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Abstract
In this paper we propose an innovative machine learning approach to the hydraulic motor load balancing problem 
involving intelligent optimisation and neural networks. Two different nonlinear artificial neural network approaches are 
investigated, and their accuracy is compared to that of a linearised analytical model. The first neural network approach 
uses a multi-layer perceptron to reproduce the load simulator dynamics. The multi-layer perceptron is trained using the 
Rprop algorithm. The second approach uses a hybrid scheme featuring an analytical model to represent the main system 
behaviour, and a multi-layer perceptron to reproduce unmodelled nonlinear terms. Four techniques are tested for the 
optimisation of the parameters of the analytical model: random search, an evolutionary algorithm, particle swarm opti-
misation, and the Bees Algorithm. Experimental tests on 4500 real data samples from an electro-hydraulic load simulator 
rig reveal that the accuracy of the hybrid and the neural network models is comparable, and significantly superior to the 
accuracy of the analytical model. The results of the optimisation procedures suggest also that the inferior performance 
of the analytical model is likely due to the non-negligible magnitude of the unmodelled nonlinearities, rather than 
suboptimal setting of the parameters. Despite its limitations, the analytical linear model performs comparably to the 
state-of-the-art in the literature, whilst the neural and hybrid approaches compare favourably.

Keywords Regression · System identification · Load simulator · Electro-hydraulic motor · Analytical modelling · 
Optimisation · Multi-layer perceptron

1 Introduction

A load simulator [1] is a ground system that reproduces 
the aerodynamic force on the rudder of a flying aircraft. It 
is a typical example of passive loading servo system, and 
finds important application in hardware-in-the-loop simu-
lator devices. It allows designers under strict laboratory 
conditions to foresee and detect problems related to the 
rudder mechanics and control policy, cutting down costs 
and development time.

There are different kinds of load simulators: electric, 
pneumatic, and electro-hydraulic. The latter excels in 
terms of durability, power to weight ratio, controllability, 
accuracy, and reliability [2]. Thanks to these advantages, 
electro-hydraulic load simulators found wide application 

in the development and testing of systems beyond the 
aviation and aerospace domain, such as ship fin stabilisers 
[3], power steering for heavy duty vehicles [4], and robotic 
manipulators [5, 6].

To reproduce aerodynamic flow, the load simulator is 
typically connected with the actuation system via a rigid 
shaft. The direct coupling between the two systems pro-
duces a strong position disturbance on the load system. 
This generates an extra torque which needs to be compen-
sated mechanically or via a control system [7–13].

For control and simulation purposes, it is often useful 
to identify the dynamics of the load simulator. That is, to 
model the relationship between the device state, control 
signal, and torque on the load bearing system (including 
the extra torque).
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Several studies described the dynamics of electro-
hydraulic load simulators via analytical linearised models 
[14–18]. Although the structure of the linear relationship 
is to date fairly well understood, its exact parameterization 
is still uncertain. Some authors addressed the parameteri-
zation problem using a standard genetic algorithm [19], 
neural networks, [20], and a backstepping genetic algo-
rithm [21]. Unfortunately, these methods either suffered 
from sub-optimal convergence [19], or required lengthy 
training procedures [20], or required the introduction of 
extra system parameters [21]. Moreover, the linearised 
model does not take into account known nonlinearities 
of electro-hydraulic load simulators [10], and this limits its 
precision and reliability. Unfortunately, due to its complex-
ity, a full nonlinear analytical model of electro-hydraulic 
load simulator is at present not available.

Some authors employed machine learning techniques 
to either learn the electro-hydraulic motor dynamics 
[22, 23], or design robust controllers able to compensate 
parameter uncertainties and nonlinearities [24–26].

Artificial neural networks (ANNs) [27] are by far the 
most common machine learning method used for identi-
fication of electro-hydraulic load simulator dynamics. The 
typical approach is to complement the linear analytical 
model with an ANN module that reproduces the nonlinear 
dynamics [10, 28, 29]. Alternatively, some authors used an 
ANN to identify the full simulator dynamics [30]. Unfortu-
nately, the above studies focused on the accuracy of the 
whole control system, and did not discuss the precision 
of the nonlinear model. This paper addresses this gap in 
the literature, and investigates the use of ANN techniques 
from a system identification perspective. In addition to 
the standard control applications, the proposed study is 
relevant for the general software simulation of electro-
hydraulic load simulator systems.

Two system identification approaches are studied, 
using respectively (a) a full nonlinear ANN model, and (b) a 
hybrid model comprising an analytical component and an 
ANN component. The accuracy of these two approaches is 
compared to that of a standard analytical linearised model, 
and the differences are analysed. In all instances, the first 
effort will be to identify the structure (analytical, ANN) of 
the input-output relationship, and then learn the correct 
parameterization of the model from a set of data patterns 
describing the system input, state, and output. That is, to 
fit the parametric model to a set of data points sampled 
from an experimental rig at different frequencies.

The analytical linear model was developed by one of 
the authors (BZ). It will be employed on its own as a term 
of comparison for the two non-linear models, and as the 
linear component in the hybrid model. To optimise its 
parameters, three artificial intelligence techniques were 
tested: an evolutionary algorithm (EA) [31], particle swarm 

optimisation (PSO) [32], and the Bees Algorithm (BA) [33]. 
The latter algorithm showed great promise on various 
optimisation benchmarks [33–35], and its application in 
this context constitutes a novel contribution to its knowl-
edge. As a term of reference, random guess (RG) was also 
tested for the optimisation of the parameters of the lin-
earised model.

The non-linear model of the the load simulator dynam-
ics was built using a multi-layer perceptron (MLP) [27] ANN. 
In this case, the MLP architecture defines the structure of 
the model, and the connection weights are the parameters 
to be optimised. The strong points of the MLP approach 
are the possibility of reproducing arbitrarily complex non-
linear mappings [36], and the existence of well-known in-
built algorithms to optimise the weights inductively from 
data points. In this study, a fast weight learning algorithm 
[37] was used to reduce the ANN training time. The weak 
point of the MLP approach is the complexity of the ANN, 
which makes the model non-transparent to the user. That 
is, the MLP model is a black box.

In the hybrid approach, the analytical model was used 
to reproduce the main behaviour of the system, and the 
MLP to fit unmodelled nonlinearities.

The three modelling approaches are presented in 
Sect. 2, whilst Sect. 3 describes their optimisation. The 
experimental results are presented in Sect. 4 and discussed 
in Sect. 5. Section 6 concludes the paper.

2  Modelling approaches

The overall experimental system is described in Fig. 1. It 
consists of two subsystems connected by a rigid shaft and 
a torque sensor: the loading system (on the left in the fig-
ure) and load-bearing system (on the right). The overall 

Fig. 1  Schematic diagram of the experimental rig. The components 
are: 1 load motor; 2 torque sensor; 3 coupling axis; 4 load bearing 
motor; 5 angle encoder; 6 load bearing valve; 7 AD/DA card; 8 com-
puter; 9 load valve
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stiffness of the connecting link includes the stiffness of 
the torque sensor.

The two subsystems are controlled using closed loop 
schemes. The angle of the load-bearing system is moni-
tored using an encoder. The signal from the encoder is 
used by the load bearing controller to achieve servo posi-
tion control. The load system controller uses angle and 
torque information to regulate the torque on the load 
bearing system. The remaining of this section describes 
the linear and non-linear models of the electro-hydraulic 
load simulator used in this study.

2.1  Linearised analytical model

This section briefly outlines the linear model that approxi-
mates the relationship at time k between the current plant 
output T̃g(k) (output torque of the load-on motor), its pre-
vious values, and the current an past values of the two 
plant inputs: �d(k) (turn angle of the motor drive shaft in 
radians), and um(k) (load input from the controller). The 
derivation of the model is fully detailed in “Appendix 1”.

The linearised model consists of the following equation:

Equation (1) includes the following 14 independent 
variables : the torques at time steps k − 1,… , k − 4 (4 vari-
ables), load inputs um at time steps k,… , k − 4 (5 variables), 
and angles �d at time steps k,… , k − 4 (5 variables). The 
contribution of each of the 14 independent variables is 
weighted by a number of constant parameters that are 
detailed in “Appendix 1”, and depend on the 9 primary 
parameters listed in Table 1. The optimal value of these 9 
parameters is not known. The boundaries showed in the 

(1)

T̃g(k) = −f1Tg(k − 1) + f2Tg(k − 2) + f3Tg(k − 3)

− f4Tg(k − 4)

+ d0um(k) + 4d0um(k − 1) + 6d0um(k − 2)

+ 4d0um(k − 3) + d0um(k − 4)

− e0𝜃d(k) − e1𝜃d(k − 1) + e2𝜃d(k − 2)

+ e3𝜃d(k − 3) − e4𝜃d(k − 4)

table were set based on expertise and the physical proper-
ties of the system.

2.2  Multi‑layer perceptron model

The analytical model described in Sect. 2.1 approximates 
linearly the non-linear relationship between the output 
torque and plant inputs. Given the difficulty of represent-
ing such relationship, the linearised model offers a reason-
able trade-off between modelling accuracy and mathe-
matical complexity. An alternative approach to circumvent 
the difficulty of identifying the load simulator dynamics is 
to employ a non-linear neural network model.

Artificial neural networks (ANNs) [27] are widely used 
learning systems composed of an input layer of units (neu-
rons), a variable number of hidden layers, and an output 
layer. The number of units per layer and their connectivity 
defines the ANN topology.

The multi-layer perceptron (MLP) [38] is arguably the 
best known ANN model. It is composed of three or four 
layers of units. Each element is fully connected to all the 
units in the immediately previous and following layer, with 
no inter-layer connections between units. Each connec-
tion is associated to a weight, which allows modulating 
the signal passed from one unit to the other. The plant 
inputs are collected by the first (input) layer and processed 
in feedforward manner, one layer after the other (feed-
forward model). The input layer is composed of as many 
units as the plant inputs, and acts as a buffer. The units of 
the hidden layer(s) perform a non-linear mapping of the 
weighted sum of their inputs (i.e. the outputs of the previ-
ous layer). Depending on the implementation, the units of 
the last (output) layer perform a linear or non-linear map-
ping of the weighted sum of their inputs (i.e. the outputs 
of the last hidden layer). The output of the units of the last 
layer constitutes the ANN response to a given input pat-
tern. In the specific case of the hydraulic motor plant, there 
is only one output unit giving the motor output torque. 
The transfer function of each unit, which determine the 

Table 1  Analytical model 
parameters with boundaries

Parameter Meaning Unit Lower bound Upper bound

Vm Motor volume m3 1.6 × 10−4 1.9 × 10−4

J Gen. equivalent motor inertia kg  m3 1 × 10−2 1 × 10−1

Kp Valve coefficient – 5 × 10−3 3 × 10−2

Kq Valve flow gain m2/s 2 × 10−1 2.5
G Gen. coupled stiffness N m/rad 7 × 103 1.5 × 104

Kce Flow pressure coefficient m5/N s 1 × 10−12 1 × 10−11

Bm Viscosity damp coefficient rad/s 10 1 × 102

Ksv Valve coefficient – 3 × 10−5 2 × 10−4

�e Bulk modulus of oil N/m2 6.5 × 108 7.5 × 108



Vol:.(1234567890)

Research Article SN Applied Sciences           (2020) 2:130  | https://doi.org/10.1007/s42452-019-1889-y

unit response at a weighted input, is the hyperbolic tan-
gent function (tanh).

Given a sufficient number of non-linear hidden units, 
an MLP is able to approximate any continuous mapping 
to an arbitrary degree of precision [39]. The ANN response 
is fitted to the input-output data patterns by adjusting the 
weights of the unit connections. The supervised learning 
approach changes (trains) the weights based on the error 
between the ANN and the actual plant output. In the data-
set, the values of the plant output have been divided by a 
factor 200. This way, all the actual output values present 
in the dataset are in the [− 1, 1] range, and they can be 
compared with the MLP output.

The MLP is fed to the same 14 inputs used by the ana-
lytical model (Eq. 1), and is required to approximate the 
the torque Tg(k) at time step k.

2.3  Hybrid model

A common divide-and-conquer strategy is to combine the 
two models described in Sects. 2.1 and 2.2 into one hybrid 
model (HM) [40, 41]. In detail, the analytical linearised 
model described in Eq. (1) is first optimised. In absence of 
noise, the error �(t) of the optimised analytical model con-
sists of the unmodelled non-linear dynamics of the system. 
That is, for each pattern p, �(p) is equal to the difference 
between the desired value Tg(p) and the analytical model 
output T̃g(p):

Rearranging (2), the desired output Tg(p) can be 
expressed as:

An MLP is then trained to reproduce the analytical 
model error ( MLP(p) = �(p) , where MLP(p) is the MLP out-
put). Once the MLP has learned to reproduce the error, the 
plant dynamics are obtained substituting the MLP output 
in (3).

3  Optimisation of models

The experimental rig shown in Fig. 1 was used to gener-
ate three sets (series) of data, each containing 1500 sam-
ples recorded over a 3 s span (2 ms sampling frequency). 
Each data sample consists of two input features and the 
corresponding model output, respectively the load input 
from the controller at time step t − 1 ( um(t − 1) ), the load 

(2)𝜀(p) = Tg(p) − T̃g(p)

(3)Tg(p) = T̃g(p) + 𝜀(p)

(4)Tg(p) = T̃g(p) +MLP(p)

bearing position (angle) at time step t − 1 ( �d(t − 1) ), and 
the output torque of the load-on motor at time step t 
( Tg(t) ). The three sets differ by the frequency of the load 
input um generated by the controller, which is a sinusoidal 
signal of respectively 1, 7 and 9 Hz. The measured output 
torque is always within the range Tg ∈ (−150, 150) N m , 
except for one outlier at Tg = 194 N m.

The test set is composed of 1500 data patterns. It was 
formed concatenating the first 500 instances of each data 
series (1, 7 and 9 Hz). The training set contains the remain-
ing 3000 data patterns (1000 patterns from each of the 
three sets). The difficulty of the data series is uneven, as 
some high-frequency disturbances are present in a small 
section of the training set.

The three models predict the output torque using infor-
mation ( �d , um , Tg(t) ) from the current and the previous 
four time steps (Eq. 1). For this reason, the first five time 
steps of each data set are used only as inputs to the model. 
That is, for each data set, 995 and 495 data instances are 
used respectively for training and testing the models.

3.1  Optimisation of the analytical model

For this task, three different global optimisation tech-
niques were tested: EA, BA and PSO. These techniques use 
different nature-inspired population-based metaheuris-
tics. All three algorithms use the same representation 
scheme, fitness evaluation function, initialisation proce-
dure, and are parameterized to sample an equal number 
of solutions in the search space.

Namely, candidate solutions are encoded as real-valued 
numerical strings composed of the 9 parameters listed in 
Table 1. The fitness F of a candidate solution is calculated 
as the Root Mean Square (RMS) error of the model, that is:

where N is the number of data samples (995 for training, 
495 for final testing), Tg(i) is the desired (plant) output for 
data pattern i, and M(i) is the model output for data pat-
tern i. The initialisation procedure randomly draws the 
parameter values of the candidate solutions with uniform 
probability from the range of values defined in Table 1.

In order to obtain the same sampling of the search 
space, the EA, PSO, and BA used the same number of indi-
viduals and were run for the same number of learning 
cycles. Preliminary experiments showed fast convergence 
of the three optimisation procedures. For this reason, each 
run was limited to 100 generations, and the population 
size set to 100 individuals. These figures correspond to a 

(5)F =

√

√

√

√

N
∑

i=1

(

Tg(i) −M(i)
)2

N
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total of 104 candidate solutions tested per optimisation 
procedure.

The above conditions ensure that the three algorithms 
search the same solution landscape (encoding and fit-
ness function), start from comparable states (initialisation 
procedure), and are given the same search opportuni-
ties (equal sampling opportunities). To define a baseline 
of performance for the optimisation algorithms, RG was 
also implemented. RG uses the same encoding scheme, 
fitness evaluation function, and initialisation procedure as 
the EA, BA, and PSO algorithms, and is allowed the same 
sampling opportunities. RG randomly picks candidate 
solutions from the search space with uniform probability, 
and retains the best solution encountered. A summary of 
the parameters used in the optimization algorithms is pre-
sent in Table 2.

3.1.1  Evolutionary algorithm

The EA [31] used in this study employed the Roulette Wheel 
[31] selection procedure to allocate the reproduction 
opportunities proportionally to the fitness of the solutions, 
and generational replacement with elitism [31] to renew 
the population. Genetic mutations were simulated by add-
ing some ’noise’ to each gene. This noise was randomly 
sampled from a normal distribution centred in zero. That is:

where ogi(j) is the ith gene of offspring j, pgi(j) is the ith 
gene of parent j, and N(0, �j) is a random number sam-
pled from a normal probability distribution of mean 0 and 
variance �j . The variance �j is individual specific; it is initial-
ised at 1 and undergoes adaptation (via mutation) like the 
other genes. The parameter Ki rescales the magnitude of 
the mutation to the range of parameter i according to the 
following formula:

where parmax
j

 and parmin
j

 are respectively the upper and 
lower bound of the ith parameter (see Table 1).

Cycles of selection and mutation are repeated until a 
given number of iterations has elapsed. Due to the lack 

(6)ogi(j) = pgi(j) + Ki ⋅ N(0, �j)

(7)Ki = 0.1 ⋅ (parmax
i

− parmin
i

)

of crossover and the adaptation of the mutation width, 
the EA employed in this study is close to the Evolutionary 
Programming paradigm [31]

3.1.2  Particle swarm optimisation

A standard Particle swarm optimiser [32] was employed in 
this study. At each iteration, the position (x) and velocity 
(v) of each particle i were updated according to the fol-
lowing equations:

where �, � and � are fixed parameters, �1 and �2 are random 
numbers drawn with uniform probability in the interval 
[0,1], PB is the best solution so far encountered by the 
particle, NB is the best solution so far encountered by the 
social neighbours of the particle, and t is the current itera-
tion of the optimisation procedure. In this work the whole 
population was considered connected. That is, the number 
of social neighbours of an individual corresponded with 
the population size (100 individuals). The standard values 
� = 1, � = 2, � = 2 were used.

3.1.3  Bees Algorithm

The standard version [33] of the Bees Algorithm was used 
in this study. The experiments were performed setting 
the number of elite sites ne = 2 , the number of best sites 
nb = 6 , and allocating nre = 20 and nrb = 10 foragers to 
perform local exploitative search respectively in the elite 
and best sites. The parameter for site abandonment was 
set to slim = 10.

3.2  Optimisation of neural network model

The MLP was trained using the Rprop [37] algorithm. Rprop 
is a fast gradient descent technique that uses only the sign 
of the gradient, ignoring its module. Rprop increases the 
step size of the adjustment of a given weight if the partial 

(8)�i(t + 1) =xi(t) + �i(t)

(9)
�i(t + 1) = � ⋅ �i(t) + � ⋅ �1 ⋅ [��i(t) − �i(t)]

+ � ⋅ �2 ⋅ [��i(t) − �i(t)]

Table 2  Parameters used in the 
optimization algorithms of the 
analytical model

EA PSO BA

Population size 100 Population size 100 Elite sites 2
Mutation rate 1 Connectivity 100 Best sites 6
Mutation � Adaptive � 1 Recruiting elite 20
Initial mutation � 1 � 2 Recruiting best 10
– – � 2 Stagnation limit 10
Learning cycles 100 Learning cycles 100 Learning cycles 100
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error derivative along that weight keeps the same sign 
from the previous iteration, and reduces it otherwise.

The model inputs ( �d and um ) were normalised using the 
mean–variance procedure:

where �v and �v are respectively the mean and standard 
deviation of the input v = �d , um.

The MLP structure was experimentally optimised, vary-
ing the number of hidden layers (1 or 2) and units per hid-
den layer (from 1 to 100). The weight decay parameter of 
the Rprop algorithm was also experimentally optimised. 
The following procedure was used to find the best ANN 
parameters. The training set (3000 patterns) was split into 
one training subset containing 2000 patterns, and one 
validation subset containing the remaining 1000 patterns. 
Different instances of MLP structures were trained on the 
training subset, and their performance was evaluated on 
the validation subset. For each parameter setting, the 
training procedure was repeated 20 times, and the results 
averaged. At the end, the parameter setting that provided 
the best results on the validation set was retained as the 
’optimal’ one. If the difference in the results obtained 
by two different settings was not statistically significant 
(Mann–Whitney test), the setting that minimised the MLP 
structure was preferred.

Using the above procedure, the MLP structure of the 
non-linear model was optimised to 2 hidden layers of 
77 units each. The weight decay parameter was set to 
5 × 10−4.

Once the MLP structure had been optimised, 20 differ-
ent instances of the ANN were trained on the whole train-
ing set, and the final performance evaluated on the test 
set. Since the ANN was optimised and trained using only 
data from the training set, the results of the final evalua-
tion on the test set are guaranteed to be unbiased.

Due to the relatively fast convergence shown in the pre-
liminary experiments, the training procedure was stopped 
after 500 epochs.

3.3  Optimisation of the hybrid model

The hybrid model used the best analytical linear model 
obtained in Sect. 3.1. An MLP was optimised and trained 
to compensate (i.e. reproduce) the error �(t) (Eq.  2) of the 
analytical model.

The procedure described in Sect. 3.2 was used to opti-
mise and train the ANN. The optimal MLP structure for the 
hybrid model was found to be one hidden layer of 80 hid-
den units, with no weight decay in the Rprop procedure.

(10)�d(t) =
�d(t) − ��d

3 ⋅ ��d

um(t) =
um(t) − �um

3 ⋅ �um

A summary of the parameters used in the MLP and the 
Hybrid Model can be found in Table 3.

4  Experimental results

The results presented in Tables 4 and 5 show the five num-
ber summary of the RMS error (5) attained by the different 
models on the training and test set. For each optimisation 
procedure, the tables summarise the results of 20 inde-
pendent runs. The learning curves are plotted in Fig. 2. 
Pairwise two-sided Mann–Whitney tests were performed 
to assess the statistical significance of the differences 
among the results obtained. The significance level was 
set to 5%, and the p values are shown in Tables 6 and 7.

Overall, all algorithms gave very consistent results in the 
optimisation of the analytical model. The BA attained the 
smallest RMS error on the test set, whilst the PSO gave the 
most consistent performances. The pairwise Mann–Whit-
ney tests (Tables 6, 7) revealed that the performance of 
the BA is significantly better than the performance of the 
other algorithms. In all cases, the RMS error on the test set 
is smaller than the RMS error on the training set. This result 
is due to the fact that the analytical model was not able to 
reproduce the high-frequency disturbances present in a 
small section of the training set.

The MLP achieved significantly higher accuracy results 
than the analytical model. The measures of the RMS error 
obtained on the training and test sets are comparable 
(Fig. 3), indicating that the ANN model was able to repro-
duce the high-frequency disturbances in the training set.

According to the results of pairwise Mann–Whitney 
tests (Tables 6, 7), the modelling accuracies obtained using 
the Hybrid Model are statistically comparable to those 
obtained by the MLP model.

5  Discussion

Three different approaches were tested to reproduce the 
dynamics of an electro-hydraulic load simulator. These 
approaches fit the model parameters to a set of experi-
mental data points, measured at three different frequen-
cies of the load input.

Table 3  Parameters used in the MLP and hybrid model

MLP HM

Layers 2 2
Hidden units per layer 77 80
Weight decay par. 5 × 10−4 0
Epochs 500 500
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The MLP-based non-linear model outperformed the 
baseline linearised analytical model. The RMS error of the 
non-linear model on the test data corresponds to about 

0.5% of the output variable range, and is about 3.5 times 
smaller than the error of the linearised model. This result 
confirms that the non-linear terms in the load simulator 

Table 4  Results of the different 
optimization techniques and 
alternative models on the 
training set, based on 20 runs

The best result is highlighted in bold

RG EA BA PSO MLP HM

Min 9.47868 9.30164 9.32114 9.30119 1.15892 1.2632
1th q. 9.57782 9.303415 9.3295325 9.30119 1.3777125 1.435455
Median 9.68556 9.30649 9.346555 9.30119 1.45774 1.482695
3th q. 9.7535625 9.3091775 9.3608475 9.30119 1.5018875 1.5398075
Max 9.87132 9.31923 9.42562 9.31689 1.63432 1.89633

Table 5  Results of the different 
optimization techniques and 
alternative models on the test 
set, based on 20 runs

The best result is highlighted in bold

RG EA BA PSO MLP HM

Min 5.44198 5.41832 5.3362 5.44812 1.27542 1.26246
25 perc 5.516595 5.436605 5.373755 5.44812 1.449975 1.434335
Median 5.573365 5.44923 5.38558 5.44812 1.50684 1.48187
75 perc 5.6261375 5.466785 5.4152225 5.44812 1.5319175 1.5379825
Max 6.26452 5.52698 5.55534 5.52491 1.62572 1.89453

Fig. 2  Learning curves for 
the MLP and HM, averaged 
on 20 runs. The RMS error is 
monitored on the test set. The 
best result achieved with the 
analytical model (by the BA) is 
shown for comparison
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dynamics have a significant impact on the accuracy of the 
model.

The four algorithms (RG, EA, PSO, and BA) used to opti-
mise the baseline analytical model gave similar results: the 
difference between the most (BA) and least (RG) accurate 
model obtained is extremely small, amounting to about 
3% of the RMS error magnitude. This result indicates that 
the current error is due to the limits of the linearised 
approach, rather than inadequacies of the optimisation 
procedures tested.

The RMS error of the linearised model is higher on the 
training set of examples, where some short high frequency 
disturbances are included. The results obtained using the 
MLP model on the training and test set are comparable. 
This suggests that the effect of the non-linear terms on 
the overall system dynamics is larger at high frequencies 
of the load input signal. In one further test, the training 
and test set were swapped. That is, the ANN was trained 
on the test set (not containing the high frequency distur-
bances) and its performance was validated on the train-
ing set (containing the high frequency disturbances). In 
this case (results not shown), there was a sharp drop in 
performance between the training accuracy and the test 
accuracy. The results of this test indicate that the high fre-
quency disturbances contain non-linearities that are not 
present at low frequency.

Combining the analytical and MLP approach did not 
bring benefits in terms of modelling accuracy. The dif-
ference between the RMS error attained by the hybrid 
and MLP model is not statistically significant. Overall, the 

experimental results indicate that the non-linear MLP 
model is preferable in terms of simplicity and accuracy.

Comparing the proposed approaches with the existing 
literature is difficult because of the scarcity of quantitative 
results published, and the different data sets used. Perhaps 
the most similar tests were carried out by Zhang and Dong 
[21], who reported a tracking error within 5% of the load-
on motor output torque. However, the present study is 
the only one where the model is optimised and tested at 
different load input frequencies. Conservatively, it can be 
said that the accuracy of the linearised model presented 
in this study is comparable to the accuracy of the state-
of-the-art in the literature. The MLP-based model and the 
HM appear to obtain error magnitudes one order of mag-
nitude smaller than the state-of-the-art in the literature.

6  Conclusions

The accuracy of analytical linear models of electro-
hydraulic load simulators is constrained by the extent of 
unmodelled nonlinearities, and the difficulty of optimis-
ing the numerous parameters that characterise them. A 
small number of nonlinear models has been reported in 
the literature, mainly based on ANN approaches. These 
ANNs were part of larger control systems, and whilst 
the performance of the whole systems was described, 
no information was given on the actual accuracy of the 
models.

This study used experimental data describing the 
dynamics of an electro-hydraulic motor, and fitted to 
these data the parameters of three kinds of models: 

Table 7  Mann–Whitney values 
computed on the test results

RG EA BA PSO MLP HM

RG 1 6.30 × 10−8 6.30 × 10−8 6.30 × 10−8 6.30 × 10−8 6.30 × 10−8

EA – 1 2.34 × 10−4 5.88 × 10−1 6.30 × 10−8 6.30 × 10−8

BA – – 1 3.56 × 10−4 6.30 × 10−8 6.30 × 10−8

PSO – – – 1 6.30 × 10−8 6.30 × 10−8

NN – – – – 1 4.81 × 10−1

HM – – – – – 1

Table 6  Mann–Whitney values 
computed on the training 
results

RG EA BA PSO MLP HM

RG 1 6.30 × 10−8 6.30 × 10−8 6.30 × 10−8 6.30 × 10−8 6.30 × 10−8

EA – 1 6.30 × 10−8 5.35 × 10−4 6.30 × 10−8 6.30 × 10−8

BA – – 1 6.30 × 10−8 6.30 × 10−8 6.30 × 10−8

PSO – – – 1 6.30 × 10−8 6.30 × 10−8

NN – – – – 1 2.13 × 10−1

HM – – – – – 1
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analytical, ANN, and hybrid. The study made the follow-
ing contributions:

• the upper limit of the accuracy of the analytical linear 
model was estimated using four intelligent parameter 
optimisation methods.

• the difference in accuracy between the linear and 
nonlinear models was quantified and shown to be 
significant

• it was shown a pure ANN model can be trained with 
accuracy comparable to a hybrid analytical + ANN 
model

To the best of the authors’ knowledge, this study is to 
date the most exhaustive attempt at identifying the 
dynamics of an electro-hydraulic load simulator, involv-
ing different kinds of linear and non-linear models and 
parameter optimisation algorithms. Despite its limita-
tions, the accuracy of the optimised analytical model 
is comparable with the state-of-the-art linear models 
in the literature. The MLP and HM outperform the best 
models reported in the literature. Given the advan-
tages of electro-hydraulic load simulators in terms of 
reliability, durability, and performances, the results of 
this study are deemed significant for the understand-
ing and simulation of such systems. Further work should 
extend the experimental tests to higher frequencies of 
the load input, and more complex (e.g. recurrent [27]) 
ANN structures.
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Appendices

Linearised analytical model: full description

The load system is driven by a servo valve, which is used to 
control the output torque. The flow equation of the servo 
valve of the load system is:

(11)QL = Kqxv − KcpL
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Fig. 3  Training and test error of the MLP and HM, in the form of the five value summary relative of 20 runs
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where QL  (m
3/s) is the load flow of the servo valve; Kq  (m

3/s) 
is the flow of the gain of the servo valve; xv (m) is the open-
ing of the servo valve spool; Kc  (m

5/N s) is the flow-pressure 
coefficient; and pL (N/m2) is the load pressure of the load-
on motor;

The flow continuity equation of the load-on motor is:

where Dm  (m3/rad) is the theoretical displacement of the 
load-on motor; �j (rad) is the rotational angle of the load-
on motor; Ctm  (m5/N s) is the internal leakage coefficient of 
the load-on motor; Vm  (m3) is the total chamber volume of 
the load-on motor and pipes; and [ �e ] (N/m2) is the effec-
tive bulk modulus;

Ignoring friction, the torque balance equation of the load-
on motor is:

where PL is the load pressure; J is the equivalent moment of 
inertia; Tg (N/m) is the output torque of the load-on motor; 
and [ Bm ] (N m/rad/s) is the viscous damping coefficient;

The output torque equation is:

where G (N m/rad) is the rigidity of the connecting link; �d 
(rad) is the turn angle of the motor drive shaft;

The spool displacement of the servo valve and the input 
voltage satisfy the following relational expression:

where um is the load input from the controller, and Ksv and 
Kp are the correlation coefficients of the servo valve.

Combining the Laplace transforms of equations Eqs. (11) 
to (15), the following equation is obtained:

where

(12)QL = Dm�
�

j
+ CtmpL +

Vm

4�e
p�
L

(13)pLDm = J���
j
+ Bm�

�

j
+ Tg

(14)Tg = G(�j − �d)

(15)Kpx
�

v
+ xv = Ksvum

(16)

5
∑

i=1

aiTgs
i−5 = Ksvum − Ga1�ds

4 − Ga2�ds
3 − b1�ds

2 − b2�ds

and

In order to be able to identify the model using the discrete 
dataset of experimental measurements, Eq. (19) needs to 
be transformed into discrete form. This is achieved by 
performing a bilinear transformation of the following 
equation:

where T is the sampling interval and s is the complex vari-
able. The final discrete equation is obtained:

where

(17)

a1 =
VmJKp

4�eDmKqG

a2 =
4�eKpKceJ + Vm(KpBm + J)

4�eDmKqG

a3 =
4�e

(

KpD
2
m
+ Kce(KpBm + J)

)

+ Vm(KpG + Bm)

4�eDmKqG

a4 =
4�e(GKpKce + D2

m
+ KceBm) + GVm

4�eDmKqG

a5 =
Kce

DmKq

(18)

b1 =
4�e

(

KpD
2
m
+ Kce(KpBm + J)

)

+ VmBm

4�eDmKq

b2 =
D2
m
+ KceBm

DmKq

(19)Kce = Kc + Cm

(20)s =
2

T

1 − z−1

1 + z−1

(21)

T̃g(k) = −f1Tg(k − 1) + f2Tg(k − 2) + f3Tg(k − 3)

− f4Tg(k − 4)

+ d0um(k) + 4d0um(k − 1) + 6d0um(k − 2)

+ 4d0um(k − 3) + d0um(k − 4)

− e0𝜃d(k) − e1𝜃d(k − 1) + e2𝜃d(k − 2)

+ e3𝜃d(k − 3) − e4𝜃d(k − 4)
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the parameter d0 is:

and the parameters ei are:
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