphs

Holographic transformations are an important technique for analysing holant problems and
for proving reductions – indeed, they are the origin of the name “holant”. To define these
transformations, the following fact will be useful: The functions of arity n are in bijection with
vectors in A2n by mapping each function f to the vector of its values, f .

Denote by ⊗ the Kronecker product of matrices and let GL2(A) be the group of invertible
2 by 2 matrices over A.

Remark. Under the above bijection between functions and vectors, and considering vectors as
single-column matrices, the tensor product of functions (cf. Definition 3) corresponds exactly
to the Kronecker product: the function h is the tensor product of functions f and g if and only
if h = f ⊗ g.

Definition 5. Suppose M ∈ GL2(A) and suppose f is an n-ary function. Define M⊗1 := M
and M⊗k+1 := M⊗k ⊗M for any positive integer k. If n = 0, set M ◦ f := f , otherwise define
M ◦f to be the function whose values correspond to the vector M⊗nf : this is called a holographic
transformation of f by M . For any set of functions F , let M ◦ F := {M ◦ f | f ∈ F}.

Example 6. Suppose M =
(

1 i
1 −i

)
and f = EQ2. Then

M⊗2f =

((
1 i
1 −i

)
⊗
(

1 i
1 −i

))
1
0
0
1

 =


1 i i −1
1 −i i 1
1 i −i 1
1 −i −i −1




1
0
0
1

 =


0
2
2
0

 ,

so (M ◦ f)(x, y) = 2 ·NEQ(x, y).

Denote by O the set of 2 by 2 orthogonal matrices over A; these will often be used in
holographic transformations. Let X = ( 0 1

1 0 ) and let I = ( 1 0
0 1 ). The following two matrices

(which are sometimes given different names in other papers) will also play a special role when
it comes to holographic transformations:

K1 =
1√
2

(
1 1
i −i

)
and K2 =

1√
2

(
1 1
−i i

)
.

Observation 7. The two matrices differ by a bit flip:

K1X =
1√
2

(
1 1
i −i

)(
0 1
1 0

)
=

1√
2

(
1 1
−i i

)
= K2.
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Furthermore,

KT
1 K1 =

1√
2

(
1 i
1 −i

)
1√
2

(
1 1
i −i

)
=

(
0 1
1 0

)
=

1√
2

(
1 −i
1 i

)
1√
2

(
1 1
−i i

)
= KT

2 K2.

so K−1
1 = XKT

1 and K−1
2 = XKT

2 .

Definition 8. Let F ,G be two finite sets of functions and suppose G = (V,W,E) is a bipartite
graph with vertex sets V and W . The bipartite signature grid Ω = (G,F | G, σ) is a signature
grid in which each vertex in V is assigned a function in F and each vertex in W is assigned a
function in G.

The corresponding bipartite holant problem is denoted Holant(F | G), and similarly we
define HolantNorm(F | G;κ) and HolantArg(F | G; ρ).

3 Holant gadgets, functional clones, and holant clones

We have noted in the Introduction that the theory of relational clones and the theory of func-
tional clones have been useful for analysing the complexity of decision CSPs and counting CSPs
[17, 8, 16, 5, 3]. We adapt these theories to the holant setting as a way of formalising the notion
of realisability by gadgets or F-gates.

A gadget over the set of functions F , or F-gate [11] is defined by a signature grid over a
finite multigraph with some “dangling edges”. Formally, a multigraph with dangling edges is a
tuple G = (V,E,E′) where V are the vertices, E are the internal edges, and E′ are the dangling
edges. An internal edge is an ordinary undirected edge, i.e. an unordered pair of vertices. A
dangling edge consists of a single vertex, the other endpoint of the edge is undetermined.

The holant corresponding to such a gadget is a function of the assignments to the dangling
edges, this is the function realised by the gadget. To formalise this, suppose |E′| = k and choose
some ordering e1, . . . , ek of the dangling edges. Let x1, . . . , xk ∈ {0, 1} be some assignment of
Boolean values to the dangling edges and suppose y : E → {0, 1} is an assignment of values to
the internal edges. Define y′ to be the extension of y to the domain E∪E′ satisfying y′(ej) = xj
for all ej ∈ E′. Then the gadget Γ = (G,F , σ) defines the function gΓ : {0, 1}k → A given by

gΓ(x1, . . . , xk) =
∑

y:E→{0,1}

∏
v∈V

gv(y
′|E(v)), (1)

where y′|E(v) is the restriction of y′ to the edges (both internal and dangling) which are incident
on the vertex v, in order of their correspondence to the arguments of σ(v) = fv. A function f
is said to be realisable over F if there exists a gadget Γ using only functions from F such that
f = gΓ.

To formalise this notion of realisability, we first recap the definition of functional clones
(which formalise the equivalent notion of realisability in counting CSPs) and then adapt this
definition to the holant setting.

3.1 Functional clones

Most of the material in this section is taken from [3] and reproduced here for completeness.
Let F ⊆ Υ be a set of functions and V = {v1, . . . , vn} a set of variables. An atomic

formula ϕ = g(vi1 , . . . , vik) consists of a function g ∈ F and a scope (vi1 , . . . , vik) ∈ V k, where
k = arity(g). The scope may contain repeated variables. Given an assignment x : V → {0, 1},
the atomic formula ϕ specifies the function1 fϕ : {0, 1}k → A given by

fϕ(x|ϕ) = g(xi1 , . . . , xik),

1The definition of the function specified by an atomic formula has been modified slightly so as to be better
compatible with the definition of holant clones in the next section. This change has no effect on the definition of
functional clones (Definition 10), however note the remark after Lemma 11.
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where x|ϕ is the application of x to the scope of ϕ, and xj = x(vj) for all j ∈ [n].

Definition 9. A primitive product summation formula (pps-formula) in variables V over F has
the form

ψ =
∑

vn+1,...,vn+m

s∏
j=1

ϕj ,

where ϕj are all atomic formulas over F in the variables V ′ = {v1, . . . , vn+m}. The variables in
V are called free variables, those in V ′ \ V are called bound variables.

The pps-formula ψ represents a function fψ : {0, 1}n → A given by

fψ(x) =
∑

y∈{0,1}m

s∏
j=1

fϕj (x,y|ϕj ), (2)

where x is an assignment V → {0, 1}, y is an assignment V ′ \ V → {0, 1}, and x,y|ϕj is the
application of those assignments to the variables appearing in the scope of ϕj . If f is represented
by some pps-formula ψ over F , it is said to be pps-definable over F .

Definition 10 ([8]). The functional clone generated by F is the set of all functions in Υ that
can be represented by a pps-formula over F ∪ {EQ2}. It is denoted by 〈F〉.

There is a another perspective on functional clones [5]. In the following, let f ∈ Υk. We say a
(k+1)-ary function h arises from f by introduction of a fictitious argument if h(x1, . . . , xk+1) =
f(x1, . . . , xk) for all x1, . . . , xk ∈ {0, 1}. Let g ∈ Υk, then the product of f and g is the function
h satisfying h(x1, . . . , xk) = f(x1, . . . , xk)g(x1, . . . , xk). The function h resulting from f by a
permutation of the arguments π : [k]→ [k] is h(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)). Furthermore, a
(k− 1)-ary function h arises from f by summation if h(x1, . . . , xk−1) =

∑
xk∈{0,1} f(x1, . . . , xk).

Lemma 11 ([5, Section 1.1]). For any F ⊆ Υ, 〈F〉 is the closure of F ∪ {EQ2} under intro-
duction of fictitious arguments, product, permutation of arguments, and summation.

Remark. The proof of Lemma 11 has to be modified slightly to take into account the different
definition of the function defined by an atomic formula. The only change is the following:
the function arising from f ∈ Υk by introduction of a fictitious argument can no longer be
represented by simply adding a free variable to the pps-formula; instead it is now represented
as ∑

y∈{0,1}

f(x1, . . . , xk)EQ2(xk+1, y). (3)

Indeed, if f is represented by a pps-formula over F according to our definition, then f is
represented by the same pps-formula according to the definition from [8]. On the other hand,
if f is represented by a pps-formula using the original definition, there are two cases:

• If every free variable appears in the scope of some atomic formula, then f is represented
by the same pps-formula using our definition.

• If there exist some free variables which do not appear in the scope of any atomic formula,
then f is represented under our definition by a pps-formula that is modified as in (3):
for each free variable v that does not occur in the scope of any atomic formula in the
original pps-formula, we introduce a new atomic formula EQ2(v, v′) where v′ is a new
bound variable that does not occur anywhere else in the pps-formula.

Hence the two definitions yield the same sets of functions.
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3.2 Holant clones and their properties

Functional clones play an important role in the analysis of counting CSPs. We now introduce
the notion of holant clones, which do the same for holant problems.2

Define the multiplicity mϕ(v) of a variable v ∈ V in an atomic formula ϕ to be the number
of times that v appears in the scope of ϕ. Define the multiplicity mψ(v) of v in the pps-formula
ψ as mψ(v) :=

∑s
j=1mϕj (v), where the sum is over all atomic formulas of ψ. We say ψ is a

ppsh-formula if mψ(v) = 1 for all v ∈ V and mψ(v) = 2 for all v ∈ V ′ \ V . In other words, ψ is
a ppsh-formula if every free variable appears exactly once in the scope of some atomic formula
and every bound variable appears exactly twice in the scope of some atomic formulas.

Definition 12. The holant clone generated by F ⊆ Υ is the set of all functions that can be
represented by a ppsh-formula over F . It is denoted 〈F〉h.

In this paper, we have restricted functions to the set Υ, where the domain is Boolean. How-
ever, the definition of functional clone and holant clone can be extended naturally to functions
with other domains. The following lemma relates holant clones to holant gadgets.

Lemma 13. Suppose F ⊆ Υ is a set of functions and f ∈ Υ is a function. Then f can be
realised by a holant gadget over F if and only if f ∈ 〈F〉h.

Proof. Suppose f ∈ 〈F〉h has arity n. There exists a ppsh-formula ψ =
∑

vn+1,...,vn+m

∏s
j=1 ϕj

such that

f(x) = fψ(x) =
∑

y∈{0,1}m

s∏
j=1

gj(x,y|ϕj ),

where gj is the function appearing in the atomic formula ϕj . Suppose V ′ = {v1, . . . , vn+m} is
the full set of variables of ψ and V = {v1, . . . , vn} is the set of free variables of ψ.

Let G = (W,E,E′) be the multigraph with dangling edges defined as follows:

• W = [s],

• for each bound variable v ∈ V ′ \ V appearing in the scopes of atomic formulas ϕj and ϕ`
(where j may be equal to `), there is an internal edge {j, `} in E, and

• for each free variable w ∈ V appearing in the scope of the atomic formula ϕj , there is a
dangling edge {j} in E′.

The map from bound variables to internal edges and the map from free variables to dangling
edges are well-defined since each bound variable has multiplicity 2 and each free variable has
multiplicity 1. Let Ω = (G,F , σ), where σ : W → F is the function that maps j to gj . Then
f = gΩ, so f is realisable by a holant gadget.

Conversely, suppose f is realised by some holant gadget Ω = (G,F , σ). By comparing (1)
and (2) it is straightforward to see that there exists some pps-formula representing f , where the
bound variables correspond to the internal edges of the gadget and the free variables correspond
to the dangling edges. Now, each bound variable of the pps-formula has multiplicity 2 since it
corresponds to an internal edge in the gadget, which has two endpoints. Similarly, each free
variable of the pps-formula has multiplicity 1 since it corresponds to a dangling edge in the
gadget, which has only one defined endpoint. Therefore the pps-formula is actually a ppsh-
formula, and f ∈ 〈F〉h.

2In the CSP context, it was useful to define both functional clones and also more complicated objects called
ppsω-definable functional clones [8]. Similarly, we could define two versions of holant clones here, one with a limit
operation. We do not do so because our main complexity theorem, Theorem 68, goes through even without this
refinement.
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As for functional clones, there is an alternative definition of holant clones as the closure
of the generating set of functions under certain operations. Suppose f ∈ Υk and g ∈ Υ`.
Recall from Section 2 that the tensor product of f and g is the (k+ `)-ary function h satisfying
h(x1, . . . , xk+`) = f(x1, . . . , xk)g(xk+1, . . . , xk+`). A (k − 2)-ary function h arises from f by
contraction if h(x1, . . . , xk−2) =

∑
y∈{0,1} f(x1, . . . , xk−2, y, y).

It will be useful to first consider the operation of taking tensor products in more detail.
We say a pps-formula ψ is a pph-formula if mψ(v) = 1 for all v ∈ V and V ′ = V : i.e. ψ is a
ppsh-formula with no bound variables. For any F ⊆ Υ, let C (F) denote the set of all functions
that can be represented by a pph-formula over F .

Lemma 14. Suppose F ⊆ Υ, then C (F) is the closure of F under tensor product and permu-
tation of arguments.

Proof. We first show that C (F) is closed under the two operations. Suppose f, g ∈ C (F) where
arity(f) = k and arity(g) = `. Then there exist some pph-formula ψf over F in variables Vf
which represents f , and some pph-formula ψg over F in variables Vg which represents g, where

ψf =

sf∏
p=1

ϕp and ψg =

sg∏
q=1

θq.

Without loss of generality, assume the sets of variables Vf and Vg are disjoint.

• Tensor product: suppose h(x1, . . . , xk+`) = f(x1, . . . , xk)g(xk+1, . . . , xk+`). Consider the
expression

ψfψg =

 sf∏
p=1

ϕp

 sg∏
q=1

θq

 .

The right-hand side is a valid pph-formula with free variables Vf ∪ Vg; the multiplicities
are unchanged since Vf and Vg are disjoint. This pph-formula represents h.

• Permutation of arguments: suppose π : [k] → [k] is a permutation and h(x1, . . . , xk) =
f(xπ(1), . . . , xπ(k)). Then ψf can be transformed into a pph-formula for h by permuting
the variables in the scope of each atomic formula.

This concludes the proof that C (F) is closed under tensor product and permutation of argu-
ments.

To complete the argument, suppose f ∈ C (F) is represented by a pph-formula ψf =∏s
j=1 ϕj , where gj ∈ F is the function in the atomic formula ϕj . As ψf is a pph-formula,

the scopes of the different atomic formulas are disjoint and no variable appears more than once.
Now, for any assignment x : Vf → {0, 1}, denote by x|ϕj the application of x to the scope of ϕj .
Then f(x) =

∏s
j=1 gj(x|ϕj ) is decomposable as a tensor product: i.e. f arises from F by tensor

product and permutation of arguments. This implies that C (F) is contained in the closure of
F under tensor product and permutation of arguments.

But C (F) is closed under these operations and it contains F , so it must itself be the closure
of F under tensor product and permutation of arguments.

Lemma 15. For any set of functions F ⊆ Υ, the set 〈F〉h is the closure of C (F) under
contraction.

Proof. First we show that every ppsh-formula arises from some pph-formula by contraction:
consider the ppsh-formula ψf over F in variables V ′f with free variables Vf , where

ψf =
∑

v∈V ′f\Vf

sf∏
p=1

ϕp.

11



Suppose Vf = {v1, . . . , vn} and V ′f = {v1, . . . , vn+m}, and let Vg := Vf ∪ {w1, . . . , w2m}, where
the wk are new variables. Define ψg to be the ppsh-formula in variables Vg that arises from ψf
by

• for k ∈ [m], replacing one occurrence of the bound variable vn+k with w2k−1, replacing
the other occurrence of vn+k with w2k, and

• dropping the sums.

Then ψg is a pph-formula; so it represents a function g ∈ C (F). Furthermore, f arises from g
via m contractions. Thus, 〈F〉h is in the closure of C (F) under contraction.

Additionally, every pph-formula is a ppsh-formula, therefore C (F) ⊆ 〈F〉h. Thus it only
remains to show that 〈F〉h is closed under contraction. Suppose f ∈ 〈F〉h where arity(f) = k.
Then there exist some ppsh-formula ψf over F in variables Vf which represents f , where

ψf =
∑

v∈V ′f\Vf

sf∏
p=1

ϕp.

Let h(x1, . . . , xk−2) =
∑

y∈{0,1} f(x1, . . . , xk−2, y, y). Suppose Vf = {v1, . . . , vn} and V ′f =
{v1, . . . , vn+m}, then Vh = {v1, . . . , vn−2} and

V ′h = (V ′f ∪ {w}) \ {vn−1, vn} = {v1, . . . , vn−2, vn+1, . . . , vn+m, w},

where w /∈ V ′f is a new variable. For each atomic formula ϕp in ψf , let ϕ′p be the atomic formula
that is equal to ϕp except that any occurrence of vn−1 or vn in the scope is replaced by w. Both
vn−1 and vn are free variables in ψf , so they each appear with multiplicity 1 in ψf . Then w
appears with multiplicity 2 in

ψ =
∑

v∈V ′h\Vh

sf∏
p=1

ϕ′p,

and the multiplicities of any variables in V ′f ∩ V ′h are unchanged. Thus, ψ is a ppsh-formula
which represents h. Hence h ∈ 〈F〉h.

This implies that 〈F〉h is closed under contraction, therefore 〈F〉h is the closure of C (F)
under contraction.

Proposition 16. For any set of functions F ⊆ Υ, the set 〈F〉h is the closure of F under tensor
product, permutation of arguments, and contraction.

Proof. By Lemmas 14 and 15, 〈F〉h arises from F by first taking the closure under tensor
product and permutation of arguments, and then taking the closure under contraction. This
immediately implies that 〈F〉h is closed under contraction and is contained in the closure of F
under tensor product, permutation of arguments, and contraction. Hence it suffices to show
that 〈F〉h is closed under tensor product and permutation of arguments.

Suppose f, g ∈ 〈F〉h where arity(f) = k and arity(g) = `. Then there exist some ppsh-
formula ψf over F in variables Vf which represents f , and some ppsh-formula ψg over F in
variables Vg which represents g, where

ψf =
∑

v∈V ′f\Vf

sf∏
p=1

ϕp and ψg =
∑

v∈V ′g\Vg

sg∏
q=1

θq.

Without loss of generality, assume the sets of variables V ′f and V ′g are disjoint.
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• Tensor product: suppose h(x1, . . . , xk+`) = f(x1, . . . , xk)g(xk+1, . . . , xk+`). Consider the
expression

ψfψg =

 ∑
v∈V ′f\Vf

sf∏
p=1

ϕp

 ∑
v∈V ′g\Vg

sg∏
q=1

θq

 =
∑

v∈(V ′f\Vf )∪(V ′g\Vg)

sf∏
p=1

ϕp

sg∏
q=1

θq.

The right-hand side is a valid ppsh-formula with free variables Vf ∪Vg and bound variables
(V ′f ∪ V ′g) \ (Vf ∪ Vg). The multiplicities are unchanged since V ′f and V ′g are disjoint. This
ppsh-formula represents h.

• Permutation of arguments: suppose π : [k] → [k] is a permutation and h(x1, . . . , xk) =
f(xπ(1), . . . , xπ(k)). Then ψf can be transformed into a ppsh-formula for h by permuting
the variables in the scope of each atomic formula.

This concludes the proof that 〈F〉h is closed under tensor product and permutation of arguments.
Thus, it follows from Lemmas 14 and 15 that 〈F〉h is the closure of F under tensor product,
permutation of arguments, and contraction.

Corollary 17. Let F ⊆ Υ be any set of functions and suppose f ∈ 〈F〉h. Then 〈F , f〉h = 〈F〉h.

Having determined some properties of holant clones, we now consider the relationship be-
tween holant clones and functional clones.

Observation 18. 〈F〉h ⊆ 〈F〉 for any set of functions F ⊆ Υ because any ppsh-formula is a
pps-formula.

Unlike a functional clone, a holant clone does not automatically contain the function EQ2.
Furthermore, even if EQ2 ∈ 〈F〉h, the holant clone is not necessarily equal to the functional
clone generated by F : as an example, we will show that 〈{EQ2}〉h 6= 〈{EQ2}〉.

Note that EQk ∈ 〈{EQ2}〉 for any k because EQ1(x) =
∑

y∈{0,1} EQ2(x, y) and, for k > 2,

EQk(x1, . . . , xk) =

k−1∏
j=1

EQ2(xj , xk),

so EQk can be represented by a pps-formula over {EQ2} with k variables and (k − 1) atomic
formulas.

On the other hand, EQk cannot be in 〈{EQ2}〉h if k is odd. Indeed, consider any function
f ∈ 〈{EQ2}〉h, then there exists some ppsh-formula ψf =

∑
v∈V ′f\Vf

∏s
j=1 ϕj over {EQ2} such

that

f(x) =
∑

y∈{0,1}m

s∏
j=1

EQ2(x,y|ϕj ).

Now, EQ2, the single generating function of 〈{EQ2}〉h has even arity. A tensor product of
s copies of EQ2 also has even arity, and permutations of arguments do not affect the arity.
Furthermore, each contraction decreases the arity by 2, so f must have even arity. But f was
arbitrary; thus we have shown that any function in 〈{EQ2}〉h has even arity. Hence EQk /∈
〈{EQ2}〉h if k is odd, which implies 〈{EQ2}〉h 6= 〈{EQ2}〉.

Yet, as we now show, there is a function such that any holant clone containing it is a
functional clone: the ternary equality function EQ3. Indeed, Cai, Huang and Lu already argued
that adding the ternary equality function to the set of allowed functions F is sufficient to
inter-reduce a counting CSP and a holant problem, i.e. #CSP(F) ≡PT Holant(F ,EQ3) [14,
Proposition 1].

Proposition 19. Let F ⊆ Υ be any set of functions. Then 〈F ,EQ3〉h = 〈F〉.
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Proof. By Observation 18, 〈F ,EQ3〉h ⊆ 〈F ,EQ3〉 for any F . To show that 〈F ,EQ3〉h ⊆ 〈F〉,
it therefore suffices to show that EQ3 ∈ 〈F〉, which implies 〈F ,EQ3〉 = 〈F〉 by [8, Lemma 2.1].
But

EQ3(x1, x2, x3) = EQ2(x1, x2)EQ2(x1, x3),

so EQ3(x1, x2, x3) can be represented as a pps-formula over {EQ2} in the variables V =
{v1, v2, v3}, which has two atomic formulas with scopes (v1, v2) and (v1, v3), respectively. Thus
EQ3 ∈ 〈F〉 for any F , and hence 〈F ,EQ3〉h ⊆ 〈F ,EQ3〉 = 〈F〉.

To show the inclusion 〈F〉 ⊆ 〈F ,EQ3〉h, first note that F ⊆ 〈F ,EQ3〉h by definition. Fur-
thermore, EQ2 ∈ 〈F ,EQ3〉h since

EQ2(x1, x2) =
∑

y,z∈{0,1}

EQ3(x1, x2, y)EQ3(y, z, z),

i.e. EQ2 is represented by a ppsh-formula over {EQ3}. Therefore, F ∪ {EQ2} ⊆ 〈F ,EQ3〉h,
which implies 〈F〉 ⊆ 〈〈F ,EQ3〉h〉. It thus suffices to prove that 〈〈F ,EQ3〉h〉 = 〈F ,EQ3〉h. By
Lemma 11, this is equivalent to showing that 〈F ,EQ3〉h is already closed under introduction
of fictitious arguments, product, permutation of arguments, and summation. Closure under
permutation of arguments is shown in Proposition 16. Now let f, g ∈ 〈F ,EQ3〉h be k-ary
functions and consider the remaining three operations.

• Introduction of fictitious arguments: suppose h(x1, . . . , xk+1) = f(x1, . . . , xk). Then

h(x1, . . . , xk+1) =
∑

y∈{0,1}

f(x1, . . . , xk)EQ3(xk+1, y, y),

so h can be represented by a ppsh-formula over f and EQ3, and thus h ∈ 〈F ,EQ3〉h by
Corollary 17.

• Product: suppose h(x1, . . . , xk) = f(x1, . . . , xk)g(x1, . . . , xk). Then

h(x1, . . . , xk) =
∑

y1,...,yk,z1,...,zk∈{0,1}

f(y1, . . . , yk)g(z1, . . . , zk)
k∏
j=1

EQ3(xj , yj , zj).

Thus h can be represented by a ppsh-formula over f, g, and EQ3, so h ∈ 〈F ,EQ3〉h by
Corollary 17.

• Summation: suppose h(x1, . . . , xk−1) =
∑

xk∈{0,1} f(x1, . . . , xk). Then

h(x1, . . . , xk−1) =
∑

y,z∈{0,1}

f(x1, . . . , xk−1, y)EQ3(y, z, z),

so h can be represented by a ppsh-formula over f and EQ3, and thus h ∈ 〈F ,EQ3〉h by
Corollary 17.

We have shown that 〈F ,EQ3〉h is a functional clone and contains 〈F〉. In combination with the
first part of the proof, this implies that 〈F ,EQ3〉h = 〈F〉.

Corollary 20. Let F ⊆ Υ be any set of functions and suppose EQ3 ∈ 〈F〉h. Then 〈F〉h = 〈F〉.

This follows immediately from Proposition 19 and Corollary 17.

Remark. Holant clones are related to the notion of T2-constructibility in [31, Section 4.1]: if f
is T2-constructible over some set F ⊆ Υ, then f is in the closure of 〈F ∪ {δ0, δ1,EQ1}〉h under
scaling, i.e. f ∈ {c · g | c ∈ A \ {0}, g ∈ 〈F ∪ {δ0, δ1,EQ1}〉h}. Conversely, any function in 〈F〉h
is T2-constructible over F .
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The two notions of “membership in the holant clone” and “T2-constructibility” coincide if
F contains the unary functions δ0, δ1, and EQ1, as well as all non-zero nullary functions. We
work with holant clones here because they will be better suited to the analysis of problems that
are not conservative (i.e. where the unary functions δ0, δ1, and EQ1 may not be available).

For historical reasons, functional clones are not generally closed under scaling; we define
holant clones to be compatible with that.

Lin and Wang have also considered the set of functions that can be realised from F using
gadgets, which they denote S(F), though they do not abstract the definition away from the
notion of holant gadgets [27].

3.3 Holographic transformations of holant clones

We now consider the relationship of holant clones with certain holographic transformations.

Observation 21. Suppose F ⊆ Υ is a set of functions and M is a 2 by 2 matrix over A. Then
C (M ◦ F) = M ◦ C (F) because C (F) arises from F via tensor product and permutation of
arguments by Lemma 14.

Lemma 22. Let F ⊆ Υ be any set of functions and let O ∈ O. Then 〈O ◦ F〉h = O ◦ 〈F〉h.

Proof. Let ω be the binary function that corresponds to the matrix O, i.e. ω(x, y) = Oxy. Then,
for any g ∈ Υk,

(O ◦ g)(x1, . . . , xk) =
∑

z1,...,zk∈{0,1}

g(z1, . . . , zk)

k∏
`=1

ω(x`, z`) (4)

We first show that 〈O ◦ F〉h ⊆ O ◦ 〈F〉h. Suppose h ∈ 〈O ◦ F〉h, then there exists a
ppsh-formula ψh =

∑
v∈V ′h\Vh

∏s
j=1 ϕj representing h, where Vh = {v1, . . . , vn} is the set of

free variables and V ′h = {v1, . . . , vn+m} is the full set of variables. For each bound variable
v ∈ V ′h \Vh, we say that the occurrence of v at position ` in the scope of some atomic formula ϕj
is the first occurrence of v if v does not occur in the scope of any atomic formula ϕk with k < j
and if v does not occur in the scope of ϕj in a position with index less than `. The occurrence
of v that is not the first occurrence is called the second occurrence.

Now, for each atomic formula ϕj in ψh, the specified function fϕj takes the form O ◦ gj for
some gj ∈ F , hence it can be expressed as in (4). Let aj := arity(gj), and write (x,y|ϕj )` for
the `-th argument of the function represented by ϕj , then

h(x) =
∑

y∈{0,1}m

s∏
j=1

∑
zj,1,...,zj,aj∈{0,1}

gj(zj,1, . . . , zj,aj )

aj∏
`j=1

ω((x,y|ϕj )`j , zj,`j ).

We now re-index the arguments as follows: for ` ∈ [aj ], define

(z|ϕj )` :=


zk if (x,y|ϕj )` = xk,

zk+n if (x,y|ϕj )` = yk and this is the first occurrence of yk,

zk+m+n if (x,y|ϕj )` = yk and this is the second occurrence of yk.

Then we can write

h(x) =
∑

y∈{0,1}m

∑
z∈{0,1}2m+n

s∏
j=1

gj(z|ϕj )

n∏
k=1

ω(xk, zk)

m∏
`=1

ω(y`, z`+n)ω(y`, z`+m+n).
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Note that each zk appears exactly once as the argument of some gj , which is why it was possible
to pull out and combine the sums over all zk. Furthermore, note that the arguments y` only
appear in the final part of the product, therefore we can rearrange the sums further:

h(x) =
∑

z∈{0,1}2m+n

s∏
j=1

gj(z|ϕj )

n∏
k=1

ω(xk, zk)

m∏
`=1

 ∑
y`∈{0,1}

ω(y`, z`+n)ω(y`, z`+m+n)


=

∑
z∈{0,1}2m+n

s∏
j=1

gj(z|ϕj )

n∏
k=1

ω(xk, zk)

m∏
`=1

EQ2(z`+n, z`+m+n).

Here,
∑

y`∈{0,1} ω(y`, z`+n)ω(y`, z`+m+n) = EQ2(z`+n, z`+m+n) by orthogonality of O. Now, let

(z′|ϕj )` =

{
zk if (x,y|ϕj )` = xk,

zk+n if (x,y|ϕj )` = yk

for each ` ∈ [aj ], i.e. z′ does not distinguish between the two occurrences of yk. Then, by
summing out zm+n+1, . . . , z2m+n and rearranging the remaining sums,

h(x) =
∑

z1,...,zn∈{0,1}

 ∑
zn+1,...,zm+n∈{0,1}

s∏
j=1

gj(z
′|ϕj )

 n∏
k=1

ω(xk, zk).

It is straightforward to see that the term in parentheses is a ppsh-formula over F , and the part
outside the parentheses denotes a holographic transformation by O. Therefore, h ∈ O ◦ 〈F〉h.

By going through the same algebraic steps in the opposite direction – i.e. starting from a
ppsh-formula witnessing that h ∈ O ◦ 〈F〉h, introducing binary equality functions and replacing
them with contractions over ω – one can show that O ◦ 〈F〉h ⊆ 〈O ◦F〉h. Therefore, 〈O ◦F〉h =
O ◦ 〈F〉h as desired.

The following lemma will be useful when considering holographic transformations by K1 or
K2.

Lemma 23. Suppose f, g ∈ Υ \Υ0 and K ∈ {K1,K2}. Let k := arity(f), ` := arity(g) and de-
fine h(x1, . . . , xk+`−2) :=

∑
y1,y2∈{0,1} f(y1, x1, . . . , xk−1)g(xk, . . . , xk+`−2, y2)NEQ(y1, y2). Then∑

y∈{0,1}

(K ◦ f)(y, x1, . . . , xk−1)(K ◦ g)(xk, . . . , xk+`−2, y) = (K ◦ h)(x1, . . . , xk+`−2).

If k ≥ 2, define h′(x1, . . . , xk−2) :=
∑

y1,y2∈{0,1} f(x1, . . . , xk−2, y1, y2)NEQ(y1, y2), then∑
y∈{0,1}

(K ◦ f)(x1, . . . , xk−2, y, y) = (K ◦ h′)(x1, . . . , xk−2).

Proof. Let ζ ∈ Υ2 be the function associated with the matrix K, i.e. ζ(x, y) = Kxy. Then, for
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any f ′ ∈ Υk′ , (K ◦ f ′)(x1, . . . , xk′) =
∑

z1,...,zk′∈{0,1}
f ′(z1, . . . , zk′)

∏k′

j=1 ζ(xj , zj). Thus∑
y∈{0,1}

(K ◦ f)(y, x2, . . . , xk)(K ◦ g)(xk+1, . . . , xk+`−1, y)

=
∑

y∈{0,1}

 ∑
z1,...,zk∈{0,1}

f(z1, . . . , zk)ζ(y, z1)
k∏
j=2

ζ(xj , zj)


 ∑
zk+1,...,zk+`∈{0,1}

g(zk+1, . . . , zk+`)ζ(y, zk+`)
k+`−1∏
j=k+1

ζ(xj , zj)


=

∑
z1,...,zk+`∈{0,1}

f(z1, . . . , zk)g(zk+1, . . . , zk+`)

 ∑
y∈{0,1}

ζ(y, z1)ζ(y, zk+`)

 k+`−1∏
j=2

ζ(xj , zj).

Now, the function
∑

y∈{0,1} ζ(y, z1)ζ(y, zk+`) corresponds to (KTK)z1zk+`
, and, by Observa-

tion 7, KTK = X for K ∈ {K1,K2}. Thus,
∑

y∈{0,1} ζ(y, z1)ζ(y, zk+`) = NEQ(z1, zk+`).
Therefore,∑

y∈{0,1}

(K ◦ f)(y, x2, . . . , xk)(K ◦ g)(xk+1, . . . , xk+`−1, y)

=
∑

z1,...,zk+`∈{0,1}

f(z1, . . . , zk)g(zk+1, . . . , zk+`)NEQ(z1, zk+`)

k+`−1∏
j=2

ζ(xj , zj)

=
∑

z2,...,zk+`−1∈{0,1}

h(z2, . . . , zk+`−1)

k+`−1∏
j=2

ζ(xj , zj),

which is equal to (K ◦ h)(x2, . . . , xk+`−1), as desired.
The proof of the second statement is analogous.

3.4 Restricted holant clones and bipartite holant clones

We now define a variant of holant clones in which only certain arguments of functions can be
contracted together. Let Λ be any finite set. We will take Λ = {L,R}. Then a labelled function
with labels Λ is a function f ∈ Υk together with a type λf ∈ Λk. Suppose F is a set of labelled
functions with labels Λ, and consider some atomic formula ϕ in variables V , associated with
the function f ∈ F . We say an occurrence of the variable v at position k in the scope of ϕ
is associated with the label a ∈ Λ if (λf )k = a. Let N ⊆ {{a, b} | a, b ∈ Λ} be some set of
unordered pairs from Λ. A ppsh-formula ψ over F is restricted by N if the following holds: for
each bound variable v of ψ, the two associated labels a1 and a2 satisfy {a1, a2} ∈ N . The type
of the function represented by the ppsh-formula is induced by the labels associated with its free
variables.

Definition 24. Suppose F ,G ⊆ Υ are sets of functions. Take Λ := {L,R} and N := {{L,R}}.
Let F t G denote the labelled set in which each function from F occurs with type all-L and
each function from G occurs with type all-R:

F t G := {(f, (L, . . . , L)) | f ∈ F} ∪ {(g, (R, . . . , R)) | g ∈ G}.

A ppsh-formula over F t G restricted by N is called a bipartite ppsh-formula. The set of all
functions that can be represented by bipartite ppsh-formulas over F t G is called the bipartite
holant clone and denoted 〈F t G〉h.
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We will sometimes use the two subsets of a bipartite holant clone containing those functions
in which all variables are labelled the same:

〈F t G〉h,L = {f | (f, (L, . . . , L)) ∈ 〈F t G〉h}
〈F t G〉h,R = {f | (f, (R, . . . , R)) ∈ 〈F t G〉h}.

Note that a function may appear multiple times with different labels in a bipartite holant
clone.

Proposition 25. Let F ,G ⊆ Υ be sets of functions, then 〈F tG〉h is the closure of F tG under
tensor product, permutation of arguments, and contraction of two arguments with distinct labels.

Proof. The condition that the two occurrences of each bound variables have to be associated
with different labels corresponds exactly to allowing only those contractions in which the two
arguments have distinct labels. Having noted this, the proof of the proposition is analogous to
that of Proposition 16.

Corollary 26. Let F ,G ⊆ Υ be sets of functions. Suppose that f ∈ 〈F t G〉h,L and suppose
that g ∈ 〈F t G〉h,R. Then the following hold:

〈(F ∪ {f}) t G〉h = 〈F t G〉h 〈F t (G ∪ {g})〉h = 〈F t G〉h
〈(F ∪ {f}) t G〉h,L = 〈F t G〉h,L 〈F t (G ∪ {g})〉h,L = 〈F t G〉h,L
〈(F ∪ {f}) t G〉h,R = 〈F t G〉h,R 〈F t (G ∪ {g})〉h,R = 〈F t G〉h,R.

A bipartite holant gadget is a holant gadget (cf. Section 3) defined over some bipartite
signature grid (see Definition 8). The following lemma is an analogue of Lemma 13 in the
non-bipartite setting. The proof is essentially the same.

Lemma 27. Let F ,G ⊆ Υ be sets of functions and suppose f ∈ Υ. Then f can be realised by
a bipartite holant gadget over F|G if and only if f ∈ 〈F t G〉h.

Lemma 28. Let F ⊆ Υ and suppose K ∈ {K1,K2}. Then 〈K ◦ F〉h = K ◦ 〈F t {NEQ}〉h,L.

Proof. First, we prove 〈K ◦F〉h ⊆ K ◦ 〈F t{NEQ}〉h,L. Assume f ∈ 〈K ◦F〉h, then there exists
a ppsh-formula ψf =

∑
v∈V ′\V

∏s
j=1 ϕj over K ◦ F , where V is the set of free variables and V ′

is the set of all variables. Let n := |V | and m := |V ′ \ V |.
The proof is by induction on the number of bound variables m. The base case is m = 0, i.e.

V ′ = V . Then f ∈ C (K ◦ F) by definition, and by Observation 21, C (K ◦ F) = K ◦ C (F).
But K ◦ C (F) ⊆ K ◦ 〈F t {NEQ}〉h,L, so f ∈ K ◦ 〈F t {NEQ}〉h,L as desired.

For the induction hypothesis, assume g ∈ 〈K ◦F〉h implies g ∈ K ◦ 〈F t {NEQ}〉h,L if there
exists a ppsh-formula representing g which has m bound variables. Now consider a function
f ∈ 〈K ◦ F〉h which is represented by a ppsh-formula ψf =

∑
v∈V ′\V

∏s
j=1 ϕj with (m + 1)

bound variables and n free variables. We can write

ψf =
∑

vn+m+1

 ∑
vn+1,...,vn+m

s∏
j=1

ϕj


Let ψ′ be the ppsh-formula that arises from ψf by replacing the two occurrences of the bound
variable vn+m+1 with distinct new free variables w,w′. Then ψ′ represents a function h ∈
〈K ◦ F〉h of arity (n + 2). Since ψ′ has m bound variables, by the induction hypothesis,
h ∈ K ◦〈F t{NEQ}〉h,L. Thus, there exists h′ ∈ 〈F t{NEQ}〉h,L such that h = K ◦h′. Without
loss of generality, assume that the variables w,w′ correspond to the final two arguments of h;
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otherwise permute the arguments, which does not affect membership in either of the holant
clones. Then

f(x1, . . . , xn) =
∑

y∈{0,1}

(K ◦ h′)(x1, . . . , xn, y, y).

Thus, by Lemma 23, f = K ◦ f ′, where

f ′(x1, . . . , xn) :=
∑

y1,y2∈{0,1}

h′(x1, . . . , xn, y1, y2)NEQ(y1, y2).

But h′ ∈ 〈F t {NEQ}〉h,L implies that f ′ ∈ 〈F t {NEQ}〉h,L since the contractions satisfy
the bipartite structure, therefore f ∈ K ◦ 〈F t {NEQ}〉h,L as desired. Hence 〈K ◦ F〉h ⊆
K ◦ 〈F t {NEQ}〉h,L.

Now consider the opposite direction, i.e. we want to show that K ◦ 〈F t {NEQ}〉h,L ⊆
〈K ◦ F〉h. Recall that each atomic formula in a bipartite ppsh-formula has type either all-
L or all-R. Assume h ∈ 〈F t {NEQ}〉h,L, then there exists a bipartite ppsh-formula ψh =∑

v∈V ′\V
∏s
j=1 ϕj

∏t
k=1 θk over F t {NEQ} representing h, where ϕj are the atomic formulas

of type all-L and θk are the atomic formulas of type all-R.
Again, the proof is by induction, this time on the number t of atomic formulas of type all-R.

The argument for the base case t = 0 is analogous to the above since t = 0 means there are no
contractions.

For the induction hypothesis, assume that g ∈ K ◦ 〈F t {NEQ}〉h,L implies g ∈ 〈K ◦
F〉h if there exists a ppsh-formula representing g which has t atomic formulas of type all-
R. Now consider a function h ∈ 〈F t {NEQ}〉h,L which is represented by a ppsh-formula
ψh =

∑
v∈V ′\V

∏s
j=1 ϕj

∏t+1
k=1 θk which has (t + 1) atomic formulas of type all-R. Let n := |V |

and m := |V ′ \ V |. The two variables appearing in the scope of θt+1 have to be bound since
h has type all-L. Without loss of generality, assume they are vn+1, vn+2, otherwise relabel the
variables. We can thus write

ψh =
∑

vn+1,vn+2

 ∑
vn+3,...,vn+m

s∏
j=1

ϕj

t∏
k=1

θk

 θt+1.

The term in parentheses is a valid bipartite ppsh-formula of type all-L with t atomic formulas of
type all-R. Thus it represents a function h′ ∈ 〈F t {NEQ}〉h,L. Furthermore, by the induction
hypothesis, K ◦ h′ ∈ 〈K ◦ F〉h. Now,

h(x1, . . . , xn) =
∑

y1,y2∈{0,1}

h′(x1, . . . , xn, y1, y2)NEQ(y1, y2).

But then by Lemma 23, (K ◦h)(x1, . . . , xn) =
∑

y∈{0,1}(K ◦h′)(x1, . . . , xn, y, y). So K ◦h arises

from K ◦ h′ by contraction, thus K ◦ h ∈ 〈K ◦ F〉h. Hence K ◦ 〈F t {NEQ}〉h,L ⊆ 〈K ◦ F〉h.
By combining the two parts of the proof, we find that 〈K ◦F〉h = K ◦ 〈F t {NEQ}〉h,L.

Lemma 29. Let K ∈ {K1,K2} and suppose F ⊆ Υ contains both EQ2 and NEQ. Then
〈K ◦ F〉h = K ◦ 〈F〉h.

Proof. For any sets G1,G2 ⊆ Υ, the bipartite holant clone 〈G1 t G2〉h is a subset of the holant
clone 〈G1 ∪G2〉h because the latter does not involve any restrictions on which arguments can be
contracted together. In particular, NEQ ∈ F implies that 〈F t {NEQ}〉h,L ⊆ 〈F ∪ {NEQ}〉h =
〈F〉h. Thus, by Lemma 28, 〈K ◦ F〉h = K ◦ 〈F t {NEQ}〉h,L ⊆ K ◦ 〈F〉h.

To show K ◦ 〈F〉h ⊆ 〈K ◦ F〉h, suppose f ∈ 〈F〉h, so that K ◦ f ∈ K ◦ 〈F〉h. The proof is
by induction on the number of bound variables m in the ppsh-formula representing f .

The base case is m = 0, i.e. there are no bound variables. Thus f ∈ C (F) by definition.
But by Observation 21, K ◦ C (F) = C (K ◦ F), so K ◦ f ∈ C (K ◦ F) ⊆ 〈K ◦ F〉h.
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For the induction hypothesis, assume g ∈ 〈F〉h implies K ◦ g ∈ 〈K ◦ F〉h if there exists
some ppsh-formula representing g which has m bound variables. Let f ∈ 〈F〉h be represented
by ψf =

∑
v∈V ′\V

∏s
j=1 ϕj with |V | = n and |V ′ \ V | = m+ 1. We can write

ψf =
∑

vn+m+1

 ∑
vn+1,...,vn+m

s∏
j=1

ϕj


Let ψ′ be the ppsh-formula that arises from ψf by replacing the two occurrences of the bound
variable vn+m+1 with distinct new free variables w,w′. Then ψ′ represents a function f ′ ∈ 〈F〉h
of arity (n+2). Since ψ′ has m bound variables, by the induction hypothesis, K ◦f ′ ∈ 〈K ◦F〉h.
Without loss of generality, assume f(x) =

∑
y∈{0,1} f

′(x, y, y), otherwise permute the arguments
(which does not affect membership in holant clones). Let ζ ∈ Υ2 be the function corresponding
to the matrix K and recall from Observation 7 that KTK = ( 0 1

1 0 ). Thus,

(K ◦ f)(x) =
∑

z∈{0,1}n
f(z)

n∏
j=1

ζ(xj , zj) =
∑

z∈{0,1}n

 ∑
y∈{0,1}

f ′(z, y, y)

 n∏
j=1

ζ(xj , zj)

=
∑

z∈{0,1}n

 ∑
y1,...,y4∈{0,1}

f ′(z, y1, y4)NEQ(y1, y2)EQ2(y2, y3)NEQ(y3, y4)

 n∏
j=1

ζ(xj , zj)

=
∑

z∈{0,1}n

 ∑
y1,...,y6∈{0,1}

f ′(z, y1, y4)ζ(y5, y1)ζ(y5, y2)EQ2(y2, y3)ζ(y6, y3)ζ(y6, y4)


n∏
j=1

ζ(xj , zj)

=
∑

y5,y6∈{0,1}

 ∑
z∈{0,1}n

∑
y1,y4∈{0,1}

f ′(z, y1, y4)ζ(y5, y1)ζ(y6, y4)
n∏
j=1

ζ(xj , zj)


 ∑
y2,y3∈{0,1}

EQ2(y2, y3)ζ(y5, y2)ζ(y6, y3)


=

∑
y5,y6∈{0,1}

(K ◦ f ′)(x, y5, y6)(K ◦ EQ2)(y5, y6).

But K◦f ′ and K◦EQ2 are in 〈K◦F〉h, so K◦f ∈ 〈K◦F〉h. This implies that K◦〈F〉h ⊆ 〈K◦F〉h
and therefore, together with the first part, 〈K ◦ F〉h = K ◦ 〈F〉h.

4 A complexity-related preorder on sets of functions

To simplify proofs that hold for both exact evaluation of holant values and for approximation,
we define a preorder on finite sets of functions and pairs of finite sets of functions which encodes
information about the complexity of the corresponding holant problems.

Definition 30. Let F ,G,F ′,G′ ⊆ Υ be finite sets of functions and take S to be either F or
F|G and take S′ to be either F ′ or F ′|G′. Then we write S ≤ S′ if there exists a polynomial-
time algorithm which takes a (possibly bipartite) signature grid Ω = (G,S, σ) and constructs a
(possibly bipartite) signature grid Ω′ = (G′, S′, σ′) such that ZΩ = ZΩ′ .

Note that the bipartite and non-bipartite cases can be mixed in Definition 30. For example,
it is perfectly fine to take S = F and S′ = F ′|G′.
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Observation 31. The relation ≤ on finite sets of functions and pairs of finite sets of functions
is a preorder: it is reflexive by taking Ω′ = Ω, and it is transitive.

The following observation formalises the relationship between the preorder ≤ and the com-
plexity of holant problems.

Observation 32. Let F ,G,F ′,G′ ⊆ Υ be finite sets of functions, let S be either F or F|G, and
let S′ be either F ′ or F ′|G′. Suppose S ≤ S′. Then

• Holant(S) ≤PT Holant(S′),

• for any κ ≥ 1, HolantNorm(S;κ) ≤PT HolantNorm(S′;κ), and

• for any ρ ∈ [0, 2π), HolantArg(S; ρ) ≤PT HolantArg(S′; ρ).

The following results are well-known, we state them here in terms of holant clones and the
preorder ≤ and give proofs for completeness.

Lemma 33. Let F ,G ⊆ Υ be finite sets of functions. Then the following relationships hold:

(a) F ≤ F|{EQ2}

(b) F|{EQ2} ≤ F

(c) F ∪ G ≤ F ∪ {EQ2}
∣∣G ∪ {EQ2}

(d) F|G ≤ F ∪ G

(e) Suppose F ′ ⊆ 〈F〉h is finite, then F ′ ≤ F .

(f) Suppose F ′ ⊆ 〈F t G〉h,L and G′ ⊆ 〈F t G〉h,R are finite, then F ′|G′ ≤ F|G.

Proof. We prove the statements individually.

(a) Consider a signature grid Ω = (G,F , σ), where G = (V,E). Let G′ = (V,E,E′) be the
bipartite graph with edges E′ and vertices V ∪E that arises from G by subdividing each
edge. Define σ′ to be the function σ′(v) = σ(v) for all v ∈ V and σ′(w) = EQ2 for all
w ∈ E. Then Ω′ = (G′,F|{EQ2}, σ′) is a valid signature grid and ZΩ′ = ZΩ.

(b) Consider a signature grid Ω = (G,F|{EQ2}, σ), where G = (V,W,E) is bipartite. Note
that all vertices in W must have degree 2 since they are assigned the binary function
EQ2. Let G′ = (V,E′) be the graph resulting from G by eliminating each vertex in W
and merging the two edges incident on it. (This cannot lead to any vertex-free loops since
G was bipartite.) Define σ′(v) = σ(v) for all v ∈ V . Then Ω′ = (G′,F , σ′) is a valid
signature grid and ZΩ′ = ZΩ.

(c) Consider a signature grid Ω = (G,F∪G, σ), where G = (V,E). Let G′ be the graph arising
as follows: partition the original set of vertices V into two parts VF = {v ∈ V | σ(v) ∈ F}
and VG = {v ∈ V | σ(v) ∈ G}. Subdivide any edge connecting two vertices that are
assigned functions from the same set, adding the new vertex to the other part. The
resulting graph has vertex parts VF ∪ {{v, w} ∈ E | v, w ∈ VG} and VG ∪ {{v, w} ∈ E |
v, w ∈ VF} and it is bipartite. Define σ′ to be the function that acts as σ on the original
vertices and assigns EQ2 to each new vertex. Then Ω′ = (G′,F ∪{EQ2}|G ∪ {EQ2}, σ′) is
a valid signature grid and ZΩ′ = ZΩ.

(d) Consider a signature grid Ω = (G,F|G, σ), where G = (V,W,E) is bipartite. Let G′ =
(V ∪ W,E) be the graph that arises from G by forgetting the bipartition. Define σ′ :
V ∪W → F∪G to be the function that acts as σ on each vertex. Then Ω′ = (G′,F ∪G, σ′)
is a valid signature grid and ZΩ′ = ZΩ.
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(e) Consider a signature grid Ω = (G,F ′, σ), where G = (V,E). By Lemma 13, each function
f ∈ F ′ can be realised by a holant gadget over F . Let G′ be the graph that arises from G
by replacing each vertex assigned a function f ∈ 〈F〉h by a gadget representing f , and let
σ′ be the map that is induced by these gadgets. Then Ω′ = (G′,F , σ′) is a valid signature
grid and ZΩ′ = ZΩ. As each gadget in F ′ has a fixed finite size, this can be done in time
linear in the size of the original signature grid.

(f) The argument is analogous to the previous case, using bipartite holant gadgets and
Lemma 27, and noting that the labels match up correctly.

We will use the following theorem and corollary.

Theorem 34 (Valiant’s holant theorem). Suppose F ,G ⊆ Υ are two finite sets of functions
and M ∈ GL2(A). Then F|G ≤M ◦ F|(M−1)T ◦ G.

Corollary 35. Suppose F ⊆ Υ is a finite set of functions and suppose O ∈ O. Then F ≤ O◦F .

Proof. Note that O ◦ EQ2 = EQ2 for any orthogonal 2 by 2 matrix O. Therefore,

F ≤ F|{EQ2} ≤ O ◦ F|O ◦ {EQ2} ≤ O ◦ F|{EQ2} ≤ O ◦ F ,

where the first relationship is by Lemma 33(a), the second relationship is Theorem 34, the third
relationship follows from reflexivity of ≤ together with the property of EQ2 and orthogonal
matrices noted above, and the last relationship is by Lemma 33(b).

5 Conservative holant

In this section, we first define some important sets of functions U , T , E and M. We give some
lemmas describing their holant clones, and describing holographic transformations of them using
K1, K2 and matrices in O. Section 5.1 gives a partition of entangled ternary functions, which
follows from the classification of entangled three-qubit states in quantum theory, and which will
be used later. Section 5.2 states some known results that we will use. Section 5.3 develops
theory which will allow us to use the quantum result that “single-qubit and CNOT gates are
universal”. In our language, this is Lemma 58. In Section 5.4, we prove Theorem 67, our main
result about universality in the conservative case. In Section 5.5, we prove Theorem 68, our
main result about the complexity of approximating conservative holant problems.

Let U := Υ1 be the set of all unary functions for consistency with the literature. The
following subsets of Υ will also be important:

• the set of all unary and binary functions T := Υ1 ∪Υ2,

• the set of generalised equality functions

E :=
{
f ∈ Υ

∣∣∣ ∃a ∈ {0, 1}arity(f) s.t. f(x) = 0 for all x /∈ {a, ā}
}
,

where ā denotes the bitwise complement of a, and

• the set of generalised matching functions M := {f ∈ Υ | f(x) = 0 unless |x| ≤ 1}, where
|x| is the Hamming weight of x.

Observation 36. Let M ∈ GL2(A), then M ◦ U = U .

Observation 37. U ⊆ T , U ⊆ E and U ⊆M.

Observation 38. Υ0 ⊆ 〈U〉h because any constant c ∈ Υ0 can be represented as a contraction∑
y δ0(y)uc(y), where uc = [c, 0] ∈ U .
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Note that C (U) is the set of all degenerate functions.

Lemma 39. Suppose M ∈ GL2(A), then C (U) ⊆ 〈M ◦ T 〉h, C (U) ⊆ 〈M ◦ E〉h, and C (U) ⊆
〈M ◦M〉h.

Proof. By Observations 36 and 37, if M ∈ GL2(A), we have U ⊆ M ◦ T , U ⊆ M ◦ E and U ⊆
M◦M. Now, for any F ⊆ Υ such that U ⊆ F , we have C (U) ⊆ C (F) by the definition of C (−).
Furthermore, by Lemma 15, C (F) ⊆ 〈F〉h. Thus, C (U) ⊆ 〈F〉h for F ∈ {M ◦T ,M ◦E ,M ◦M},
as desired.

Lemma 40. Suppose f is a symmetric ternary entangled function in M. Then we can write
f = [f0, f1, 0, 0] with f1 6= 0. Now, if U =

(
a b
0 d

)
is an invertible upper triangular matrix over A,

then U ◦f ∈M. Conversely, if M ∈ GL2(A) and M ◦f ∈M, then M must be upper triangular.

Proof. The set M is the set of functions that are non-zero only on inputs of Hamming weight
at most 1, so any symmetric ternary function f ∈ M can be written as f = [f0, f1, 0, 0]. If
f1 = 0, then f(x, y, z) = f0δ0(x)δ0(y)δ0(z), so f is degenerate.

It is straightforward to check that, if M =
(
a b
c d

)
, then

M ◦ f = [(af0 + 3bf1)a2, (acf0 + 2bcf1 + adf1)a, (acf0 + bcf1 + 2adf1)c, (cf0 + 3df1)c2], (5)

a piece of code for doing so can be found in Appendix A.1. The first statement thus follows by
letting c = 0 to find U ◦ f = [(af0 + 3bf1)a2, a2df1, 0, 0] ∈M.

For the second statement, suppose M is invertible and M ◦ f ∈ M. This is equivalent to
(acf0 + bcf1 + 2adf1)c = 0 and (cf0 + 3df1)c2 = 0. Assume, for a contradiction, that c 6= 0.
Then the latter equality implies that d = −cf0/(3f1). Plugging this into the former equality
yields

0 = c

(
acf0 + bcf1 −

cf0

3f1
2af1

)
=
c2

3
(af0 + 3bf1) ,

hence b = −af0/(3f1). But then ad − bc = −acf0/(3f1) + acf0/(3f1) = 0, contradicting the
assumption that M is invertible. Thus, M ◦f ∈M implies c = 0, i.e. M is upper triangular.

Observation 41. Flipping bits does not affect whether a function is in E , i.e. ( 0 1
1 0 ) ◦ E = E .

Thus, by Observation 7, K1 ◦ E = K2 ◦ E .

Remark. Since EQ3 ∈ E , by Corollary 20, 〈E〉h is a functional clone. In the literature, this
functional clone is often called the set of product-type functions and denoted P.

Lemma 42. Suppose f, g ∈ E and let k := arity(f), ` := arity(g). Then∑
y∈{0,1}

f(x1, . . . , xk−1, y)g(xk, . . . , xk+`−2, y)

is in E ∪Υ0. Furthermore, if k ≥ 2, then
∑

y∈{0,1} f(x1, . . . , xk−2, y, y) is also in E ∪Υ0.

Proof. Since f ∈ E , there exists a bit string a ∈ {0, 1}k such that f(x) = 0 unless x ∈ {a, ā}.
Similarly, since g ∈ E , there exists a bit string b ∈ {0, 1}` such that g(y) = 0 unless y ∈ {b, b̄}.

For simplicity, we will prove the second statement first. Let

h(x1, . . . , xk−2) =
∑

y∈{0,1}

f(x1, . . . , xk−2, y, y).

If k = 2, then arity(h) = 0. Thus h ∈ Υ0 and we are done. Otherwise, let c be the bit
string consisting of the first (k − 2) bits of a. Suppose x ∈ {0, 1}k−2 \ {c, c̄}. Then h(x) =
f(x, 0, 0) + f(x, 1, 1) = 0. Therefore h is nonzero on at most two complementary inputs and
thus h ∈ E .
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Now, to prove the first statement, let

h′(x1, . . . , xk+`−2) =
∑

y∈{0,1}

f(x1, . . . , xk−1, y)g(xk, . . . , xk+`−2, y).

If k = ` = 1, then arity(h′) = 0, so h ∈ Υ0 and we are done. Otherwise, define c ∈ {0, 1}k+`−2

as follows: if ak = b`, let c be the bit string consisting of the first (k − 1) bits of a followed by
the first (` − 1) bits of b; otherwise let c be the bit string consisting of the first (k − 1) bits
of a followed by the first (`− 1) bits of b̄. It is straightforward to check that h′(x) = 0 unless
x ∈ {c, c̄}. Therefore h′ ∈ E .

Lemma 43. Suppose f, g ∈M and let k := arity(f), ` := arity(g). Then∑
y1,y2∈{0,1}

f(y1, x1, . . . , xk−1)g(xk, . . . , xk+`−2, y2)NEQ(y1, y2)

is inM∪Υ0. Furthermore, if k ≥ 2, then
∑

y1,y2∈{0,1} f(x1, . . . , xk−2, y1, y2)NEQ(y1, y2) is also
in M∪Υ0.

Proof. Since f ∈M, f(x) = 0 unless |x| ≤ 1. Similarly, since g ∈M, g(x) = 0 unless |x| ≤ 1.
To prove the first statement, let

h(x1, . . . , xk+`−2) =
∑

y1,y2∈{0,1}

f(y1, x1, . . . , xk−1)g(xk, . . . , xk+`−2, y2)NEQ(y1, y2).

If k = ` = 1, then arity(h) = 0, so h ∈ Υ0 and we are done. Otherwise, suppose x ∈ {0, 1}k+`−2

satisfies |x| > 1. Then either
∑k−1

j=1 xj > 1, or
∑k+`−2

j=k xj > 1, or
∑k−1

j=1 xj =
∑k+`−2

j=k xj = 1. In
the first two cases, it is straightforward to see that h(x) = 0. It remains to show that h is zero
in the third case. Now, f(y1, x1, . . . , xk−1) is nonzero only if its input has Hamming weight at
most 1, so y1 must be 0 to get a non-zero value for h. Similarly, g(xk, . . . , xk+`−2, y2) is nonzero
only if its input has Hamming weight at most 1, so y2 must be 0 to get a non-zero value for h.
But if y1 = y2 = 0, then NEQ(y1, y2) = 0. Therefore h is zero on all inputs of Hamming weight
greater than 1, so h ∈M.

To prove the second statement, let

h′(x1, . . . , xk−2) =
∑

y1,y2∈{0,1}

f(x1, . . . , xk−2, y1, y2)NEQ(y1, y2).

If k = 2, then arity(h′) = 0, so h′ ∈ Υ0 and we are done. Otherwise, suppose x ∈ {0, 1}k−2

satisfies |x| > 1. Then |x|+ y1 + y2 > 1 for all y1, y2 ∈ {0, 1}, so h′(x) = 0. Therefore h′ is zero
on all inputs of Hamming weight greater than 1, so h′ ∈M.

Recall from Lemma 14 that C (F) is the closure of F under tensor product and permutation
of arguments (but not contraction).

Observation 44. Let F be one of T , E and M, let c ∈ A, and let M ∈ GL2(A).

• If f ∈ F , then c · f ∈ F .

• If f ∈M ◦ F , then c · f ∈M ◦ F .

• If f ∈ C (F), then c · f ∈ C (F).

• If f ∈ C (M ◦ F), then c · f ∈ C (M ◦ F).
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In words, T , E and M contain arbitrary scalings of each of their elements, and this property
is preserved under holographic transformation as well as tensor product and permutation of
arguments.

Observation 45. For any M ∈ O ∪ {K1,K2}, we have 〈M ◦ E〉h = M ◦ 〈E〉h: if M ∈ O, this
is by Lemma 22, and if M ∈ {K1,K2}, this is by Lemma 29, noting that EQ2,NEQ ∈ E .

Lemma 46. Suppose F is one of T , M ◦ E for some M ∈ O ∪ {K1,K2}, or K ◦M for some
K ∈ {K1,K2}. Then C (F) ∪Υ0 = 〈F〉h.

Proof. We first show that C (F) ∪Υ0 ⊆ 〈F〉h. Indeed, C (G) ⊆ 〈G〉h for all sets of functions G
by Proposition 16. Furthermore, for all F listed in the lemma, U ⊆ F by Observations 37 and
36. Now, Υ0 ⊆ 〈U〉h by Observation 38, thus Υ0 ⊆ 〈F〉h and hence C (F) ∪Υ0 ⊆ 〈F〉h.

For the other direction – 〈F〉h ⊆ C (F) ∪Υ0 – it suffices to show that C (F) ∪Υ0 is closed
under contraction. So assume f ∈ C (F) ∪ Υ0 is a function of arity k, where k ≥ 2, and let
h(x1, . . . , xk−2) =

∑
y∈{0,1} f(x1, . . . , xk−2, y, y). If k = 2, then h ∈ Υ0, so we are done. Hence,

from now on, we may assume k > 2.
By the definition of C (F), there exists a ppsh-formula ψf =

∏s
j=1 ϕj over F in variables

{v1, . . . , vk} which does not involve any bound variables and which represents f . Let ` be the
index of the atomic formula that involves the variable vk and let m be the index of the atomic
formula that involves the variable vk−1. Define ϕ′` to be the atomic formula that is equal to ϕ`
except that vk is replaced with vk−1. For each j ∈ [s] \ {`}, set ϕ′j = ϕj . Then h is represented
by the ppsh-formula ψh =

∑
vk−1

∏s
j=1 ϕ

′
j .

We now distinguish cases according to the different sets of functions.

1. Suppose F = T . Then each atomic formula ϕj has arity 1 or 2.

• If ` = m, then

ψh =

∑
vk−1

ϕ′`

 ∏
j∈[s]\{`}

ϕ′j , (6)

and the function g represented by
∑

vk−1
ϕ′` is a constant. Thus h is a scaling of an

element of C (T ), so h ∈ C (T ) by Observation 44.

• If ` 6= m, then

ψh =

∑
vk−1

ϕ′`ϕ
′
m

 ∏
j∈[s]\{`,m}

ϕ′j . (7)

The function g represented by
∑

vk−1
ϕ′`ϕ

′
m has arity at most 2 since each atomic

formula has arity at most 2 and one of the variables is bound. If arity(g) = 0, h is a
scaling of an element of C (T ), thus h ∈ C (T ) by Observation 44. Otherwise, g ∈ T .
Thus we can replace

∑
vk−1

ϕ′`ϕ
′
m with a single atomic formula θ whose function is

g and whose scope contains the free variables of ϕ′` and ϕ′m. Then the ppsh-formula
θ
∏
j∈[s]\{`,m} ϕ

′
j has no bound variables and represents h, so h ∈ C (T ) by definition.

In each subcase, we have shown that h ∈ C (T ), thus C (T )∪Υ0 is closed under contraction
and hence 〈T 〉h ⊆ C (T ) ∪Υ0.

2. Suppose F = M ◦ E for some M ∈ O ∪ {K1,K2}. First, consider the case F = E .

• If ` = m, then h can be expressed as in (6). The atomic formula ϕ′` specifies a
function g` ∈ E of arity at least 2. Hence

∑
vk−1

ϕ′` specifies a function g ∈ E ∪ Υ0

by Lemma 42.
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• If ` 6= m, then h can be expressed as in (7). Assume without loss of generality that
vk−1 occurs in the last position in the scope of both ϕ′` and ϕ′m; if this is not the
case, permute the arguments appropriately. Again, the function g represented by∑

vk−1
ϕ′`ϕ

′
m is in E ∪Υ0 by Lemma 42.

The argument thus proceeds the same way in both subcases. If g is a constant, then
h ∈ C (E) by Observation 44. Otherwise, g ∈ E , which in turn implies h ∈ C (E) by
definition. In each subcase, we have shown that h ∈ C (E), thus C (E)∪Υ0 is closed under
contraction and hence 〈E〉h ⊆ C (E) ∪Υ0.

We have shown that the desired result holds for F = E . Now, recall that 〈M ◦ E〉h =
M ◦ 〈E〉h for any M ∈ O ∪ {K1,K2} by Observation 45, that C (M ◦ E) = M ◦ C (E) by
Observation 21, and that M ◦Υ0 = Υ0 by Definition 5. Therefore,

〈M ◦ E〉h = M ◦ 〈E〉h ⊆M ◦ (C (E) ∪Υ0) = C (M ◦ E) ∪Υ0,

for all M ∈ O ∪ {K1,K2}.

3. Suppose F = K ◦M for some K ∈ {K1,K2}.

• If ` = m, then h can be expressed as in (6). The atomic formula ϕ′` specifies a
function K ◦ g`, where g` ∈M has arity r ≥ 2. Let

g(x1, . . . , xr−2) :=
∑

y1,y2∈{0,1}

g`(x1, . . . , xr−2, y1, y2)NEQ(y1, y2),

then by Lemma 23, the ppsh-formula
∑

vk−1
ϕ′` represents K ◦ g. Furthermore, by

Lemma 43, g ∈M∪Υ0.

• If ` 6= m, the function h can be expressed as in (7). Assume without loss of generality
that vk−1 occurs in the first position in the scope of ϕ′` and in the last position in
the scope of ϕ′m; if this is not the case, permute the arguments appropriately. The
atomic formula ϕ′` specifies a function K ◦ g`, where g` ∈ M. Similarly, the atomic
formula ϕ′m specifies a function K ◦ gm, where gm ∈M. Let

g(x1, . . . , xr`+rm−2) :=∑
y1,y2∈{0,1}

g`(y1, x1, . . . , xr`−1)gm(xr` , . . . , xr`+rm−2, y2)NEQ(y1, y2),

then by Lemma 23, the ppsh-formula
∑

vk−1
ϕ′`ϕ

′
m represents K ◦ g. Furthermore,

g ∈M∪Υ0 by Lemma 43.

Now, the argument proceeds the same way in both subcases. If g is a constant, then h ∈
C (K ◦M) by Observation 44. Otherwise, g ∈ M, which in turn implies h ∈ C (K ◦M)
by definition. In each subcase, we have shown that h ∈ C (K ◦M), thus C (K ◦M)∪Υ0

is closed under contraction and hence 〈K ◦M〉h ⊆ C (K ◦M) ∪Υ0.

We have shown for each set F listed above that C (F)∪Υ0 ⊆ 〈F〉h and that 〈F〉h ⊆ C (F)∪Υ0.
Thus we conclude that 〈F〉h = C (F) ∪Υ0 for each of these sets F , as desired.

The holant clones 〈M ◦E〉h for some M ∈ O∪{K1,K2} and 〈K◦M〉h for some K ∈ {K1,K2}
have sets of generators that are much more concise than M ◦E or K ◦M. In the case of 〈M ◦E〉h,
one binary and one ternary function together with the set U of unary functions are sufficient,
see Lemma 47 below. For 〈K ◦ M〉h, one unary and one ternary function together with the
set of holographically transformed binary generalised disequality functions are sufficient, this is
shown in Lemma 48. By binary generalised disequality functions, we mean all binary functions
that are zero if their inputs are equal (though they need not be symmetric under interchange
of the inputs).
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Lemma 47. For any M ∈ O ∪ {K1,K2}, we have 〈M ◦ E〉h = 〈M ◦ U ,M ◦ EQ3,M ◦NEQ〉h.

Proof. First, recall that 〈M ◦ E〉h = M ◦ 〈E〉h for any M ∈ O ∪ {K1,K2} by Observation 45.
Furthermore,

〈M ◦ U ,M ◦ EQ3,M ◦NEQ〉h = 〈M ◦ (U ∪ {EQ3,NEQ})〉h,

so if M ∈ O, then the holographic transformation can be pulled out of the holant clone by
Lemma 22. If instead M ∈ {K1,K2}, note that

EQ2(x1, x2) =
∑

y1,y2∈{0,1}

EQ3(x1, x2, y1)NEQ(y1, y2)EQ1(y2), (8)

thus by Lemma 23, (M ◦ EQ2)(x1, x2) =
∑

y∈{0,1}(M ◦ EQ3)(x1, x2, y)(M ◦ EQ1)(y). Hence
M ◦ EQ2 ∈ 〈M ◦ (U ∪ {EQ3,NEQ})〉h and thus

〈M ◦ (U ∪ {EQ3,NEQ})〉h = 〈M ◦ (U ∪ {EQ3,EQ2,NEQ})〉h
= M ◦ 〈U ∪ {EQ3,EQ2,NEQ}〉h
= M ◦ 〈U ∪ {EQ3,NEQ}〉h,

where the first step is by Corollary 17, the second step is by Lemma 29, and the last step is
again by Corollary 17 since (8) also implies EQ2 ∈ 〈U ∪ {EQ3,NEQ}〉h. Therefore, for any
M ∈ O ∪ {K1,K2}, we have

〈M ◦ U ,M ◦ EQ3,M ◦NEQ〉h = M ◦ 〈U ,EQ3,NEQ〉h.

It thus suffices to prove 〈E〉h = 〈U ,EQ3,NEQ〉h; the desired result then follows since for any
M ∈ O ∪ {K1,K2},

〈M ◦ E〉h = M ◦ 〈E〉h = M ◦ 〈U ,EQ3,NEQ〉h = 〈M ◦ U ,M ◦ EQ3,M ◦NEQ〉h.

Note that U ∪ {EQ3,NEQ} ⊆ E , so 〈U ,EQ3,NEQ〉h ⊆ 〈E〉h by the definition of holant clones.
It only remains to show that 〈E〉h ⊆ 〈U ,EQ3,NEQ〉h.
Suppose f ∈ E and let n = arity(f). If n = 1, then f ∈ U ⊆ 〈U ,EQ3,NEQ〉h, so we are

done. If n > 1, there exists a bit string a ∈ {0, 1}n such that f(x) = 0 for all x /∈ {a, ā}. We
proceed by induction on the Hamming weight of a, or equivalently on the number of 1’s in the
bit string.

For the base case, suppose |a| = 0, i.e. a contains no 1’s. Let uf := [f(a), f(ā)] ∈ U . Then

f(x1, . . . , xn) =
∑

y1,...,yn−1∈{0,1}

EQ3(x1, x2, y1)uf (yn−1)

n−2∏
k=1

EQ3(xk+2, yk, yk+1),

so f ∈ 〈U ,EQ3,NEQ〉h. (Note that if n = 2, the product at the end is empty, i.e. equal to 1.)
For the induction step, assume there is some non-negative integer m such that if g ∈ Υn

has the property g(x) = 0 for all x ∈ {0, 1}n \ {b, b̄}, where |b| = m, then g ∈ 〈U ,EQ3,NEQ〉h.
Consider a function f ∈ E which satisfies f(x) = 0 unless x ∈ {a, ā}, where |a| = m + 1. Let
j ∈ [n] be some index such that aj = 1, and define

f ′(x1, . . . , xn) :=
∑

y∈{0,1}

NEQ(xj , y)f(x1, . . . , xj−1, y, xj+1, . . . , xn). (9)

Then f ′ is a function which satisfies f ′(x) = 0 unless x ∈ {a′, ā′}, where a′ is the bit string
that agrees with a except in the j-th position. Since aj = 1, this implies that |a′| = m. Thus
f ′ ∈ 〈U ,EQ3,NEQ〉h by the induction hypothesis. But (9) is equivalent to

f(x1, . . . , xn) =
∑

y∈{0,1}

NEQ(xj , y)f ′(x1, . . . , xj−1, y, xj+1, . . . , xn),
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so f ∈ 〈U ,EQ3,NEQ, f ′〉h. Hence, by Corollary 17, f ∈ 〈U ,EQ3,NEQ〉h.
We have shown that f ∈ E implies f ∈ 〈U ,EQ3,NEQ〉h, therefore E ⊆ 〈U ,EQ3,NEQ〉h. By

the definition of holant clones, this implies 〈E〉h ⊆ 〈〈U ,EQ3,NEQ〉h〉h. Now by Proposition 16,

〈〈U ,EQ3,NEQ〉h〉h = 〈U ,EQ3,NEQ〉h.

Therefore, we have 〈E〉h ⊆ 〈U ,EQ3,NEQ〉h, which completes the proof.

Lemma 48. Let D := {f ∈ Υ2 | f(0, 0) = f(1, 1) = 0} and suppose K ∈ {K1,K2}. Then
〈K ◦M〉h = 〈K ◦ D,K ◦ONE3,K ◦ EQ1〉h.

Proof. Since D ⊆M and ONE3,EQ1 ∈M, we have 〈K ◦D,K ◦ONE3,K ◦EQ1〉h ⊆ 〈K ◦M〉h
by the definition of holant clones.

Furthermore, by Proposition 16, to prove 〈K ◦M〉h ⊆ 〈K ◦ D,K ◦ ONE3,K ◦ EQ1〉h, it is
enough to show K ◦M ⊆ 〈K ◦ D,K ◦ONE3,K ◦ EQ1〉h. Now by Lemma 28, we have

〈K◦D,K◦ONE3,K◦EQ1〉h = 〈K◦(D∪{ONE3,EQ1})〉h = K◦〈(D∪{ONE3,EQ1})t{NEQ}〉h,L.

As the matrix K is invertible, it therefore suffices to prove

M⊆ 〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L.

Suppose f ∈ M with arity(f) = n. If n = 1, let d ∈ D be the function satisfying d(0, 1) =
f(0) and d(1, 0) = f(1). Then

f(x) =
∑

y,z∈{0,1}

d(x, y)NEQ(y, z)EQ1(z),

which implies f ∈ 〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L, as desired. This completes the argument
for n = 1. We now make two digressions.

• Since Observation 37 shows that U ⊆ M, the n = 1 argument applies to an arbitrary
unary function f . Therefore, U ⊆ 〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L.

• Before considering arbitrary higher-arity functions, first consider the functions ONEn
for positive integers n. We already know ONE1 ∈ 〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L
since ONE1 ∈ U . The function ONE2 is in D, which immediately implies ONE2 ∈
〈(D∪{ONE3,EQ1})t{NEQ}〉h,L. Furthermore, ONE3 ∈ 〈(D∪{ONE3,EQ1})t{NEQ}〉h,L
by definition. Suppose, for the purpose of an argument by induction, that ONEk ∈
〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L for some integer k ≥ 3. It is easy to check that

ONEk+1(x1, . . . , xk+1) =
∑

y,z∈{0,1}

ONEk(x1, . . . , xk−1, y)NEQ(y, z)ONE3(z, xk, xk+1).

Using the induction hypothesis, this implies ONEk+1 ∈ 〈(D∪{ONE3,EQ1})t{NEQ}〉h,L.
Hence, by induction, ONEk ∈ 〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L for any positive integer
k.

We now go back to considering an arbitrary function f ∈ M with n := arity(f) > 1. For any
k ∈ [n], let ek be the n-bit string which satisfies (ek)j = 0 if j 6= k and (ek)k = 1. Define d0 ∈ D
to be the binary function satisfying d0(0, 1) = 1 and d0(1, 0) = f(0, . . . , 0). Furthermore, for
any k ∈ [n], define dk ∈ D to be the binary function satisfying dk(0, 1) = 1 and dk(1, 0) = f(ek).
Then we claim

f(x1, . . . , xn) =
∑

ONEn+1(z1, . . . , zn+1)NEQ(zn+1, w1)d0(w2, w1)NEQ(w2, w3)EQ1(w3)

n∏
j=1

dj(xj , yj)NEQ(yj , zj), (10)

where the sum is over w1, w2, w3, y1, . . . , yn, z1, . . . , zn+1 ∈ {0, 1}. To show that this equality is
true, we distinguish several cases depending on the Hamming weight of x = x1, . . . , xn.

28



• Suppose |x| > 1, then the LHS is 0 because f ∈ M. On the RHS, note that for each
j ∈ [n] the product dj(xj , yj)NEQ(yj , zj) is zero unless xj = zj . Thus, if |x| > 1, then all
terms with a non-zero contribution to the sum must have |z| > 1. But for those terms,
ONEn+1(z) = 0. Hence the RHS is 0 and the equality holds.

• Suppose |x| = 1, i.e. x = e` for some ` ∈ [n]. Then

∑
y1,...,yn∈{0,1}

n∏
j=1

dj((e`)j , yj)NEQ(yj , zj) = f(e`)

n∏
j=1

EQ2((e`)j , zj),

so the RHS of (10) becomes∑
zn+1,w1,w2,w3∈{0,1}

ONEn+1(e`, zn+1)NEQ(zn+1, w1)d0(w2, w1)NEQ(w2, w3)EQ1(w3)f(e`).

Now the function ONEn+1(e`, zn+1) is non-zero only if zn+1 = 0, hence we can furthermore
simplify this to∑

w1,w2,w3∈{0,1}

NEQ(0, w1)d0(w2, w1)NEQ(w2, w3)EQ1(w3)f(e`)

=
∑

w2,w3∈{0,1}

d0(w2, 1)NEQ(w2, w3)EQ1(w3)f(e`)

=
∑

w3∈{0,1}

NEQ(0, w3)EQ1(w3)f(e`) = f(e`),

as desired.

• Suppose |x| = 0, i.e. x is the all-zero bit string. Then, for all j ∈ [n],∑
yj∈{0,1}

dj(0, yj)NEQ(yj , zj) = EQ2(0, zj).

Thus, the RHS of (10) becomes∑
zn+1,w1,w2,w3∈{0,1}

ONEn+1(0, . . . , 0, zn+1)NEQ(zn+1, w1)d0(w2, w1)NEQ(w2, w3)EQ1(w3)

=
∑

w1,w2,w3∈{0,1}

NEQ(1, w1)d0(w2, w1)NEQ(w2, w3)EQ1(w3)

=
∑

w2,w3∈{0,1}

d0(w2, 0)NEQ(w2, w3)EQ1(w3)

=
∑

w3∈{0,1}

f(0, . . . , 0)NEQ(1, w3)EQ1(w3) = f(0, . . . , 0),

again as desired.

Hence (10) holds for all x ∈ {0, 1}n. Thus, f ∈ 〈(D ∪ {ONE3,ONEn+1,EQ1}) t {NEQ}〉h,L.
By Corollary 26, since ONEn+1 ∈ 〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L, we have f ∈ 〈(D ∪
{ONE3,EQ1}) t {NEQ}〉h,L. As f was an arbitrary function in M, this establishes M ⊆
〈(D ∪ {ONE3,EQ1}) t {NEQ}〉h,L, completing the proof.
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5.1 Ternary functions and the entanglement classification

Ternary functions play an important part in the holant dichotomies since Holant(F) is com-
putable exactly in polynomial time for any finite F ⊆ 〈T 〉h: i.e. any set of functions that are
tensor products of unary and binary functions.

Recall that a function of arity at least 2 is entangled if it is not decomposable as a tensor
product. Thus, by Lemma 14, a ternary function f is entangled if and only if f /∈ C (T ). By
Lemma 46, this is equivalent to f /∈ 〈T 〉h.

We say two vectors f , f ′ ∈ A23 are related by a generalised holographic transformation if there
exist matrices A,B,C ∈ GL2(A) such that f = (A⊗B ⊗ C)f ′, where ⊗ denotes the Kronecker
product of matrices.3 Entangled ternary functions can be partitioned into two classes: those
that can be transformed to EQ3 by a generalised holographic transformation and those that
can be transformed to ONE3 by a generalised holographic transformation. This corresponds to
the classification of entangled three-qubit states in quantum theory, which are represented by
vectors in C23 [18]. In quantum theory, the normalised vector corresponding to EQ3 is known
as the GHZ state and the normalised vector corresponding to ONE3 is known as the W state.

Formally, let g be the vector corresponding to EQ3 and let w be the vector corresponding
to ONE3. Suppose f ∈ Υ3 \ 〈T 〉h, then either there exist matrices A,B,C ∈ GL2(A) such
that f = (A⊗ B ⊗ C)g, in which case f is said to be in the GHZ class, or there exist matrices
A,B,C ∈ GL2(A) such that f = (A⊗B ⊗ C)w, in which case f is said to be in the W class.

If f is symmetric, then ordinary (non-generalised) holographic transformations suffice, i.e.
we may assume without loss of generality that A = B = C.

It is possible to determine from some polynomials in the values of f whether a ternary
function f is in the GHZ class, the W class, or decomposable. The following proposition gives a
special case of this result, which was derived in [26] for arbitrary (i.e. not necessarily symmetric)
vectors in C23 .

Proposition 49. Suppose f ∈ Υ3 is symmetric, and write f = [f0, f1, f2, f3]. There exists a
matrix M ∈ GL2(A) such that f = M ◦ EQ3 if and only if

(f0f3 − f1f2)2 − 4(f2
1 − f0f2)(f2

2 − f1f3) 6= 0.

If this polynomial is zero, the following cases occur:

• If furthermore f2
1 = f0f2 and f2

2 = f1f3, then f is degenerate.

• Otherwise, there exists a matrix M ∈ GL2(A) such that f = M ◦ONE3.

Note that the matrix M in Proposition 49 may not be unique (though this will not cause
any issues). For example, if f = EQ3, then

f =

(
1 0
0 1

)
◦ EQ3 and f =

(
1 0

0 e2iπ/3

)
◦ EQ3.

5.2 Known results that we will use

The following results have been adapted to our notation.

Theorem 50 ([15, Theorem 2.2]). Suppose F is a finite subset of Υ. If

1. F ⊆ 〈T 〉h, or

2. there exists O ∈ O such that F ⊆ 〈O ◦ E〉h, or

3In quantum information theory, this notion is called “equivalence under stochastic local operations with
classical communication” (SLOCC).
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3. F ⊆ 〈K1 ◦ E〉h = 〈K2 ◦ E〉h, or

4. there exists a matrix K ∈ {K1,K2} such that F ⊆ 〈K ◦M〉h,

then, for any finite subset S ⊆ U , the problem Holant(F , S) is polynomial-time computable.
Otherwise, there exists a finite subset S ⊆ U such that Holant(F , S) is #P-hard. The dichotomy
is still true even if the inputs are restricted to planar graphs.

By Lemma 46, if G is one of T , M ◦E with M ∈ O∪{K1,K2}, or K ◦M with K ∈ {K1,K2},
then C (G) ∪Υ0 = 〈G〉h. Recall that nullary functions do not affect the complexity of a holant
problem. Thus, while the original statement of [15, Theorem 2.2] uses only closure under
tensor product (with closure under permutations being included implicitly), we can use holant
clones instead without affecting the result. The same applies to the lemmas in this section.
Furthermore, by Observation 41, 〈K1 ◦ E〉h = 〈K2 ◦ E〉h, so it suffices to consider the case of a
holographic transformation by K1 despite both being treated separately in [15].

Lemma 51 ([15, Lemma 6.1]). Let R be any one of 〈T 〉h, 〈O◦E〉h for some O ∈ O, 〈K1◦E〉h =
〈K2 ◦ E〉h, or 〈K ◦M〉h for some K ∈ {K1,K2}. Let r = 3 if R = 〈T 〉h, and r = 2 in the other
three cases. Suppose f ∈ Υ \R and r < arity(f). Then there exists g ∈ 〈f,U〉h such that g /∈ R
and r ≤ arity(g) < arity(f).

Note that, by repeated application, Lemma 51 implies that there is a g ∈ 〈f,U〉h such that
g /∈ R and arity(g) = r.

Lemma 52. Suppose f ∈ Υ3 satisfies f /∈ 〈T 〉h, and s1, s2 ∈ Υ2 satisfy s1 /∈ 〈K1 ◦M〉h and
s2 /∈ 〈K2 ◦M〉h. Then there is a symmetric ternary function g ∈ 〈f, s1, s2〉h such that g /∈ 〈T 〉h.

Proof. This follows from [1, Lemmas 16 and 17]4. As the terminology and notation used in that
paper is rather different from that used here, we give a translation:

• The phrase “n-qubit state” in the lemmas means a vector corresponding to a function of
arity n; in particular, the vector |ψ〉 corresponds to our f , |GHZ〉 is the vector we denoted
g in Section 5.1, |W 〉 is the vector we denoted w, and |φ〉 will be either s1 or s2.

• Up to an irrelevant scalar factor, the matrix K in [1, Lemma 17] is the matrix we call K1,
and KX in the lemma is the matrix we call K2.

We are now ready to give the proof. The function f ∈ Υ3 \ 〈T 〉h is ternary and entangled.
By the entanglement classification described in Section 5.1, it is in either the GHZ class or the
W class.

Case 1: Suppose the function f is in the GHZ class, i.e. there exist matrices A,B,C ∈
GL2(A) such that f = (A ⊗ B ⊗ C)g, where g is the vector corresponding to EQ3. In this
case, the desired result follows from [1, Lemma 16]. The lemma states that either there exists a
triangle gadget in 〈f〉h which represents a non-degenerate symmetric ternary function, or that
f is already symmetric. In the former case, the function associated with the triangle gadget is
the desired g; in the latter case g = f .

Case 2: Suppose the function f is in the W class, i.e. there exist matrices A,B,C ∈ GL2(A)
such that f = (A⊗ B ⊗ C)w, where w is the vector corresponding to ONE3. In this case, the
desired result follows from [1, Lemma 17]. The lemma splits into three subcases.

• If f ∈ K1 ◦M, we also need a binary entangled function which is not in K1 ◦M: this is
satisfied by taking |φ〉 to be s1.

4The given lemma numbers are for the conference version of that paper. In the full version, these Lemmas
are numbered 18 and 19, respectively.
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• If f ∈ K2 ◦M, we also need a binary entangled function which is not in K2 ◦M: this is
satisfied by taking |φ〉 to be s2.

• If f /∈ K1 ◦M∪K2 ◦M, the binary functions are not actually required.

The lemma then states that a symmetric ternary entangled function (which we will call g) can
be “constructed”. From the proof in the full version of the paper it can be seen this means
that the function is contained in the holant clone generated by all the functions required in the
lemma, i.e. g ∈ 〈f, s1〉h, g ∈ 〈f, s2〉h, or g ∈ 〈f〉h, depending on the subcase.

Now, 〈f〉h, 〈f, s1〉h, 〈f, s2〉h are all subsets of 〈f, s1, s2〉h. Hence, in each case, g ∈ 〈f, s1, s2〉h,
as desired. Furthermore, g is entangled by construction, so since g has arity 3, g /∈ 〈T 〉h.

A similar but slightly weaker result was also proved in [15, Lemma 7.3].

Lemma 53 ([15, Lemma 7.4]). Let R be any one of 〈O ◦ E〉h for some O ∈ O, 〈K1 ◦ E〉h =
〈K2 ◦ E〉h, or 〈K ◦M〉h for some K ∈ {K1,K2}. Suppose f is a symmetric ternary function
in R \ 〈T 〉h and g is a binary function in Υ2 \ R. Then there is a symmetric binary function
h ∈ 〈f, g,U〉h such that h /∈ R.

5.3 Universal quantum circuits as holant clones

From Lemma 46, we have

• 〈T 〉h = C (T ) ∪Υ0,

• 〈M ◦ E〉h = C (M ◦ E) ∪Υ0 for any M ∈ O ∪ {K1,K2}, and

• 〈K ◦M〉h = C (K ◦M) ∪Υ0 for any K ∈ {K1,K2}.

This makes it straightforward to see that these holant clones do not contain all functions. For
example,

• if f is any entangled function of arity at least 3, then f /∈ 〈T 〉h,

• ONE3 /∈ 〈M ◦ E〉h for any M ∈ O ∪ {K1,K2}, and

• EQ3 /∈ 〈K ◦M〉h for any K ∈ {K1,K2}.

We now show that any set of functions which is not a subset of any of the tractable families
of Theorem 50 generates a holant clone that is equal to Υ. To do this, we make use of another
result from quantum theory, which is known simply as “single-qubit and CNOT gates are
universal” [28, Section 4.5.2]. This statement leaves a lot of meaning implicit, it is more accurate
to say “quantum circuits consisting of single-qubit and CNOT gates are universal for unitary
operators”. We will now unpack the technical terms in this phrase and give a rigorous statement
using the notation of restricted holant clones (cf. Section 3.4).

For our purposes, a gate or operator can be thought of simply as an even-arity function;
gates are implicitly assumed to be unitary. We say a function f ∈ Υ2n is unitary if5∑

z1,...,zn∈{0,1}

f∗(x1, . . . , xn, z1, . . . , zn)f(y1, . . . , yn, z1, . . . , zn) =

n∏
j=1

EQ2(xj , yj),

where f∗ is the function whose values are the complex conjugates of the values of f . (Functions
of odd arity cannot be unitary.) A single-qubit gate is a binary unitary function; we will denote
the set of all such functions by

S := {g ∈ Υ2 | g is unitary}.
5This definition corresponds to the matrix Mf of values of f , whose columns are indexed by the first n

arguments and whose rows are indexed by the second n arguments, being a unitary matrix.
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The CNOT gate corresponds to the arity-4 function which satisfies

CNOT(x) =

{
1 if x ∈ {0000, 0101, 1011, 1110}
0 otherwise.

It is straightforward to verify that CNOT is indeed unitary.
A quantum circuit is the quantum version of a Boolean circuit. In our terminology, it can

be defined as a type of restricted holant gadget.

Definition 54. Let Λ = {in, out} be a set of labels and let N = {{in, out}}. Let F be a set of
unitary functions where, for each function, the first half of the arguments are labelled in and
the second half of the arguments are labelled out. Then a ppsh-formula over F restricted by
N is called a quantum circuit if it corresponds to a holant gadget whose underlying graph is
acyclic when made into a directed graph by orienting each edge from out to in. For consistency
with the definition of unitarity, the arguments of the function represented by this ppsh-formula
are required to be ordered so that the ones labelled in come before the ones labelled out. We
denote the set of all functions that can be represented by quantum circuits over F by 〈F〉q.

The expression universal for unitary operators means that any unitary function f is the
effective function of some quantum circuit over S ∪ {CNOT}. Using our terminology, we can
thus state the result “single-qubit and CNOT gates are universal” [28, Section 4.5.2] as follows.

Proposition 55 (Universality of single-qubit and CNOT gates). Suppose f ∈ Υ is unitary,
then f ∈ 〈S,CNOT〉q.

To avoid the need to argue about quantum circuits, we will instead use the following weak-
ening of Proposition 55, which is sufficient for the subsequent proofs.

Corollary 56. Suppose f ∈ Υ is unitary, then f ∈ 〈S,CNOT〉h.

For any a ∈ An, denote the usual complex Euclidean norm by ‖a‖ := (
∑n

j=1 |aj |
2)1/2. We

will use the following lemma from linear algebra. The result is elementary, but we give a proof
for completeness.

Lemma 57. Suppose a ∈ Ak. Let b ∈ Ak be the vector that has ‖a‖ as its first component
and zeroes everywhere else, i.e. b = (‖a‖ , 0, 0, . . . , 0) with (k − 1) zeroes. Then there exists a
unitary matrix U ∈ Ak×k such that a = Ub.

Proof. First, suppose ‖a‖ = 0, then both a and b are the all-zero vector and a = Ub holds for
any unitary matrix. Thus, from now on we may assume that a is not a zero vector, i.e. ‖a‖ > 0.

We will find a suitable unitary matrix U by constructing an orthonormal basis for Ak which
contains the unit vector ea := (‖a‖)−1a. Any matrix whose columns form an orthonormal basis
is unitary. If we assemble the basis vectors into a matrix in such a way that the first column is
the vector ea, then a = Ub since

(Ub)` =
k∑
j=1

U`jbj = ‖a‖U`1 = ‖a‖ (ea)` = a`.

To find a suitable basis of Ak, let B1 := {a} and repeat the following step for each j ∈
{1, . . . , k − 1}: Find a vector vj ∈ Ak \ span(Bj), where span(Bj) is the vector space spanned
by the elements of Bj , and set Bj+1 := Bj ∪ {vj}. The set Bk constructed in this way must be
a basis for Ak.

Next, construct an orthonormal basis B′k from Bk via the Gram-Schmidt process with a as
the initial vector. This ensures that B′k contains the unit vector ea. Let U be the matrix whose
first column is ea and whose subsequent columns correspond to the other elements of B′k in
some arbitrary order. Then a = Ub, as desired.
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By combining this lemma with the universality of single-qubit gates and CNOT, we find the
following powerful result.

Lemma 58. Υ ⊆ 〈U ,S,CNOT〉h.

Proof. First, note that, by Observation 38, Υ0 ⊆ 〈U〉h ⊆ 〈U ,S,CNOT〉h.
Let n be a positive integer, suppose f ∈ Υn, and let f ′(x1, . . . , xn) := ‖f‖

∏n
k=1 δ0(xk). Then

f ′ ∈ 〈U ,S,CNOT〉h and f ′ = (‖f‖ , 0, 0, . . . , 0), with (2n − 1) zeroes. Therefore, by Lemma 57,
there exists a unitary matrix U ∈ A2n×2n such that f = U f ′. Let gU ∈ Υ2n be the function that
satisfies gU (x1, . . . , xn, y1, . . . , yn) = Ux1,...,xn,y1,...,yn for all x1, . . . , xn, y1, . . . , yn ∈ {0, 1}. Then
gU is a unitary function and

f(x1, . . . , xn) =
∑

y1,...,yn∈{0,1}

gU (x1, . . . , xn, y1, . . . , yn)f ′(y1, . . . , yn).

But gU ∈ 〈S,CNOT〉h by Corollary 56. Thus, by Corollary 17, f ∈ 〈U ,S,CNOT〉h. Since n and
f were arbitrary, and the case Υ0 was considered separately, this implies Υ ⊆ 〈U ,S,CNOT〉h.

We will also use the following results. The second of these is again elementary but we
provide a proof for completeness.

Lemma 59 ([1, Lemma 24 in full version]). Let M ∈ GL2(A), then the following hold:

• There exists Q ∈ O ∪ {K1,K2} such that Q−1M is upper triangular.

• There exists Q ∈ O ∪ {K1,K2} such that Q−1M is lower triangular.

• If Q−1M is neither lower nor upper triangular for any orthogonal Q, then M = K1D or
M = K2D, where D ∈ GL2(A) is diagonal.

Lemma 60. Any matrix M ∈ GL2(A) can be written as M = PLDU , where P ∈ {I,X} is a
permutation matrix, L =

(
1 0
l 1

)
is lower triangular, D =

(
d 0
0 e

)
is diagonal, and U = ( 1 u

0 1 ) is
upper triangular, with l, d, e, u ∈ A and d, e 6= 0.

Proof. Suppose M =
(
α β
γ δ

)
∈ GL2(A), then αδ − βγ 6= 0. We distinguish cases according to

whether α is zero.

• Suppose α 6= 0. Then division by α is well-defined and we have(
α β
γ δ

)
=

(
1 0
0 1

)(
1 0
γ/α 1

)(
α 0
0 (αδ − βγ)/α

)(
1 β/α
0 1

)
.

Here, α 6= 0 by the assumption of the case and (αδ − βγ)/α 6= 0 by invertibility of M .

• Suppose α = 0. Then γ 6= 0 because M is assumed to be invertible. Therefore, division
by γ is well defined and we have(

α β
γ δ

)
=

(
0 1
1 0

)(
1 0
α/γ 1

)(
γ 0
0 (βγ − αδ)/γ

)(
1 δ/γ
0 1

)
.

The assumption of the case implies that γ 6= 0, and (βγ − αδ)/γ 6= 0 by invertibility of
M .

Thus, in each case, we have found a decomposition of M which satisfies the desired properties.
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5.4 The power of conservative holant clones

In the previous section, we laid out the existing results that we will build on in proving which
sets F generate holant clones that are equal to Υ. We now move on to proving new results and
finally the theorem about universality in the conservative case.

Observation 61. Suppose F ⊆ Υ. By Observation 38 and Corollary 17, if f ∈ 〈U ,F〉h, then
λ · f ∈ 〈U ,F〉h for any λ ∈ A.

Lemma 62. Let I = {f ∈ Υ2 | f(0, 1) = f(1, 0) = 0 6= f(0, 0)f(1, 1)} and suppose t = [0, 1, µ]
for some µ ∈ A \ {0}. Then 〈I,NEQ, t〉h contains all non-degenerate binary functions.

Proof. For any d ∈ A \ {0}, the function kd = [d, 0, d−1] is in I. Thus, the function∑
y1,y2,y3∈{0,1}

kd(x1, y1)t(y1, y2)kd(y2, y3)NEQ(y3, x2)

is in 〈I,NEQ, t〉h for any d ∈ A \ {0}; it is equal to(
d 0
0 d−1

)(
0 1
1 µ

)(
d 0
0 d−1

)(
0 1
1 0

)
=

(
1 0

µ/d2 1

)
.

Since d ∈ A\{0} is arbitrary, this means that any function of the form
(

1 0
l 1

)
or, by permutation

of the arguments, ( 1 u
0 1 ), is contained in 〈I,NEQ, t〉h.

The set I contains all functions corresponding to invertible diagonal matrices, and we have
just shown that 〈I,NEQ, t〉h also contains all functions corresponding to upper triangular or
lower triangular matrices with 1’s on the diagonal. Finally, 〈I,NEQ, t〉h contains NEQ which
corresponds to the matrix X. Thus, by Proposition 16 and Lemma 60, 〈I,NEQ, t〉h contains any
binary function corresponding to an invertible matrix: i.e. any non-degenerate binary function.

Lemma 63. Suppose f = R◦EQ3, where R =
(
a b
0 a−1

)
∈ GL2(A) for some a, b ∈ A\{0}. Then

Υ2 ⊆ 〈U , f〉h.

Proof. Fix c ∈ A \ {0} and define uc = [c, c−1] ∈ U and u′c := (RT )−1 ◦ uc. For any d ∈ A \ {0},
write kd for the binary function corresponding to

(
d 0
0 d−1

)
. Furthermore, let ρ be the binary

function corresponding to the matrix R and define gc(x1, x2) :=
∑

y∈{0,1} f(x1, x2, y)u′c(y). Then

gc(x1, x2) =
∑

y,z1,z2,z3∈{0,1}

ρ(x1, z1)ρ(x2, z2)ρ(y, z3)EQ3(z1, z2, z3)u′c(y).

Now,
∑

y∈{0,1} ρ(y, z3)u′c(y) corresponds to RT ◦ u′c = RT (RT )−1 ◦ uc = uc, so

gc(x1, x2) =
∑

z1,z2,z3∈{0,1}

ρ(x1, z1)ρ(x2, z2)EQ3(z1, z2, z3)uc(z3)

=
∑

z1,z2∈{0,1}

ρ(x1, z1)ρ(x2, z2)kc(z1, z2).

Thus, by turning the sum over binary functions into a matrix product, we find

gc = R

(
c 0
0 c−1

)
RT =

(
a b
0 a−1

)(
c 0
0 c−1

)(
a 0
b a−1

)
=

1

a2c

(
a2(a2c2 + b2) ab

ab 1

)
. (11)

Note that, for any c ∈ A \ {0}, the matrix corresponding to gc has determinant 1 since detR =
detRT = 1 and det

(
c 0
0 c−1

)
= 1. The function gc(x1, x2) is in 〈U , f〉h for all c ∈ A \ {0}.

We now prove that 〈U , f〉h contains
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Part 1: the binary disequality function NEQ,

Part 2: all binary functions corresponding to invertible diagonal matrices, and

Part 3: a symmetric binary function of the form tµ =
(

0 1
1 µ

)
for some µ ∈ A \ {0}.

This is done by distinguishing three cases according to the values of a and b.
Case 1: Suppose a2b2 + 1 6= 0 and 2a2b2 + 1 6= 0.

Part 1 of Case 1: For any v, w ∈ A \ {0}, define

hv,w(x1, x2) :=
∑

y1,y2∈{0,1}

gv(x1, y1)gw(y1, y2)gv(y2, x2). (12)

Then hv,w ∈ 〈U , f, gv, gw〉h = 〈U , f〉h for all v, w ∈ A \ {0} by Corollary 17.
Now, −i · hs,t = NEQ, where

s =
ib

a

(
2(a2b2 + 1)

2a2b2 + 1

)1/2

and t =
i(a2b2 + 1)

a3b
.

This is straightforward to check using a computer algebra system, code for doing so can be
found in Appendix A.2. Hence, by Observation 61 and Corollary 17, NEQ ∈ 〈U , f〉h.

Part 2 of Case 1: For any p ∈ A \ {0} such that (a4p2 + a2b2 + 1)(a2p2 + b2) 6= 0, define

q±(p) = ±

√
−(a2b2 + 1)(a4p2 + a2b2 + 1)

a6(a2p2 + b2)
.

With this expression for q±(p), the function hp,q± is diagonal (cf. Appendix A.2):

hp,q± =


∓ a4p2+a2b2+1

a2
√
− (a4p2+a2b2+1)(a2b2+1)

(a2p2+b2)a6

0

0 ± a2b2+1

(a2p2+b2)a4
√
− (a4p2+a2b2+1)(a2b2+1)

(a2p2+b2)a6

 (13)

Note that hp,q±(0, 0)hp,q±(1, 1) = 1 since the matrix corresponding to hp,q± is a product of three
matrices with determinant 1. It is straightforward to see that both q±(p) and hp,q± depend only
on p2. Thus, to show that hp,q± = kd, it suffices to verify that

p2 ∈ Pd :=

{
−

2a2b2 + 1 +
√
−4(a2b2 + 1)d2 + 1

2a4
,−

2a2b2 + 1−
√
−4(a2b2 + 1)d2 + 1

2a4

}
(14)

is equivalent to

d = hp,q±(0, 0) = ∓ a4p2 + a2b2 + 1

a2
√
− (a4p2+a2b2+1)(a2b2+1)

(a2p2+b2)a6

, (15)

and that for any d ∈ A \ {0} there exists an element of Pd such that p satisfies all the required
conditions. This is done using a code snippet in Appendix A.2.

It remains to show that, for any d ∈ A \ {0}, we can choose p2 ∈ Pd such that both p and q
are well-defined and non-zero. Now, p is always well-defined. Additionally, since 2a2b2 + 1 6= 0
by assumption of Case 1, for any d there is an element of Pd which is non-zero. Furthermore,
by (15) and d 6= 0, we have

(
a4p2 + a2b2 + 1

) (
a2p2 + b2

)
6= 0, which implies that q is well-

defined and non-zero. Thus, for any d ∈ A \ {0}, kd ∈ 〈U , f〉h. Since any invertible diagonal

matrix
(
λ 0
0 µ

)
can be written as (λµ)1/2 kd for d = (λ/µ)1/2, the fact that kd ∈ 〈U , f〉h together

with Observation 61 implies that any binary function that corresponds to an invertible diagonal
matrix is in 〈U , f〉h.
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Part 3 of Case 1: Finally, i · gib/a = t1/(ab), as can be verified using the code snippet in
Appendix A.2. Hence t1/(ab) ∈ 〈U , f〉h by Observation 61.

Thus, in the three parts, we have shown that 〈U , f〉h contains NEQ, all binary functions
that correspond to invertible diagonal matrices, and the function t1/(ab).

Case 2: Suppose a2b2 + 1 = 0.
Part 2 of Case 2: For any d ∈ A \ {0}, we have

kd(x1, x2) =
∑

y1,y2∈{0,1}

g1/a2(x1, y1)g−1/(a2d)(y1, y2)g1/a2(y2, x2). (16)

Code for verifying this equality can be found in Appendix A.3. By (16), kd ∈ 〈U , f〉h. Hence, as
in Case 1, by Observation 61, 〈U , f〉h contains all functions corresponding to invertible diagonal
matrices.

Parts 1 and 3 of Case 2: For any p, q ∈ A \ {0}, define

h′p,q(x1, x2) :=
∑

y1,...,y4∈{0,1}

gp(x1, y1)gq(y1, y2)g1/a2(y2, y3)gq(y3, y4)gp(y4, x2).

To show that NEQ and tµ are in 〈U , f〉h, we distinguish two subcases according to the value
of b.

• Suppose b = i/a. Then we have

h′p,q =

(
−2a4p2 + p2q−2 + 2 −i

−i 0

)
. (17)

This can be verified using the code snippet in Appendix A.3. For any a ∈ A \ {0}, there
exist non-zero values for p, q such that −2a4p2 +p2q−2 +2 = 0, which makes h′p,q a scaling
of NEQ. Thus, by Observation 61, NEQ ∈ 〈U , f〉h.

Furthermore, −i ·g1/a2 = t−i, so t−i ∈ 〈U , f〉h. Again, code for verifying this can be found
in Appendix A.3.

• Suppose b = −i/a. Then we have

h′p,q =

(
−2a4p2 + p2q−2 + 2 i

i 0

)
. (18)

This can be verified using the code snippet in Appendix A.3. For any a ∈ A \ {0}, there
exist non-zero values for p, q such that −2a4p2 +p2q−2 +2 = 0, which makes h′p,q a scaling
of NEQ. Thus, by Observation 61, NEQ ∈ 〈U , f〉h.

Furthermore, i · g1/a2 = ti, so ti ∈ 〈U , f〉h. Again, code for verifying this can be found in
Appendix A.3.

We have shown that 〈U , f〉h contains NEQ and all binary functions that correspond to
invertible diagonal matrices. This time, it also contains the functions t−i or ti, depending on
the subcase.

Case 3: Suppose 2a2b2 + 1 = 0.
Part 2 of Case 3: For all d ∈ A \ {0}, if

w =
±
√
−2d2 + 1− 1

2a2d
and v =

1

a2

√
2a4w2 − 1

2(2a4w2 + 1)
,

are well-defined and non-zero, we have

kd(x1, x2) =
∑

y1,y2∈{0,1}

gv(x1, y1)gw(y1, y2)gv(y2, x2). (19)
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This can be verified using the code snippets in Appendix A.4. For any d ∈ A \ {0}, we can
choose the sign in the definition of w so that w is non-zero. Yet if 2a4w2 ∈ {1,−1}, then v is
zero or not well-defined; i.e. the construction fails. The failure condition is equivalent to

1 = 4a8w4 =
(±
√
−2d2 + 1− 1)4

4d4
.

This condition is polynomial in d and it is non-trivial. Hence there is a finite number of values
of d for which the construction fails. Thus, for any unsuitable d, there exists e ∈ A \ {0} such
that the construction succeeds for both e and d/e. Then kd can be decomposed as kd(x1, x2) =∑

y∈{0,1} ke(x1, y)kd/e(y, x2). Therefore, kd ∈ 〈U , f〉h for all d ∈ A \ {0}, and by Observation 61
all functions corresponding to diagonal matrices are contained in 〈U , f〉h.

Parts 1 and 3 of Case 3: For any r ∈ A \ {0} such that both

s =

√
(2a4r2 + 1)(2a4r2 − 1)

2a4(4a8r4 + 1)
and u =

2a4r2 − 1√
2a2(2a4r2 + 1)

(20)

are well-defined and non-zero, let

h′′r(x1, x2) :=
∑

y1,...,y4∈{0,1}

gs(x1, y1)gr(y1, y2)gu(y2, y3)gr(y3, y4)gs(y4, x2).

For all a ∈ A \ {0} there exist values of r which satisfy these requirements.
Again, we distinguish two subcases according to the value of b.

• Suppose b = i/(
√

2a). Then i · h′′r = NEQ whenever h′′r is well-defined, as can be verified
using the code snippet in Appendix A.4. As h′′r ∈ 〈U , f〉h for all such r, by Observation 61,
this implies NEQ ∈ 〈U , f〉h. Additionally, −i·g1/(

√
2a2) = t−i

√
2, so t−i

√
2 ∈ 〈U , f〉h. Again,

this can be checked using a code snippet provided in Appendix A.4.

• Suppose b = −i/(
√

2a). Then −i·h′′r = NEQ whenever h′′r is well-defined, as can be verified
using the code snippet in Appendix A.4. As h′′r ∈ 〈U , f〉h for all such r, by Observation 61,
this implies NEQ ∈ 〈U , f〉h. Additionally, i · g1/(

√
2a2) = ti

√
2, so ti

√
2 ∈ 〈U , f〉h. Again,

this can be checked using a code snippet provided in Appendix A.4.

Thus, 〈U , f〉h contains NEQ and all binary functions that correspond to invertible diagonal
matrices. It also contains t±i

√
2, with the sign depending on the subcase.

This completes the third case and thus the case distinction.
In each case, we have within 〈U , f〉h the disequality function and all binary functions that

correspond to invertible diagonal matrices, as well as a function tµ =
(

0 1
1 µ

)
for some µ ∈ A\{0}.

Thus, by Lemma 62 and Proposition 16, 〈U , f〉h contains all non-degenerate binary functions.
Now, the degenerate binary functions are all contained in 〈U〉h ⊆ 〈U , f〉h. Therefore all binary
functions are contained in 〈U , f〉h. In other words, Υ2 ⊆ 〈U , f〉h, completing the proof.

Lemma 64. Suppose f = [1, 0, 0, a] and g = [b, 1, c] for some a, b, c ∈ A, where a 6= 0 and
g /∈ 〈E〉h. Then Υ2 ⊆ 〈U , f, g〉h.

Proof. The property g /∈ 〈E〉h implies that b, c cannot both be zero and that g is non-degenerate,
i.e. bc− 1 6= 0. (If g was degenerate it would be in C(U) and thus in 〈E〉h by Lemma 39.)

Fix d ∈ A \ {0} and let ud := [1, d/a] ∈ U . Define fd(x1, x2) :=
∑

y∈{0,1} f(x1, x2, y)ud(y),
then fd = [1, 0, d]. But d was an arbitrary non-zero number, so by Observation 61, all functions
corresponding to invertible diagonal matrices are in 〈U , f, g〉h.

To realise NEQ, suppose s ∈ A \ {0} (to be determined later) satisfies b2 + s 6= 0 and
cs+ b 6= 0. Set

t =
−(b2 + s)2

(cs+ b)2
,
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and define

hs(x1, x2) :=
∑

y1,...,y6∈{0,1}

g(x1, y1)fs(y1, y2)g(y2, y3)ft(y3, y4)g(y4, y5)fs(y5, y6)g(y6, x2).

Then hs ∈ 〈U , f, g〉h by Corollary 17. Furthermore, for all allowed s,

hs =

(
0 −(b2+s)(bc−1)2s

cs+b
−(b2+s)(bc−1)2s

cs+b
−(b2c2s+2c2s2+2bcs+2b2+s)(bc−1)2s

(cs+b)2

)
. (21)

This can be verified using the piece of code provided in Appendix A.5.
We now distinguish cases according to the values of b and c.

• If b = 0, then c 6= 0. In this case, taking s = −1/(2c2) implies b2 + s = −1/(2c2) 6= 0 and
cs + b = −1/(2c) 6= 0, as required. Furthermore, it is straightforward to verify using a
computer algebra system (cf. the code snippet in Appendix A.5) that 2c3·h−1/(2c2) = NEQ.
Thus NEQ ∈ 〈U , f, g〉h by Observation 61.

• If c = 0, then b 6= 0. In this case, taking s = −2b2 implies b2 + s = −b2 6= 0 and
cs + b = b 6= 0, as required. Furthermore, (−2b3)−1 · h−2b2 = NEQ (cf. the code snippet
in Appendix A.5), so NEQ ∈ 〈U , f, g〉h by Observation 61.

• If bc 6= 0, recall that bc 6= 1 because g is non-degenerate. Take

s± = −(bc+ 1)2 ± (bc− 1)
√
b2c2 + 6bc+ 1

4c2
,

then for any b, c ∈ A\{0} with bc 6= 1, there exists a choice of sign for which s is non-zero.
Furthermore, as bc 6= 1,

0 = b2 + s± =
(3bc∓

√
b2c2 + 6bc+ 1 + 1)(bc− 1)

4c2

would imply
(3bc+ 1)2 = b2c2 + 6bc+ 1 ⇐⇒ 9b2c2 = b2c2,

contradicting the assumption that bc 6= 0. Hence b2 + s± 6= 0.

Additionally,

0 = cs± + b = −

(
bc±

√
b2c2 + 6bc+ 1− 1

)
(bc− 1)

4c

would again imply the term in the first set of parentheses is zero. But then

(bc− 1)2 = b2c2 + 6bc+ 1 ⇐⇒ −2bc = 6bc,

again contradicting the assumption that bc 6= 0. Hence cs± + b 6= 0, and s± satisfies the
required properties.

Finally, as can be verified using the pieces of code in Appendix A.5,(
bc±

√
b2c2 + 6bc+ 1 + 3

)
c(

bc±
√
b2c2 + 6bc+ 1− 1

)
(bc− 1)2s±

hs± = NEQ, (22)

so NEQ ∈ 〈U , f, g〉h by Observation 61. (The scalar factor is non-zero and well-defined
by the same argument that concluded b2 + s± 6= 0 and cs± + b 6= 0.) This completes the
third case and thus the case distinction.
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(a) (b)

Figure 1: Two gadgets for realising symmetric ternary functions.

To summarise, in each case, we have shown that NEQ ∈ 〈U , f, g〉h.
There are also values of s for which cs + b 6= 0 and b2 + s 6= 0, and hs is not a scaling of

NEQ, i.e. hs is zero only on input bit string 00. For such s, the function − −(cs+b)
(b2+s)(bc−1)2s

· hs
takes the form

(
0 1
1 µ

)
for some µ ∈ A \ {0}. Since NEQ and all functions corresponding to

invertible diagonal matrices are contained in 〈U , f, g〉h, by Lemma 62 and Proposition 16, all
non-degenerate binary functions are contained in 〈U , f, g〉h. The degenerate binary functions
are contained in 〈U〉h ⊆ 〈U , f, g〉h. Therefore Υ2 ⊆ 〈U , f, g〉h.

Lemma 65. Let R be any one of 〈T 〉h, 〈O ◦ E〉h for some O ∈ O, 〈K1 ◦ E〉h = 〈K2 ◦ E〉h, or
〈K ◦M〉h for some K ∈ {K1,K2}. Let r = 3 if R = 〈T 〉h, and r = 2 in the other three cases.
Suppose f ∈ Υ \ R. Then there exists g ∈ 〈f,U〉h such that g /∈ R and arity(g) = r.

Proof. Firstly, note that 〈T 〉h contains all unary and binary functions, so any f /∈ 〈T 〉h must
have arity at least 3. Similarly, U ⊆ E and holographic transformations by an invertible matrix
map U to itself by Observation 36. Thus U ⊆ 〈O ◦E〉h for any orthogonal O, and U ⊆ 〈K1 ◦E〉h.
Therefore any f not in one of these sets must have arity at least 2. An analogous argument
applies for 〈K ◦M〉h with K ∈ {K1,K2}.

We have shown that, for each R, f ∈ Υ \ R implies arity(f) ≥ r. If arity(f) = r then take
g = f , which has all the desired properties. Otherwise let f0 := f . While arity(fk) > r, let
fk+1 ∈ 〈fk,U〉h be the function identified when Lemma 51 is applied to R and fk. Then all
fk satisfy fk /∈ R by Lemma 51. Furthermore, fk ∈ 〈f,U〉h for all k: to see this, note that
f0 ∈ 〈f,U〉h and that fj ∈ 〈f,U〉h implies fj+1 ∈ 〈fj ,U〉h ⊆ 〈f, fj ,U〉h = 〈f,U〉h for all non-
negative integers j. Finally, Lemma 51 ensures that arity(fk) is a strictly decreasing function
of k. Hence there is some 1 ≤ ` < arity(f) such that arity(f`) = r. Then g = f` has all the
desired properties.

Lemma 66. Suppose M ∈ GL2(A) and f = M ◦ ONE3. Furthermore, suppose s1, s2 ∈ Υ2

satisfy s1 /∈ 〈K1 ◦M〉h and s2 /∈ 〈K2 ◦M〉h. Then there exists a symmetric ternary function
g ∈ 〈f, s1, s2〉h which satisfies g = M ′ ◦ EQ3 for some M ′ ∈ GL2(A).

This follows from the proof of Lemma 19 in the full version of [1], but the modifications are
not obvious, so we nevertheless give a full proof here.

Proof. We distinguish cases according to whether f is in one of the tractable sets.
Case 1: Suppose f /∈ K1 ◦ M ∪ K2 ◦ M. Consider the gadget in Figure 1a, where each

vertex is assigned function f . This gadget realises a cyclically symmetric ternary function g,
which – since the inputs are bits – is in fact fully symmetric. By definition,

g(x1, x2, x3) =
∑

y1,y2,y3∈{0,1}

f(x1, y2, y3)f(x2, y3, y1)f(x3, y1, y2).

But f = M◦ONE3, which means f(x, y, z) =
∑

u,v,w∈{0,1}MxuMyvMzwONE3(u, v, w). Plugging
this into the equation for g(x1, x2, x3) yields

g(x1, x2, x3) =
∑

Mx1a1My2a2My3a3ONE3(a1, a2, a3)Mx2b1My3b2My1b3ONE3(b1, b2, b3)

Mx3c1My1c2My2c3ONE3(c1, c2, c3),
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where the sum is over all y,a,b, c ∈ {0, 1}3. Rearranging the terms, we find g = M ◦ g′, where
g′(x1, x2, x3) is equal to∑

My1b3My1c2My2a2My2c3My3a3My3b2ONE3(x1, a2, a3)ONE3(x2, b2, b3)ONE3(x3, c2, c3)

=
∑

(MTM)b3c2(MTM)c3a2(MTM)a3b2ONE3(x1, a2, a3)ONE3(x2, b2, b3)ONE3(x3, c2, c3),

(23)

with the sums being over all the variables that appear twice in the respective expressions. Now
suppose MTM =

(
a b
c d

)
, then a bit of algebra yields

g′ = [b3 + c3 + 3abd+ 3acd, ab2 + abc+ ac2 + a2d, a2b+ a2c, a3]. (24)

A code snippet for verifying this may be found in Appendix A.6. If there exists a matrix
M ′ ∈ GL2(A) such that g′ = M ′ ◦ EQ3 then g = (MM ′) ◦ EQ3. Thus it suffices to consider g′

going forward. By Proposition 49 and some algebra, g′ is a holographically transformed equality
function if and only if

(ad− bc)3a6 6= 0. (25)

Again, Appendix A.6 contains a piece of code for verifying this result. This inequality can
fail to hold in two ways; we now show that each of these failures would contradict previous
assumptions.

• The inequality (25) is not satisfied if ad − bc = 0. But ad − bc = det(MTM), so this
implies that MTM is not invertible, contradicting the assumption that M is invertible.
Therefore ad− bc must be non-zero.

• The inequality (25) is not satisfied if a = 0. As a = (MTM)00, that property is equivalent
to M2

00 +M2
10 = 0, i.e. M10 = ±iM00. Now, if M10 = iM00, then

K−1
1 M =

1√
2

(
1 −i
1 i

)(
M00 M01

iM00 M11

)
=

1√
2

(
2M00 M01 − iM11

0 M01 + iM11

)
=: U

is upper triangular. Thus, by Lemma 40, f = M ◦ONE3 = K1◦(U ◦ONE3) ∈ K1◦M. By
an analogous argument, if M10 = −iM00, then f ∈ K2 ◦M. In each case, this contradicts
the assumption that f /∈ K1 ◦M∪K2 ◦M. Therefore a must be non-zero.

Thus, under the given assumptions, (ad− bc)3a6 must be non-zero. Hence, by Proposition 49,
there exists a matrix M ′ ∈ GL2(A) such that g′ = M ′ ◦ EQ3, which implies that g = (MM ′) ◦
EQ3.

Case 2: Suppose f ∈ Kj ◦M, where j ∈ {1, 2}. Consider the gadget in Figure 1b where
each degree-3 vertex is assigned the function f and each degree-2 vertex is assigned the function
sj . This gadget realises a ternary symmetric function g given by

g(x1, x2, x3) =
∑

y,z∈{0,1}3
f(x1, y2, z3)f(x2, y3, z1)f(x3, y1, z2)sj(y1, z1)sj(y2, z2)sj(y3, z3).

Let S be the matrix associated with the binary function sj . As in Case 1, we can substitute
f = M ◦ONE3 into the expression for g to find that g = M ◦ g′, where g′(x, y, z) is now equal
to ∑

(MTSM)b3c2(MTSM)c3a2(MTSM)a3b2ONE3(x, a2, a3)ONE3(y, b2, b3)ONE3(z, c2, c3).

Suppose MTSM =
(
a b
c d

)
, then g′ again takes the form (24). Thus, as in Case 1, we need to

show that (ad− bc)3a6 6= 0. Again, there are two ways the inequality could fail to hold.
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• The inequality is not satisfied if ad− bc = 0. But ad− bc = det(MTSM), so this implies
that MTSM is not invertible. Since sj /∈ 〈Kj ◦M〉h, sj is non-degenerate by Lemma 39,
and thus S is invertible. The matrix M is also invertible, a contradiction. Therefore
ad− bc must be non-zero.

• The inequality is not satisfied if a = 0. Since f = M ◦ ONE3 ∈ Kj ◦ M, we have
f ′ := (K−1

j M) ◦ ONE3 ∈ M. Now, both f ′ and ONE3 are in M, hence by Lemma 40,

U := K−1
j M must be upper triangular. By Observation 7, KT

j = XK−1
j , so MTSM =

UTKT
j SKjU = UTXS′XU , where S′ := K−1

j S(K−1
j )T is the matrix corresponding to

K−1
j ◦ sj . Let S′′ = XS′X, then

a = (UTS′′U)00 =
∑

k,`∈{0,1}

Uk0S
′′
k,`U`0 = U2

00S
′′
00 + U00U10

(
S′′01 + S′′10

)
+ U2

10S
′′
11 = U2

00S
′′
00,

since U10 = 0 for the upper triangular matrix U . But U00 6= 0 since U is upper triangular
and invertible. Furthermore, if S′11 = (K−1

j ◦ sj)(1, 1) = 0 then K−1
j ◦ sj ∈ M and thus

sj ∈ 〈Kj ◦M〉h. Therefore sj /∈ 〈Kj ◦M〉h implies that S′11 6= 0 and thus that S′′00 6= 0.
Hence a must be non-zero.

Thus, under the given assumptions, (ad− bc)3a6 must be non-zero. Hence, by Proposition 49,
there exists a matrix M ′ ∈ GL2(A) such that g′ = M ′ ◦ EQ3, which implies that g = (MM ′) ◦
EQ3.

In each case, we have realised a function g = (MM ′) ◦ EQ3, which we can bring into the
form given in the lemma by re-defining M ′ to absorb M . The function g is realised by a gadget
using f and potentially s1 or s2, thus by Lemma 13, g ∈ 〈f, s1, s2〉h.

We are now ready to prove the theorem about conservative holant clones. We say that a
subset F of Υ is universal in the conservative case if 〈F ∪ U〉h = Υ. Our theorem is as follows.

Theorem 67. Suppose F is a subset of Υ. Then F is universal in the conservative case unless

1. F ⊆ 〈T 〉h, or

2. there exists O ∈ O such that F ⊆ 〈O ◦ E〉h, or

3. F ⊆ 〈K1 ◦ E〉h = 〈K2 ◦ E〉h, or

4. there exists a matrix K ∈ {K1,K2} such that F ⊆ 〈K ◦M〉h.

Proof. Suppose that F is a subset of Υ that does not satisfy any of the four conditions. By
the definition of a holant clone, it is straightforward to see that 〈U ,F〉h ⊆ Υ. To prove the
theorem, we will show Υ ⊆ 〈U ,F〉h.

By Lemma 65, there exists a ternary function f ∈ 〈F ,U〉h such that f /∈ 〈T 〉h, and binary
functions s1, s2 ∈ 〈F ,U〉h such that s1 /∈ 〈K1 ◦ M〉h and s2 /∈ 〈K2 ◦ M〉h. Furthermore, by
Lemma 52, there exists a symmetric ternary function f ′ ∈ 〈F ,U〉h such that f ′ /∈ 〈T 〉h.

By the result stated in Section 5.1, any symmetric ternary function f ′ /∈ 〈T 〉h satisfies either
f ′ = M ◦ EQ3 or f ′ = M ◦ONE3 for some matrix M ∈ GL2(A). Suppose the second property
holds, i.e. there exists a matrix M ∈ GL2(A) such that f ′ = M ◦ ONE3. Then by Lemma 66,
there also exists M ′ ∈ GL2(A) such that f ′′ = M ′ ◦ EQ3 ∈ 〈f, s1, s2〉h ⊆ 〈F ,U〉h. Thus we
may assume without loss of generality that f ′ = M ◦ EQ3 for some M ∈ GL2(A) (if necessary,
replacing f ′ with the function f ′′ constructed using Lemma 66).

We now distinguish cases according to whether or not f ′ ∈ 〈A◦E〉h for any A ∈ O∪{K1,K2}.
Case 1: Suppose f ′ = M ◦ EQ3 /∈ 〈A ◦ E〉h for any A ∈ O ∪ {K1,K2}.
By Lemma 59, there exists Q ∈ O ∪ {K1,K2} such that Q−1M is upper triangular and

Q′ ∈ O ∪ {K1,K2} such that (Q′)−1M is lower triangular. We distinguish subcases.
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• If Q ∈ O, let F ′ = Q−1 ◦F and let f ′′ := Q−1 ◦ f ′ = R ◦EQ3, where R := Q−1M is upper
triangular. Then Q ◦ 〈U ,F ′, f ′′〉h = 〈U ,F , f ′〉h ⊆ 〈U ,F , f〉h.

• If Q /∈ O and Q′ ∈ O, let F ′ = X(Q′)−1 ◦ F and let

f ′′ := X(Q′)−1 ◦ f ′ = X(Q′)−1M ◦ EQ3 = X(Q′)−1MX ◦ EQ3 = R ◦ EQ3,

where (Q′)−1M is lower triangular and thus R := X(Q′)−1MX is upper triangular.
Here, the third equality uses the fact that X ◦ EQ3 = EQ3. Then Q′X ◦ 〈U ,F ′, f ′′〉h =
〈U ,F , f ′〉h ⊆ 〈U ,F , f〉h.

• If Q,Q′ /∈ O then Q,Q′ ∈ {K1,K2}. By Lemma 59, this implies M = K1D or M = K2D
for some diagonal matrix D ∈ GL2(A), so f ′ ∈ 〈K1 ◦ E〉h = 〈K2 ◦ E〉h. That contradicts
the assumption of this case, hence this subcase cannot occur.

We have shown that there exists O ∈ O such that O◦〈U ,F ′, f ′′〉h ⊆ 〈U ,F , f〉h = 〈U ,F〉h, where
F ′ = O−1 ◦F and f ′′ = O−1 ◦ f ′ = R ◦EQ3 for some upper triangular matrix R ∈ GL2(A). Let
λ = detR and define f ′′′ := λ−3(R ◦ EQ3) = (λ−1R) ◦ EQ3; then 〈U ,F ′, f ′′〉h = 〈U ,F ′, f ′′′〉h by
Observation 61.

Now, λ−1R can be written as
(
a b
0 a−1

)
for some a, b ∈ A\{0}. Hence, by applying Lemma 63

to f ′′′, we find Υ2 ⊆ 〈U , f ′′′〉h ⊆ 〈U ,F ′, f ′′′〉h, which is equivalent to

Υ2 = O ◦Υ2 ⊆ O ◦ 〈U ,F ′, f ′′′〉h ⊆ 〈U ,F〉h.

Case 2: Suppose f ′ ∈ 〈O ◦ E〉h for some O ∈ O. Recall f ′ /∈ 〈T 〉h; this implies f ′ is
entangled. By Lemma 46, any entangled function in 〈O ◦ E〉h must itself be in O ◦ E . Thus,
there exists λ, a ∈ A \ {0} and f ′′ := λ[1, 0, 0, a] such that f ′ = O ◦ f ′′. Let F ′ := O−1 ◦ F ,
then 〈U ,F〉h = O ◦ 〈U ,F ′〉h by Lemma 22. Thus, by Observation 61, f ′ ∈ 〈U ,F〉h implies
f ′′′ = [1, 0, 0, a] ∈ 〈U ,F ′〉h.

We assumed F * 〈O ◦E〉h, thus by Lemma 22, F ′ * 〈E〉h. Hence by Lemma 65, there exists
a binary function g ∈ 〈U ,F ′〉h such that g /∈ 〈E〉h. Let uc = [1, c/a] ∈ U and define

g′c(x1, x2) =
∑

y1,y2,y3∈{0,1}

g(x1, y1)f ′′′(y1, y2, y3)uc(y2)g(x2, y3).

Then, writing gxy for g(x, y), we have

g′c =

(
g2

00 + cg2
01 g00g10 + cg01g11

g00g10 + cg01g11 g2
10 + cg2

11

)
.

Now, g /∈ 〈E〉h implies that g00g11− g01g10 6= 0 and that at most one of its values is 0: with two
or more zero values, g would either be degenerate (and thus in 〈E〉h by Lemma 39), or it would
itself be in E . Thus, none of the values of g′c are zero for all choices of c. As each value of g′c
is a linear function of c and g′c is symmetric, there are at most three choices for c that make
one of the values of g′c zero. Hence, there exists some d ∈ A \ {0} such that g′d is everywhere
non-zero. Let g′′ be the scaling of g′d that satisfies g′′(0, 1) = g′′(1, 0) = 1. Then by Lemma 64,
Υ2 ⊆ 〈U , f ′′, g′′〉h ⊆ 〈U ,F ′〉h. Therefore,

Υ2 = O ◦Υ2 ⊆ O ◦ 〈U , f ′′, g′′〉h ⊆ O ◦ 〈U ,F ′〉h = 〈U ,F〉h.

Case 3: Suppose f ′ ∈ 〈K1◦E〉h = 〈K2◦E〉h, i.e. f ′ = λK1◦ [1, 0, 0, a] for some λ, a ∈ A\{0}.
Define F ′ = K−1

1 ◦ F , then by Lemma 28,

〈U ,F〉h = 〈K1 ◦ (U ∪ F ′)〉h = K1 ◦ 〈(U ∪ F ′) t {NEQ}〉h,L. (26)
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Since we assumed F * 〈K1 ◦ E〉h, by Lemma 65 there exists a binary function g ∈ 〈U ,F〉h
such that g /∈ 〈K1 ◦ E〉h. Let g′ = K−1

1 ◦ g, then g′ /∈ 〈E〉h by Lemma 29. Furthermore, let
f ′′ := K−1

1 ◦ f ′ = λ[1, 0, 0, a], then f ′ ∈ 〈U ,F〉h implies f ′′ ∈ 〈(U ∪ F ′) t {NEQ}〉h,L by (26).
Finally, let uc ∈ U be the function that satisfies uc = λ−1[ca−1, 1]. Define

hc(x1, x2) :=
∑

g′(x1, y1)NEQ(y1, y2)f ′′(y2, y3, y4)NEQ(y3, y5)uc(y5)NEQ(y4, y6)g′(x2, y6),

where the sum is over y1, . . . , y6 ∈ {0, 1}. Then hc ∈ 〈(U ∪ F ′) t {NEQ}〉h,L and

hc =

(
(g′00)2 + c(g′01)2 g′00g

′
10 + cg′01g

′
11

g′00g
′
10 + cg′01g

′
11 (g′10)2 + c(g′11)2

)
,

so, as in Case 2, we can pick c such that hc is everywhere non-zero, which implies hc /∈ 〈E〉h.
Now, let ua ∈ U be the function that satisfies u = λ−1[a−1, 1], then∑

y1,y2∈{0,1}

f ′(x1, x2, y1)NEQ(y1, y2)u(y2) = EQ2(x1, x2),

so EQ2 ∈ 〈(U ∪ F ′) t {NEQ}〉h,L and thus, by (26), K1 ◦ EQ2 ∈ 〈U ,F〉h. But then∑
y1,y2∈{0,1}

EQ2(x1, y1)NEQ(y1, y2)EQ2(y2, x2) = NEQ(x1, x2),

so NEQ ∈ 〈(U ∪ F ′) t {NEQ}〉h,L and thus, by (26), K1 ◦NEQ ∈ 〈U ,F〉h. Therefore,

〈U ,F〉h = 〈U ,F ,K1 ◦ EQ2,K1 ◦NEQ〉h = 〈K1 ◦ (U ∪ F ′ ∪ {EQ2,NEQ})〉h
= K1 ◦ 〈U ,F ′,EQ2,NEQ〉h, (27)

where the first equality is by Corollary 17, the second is by Observation 36 and by the definition
of F ′, and the third equality is by Lemma 29.

By combining (27) with (26), we find that 〈U ,F ′,EQ2,NEQ〉h = 〈(U ∪ F ′) t {NEQ}〉h,L.
Hence, f ′′ ∈ 〈(U ∪ F ′) t {NEQ}〉h,L implies f ′′ ∈ 〈U ,F ′,EQ2,NEQ〉h and, by scaling, f ′′′ :=
[1, 0, 0, a] ∈ 〈U ,F ′,EQ2,NEQ〉h. Furthermore, we have shown that there exists a symmetric bi-
nary function hc ∈ 〈U ,F ′,EQ2,NEQ〉h such that hc is everywhere non-zero and hc /∈ 〈E〉h.
Let h′c(x1, x2) = (hc(0, 1))−1hc(x1, x2), then h′c is a symmetric binary function that is ev-
erywhere non-zero and satisfies h′c /∈ 〈E〉h as well as h′c(0, 1) = h′c(1, 0) = 1. Additionally,
h′c ∈ 〈U ,F ′,EQ2,NEQ〉h by Observation 61. Thus, we can apply Lemma 64 to f ′′′ and h′c to
find

Υ2 ⊆ 〈U , f ′′′, h′c〉h ⊆ 〈U ,F ′,EQ2,NEQ〉h.

Therefore,
Υ2 = K1 ◦Υ2 ⊆ K1 ◦ 〈U ,F ′,EQ2,NEQ〉h = 〈U ,F〉h,

where the last equality uses (27). The third case is done.
This completes the case distinction. In each case, we have shown that Υ2 ⊆ 〈U ,F〉h, i.e. the

conservative holant clone generated by F contains all binary functions.
Recall that f ′ = M ◦ EQ3 ∈ 〈U ,F〉h, where M ∈ GL2(A). Let m ∈ Υ2 be the function

corresponding to the matrix M−1, then∑
y1,y2,y2∈{0,1}

m(x1, y1)m(x2, y2)m(x3, y3)f ′(y1, y2, y3) = EQ3(x1, x2, x3).

Hence EQ3 ∈ 〈f ′,Υ2〉h ⊆ 〈U ,F〉h. Similarly, let h =
(

1 1
1 −1

)
and write EVEN3 := [1, 0, 1, 0],

then EVEN3 ∈ 〈U ,F〉h since

EVEN3(x1, x2, x3) =
1

2

∑
y1,y2,y2∈{0,1}

h(x1, y1)h(x2, y2)h(x3, y3)EQ3(y1, y2, y3).
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Finally, CNOT(x1, x2, x3, x4) =
∑

y∈{0,1} EQ3(x1, x3, y)EVEN3(y, x2, x4), which implies that
CNOT ∈ 〈U ,F〉h. But then, by Lemma 58 and Proposition 16,

Υ ⊆ 〈U ,S,CNOT〉h ⊆ 〈U ,Υ2,CNOT〉h ⊆ 〈U ,F ,Υ2,CNOT〉h = 〈U ,F〉h,

completing the proof.

5.5 Approximating conservative holant problems

Theorem 68. Suppose that F is a finite subset of Υ. Then there exists a finite subset S ⊆ U
such that both HolantArg(F , S;π/3) and HolantNorm(F , S; 1.01) are #P-hard, unless

1. F ⊆ 〈T 〉h, or

2. there exists O ∈ O such that F ⊆ 〈O ◦ E〉h, or

3. F ⊆ 〈K1 ◦ E〉h = 〈K2 ◦ E〉h, or

4. there exists a matrix K ∈ {K1,K2} such that F ⊆ 〈K ◦M〉h.

Remark. The four conditions listed in Theorem 68 are exactly the conditions from Theorem 67
that prevent F from being universal in the conservative case. They are also exactly the same
as the conditions in Theorem 50 by Cai, Lu and Xia. So, suppose that F is a finite subset of Υ.

• If F satisfies the conditions then, by the theorem of Cai et al., for any finite subset S ⊆ U ,
the problem Holant(F , S) is polynomial-time computable.

• Otherwise, Theorem 68 guarantees that there exists some finite subset S ⊆ U such that
even approximating the argument or the norm of the holant is #P-hard for F ∪ S.

Proof of Theorem 68. We will show the desired hardness results by reduction from the problem
of approximating the independent set polynomial. An independent set I of a graph G = (V,E)
is a subset of the vertices such that no two vertices in I are adjacent. Let λ ∈ A, then the
independent set polynomial with activity λ for a graph G is ZG(λ) :=

∑
I λ
|I|, where the sum is

over all independent sets of G [4].
Define uλ := [1, λ] and recall that NAND = [1, 1, 0]. Suppose the graph G has maximum

degree ∆ ≥ 3, then ZG(λ) is equal to the holant for a bipartite signature grid constructed via
the following polynomial-time algorithm.

Given G = (V,E), define the bipartite graph G′ = (V ′,W ′, E′) as follows:

• V ′ := V ,

• W ′ := E ∪ {v′ | v ∈ V }, and

• E′ := {{v, e} | e ∈ E, v ∈ e} ∪ {{v, v′} | v ∈ V }.
In other words, G′ arises from G by first subdividing each edge and then adding an additional
vertex for each of the original vertices, connected to its “parent” by an edge.

Let Ω = (G′, {EQk | k ∈ [∆ + 1]} | {uλ,NAND}, σ), where σ assigns the function of
appropriate arity to each vertex (with vertices from V ′ being assigned equality functions and
vertices from W ′ being assigned uλ or NAND). Then ZG(λ) = ZΩ, as desired. To see this, let
deg(v) denote the degree of v in G′ and note that

ZΩ =
∑

x:E′→{0,1}

(∏
v∈V

EQdeg(v)(x|E′(v)) uλ(x|E′(v′))

) ∏
w∈E

NAND(x|E′(w)).

Now, any independent set I ⊆ V of G contributes a summand λ|I| to ZΩ via the assignment
xI : E′ → {0, 1} which satisfies xI(e) = 1 if and only if there exists v ∈ I such that v ∈ e.
Furthermore, any assignment x making a non-zero contribution to ZΩ must correspond to an
independent set in this way:
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• The equality functions ensure that x(e) = x(e′) whenever there exists v ∈ V such that
v ∈ e ∩ e′. Thus x induces a well-defined function y : V → {0, 1}, such that y(v) equals
the value x takes on edges incident on v. Hence we can define Sx := {v ∈ V | y(v) = 1}.

• The functions NAND ensure that if v ∈ Sx and {v, w} ∈ E, then w /∈ Sx. Therefore Sx is
an independent set of G.

• The functions uλ yield a factor of λ for each vertex in the independent set Sx.

Thus, HolantNorm({EQk | k ∈ [∆+1]} | {uλ,NAND}; 1.01) and HolantArg({EQk | k ∈ [∆+1]} |
{uλ,NAND};π/3) are #P-hard if λ is an activity for which the norm and argument of the
independent set polynomial on graphs of maximum degree ∆ are #P-hard to approximate
to the given accuracies. Such values exist in A, in fact λ can be negative real [4, Theorems
1 and 2]. Furthermore, since F | G ≤ F ∪ G by Lemma 33(d), HolantNorm({EQk | k ∈
[∆ + 1]} ∪ {uλ,NAND}; 1.01) and HolantArg({EQk | k ∈ [∆ + 1]} ∪ {uλ,NAND};π/3) are
#P-hard for such λ.

Let ∆ = 3 (for simplicity) and fix an activity λ ∈ A for which the independent set polynomial
is hard to approximate on graphs of maximum degree 3 by [4, Theorems 1 and 2]. Via the above
algorithm, such a choice of λ implies that

HolantNorm({EQ1, . . . ,EQ4, uλ,NAND}; 1.01) and

HolantArg({EQ1, . . . ,EQ4, uλ,NAND};π/3)

are both #P-hard. We now show that for any set F which is not one of the tractable cases,
there exists a finite set S ⊆ U such that

{EQ1, . . . ,EQ4, uλ,NAND} ≤ F ∪ S. (28)

Indeed, suppose F is not one of the sets listed in the theorem. Then 〈U ,F〉h = Υ by Theorem 67,
so in particular {EQ1, . . . ,EQ4, uλ,NAND} ⊆ 〈U ,F〉h. By the definition of holant clones, each
of the six functions on the LHS is represented by some ppsh-formula over U ∪F . Each of those
ppsh-formulas has finite size, hence it uses finitely many unary functions. Thus there exists
some finite set S ⊆ U such that {EQ1, . . . ,EQ4, uλ,NAND} ⊆ 〈F , S〉h. This implies (28) by
Lemma 33(e). Now, by Observation 32, (28) in turn implies

HolantNorm({EQ1, . . . ,EQ4, uλ,NAND}; 1.01) ≤PT HolantNorm(F ∪ S; 1.01)

HolantArg({EQ1, . . . ,EQ4, uλ,NAND};π/3) ≤PT HolantArg(F ∪ S;π/3).

But λ was specifically chosen so the problems on the left-hand side are #P-hard. Therefore,
HolantNorm(F ∪ S; 1.01) and HolantArg(F ∪ S;π/3) are #P-hard, as desired.

A Sage code

The (linear) algebra in some of the more complicated lemmas was handled using the SageMath
software system [29]. In the following, we give code that can be used to verify our derivations.
Code snippets can be run online at http://sagecell.sagemath.org/.

A.1 Code for Lemma 40

The function f (and hence M ◦ f) is symmetric by assumption. Thus the following piece of
code verifies (5), where mcf denotes the function M ◦ f . The code outputs True.
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var("a, b, c, d, f0, f1")

import itertools

def f(x,y,z):

if x+y+z == 0:

return f0

if x+y+z == 1:

return f1

return 0

def m(x,y):

return matrix([[a, b], [c, d]])[x,y]

def mcf(x1,x2,x3):

output = 0

for z1, z2, z3 in itertools.product([0,1], repeat=3):

output = output + m(x1,z1) * m(x2,z2) * m(x3,z3) * f(z1,z2,z3)

return output

[mcf(0,0,0), mcf(0,0,1), mcf(0,1,1), mcf(1,1,1)] == [(a*f0 + 3*b*f1)*a^2, \

(a*c*f0 + 2*b*c*f1 + a*d*f1)*a, (a*c*f0 + b*c*f1 + 2*a*d*f1)*c, \

(c*f0 + 3*d*f1)*c^2]

A.2 Code for Lemma 63, Case 1

The definition of hv,w in (12) is just a multiplication of three 2×2 matrices. Therefore the value
of −i · hs,t can be verified by the following piece of code, which outputs True. The definition of
g in this piece of code (and in subsequent ones) comes from (11).

var("a, b")

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

s = (I*b/a) * ( 2*(a^2*b^2 + 1) / (2*a^2*b^2+1) )^(1/2)

t = I * (a^2*b^2 + 1) / (a^3*b)

gs = g(s)

gt = g(t)

-I * (gs*gt*gs).factor() == matrix([[0, 1], [1, 0]])

For (13), there are two cases to consider, depending on the choice of sign in q±.
1. The following piece of code verifies (13) for the plus case; it outputs True.

var("a, b, p")

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

q = sqrt( -(a^2*b^2+1)*(a^4*p^2 + a^2*b^2 +1) / (a^6*(a^2*p^2 + b^2)) )

gp = g(p)

gq = g(q)

d1 = - (a^4*p^2 + a^2*b^2 + 1) / ( a^2 * sqrt( - (a^4*p^2 + a^2*b^2 + 1) \

* (a^2*b^2 + 1) / ( (a^2*p^2 + b^2) * a^6 ) ) )

d2 = (a^2*b^2 + 1) / ( (a^2*p^2 + b^2) * a^4 * \

sqrt( - (a^4*p^2 + a^2*b^2 + 1) * (a^2*b^2 + 1) / \

( (a^2*p^2 + b^2) * a^6 ) ) )

(gp*gq*gp).factor() == matrix([[d1, 0], [0, d2]])

2. The following piece of code verifies (13) for the minus case; it outputs True.

var("a, b, p")
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def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

q = - sqrt( -(a^2*b^2+1)*(a^4*p^2 + a^2*b^2 +1) / (a^6*(a^2*p^2 + b^2)) )

gp = g(p)

gq = g(q)

d1 = (a^4*p^2 + a^2*b^2 + 1) / ( a^2 * sqrt( - (a^4*p^2 + a^2*b^2 + 1) \

* (a^2*b^2 + 1) / ( (a^2*p^2 + b^2) * a^6 ) ) )

d2 = - (a^2*b^2 + 1) / ( (a^2*p^2 + b^2) * a^4 * \

sqrt( - (a^4*p^2 + a^2*b^2 + 1) * (a^2*b^2 + 1) / \

( (a^2*p^2 + b^2) * a^6 ) ) )

(gp*gq*gp).factor() == matrix([[d1, 0], [0, d2]])

To verify that (14) is equivalent to (15), it suffices to consider the square of (15). This is
because the sign of hp,q±(0, 0) is determined by the sign of q±, which can be chosen freely, even
after p is fixed. There are still two cases to consider, corresponding to the two elements of Pd.

1. The following piece of code verifies that p2 = −2a2b2+1+
√
−4(a2b2+1)d2+1

2a4
implies the square

of (15). It outputs True.

var("a, b, d, dsq, psq")

psq = - ( 2*a^2*b^2 + 1 + sqrt( -4*(a^2*b^2+1)*d^2 + 1 ) ) / (2*a^4)

dsq = (a^4*psq + a^2*b^2 + 1)^2 / ( (a^2)^2*( -(a^4*psq + a^2*b^2 + 1) \

* (a^2*b^2 + 1) / ( (a^2*psq + b^2) * a^6 ) ) )

bool( dsq.full_simplify() == d^2 )

2. The following piece of code verifies that p2 = −2a2b2+1−
√
−4(a2b2+1)d2+1

2a4
implies the square

of (15). It outputs True.

var("a, b, d, dsq, psq")

psq = - ( 2*a^2*b^2 + 1 - sqrt( -4*(a^2*b^2+1)*d^2 + 1 ) ) / (2*a^4)

dsq = (a^4*psq + a^2*b^2 + 1)^2 / ( (a^2)^2*( -(a^4*psq + a^2*b^2 + 1) \

* (a^2*b^2 + 1) / ( (a^2*psq + b^2) * a^6 ) ) )

bool( dsq.full_simplify() == d^2 )

The following piece of code verifies that i · gib/a = t1/(ab). It outputs True.

var("a, b")

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

I * g(I*b/a) == matrix([[0, 1], [1, 1/(a*b)]])

A.3 Code for Lemma 63, Case 2

For (16), there are two cases to verify, corresponding to the different choices of solution for the
equation a2b2 + 1− 0.

1. The following piece of code verifies (16) if b = i/a; it outputs True.

var("a, d")

b = I/a

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

gd = g(-1/(a^2*d))

ga = g(1/a^2)

(ga*gd*ga).factor() == matrix([[d, 0], [0, 1/d]])
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2. The following piece of code verifies (16) if b = −i/a; it outputs True.

var("a, d")

b = -I/a

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

gd = g(-1/(a^2*d))

ga = g(1/a^2)

(ga*gd*ga).factor() == matrix([[d, 0], [0, 1/d]])

The following piece of code verifies (17) with b = i/a; it outputs True.

var("a, p, q")

b = I/a

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

gp = g(p)

gq = g(q)

ga = g(1/a^2)

(gp*gq*ga*gq*gp).expand() == matrix([[-2*a^4*p^2 + p^2/q^2 + 2, -I], [-I, 0]])

The following piece of code verifies that −i · g1/a2 = t−i with b = i/a; it outputs True.

var("a")

b = I/a

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

-I*g(1/a^2) == matrix([[0, 1], [1, -I]])

The following piece of code verifies (18) with b = −i/a; it outputs True.

var("a, p, q")

b = -I/a

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

gp = g(p)

gq = g(q)

ga = g(1/a^2)

(gp*gq*ga*gq*gp).expand() == matrix([[-2*a^4*p^2 + p^2/q^2 + 2, I], [I, 0]])

The following piece of code verifies that i · g1/a2 = ti with b = −i/a; it outputs True.

var("a")

b = -I/a

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

I*g(1/a^2) == matrix([[0, 1], [1, I]])

A.4 Code for Lemma 63, Case 3

To verify (19), there are four cases to consider, corresponding to the choice of solution of
2a2b2 + 1 = 0 and the choice of sign in the definition of w.

1. The following piece of code verifies (19) for the case where b = i/(
√

2a) and w has a plus
sign; it outputs True.
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var("a, d")

b = I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

def simp(M):

# this function simplifies every element of the matrix M

return matrix([[x.full_simplify() for x in r] for r in M.rows()])

w = (sqrt(-2*d^2 + 1) - 1)/(2*a^2*d)

v = (1/a^2) * sqrt( (2*a^4*w^2 - 1) / ( 2*(2*a^4*w^2 + 1) ) )

gv = g(v)

gw = g(w)

simp(gv*gw*gv) == matrix([[d, 0], [0, 1/d]])

2. The following piece of code verifies (19) for the case where b = i/(
√

2a) and w has a
minus sign; it outputs True.

var("a, d")

b = I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

def simp(M):

return matrix([[x.full_simplify() for x in r] for r in M.rows()])

w = (-sqrt(-2*d^2 + 1) - 1)/(2*a^2*d)

v = (1/a^2) * sqrt( (2*a^4*w^2 - 1) / ( 2*(2*a^4*w^2 + 1) ) )

gv = g(v)

gw = g(w)

simp(gv*gw*gv) == matrix([[d, 0], [0, 1/d]])

3. The following piece of code verifies (19) for the case where b = −i/(
√

2a) and w has a
plus sign; it outputs True.

var("a, d")

b = -I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

def simp(M):

return matrix([[x.full_simplify() for x in r] for r in M.rows()])

w = (sqrt(-2*d^2 + 1) - 1)/(2*a^2*d)

v = (1/a^2) * sqrt( (2*a^4*w^2 - 1) / ( 2*(2*a^4*w^2 + 1) ) )

gv = g(v)

gw = g(w)

simp(gv*gw*gv) == matrix([[d, 0], [0, 1/d]])

4. The following piece of code verifies (19) for the case where b = −i/(
√

2a) and w has a
minus sign; it outputs True.

var("a, d")

b = -I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

def simp(M):

return matrix([[x.full_simplify() for x in r] for r in M.rows()])

w = (-sqrt(-2*d^2 + 1) - 1)/(2*a^2*d)

v = (1/a^2) * sqrt( (2*a^4*w^2 - 1) / ( 2*(2*a^4*w^2 + 1) ) )
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gv = g(v)

gw = g(w)

simp(gv*gw*gv) == matrix([[d, 0], [0, 1/d]])

The following piece of code verifies that i · h′′r = NEQ if b = i/(
√

2a); it outputs True.

var("a, r")

b = I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

s = sqrt( (2*a^4*r^2 + 1)*(2*a^4*r^2 - 1) / ( 2*a^4 * (4*a^8*r^4 + 1) ) )

u = (2*a^4*r^2-1) / ( sqrt(2)*a^2 * (2*a^4*r^2+1) )

gs = g(s)

gr = g(r)

gu = g(u)

I*(gs*gr*gu*gr*gs).factor() == matrix([[0, 1], [1, 0]])

The following piece of code verifies that −i · g1/(
√

2a2) = t−i
√

2 if b = i/(
√

2a); it outputs
True.

var("a")

b = I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

-I*g(1/(sqrt(2)*a^2)) == matrix([[0, 1], [1, -I*sqrt(2)]])

The following piece of code verifies that −i · h′′r = NEQ if b = −i/(
√

2a); it outputs True.

var("a, r")

b = -I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

s = sqrt( (2*a^4*r^2 + 1)*(2*a^4*r^2 - 1) / ( 2*a^4 * (4*a^8*r^4 + 1) ) )

u = (2*a^4*r^2-1) / ( sqrt(2)*a^2 * (2*a^4*r^2+1) )

gs = g(s)

gr = g(r)

gu = g(u)

-I*(gs*gr*gu*gr*gs).factor() == matrix([[0, 1], [1, 0]])

The following piece of code verifies that i ·g1/(
√

2a2) = ti
√

2 if b = −i/(
√

2a); it outputs True.

var("a")

b = -I/(sqrt(2)*a)

def g(c):

return 1/(a^2*c) * matrix([[a^2*(a^2*c^2+b^2), a*b], [a*b, 1]])

I*g(1/(sqrt(2)*a^2)) == matrix([[0, 1], [1, I*sqrt(2)]])

A.5 Code for Lemma 64

The following code snippet verifies (21); it outputs True.

var("a, b, c, s")

t = -(b^2 + s)^2/(c*s + b)^2

g = matrix([[b, 1], [1, c]])

fs = matrix([[1, 0], [0, s]])
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ft = matrix([[1, 0], [0, t]])

x = -(b^2 + s)*(b*c - 1)^2*s/(c*s + b)

y = -(b^2*c^2*s + 2*c^2*s^2 + 2*b*c*s + 2*b^2 + s)*(b*c - 1)^2*s/(c*s + b)^2

(g*fs*g*ft*g*fs*g).factor() == matrix([[0, x], [x, y]])

The following code snippet verifies that 2c3 · h−1/(2c2) = NEQ if b = 0 6= c; it outputs True.

var("a, c")

b = 0

s = -1 / (2*c^2)

t = -(b^2 + s)^2/(c*s + b)^2

g = matrix([[b, 1], [1, c]])

fs = matrix([[1, 0], [0, s]])

ft = matrix([[1, 0], [0, t]])

2*c^3 * (g*fs*g*ft*g*fs*g).factor() == matrix([[0, 1], [1, 0]])

The following code snippet verifies that (−2b3)−1 · h−2b2 = NEQ if b 6= 0 = c; it outputs
True.

var("a, b")

c = 0

s = -2*b^2

t = -(b^2 + s)^2/(c*s + b)^2

g = matrix([[b, 1], [1, c]])

fs = matrix([[1, 0], [0, s]])

ft = matrix([[1, 0], [0, t]])

(-2*b^3)^(-1) * (g*fs*g*ft*g*fs*g).factor() == matrix([[0, 1], [1, 0]])

To verify (22), there are two cases depending on the choice of sign.
1. The following piece of code verifies (22) for the plus case; it outputs True.

var("a, b, c")

def simp(M):

return matrix([[x.full_simplify() for x in r] for r in M.rows()])

s = -1/4*(b^2*c^2 + 2*b*c + sqrt(b^2*c^2 + 6*b*c + 1)*(b*c - 1) + 1)/c^2

t = -(b^2 + s)^2/(c*s + b)^2

X = (b*c + sqrt( b^2*c^2 + 6*b*c + 1 ) + 3) * c / \

( (b*c + sqrt( b^2*c^2 + 6*b*c + 1 ) - 1) * (b*c - 1)^2 * s )

g = matrix([[b, 1], [1, c]])

fs = matrix([[1, 0], [0, s]])

ft = matrix([[1, 0], [0, t]])

simp(X * (g*fs*g*ft*g*fs*g)) == matrix([[0, 1], [1, 0]])

2. The following piece of code verifies (22) for the minus case; it outputs True.

var("a, b, c")

def simp(M):

return matrix([[x.full_simplify() for x in r] for r in M.rows()])

s = -1/4*(b^2*c^2 + 2*b*c - sqrt(b^2*c^2 + 6*b*c + 1)*(b*c - 1) + 1)/c^2

t = -(b^2 + s)^2/(c*s + b)^2

X = (b*c - sqrt( b^2*c^2 + 6*b*c + 1 ) + 3) * c / \

( (b*c - sqrt( b^2*c^2 + 6*b*c + 1 ) - 1) * (b*c - 1)^2 * s )

g = matrix([[b, 1], [1, c]])

fs = matrix([[1, 0], [0, s]])

ft = matrix([[1, 0], [0, t]])

simp(X * (g*fs*g*ft*g*fs*g)) == matrix([[0, 1], [1, 0]])
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A.6 Code for Lemma 66

As g (and thus g′) is symmetric by construction, the following code snippet verifies (24). It
outputs True. The definition of gp (which is g′) is taken from (23). The matrix m is MTM
from the paper.

var("a, b, c, d")

import itertools

def ONE(x,y,z):

if x+y+z == 1:

return 1

return 0

def m(x,y):

return matrix([[a, b], [c, d]])[x,y]

def gp(x1,x2,x3):

output = 0

for a2, a3, b2, b3, c2, c3 in itertools.product([0,1], repeat=6):

output = output + m(b3,c2) * m(c3,a2) * m(a3,b2) * ONE(x1,a2,a3) \

* ONE(x2,b2,b3) * ONE(x3,c2,c3)

return output

[gp(0,0,0), gp(0,0,1), gp(0,1,1), gp(1,1,1)] == \

[b^3 + c^3 + 3*a*b*d + 3*a*c*d, a*b^2 + a*b*c + a*c^2 + a^2*d, \

a^2*b + a^2*c, a^3]

The following code snippet verifies (25), it outputs True.

var("a, b, c, d")

import itertools

def ONE(x,y,z):

if x+y+z == 1:

return 1

return 0

def m(x,y):

return matrix([[a, b], [c, d]])[x,y]

def gp(x1,x2,x3):

output = 0

for a2, a3, b2, b3, c2, c3 in itertools.product([0,1], repeat=6):

output = output + m(b3,c2) * m(c3,a2) * m(a3,b2) * ONE(x1,a2,a3) \

* ONE(x2,b2,b3) * ONE(x3,c2,c3)

return output

g0 = gp(0,0,0)

g1 = gp(0,0,1)

g2 = gp(0,1,1)

g3 = gp(1,1,1)

bool( ((g0*g3 - g1*g2)^2 - 4*(g1^2 - g0*g2)*(g2^2 - g1*g3)).factor() \

== -4 * (b*c - a*d)^3 * a^6 )
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