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HAMILTON DECOMPOSITIONS OF REGULAR EXPANDERS: A

PROOF OF KELLY’S CONJECTURE FOR LARGE

TOURNAMENTS

DANIELA KÜHN AND DERYK OSTHUS

Abstract. A long-standing conjecture of Kelly states that every regular tour-
nament on n vertices can be decomposed into (n − 1)/2 edge-disjoint Hamilton
cycles. We prove this conjecture for large n. In fact, we prove a far more gen-
eral result, based on our recent concept of robust expansion and a new method
for decomposing graphs. We show that every sufficiently large regular digraph
G on n vertices whose degree is linear in n and which is a robust outexpander
has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain
numerous further results, e.g. as a special case we confirm a conjecture of Erdős
on packing Hamilton cycles in random tournaments. As corollaries to the main
result, we also obtain several results on packing Hamilton cycles in undirected
graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We
also apply our result to solve a problem on the domination ratio of the Asymmet-
ric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as
well as Alon, Gutin and Krivelevich.

1. Introduction

1.1. Kelly’s conjecture. A graph or digraph G has a Hamilton decomposition if
it contains a set of edge-disjoint Hamilton cycles which together cover all the edges
of G. The study of Hamilton decompositions is one of the oldest and most natural
problems in Graph Theory. For instance, in 1892 Walecki showed that the complete
graph Kn on n vertices has a Hamilton decomposition if n is odd (see e.g. [4, 5, 39]).
Tillson [47] solved the corresponding problem for complete digraphs. Here every
pair of vertices is joined by an edge in each direction, and there is a Hamilton
decomposition unless the number of vertices is 4 or 6.

However, though there are several deep conjectures in the area, little progress has
been made so far in proving results on Hamilton decompositions for general classes of
graphs. Possibly the most well known problem in this direction is Kelly’s conjecture
from 1968 (see e.g. the monographs and surveys [7, 10, 36, 40]), which states that
every regular tournament has a Hamilton decomposition. Here a tournament is
an orientation of a complete (undirected) graph. It is regular if the indegree of
every vertex equals its outdegree. This condition is clearly necessary for a Hamilton
decomposition. Here, we prove this conjecture for all large tournaments. In fact,
it turns out that we can prove a much stronger result – we can obtain a Hamilton
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2 DANIELA KÜHN AND DERYK OSTHUS

decomposition of any regular orientation of a sufficiently dense graph. More precisely,
an oriented graph G is obtained by orienting the edges of an undirected graph. So
it contains no cycles of length two (whereas in a digraph this is permitted).

Theorem 1.1. For every ε > 0 there exists n0 such that every r-regular oriented
graph G on n ≥ n0 vertices with r ≥ 3n/8 + εn has a Hamilton decomposition. In
particular, there exists n0 such that every regular tournament on n ≥ n0 vertices has
a Hamilton decomposition.

It is not clear whether the lower bound on r in Theorem 1.1 is best possible.
However, as discussed below, there are oriented graphs whose in- and outdegrees
are all very close to 3n/8 but which do not contain even a single Hamilton cycle.
Moreover, for r < (3n − 4)/8, it is not even known whether an r-regular oriented
graph contains a single Hamilton cycle (this is related to a conjecture of Jackson,
see the survey [36] for a more detailed discussion). Both these facts indicate that
any improvement in the lower bound on r would be extremely difficult to obtain.

Regular tournaments obviously exist only if n is odd, but we still obtain an in-
teresting corollary in the even case. Suppose that G is a tournament on n vertices
where n is even and which is as regular as possible, i.e. the in- and outdegrees dif-
fer by 1. Then Theorem 1.1 implies that G has a decomposition into edge-disjoint
Hamilton paths. Indeed, add an extra vertex to G which sends an edge to all vertices
of G whose indegree is below (n− 1)/2 and which receives an edge from all others.
The resulting tournament G′ is regular, and a Hamilton decomposition of G′ clearly
corresponds to a decomposition of G into Hamilton paths.

The difficulty of Kelly’s conjecture is illustrated by the fact that even the ex-
istence of two edge-disjoint Hamilton cycles in a regular tournament is not obvi-
ous. The first result in this direction was proved by Jackson [22], who showed that
every regular tournament on at least 5 vertices contains a Hamilton cycle and a
Hamilton path which are edge-disjoint. Zhang [48] then demonstrated the existence
of two edge-disjoint Hamilton cycles. These results were improved by considering
Hamilton cycles in oriented graphs of large in- and outdegree by Thomassen [46],
Häggkvist [20], Häggkvist and Thomason [21] as well as Kelly, Kühn and Osthus [25].
Keevash, Kühn and Osthus [24] then showed that every sufficiently large oriented
graph G on n vertices whose in- and outdegrees are all at least (3n−4)/8 contains a
Hamilton cycle. This bound on the degrees is best possible and confirmed a conjec-
ture of Häggkvist [20] (as mentioned above, there are extremal constructions which
are almost regular). Note that this result implies that every sufficiently large reg-
ular tournament on n vertices contains at least n/8 edge-disjoint Hamilton cycles,
whereas Kelly’s conjecture requires (n − 1)/2 edge-disjoint Hamilton cycles. The
conjecture has also been proved for small values of n and for several special classes
of tournaments (see e.g. [5, 8] for somewhat outdated surveys).

Recently, Kühn, Osthus and Treglown [38] proved an approximate version of The-
orem 1.1 by showing that every r-regular oriented graph G on n ≥ n0(ε) vertices with
r ≥ 3n/8+εn has an approximate Hamilton decomposition (i.e. a set of edge-disjoint
Hamilton cycles covering almost all edges).
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1.2. Robust outexpanders. In fact, we prove a theorem which is yet more gen-
eral than Theorem 1.1. Moreover, rather than being based on a degree condition, it
uncovers an underlying structural property which guarantees a Hamilton decompo-
sition. As discussed in the next subsection, this property is shared by several well
known classes of digraphs. Roughly speaking, this notion of ‘robust expansion’ is
defined as follows: for any set S of vertices, its robust outneighbourhood is the set
of vertices which receive many edges from S. A digraph is a robust outexpander if
for every set S which is not too small and not too large, its robust outneighbour-
hood is at least a little larger than S. This notion was introduced explicitly in [37],
and was already used implicitly in the earlier papers [24, 25]. In these papers, we
proved approximate and exact versions of several conjectures on Hamilton cycles in
digraphs.

More precisely, let 0 < ν ≤ τ < 1. Given any digraph G on n vertices and
S ⊆ V (G), the ν-robust outneighbourhood RN+

ν,G(S) of S is the set of all those
vertices x of G which have at least νn inneighbours in S. G is called a robust
(ν, τ)-outexpander if

|RN+
ν,G(S)| ≥ |S|+ νn for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n.

Our main result states that every sufficiently large regular robust outexpander has
a Hamilton decomposition.

Theorem 1.2. For every α > 0 there exists τ > 0 such that for all ν > 0 there
exists n0 = n0(α, ν, τ) for which the following holds. Suppose that

(i) G is an r-regular digraph on n ≥ n0 vertices, where r ≥ αn;
(ii) G is a robust (ν, τ)-outexpander.

Then G has a Hamilton decomposition. Moreover, this decomposition can be found
in time polynomial in n.

Since Lemma 13.1 states that every oriented graph G on n vertices with minimum
in- and outdegree at least 3n/8 + εn is a robust outexpander (provided that n is
sufficiently large compared to ε), Theorem 1.2 immediately implies Theorem 1.1.

Obviously, the condition that G is regular is necessary. The robust expansion
property can be viewed as a natural strengthening of this property: Indeed, suppose
that ν1/4 ≤ τ ≤ α and |S| ≥ τn. Counting the edges from S to its ν-robust outneigh-
bourhood shows that condition (i) already forces the ν-robust outneighbourhood of
S to have size at least (1 −

√
ν)|S|. Condition (ii) then ensures (amongst others)

that G is highly connected, which is obviously also necessary.
The following result of Osthus and Staden [42] gives an approximate version of

Theorem 1.2 and will be used in its proof.

Theorem 1.3. For every α > 0 there exists τ > 0 such that for all ν, η > 0 there
exists n0 = n0(α, ν, τ, η) for which the following holds. Suppose that

(i) G is an r-regular digraph on n ≥ n0 vertices, where r ≥ αn;
(ii) G is a robust (ν, τ)-outexpander.

Then G contains at least (1− η)r edge-disjoint Hamilton cycles. Moreover, this set
of Hamilton cycles can be found in time polynomial in n.
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Note that Theorem 1.3 is a generalization of the approximate version of Theo-
rem 1.1 proved in [38] (which was already mentioned at the end of the previous
subsection). The approach in [38] is not algorithmic though. If we replace the use of
Theorem 1.3 in our main proof by the result in [38], this yields exactly Theorem 1.1
(but not its algorithmic version). However, this would not result in a shorter proof
of Theorem 1.2.

1.3. Further applications. In this section, we briefly discuss further applications
of our main result.

1.3.1. Regular digraphs and TSP tour domination. As observed in Section 13, it
is very easy to check that regular digraphs of sufficiently large degree are robust
outexpanders. Together with Theorem 1.4 this implies the following result.

Theorem 1.4. For every ε > 0 there exists n0 such that every r-regular digraph G
on n ≥ n0 vertices with r ≥ (1/2 + ε)n has a Hamilton decomposition. Moreover,
such a decomposition can be found in time polynomial in n.

Surprisingly, this has an immediate application to the area of TSP tour domi-
nation. More precisely, the Asymmetric travelling salesman problem (ATSP) asks
for a Hamilton cycle of least weight in an edge-weighted complete digraph (where
opposite edges are allowed to have different weight). An algorithm A for the ATSP
has domination ratio p(n) if it has the following property. For any problem instance
I let w(I) be the weight of the solution produced by A. Then for all n and for
all instances I on n vertices, there are at least p(n)(n − 1)! solutions to instance I
whose weight is also at least w(I). (Note that the total number of possible solutions
is (n − 1)!.) This notion is of particular interest for the ATSP as it is not known
whether there is a polynomial time algorithm for the ATSP whose approximation ra-
tio is bounded by an absolute constant. Several well known TSP algorithms achieve
a domination ratio of Ω(1/n) for the ATSP but no better results are known. In par-
ticular, a long-standing open problem (see e.g. Glover and Punnen [18], Gutin and
Yeo [19] as well as Alon, Gutin and Krivelevich [2]) asks whether there is a poly-
nomial time algorithm which achieves a constant domination ratio for the ATSP.
Gutin and Yeo [19] proved that the existence of a polynomial time algorithm with
domination ratio 1/2− ε would follow from an algorithmic proof of Theorem 1.4. So
the result of [19] together with Theorem 1.4 yields the following.

Corollary 1.5. For any ε > 0, there is a polynomial time algorithm for the ATSP
whose domination ratio is 1/2− ε.
1.3.2. Random tournaments. Another application of Theorem 1.2 confirms a conjec-
ture of Erdős (see [45]) which can be regarded as a probabilistic version of Kelly’s
conjecture. Given an oriented graph G, let δ+(G) denote its minimum outdegree
and δ−(G) its minimum indegree. Clearly, the minimum of these two quantities is
an upper bound on the number of edge-disjoint Hamilton cycles that G can have.
Erdős conjectured that this bound is correct with high probability if G is a random
tournament and one can use Theorem 1.1 to show this is indeed the case.

Theorem 1.6. Almost all tournaments G contain δ0(G) := min{δ+(G), δ−(G)}
edge-disjoint Hamilton cycles.
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More precisely, the term ‘almost all’ refers to the model where one considers the
set Tn of all tournaments on n vertices and shows that the probability that a random
tournament in Tn has the required number of Hamilton cycles tends to 1 as n tends
to infinity. We prove Theorem 1.6 by showing that with high probability G contains
a δ0(G)-regular spanning subdigraph G′ and apply Theorem 1.1 to G′ to find the
required Hamilton cycles. As the first step requires some work, we defer this to a
shorter companion paper [35].

The corresponding problem for the binomial random graph Gn,p with edge prob-
ability p has a long history, going back to a result of Bollobás and Frieze [9], who
showed that a.a.s. (asymptotically almost surely) Gn,p contains bδ(Gn,p)/2c edge-
disjoint Hamilton cycles in the range of p where the minimum degree δ(Gn,p) is
a.a.s. bounded. A striking conjecture of Frieze and Krivelevich [17] asserts that this
result extends to arbitrary edge probabilities p. The range of p was extended in
several papers, in particular due to recent results of Knox, Kühn and Osthus [26] as
well as Krivelevich and Samotij [30], the conjecture remains open only in the (rather
special) case when p tends to 1 fairly quickly. As we shall observe in [35], this case
follows from Theorem 1.2 in a similar way as Theorem 1.6.

1.3.3. Undirected robust expanders. In [35], we also derive an undirected version of
Theorem 1.2, where instead of the ‘robust outneighbourhood’ we consider the ‘robust
neighbourhood’. As an immediate corollary of this undirected version, we obtain the
following approximate version of the ‘Hamilton decomposition conjecture’ of Nash-
Williams [41].

Theorem 1.7. For every ε > 0 there exists n0 such that every r-regular graph G on
n ≥ n0 vertices, where r ≥ (1/2 + ε)n is even, has a Hamilton decomposition.

The conjecture of Nash-Williams asserts that the εn error term can be removed.
Theorem 1.7 improves results by Christofides, Kühn and Osthus [13] as well as
Perkovic and Reed [43].

Finally, the undirected version of Theorem 1.2 easily implies that every even-
regular dense quasi-random graph has a Hamilton decomposition. An approxi-
mate version of this result was proved earlier by Frieze and Krivelevich [16]. Our
undirected decomposition result implies e.g. a recent result of Alspach, Bryant and
Dyer [6] that every Paley graph has a Hamilton decomposition (for the case of large
graphs). Our undirected decomposition result also implies that with high proba-
bility, dense random regular graphs of even degree have a Hamilton decomposition.
(Hamilton decompositions of random regular graphs of bounded degree have already
been studied intensively.) These and other related results are discussed in more
detail in [35].

1.3.4. The robust decomposition lemma. In a sequence of four papers [14, 15, 32, 33]
we build on the results of the current paper to prove the long-standing ‘1-factorization
conjecture’: Suppose that n is even and sufficiently large, and that D ≥ 2dn/4e −
1. Then every D-regular graph G on n vertices has a decomposition into perfect
matchings. (Equivalently, χ′(G) = D.) Moreover, we improve Theorem 1.7 to
completely solve the Hamilton decomposition conjecture of Nash-Williams from [41].
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Finally, we also solve another problem of Nash-Williams on optimal packings of edge-
disjoint Hamilton cycles in graphs of large minimum degree (the latter also uses
results from [31]). The proofs are based on (the undirected version of) Theorem 1.2
as well as the ‘robust decomposition lemma’, which can be viewed as a version of
Theorem 1.2 which is more technical but has the advantage of being more widely
applicable (see Lemma 11.2 or 12.1).

In the next section, we give a brief outline of our methods. The approach is a very
general one and we are certain that it will have significant further applications.

2. A brief outline of the argument

2.1. The general approach. The basic idea behind the proof of Theorem 1.2 can
be described as follows. Let G be a robustly expanding digraph as in Theorem 1.2.
Suppose that inside G we can find a sparse regular digraph Hrob which is robustly
decomposable in the sense that it still has a Hamilton decomposition if we add a
few edges to it. More precisely, Hrob is robustly decomposable if Hrob ∪ H0 has
a Hamilton decomposition whenever H0 is a very sparse regular digraph which is
edge-disjoint from Hrob and such that V (H) = V (Hrob). Then Theorem 1.2 would
be an immediate consequence of the existence of such an Hrob. Indeed, first we
remove the edges of Hrob from G to obtain G′. Then we apply Theorem 1.3 to G′

to find edge-disjoint Hamilton cycles covering almost all edges of G′. Let H0 be the
leftover – i.e. the set of edges of G′ which are not covered by one of these Hamilton
cycles. Now apply the fact that Hrob is robustly decomposable to obtain a Hamilton
decomposition of Hrob ∪ H0 and thus of G. Essentially, this is what the ‘robust
decomposition lemma’ (Lemma 11.2) achieves.

Unfortunately, we do not know how to construct such a digraph Hrob directly –
the main problem is that we have almost no control over what H0 might look like.
However, one key idea is that we can define and find several digraphs Hrob

i which
together play the role of Hrob. Indeed, suppose that we remove the edges of several
Hrob
i at the start and let H0 be the leftover of the approximate decomposition as

above. Then we can show that Hrob
1 ∪H0 contains a set of edge-disjoint Hamilton

cycles so that the resulting leftover H1 has more structure than H0 (i.e. it has some
useful properties). This in turn means that we can improve on the previous step and
now find a set of edge-disjoint Hamilton cycles in Hrob

2 ∪ H1 so that the resulting
leftover H2 has even more structure than H1. After ` − 1 steps, H`−1 will be a
sufficiently ‘nice’ digraph so that Hrob

` ∪H`−1 does have a Hamilton decomposition.
This very general approach was first introduced in [26], where we used it to find
optimal packings of edge-disjoint Hamilton cycles in random graphs. In [26], the aim
was that successive Hi become sparser. In our setting, the density is less relevant –
our aim is to obtain successively stronger structural properties for the Hi.

When finding Hamilton cycles inHrob
i ∪Hi−1, we usually proceed as follows (except

for the final step, i.e. when i = `). First we decompose Hi−1 into edge-disjoint 1-
factors (where a 1-factor is a spanning union of vertex-disjoint cycles). Each of these
1-factors is then split into a set of paths in a suitable way (we call this a path system).
In particular, the number of edges in each path system is small compared to n. Then
we extend each path system into a suitable 1-factor F using edges of Hrob

i . Then we



HAMILTON DECOMPOSITIONS OF REGULAR EXPANDERS 7

Thm 1.3

Lemma 10.4

Lemma 10.5Lemma 9.4Lemma 8.6

G

# PCACAPGG

Hamilton cycles

Hamilton decompositionHamilton cyclesHamilton cycles

210H HPG’=H Lemma 9.7Cor 8.5

Figure 1. An illustration of the structure of the proof of Theo-
rem 1.2. The purpose of Lemmas 8.6, 9.4 and 10.5 is to find the pre-
processing graph PG, the chord absorber CA and the parity extended
cycle absorber PCA respectively. The purpose of Corollary 8.5, Lem-
mas 9.7 and 10.4 is to use these graphs to find suitable Hamilton cy-
cles. In Section 12, we combine Lemmas 9.4, 10.5, 9.7 and 10.4 into
a single ‘robust decomposition lemma’ (see Lemma 11.2 or 12.1).

transform F into a Hamilton cycle C, again using edges of Hrob
i . The resulting set

of Hamilton cycles then covers all edges of Hi−1. In other words, Hi−1 is ‘absorbed’
into the set of Hamilton cycles that we have constructed so far and the leftover Hi

is a subgraph of Hrob
i . In particular, Hi inherits any structural properties that Hrob

i
has. When constructing the Hamilton cycle C, we will use the result of [37] that
every robustly expanding digraph contains a Hamilton cycle, or one of its corollaries
(see Section 6).

2.2. The main steps. The construction of the graphs Hrob
i involves Szemerédi’s

regularity lemma. We apply this to G to obtain a partition of its vertices into
clusters V1, . . . , Vk and a small exceptional set V0 so that almost all ordered pairs of
clusters induce a pseudorandom subdigraph of G. As is well known, one can then
define a ‘reduced digraph’ R whose vertex set consists of the clusters Vi, with an
edge from Vi to Vj , if the subdigraph of G induced by the edges of G from Vi to Vj
is pseudorandom and dense. R inherits many of the properties of G. In particular,
R is also a robust outexpander. So it contains a Hamilton cycle C by the result
mentioned above – without loss of generality C = V1V2 . . . Vk.

We can now define three digraphs playing the role of Hrob
1 , Hrob

2 , Hrob
3 above (so

we have ` = 3 in our setting):

• the preprocessing graph PG;
• the chord absorber CA;
• the parity extended cycle absorber PCA.

We now describe the purpose of these three digraphs (see also Figure 1).
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The preprocessing graph PG has the following property: let H1 be the leftover
of PG ∪ H0 after removing suitably chosen edge-disjoint Hamilton cycles. (So as
discussed above, H1 is a subdigraph of PG.) Then H1 has no edges incident to V0.
Thus H1 is not a regular digraph (but it will be a regular subdigraph of G − V0).
This degree irregularity will be compensated for by constructing the chord absorber
CA in a suitable way.

The chord absorber CA has the following property: let H2 be the leftover of
CA∪H1 after removing suitably chosen edge-disjoint Hamilton cycles. Then H2 is a
blow-up of C. In other words, for every edge e of H2, there is a j so that the initial
vertex of e is in Vj and the final one in Vj+1. (So the edges of H2 ‘wind around’ C.)
H2 will be a subdigraph of CA. But CA itself will not only consist of a blow-up
B(C) of C, it will also contain a set of suitably chosen ‘chord edges’ between clusters
which are not adjacent on C. These chord edges lie in a digraph B(U ′), which is a
blow-up of a ‘universal walk’ U on the clusters Vi. To absorb H1, we will split its
edges into path systems M as described above. We would like to extend each M
into a Hamilton cycle. This may be impossible using the edges of B(C) alone, e.g. if
M contains an edge e1 from V1 to V3 but no other edges. So for each edge e of such
a path system M , we then choose a set of chord edges from B(U ′) which ‘balance
out’ this edge e to form a ‘locally balanced sequence’. We extend (and balance) M
in this way to obtain a path system M ′. We then further extend M ′ to a Hamilton
cycle using edges of B(C).

As an example, suppose again that M = {e1} with e1 being an edge from V1

to V3. It turns out that a simple way of balancing e1 would be to add an edge ej
from Vj to Vj+2 for all j with 1 < j ≤ k, so that e1, e2, . . . , ek form a matching
M ′. It is easy to see that one can extend M ′ into a Hamilton cycle using edges
from B(C), i.e. edges which only wind around C. Indeed, start by traversing e1,
then wind around C to reach the initial vertex of e2, then traverse e2, then wind
around C again, and eventually traverse ek. Before returning to the initial vertex of
e1, wind around C sufficiently many times to visit every vertex in every cluster, thus
obtaining a Hamilton cycle which contains M ′. Unfortunately, we cannot guarantee
the existence of such edges e2, . . . , ek in an arbitrary robust outexpander. So we will
use sequences of balancing edges which involve more edges but can be found in any
robust outexpander. (They will be based on the concept of ‘shifted walks’ which we
introduced in [25]).

The crucial point is that we can carry out the balancing in such a way that we
use up all edges of B(U ′) in the process of balancing out the path systems of H1.
In particular, the surprising feature of the argument is that we can choose B(U ′) in
advance (i.e. without knowing H1) so that it has this property.

In the above, we did not discuss edges incident to the exceptional set V0. Obviously
a Hamilton cycle has to contain these, whereas neither of H1, B(C) and B(U ′) have
any edges incident to V0. To deal with this, we introduce the following trick: suppose
for example that V0 contains a single exceptional vertex x. We find an outneighbour
x+ of x and an inneighbour x− in V (G) \ V0. We can then define an ‘exceptional
edge’ x−x+ and add this edge x−x+ to the chord absorber CA. Then a Hamilton
cycle of (CA∪H1)− V0 containing this exceptional edge corresponds to a Hamilton
cycle of G. The systematic use of exceptional edges in this way allows us to ignore
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Figure 2. Transforming the 1-factors F and F ′ consisting of two
cycles into Hamilton cycles by switching edges.

the exceptional set V0 at many points of the argument. It might seem natural
to apply this trick directly to H0 (i.e. replace pairs of edges of H0 incident to V0

with exceptional edges) with the aim of making the preprocessing step unnecessary.
However, this approach would run into considerable difficulties. It turns out that
working inside H0 (rather than the whole of G) when constructing the exceptional
edges might not give us enough choice to find suitable sets of exceptional edges.

Finally, the parity extended cycle absorber PCA has the following property: let H2

be the leftover of CA∪H1 after removing suitable Hamilton cycles. Then H2∪PCA
has a Hamilton decomposition. We will find this Hamilton decomposition as follows:
first we decompose PCA ∪ H2 into carefully chosen 1-factors (in particular, either
half or all of the edges of each 1-factor are contained in PCA). When finding this
decomposition, we use the fact that H2 is a blow-up of C. (PCA will also be a blow-
up of C.) Our aim is then to turn this 1-factorization of PCA∪H2 into a Hamilton
decomposition of PCA ∪H2 by successively switching edges between 1-factors. As
an illustration, suppose that we are given two 1-factors F and F ′ so that F contains
the edges xx+ and yy+. Similarly, suppose that F ′ contains the edges xy+ and
yx+. Note that these edges form an orientation of a four-cycle C4. Now perform
a ‘switch’, which consists of removing xx+ and yy+ from F , adding xy+ and yx+

to F and proceeding similarly for F ′. This yields two new 1-factors Fnew and F ′new.
Suppose that F consists of exactly two cycles and that xx+ and yy+ lie on different
cycles. Then Fnew is a Hamilton cycle. The same holds for F ′ (see Figure 2). These
switches will always involve edges from PCA and not from H2. So if we ensure that
PCA has switches at the right places, we can eventually turn the 1-factorization of
PCA ∪H2 into a Hamilton decomposition after several switches.

This paper is organized as follows: In the next section, we introduce some nota-
tion. In Section 4, we collect tools which we will need in connection with Szemerédi’s
regularity lemma. Similarly, in Section 5 we collect general properties of robustly
expanding digraphs. Section 6 is devoted to tools for finding Hamilton cycles (in
robustly expanding digraphs). In Section 7, we introduce a systematic and conve-
nient way of dealing with exceptional vertices which will be used throughout the
remainder of the paper. This will be based on the concept of exceptional edges and
‘balancing’ edges via chord sequences. Section 8 deals with the preprocessing step,
which involves the preprocessing graph PG. Then, in Section 9, we define, find and
use the chord-absorber CA. Switches and the parity extended cycle absorber PCA
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are then introduced in Section 10. In Section 11, we put everything together to prove
Theorem 1.2. In Section 12, we state a standalone variant of the ‘robust decompo-
sition lemma’, for use e.g. in [14, 32]. Finally, in Section 13 we derive Theorems 1.1
and 1.4 from Theorem 1.2.

3. Notation and probabilistic estimates

3.1. Notation. Given a graph or digraph G, we write V (G) for its vertex set, E(G)
for its edge set, e(G) := |E(G)| for the number of its edges and |G| for the number of
its vertices. Given X ⊆ V (G), we write G−X for the (di)graph obtained from G by
deleting all vertices in X. Given F ⊆ E(G), we write G \ F for (di)graph obtained
from G by deleting all edges in F . If H is a sub(di)graph of G, we write G \H for
G \ E(H).

Suppose that G is an undirected graph. We write δ(G) for the minimum degree of
G and ∆(G) for its maximum degree. Whenever X,Y ⊆ V (G), we write eG(X,Y )
for the number of all those edges of G which have one endvertex in X and the other
endvertex in Y . If X ∩ Y = ∅, we denote by G[X,Y ] the bipartite subgraph of G
with vertex sets X and Y whose edges are all the edges of G between X and Y . If
G is a bipartite graph with vertex classes A and B, we often write G = (A,B).

If G is a digraph, we write xy for an edge directed from x to y. Unless stated
otherwise, when we refer to paths and cycles in digraphs, we mean directed paths
and cycles, i.e. the edges on these paths/cycles are oriented consistently. Given two
vertices x and y on a directed cycle C, we write xCy for the (directed) subpath of C
from x to y. If x is a vertex of a digraph G, then N+

G (x) denotes the outneighbourhood

of x, i.e. the set of all those vertices y for which xy ∈ E(G). Similarly, N−G (x) denotes
the inneighbourhood of x, i.e. the set of all those vertices y for which yx ∈ E(G).
We write d+

G(x) := |N+
G (x)| for the outdegree of x and d−G(x) := |N−G (x)| for its

indegree. We denote the minimum outdegree of G by δ+(G) := minx∈V (G) d
+
G(x), the

minimum indegree by δ−(G) := minx∈V (G) d
−
G(x), the minimum degree by δ(G) :=

minx∈V (G)(d
+(x)+d−(x)) and the maximum degree by ∆(G) := maxx∈V (G)(d

+(x)+

d−(x)). The minimum semidegree of G is δ0(G) := min{δ+(G), δ−(G)}. Whenever
X,Y ⊆ V (G), we write eG(X,Y ) for the number of all those edges of G which have
their initial vertex in X and their final vertex in Y . If X ∩ Y = ∅, we denote by
G[X,Y ] the bipartite subdigraph of G with vertex sets X and Y whose edges are
all the edges of G directed from X to Y . In all these definitions we often omit the
subscript G if the graph or digraph G is clear from the context. A subdigraph H of
G is an r-factor of G if the outdegree and the indegree of every vertex of H is r. A
path system is the union of vertex-disjoint directed paths.

Given a digraph R and a positive integer r, the r-fold blow-up of R is the digraph
R×Er obtained from R by replacing every vertex x of R by r vertices and replacing
every edge xy of R by the oriented complete bipartite graph Kr,r between the two sets
of r vertices corresponding to x and y in which all the edges are oriented towards the
r vertices corresponding to y. Now consider the case when V1, . . . , Vk is a partition
of some set V of vertices and R is a digraph whose vertices are V1, . . . , Vk. Then
a blow-up B(R) of R is obtained from R by replacing every vertex Vi of R by the
vertices in Vi and replacing every edge ViVj of R by a certain bipartite graph with
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vertex classes Vi and Vj in which all the edges are oriented towards the vertices
in Vj . Usually, these bipartite graphs will be ε-regular or superregular (as defined
in Section 4). If R is a directed cycle, say R = C = V1 . . . Vk and G is a digraph
with V (G) ⊆ V = V1 ∪ · · · ∪ Vk, we say that (the edges of) G wind(s) around C if
for every edge xy of G there exists an index j such that x ∈ Vj and y ∈ Vj+1. So if
V (G) = V then G winds around C if and only if G is a blow-up of C.

In order to simplify the presentation, we omit floors and ceilings and treat large
numbers as integers whenever this does not affect the argument. The constants in
the hierarchies used to state our results have to be chosen from right to left. More
precisely, if we claim that a result holds whenever 0 < 1/n � a � b � c ≤ 1
(where n is the order of the graph or digraph), then this means that there are non-
decreasing functions f : (0, 1] → (0, 1], g : (0, 1] → (0, 1] and h : (0, 1] → (0, 1] such
that the result holds for all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ g(b)
and 1/n ≤ h(a). We will not calculate these functions explicitly. Hierarchies with
more constants are defined in a similar way. Moreover, we will often assume that
certain numbers involving these constants, e.g. b/a2 or an are integers. We will only
make this assumption if our hierarchy guarantees that these numbers are sufficiently
large since then by adjusting the constants slightly one can actually guarantee that
these numbers are integers. However, all our results will hold if n is sufficiently large,
i.e. we will make no divisibility assumptions on n. (Note that if we assume that an
is an integer then this can be achieved by adjusting the constant a slightly.)

3.2. Probabilistic estimates, derandomization and algorithmic aspects. We
will use the following standard Chernoff type bound (see e.g. Corollary 2.3 in [23]
and Theorem 2.2 in [44]).

Proposition 3.1. Suppose X has binomial distribution and 0 < a < 1. Then

P(X ≥ (1 + a)EX) ≤ e−
a2

3
EX and P(X ≤ (1− a)EX) ≤ e−

a2

3
EX .

To obtain an algorithmic version of Theorem 1.2, we need to ‘derandomize’ our
applications of Proposition 3.1. This can be done via the well known ‘method of
conditional probabilities’, which is based on an idea of Erdős and Selfridge, and
which was further developed e.g. by Spencer as well as Raghavan. The following
result of Srivastav and Stangier (Theorem 2.10 in [44]) is also based on this method.
Given a probabilistic existence proof of some structure based on polynomially many
applications of Proposition 3.1, it guarantees an algorithm which finds this structure.

Suppose we are given N independent 0/1 random variables X1, . . . , XN where
P(Xj = 1) = p and P(Xj = 0) = 1 − p for some rational 0 ≤ p ≤ 1. Suppose that

1 ≤ i ≤ m. Let wij ∈ {0, 1}. Denote by φi the random variables φi :=
∑N

j=1wijXj .

Fix βi with 0 < βi < 1. Now let E+
i denote the event that φi ≥ (1 + βi)E[φi] and let

E−i denote the event that φi ≤ (1 − βi)E[φi]. Let Ei be either E+
i or E−i . Suppose

that

(3.1)

m∑
i=1

e−β
2
i E(φi)/3 ≤ 1/2.
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Theorem 3.2. [44] Let E1, . . . , Em be events such that (3.1) holds. Then

P

(
m⋂
i=1

Ei

)
≥ 1/2

and a vector x ∈
⋂m
i=1Ei can be constructed in time O(mN2 log(mN)).

In general, it will usually be clear that the proofs can be translated into polynomial
time algorithms. Where this is not obvious, we will add a corresponding remark. We
make no attempt to prove an explicit bound on the time needed to find the Hamilton
decomposition (beyond the fact that it is polynomial in n).

4. Regularity

4.1. The Regularity Lemma. We will use of a directed version of Szemerédi’s
regularity lemma. If G = (A,B) is an undirected bipartite graph with vertex classes
A and B, then the density of G is defined as

d(A,B) :=
eG(A,B)

|A||B|
.

For any ε > 0, we say that G is ε-regular if for any A′ ⊆ A and B′ ⊆ B with
|A′| ≥ ε|A| and |B′| ≥ ε|B| we have |d(A′, B′) − d(A,B)| < ε. We say that G is
(ε,≥ d)-regular if it is ε-regular and has density d′ for some d′ ≥ d− ε.

Given disjoint vertex sets X and Y in a digraph G, recall that G[X,Y ] denotes
the bipartite subdigraph of G whose vertex classes are X and Y and whose edges are
all the edges of G directed from X to Y . We often view G[X,Y ] as an undirected
bipartite graph. In particular, we say G[X,Y ] is ε-regular or (ε,≥ d)-regular if this
holds when G[X,Y ] is viewed as an undirected graph.

Next we state the degree form of the regularity lemma for digraphs. A regularity
lemma for digraphs was proved by Alon and Shapira [3]. The degree form follows
from this in the same way as the undirected version (see [34] for a sketch of the
latter). An algorithmic version of the (undirected) regularity lemma was proved
in [1]. An algorithmic version of the directed version can be proved in essentially the
same way (see [12] for a sketch of the argument proving a similar statement).

Lemma 4.1 (Regularity Lemma for digraphs). For all ε,M ′ > 0 there exist M,n0

such that if G is a digraph on n ≥ n0 vertices and d ∈ [0, 1], then there exists a
partition of V (G) into V0, . . . , Vk and a spanning subdigraph G′ of G satisfying the
following conditions:

(i) M ′ ≤ k ≤M .
(ii) |V0| ≤ εn.

(iii) |V1| = · · · = |Vk| =: m.
(vi) d+

G′(x) > d+
G(x)− (d+ ε)n for all vertices x ∈ V (G).

(v) d−G′(x) > d−G(x)− (d+ ε)n for all vertices x ∈ V (G).
(vi) For all i = 1, . . . , k the digraph G′[Vi] is empty.
(vii) For all 1 ≤ i, j ≤ k with i 6= j the pair G′[Vi, Vj ] is either empty or ε-regular

of density at least d. Moreover, if G′[Vi, Vj ] is nonempty then G′[Vi, Vj ] =
G[Vi, Vj ].



HAMILTON DECOMPOSITIONS OF REGULAR EXPANDERS 13

We refer to V0 as the exceptional set and to V1, . . . , Vk as clusters. V0, V1, . . . , Vk
as above is also called a regularity partition for G. Given a digraph G on n vertices,
we form the reduced digraph R of G with parameters ε, d and M ′ by applying the
regularity lemma to G with these parameters to obtain V0, . . . , Vk. R is then the
digraph whose vertices are the clusters V1, . . . , Vk and whose edges are those (ordered)
pairs ViVj of clusters for which G′[Vi, Vj ] is non-empty.

Given d ∈ [0, 1] and a bipartite graph G = (A,B), we say that G is (ε, d)-
superregular if it is ε-regular and furthermore dG(a) ≥ (d−ε)|B| for every a ∈ A and
dG(b) ≥ (d − ε)|A| for every b ∈ B. (This is a slight variation of the standard defi-
nition of (ε, d)-superregularity where one requires dG(a) ≥ d|B| and dG(b) ≥ d|A|.)

We say that a bipartite graph G = (A,B) is [ε, d]-superregular if it is ε-regular
and dG(a) = (d ± ε)|B| for every a ∈ A and dG(b) = (d ± ε)|A| for every b ∈ B.
So if G is [ε, d]-superregular, then it is (ε, d)-superregular. We say that G is [ε,≥ d]-
superregular if it is [ε, d′]-superregular for some d′ ≥ d. As for ε-regularity, these
definitions extend naturally to bipartite graphs where all edges are oriented towards
the same vertex class.

The following well known observation states that in an ε-regular bipartite graph
almost all vertices have the expected degree and almost all pairs of vertices have
the expected codegree (i.e. the expected number of common neighbours). Its proof
follows immediately from the definition of regularity.

Proposition 4.2. Suppose that 0 < ε ≤ d ≤ 1. Let G be an ε-regular bipartite graph
of density d with vertex classes A and B of size m. Then the following conditions
hold.

• All but at most 2εm vertices in A have degree (d± ε)m.
• All but at most 4εm2 pairs a 6= a′ of distinct vertices in A satisfy |N(a) ∩
N(a′)| = (d2 ± ε)m.
• The vertices in B satisfy the analogues of these statements.

The following simple observation states that the removal of a small number of
edges and vertices from a bipartite graph does not affect its ε-regularity (and super-
regularity) too much.

Proposition 4.3. Suppose that 0 < 1/m � ε ≤ d′ ≤ d � 1. Let G be a bipartite
graph with vertex classes A and B of size m. Suppose that G′ is obtained from G by
removing at most d′m vertices from each vertex class and at most d′m edges incident
to each vertex from G.

(i) If G is ε-regular of density at least d then G′ is 2
√
d′-regular of density at

least d− 2
√
d′.

(ii) If G is (ε, d)-superregular then G′ is (2
√
d′, d)-superregular.

(iii) If G is [ε, d]-superregular then G′ is [2
√
d′, d]-superregular.

Proof. Let us first prove (i). Let d∗ denote the density of G. Let A′ ⊆ A and
B′ ⊆ B denote the vertex classes of G′. Suppose that S ⊆ A′, T ⊆ B′ are such that
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|S| ≥ 2
√
d′|A′| and |T | ≥ 2

√
d′|B′|. So |S|, |T | ≥

√
d′m ≥ εm and thus

eG′(S, T ) ≥ (d∗ − ε)|S||T | − |S|d′m ≥ (d∗ − ε)|S||T | − |S|d′ · |T |/
√
d′

≥ (d∗ − 2
√
d′)|S||T |.

Since clearly eG′(S, T ) ≤ eG(S, T ) ≤ (d∗ + ε)|S||T |, (i) follows. To see (ii) and the
lower bound on the vertex degrees for (iii), note that in G′ the degrees of the vertices

in A′ are still at least (d− ε)m− 2d′m ≥ (d− ε− 2d′)|B′| ≥ (d−
√
d′)|B′|. Similarly,

the degrees in G′ of the vertices in B′ are still at least (d−
√
d′)|A′|.

To see (iii), note that in G′ the degrees of the vertices in A′ are still at most

(d + ε)m ≤ (d + ε)|B′|/(1 − d′) ≤ (d +
√
d′)|B′|. Similarly, the degrees in G′ of the

vertices in B′ are still at most (d+
√
d′)|A′|. �

The following lemma is also well known in several variations.

Lemma 4.4. Suppose that 0 < 1/n � 1/k � ε � d, 1/∆ ≤ 1. Let G be a digraph
on n vertices. Let P0 be a partition of V (G) into k clusters V ′1 , . . . , V

′
k and an

exceptional set V ′0 such that m′ := |V ′1 | = · · · = |V ′k|. Let R be a digraph whose
vertices are V ′1 , . . . , V

′
k and such that whenever V ′i V

′
j ∈ E(R) the pair G[V ′i , V

′
j ] is

(ε,≥ d)-regular. Let H be a subdigraph of R of maximum degree ∆. Then there is a
partition of V (G) into V0, . . . , Vk such that the following holds:

(i) For each i = 1, . . . , k, Vi is obtained from V ′i by moving exactly
√
εm′ vertices

into V ′0. V0 is then the set consisting of V ′0 and these additional vertices.

(ii) Whenever V ′i V
′
j ∈ E(H), the pair G[Vi, Vj ] is [2ε1/4,≥ d]-superregular.

Proof. For each edge V ′i V
′
j of H, let dij denote the density of G[V ′i , V

′
j ]. So dij ≥

d− ε. Call a vertex x in V ′i bad if at least one of the following two conditions hold:

• There is an edge V ′i V
′
j of H so that the degree of x in G[V ′i , V

′
j ] is not

(1± 2ε)dijm
′.

• There is an edge V ′jV
′
i of H so that the degree of x in G[V ′j , V

′
i ] is not

(1± 2ε)djim
′.

Note that V ′i contains at most 2∆εm′ ≤
√
εm′ bad vertices. Let Vi be obtained from

V ′i by removing all bad vertices (and some additional ones if there are fewer than√
εm′ of these). Now suppose that V ′i V

′
j is an edge of H. Then Proposition 4.3(i)

implies that G[Vi, Vj ] is 2ε1/4-regular. Together with the choice of Vi and Vj this

implies that G[Vi, Vj ] is [2ε1/4,≥ d]-superregular. �

The following result is proved in Section 3.1 of [16] by a simple application of the
Max-Flow-Min-Cut theorem (similarly to that in Lemma 5.2 below). In particular,
the subgraph of G guaranteed by this result can be found in time polynomial in m.

Lemma 4.5. Let 0 < 1/m � ε � d ≤ 1. Suppose that G is a bipartite graph
with vertex classes U and V of size m and with minimum degree at least dm. Also
suppose that |d(A,B)−d| ≤ εm for all A ⊆ U and B ⊆ V with |A|, |B| ≥ εm. Define
d′ := (1− 4ε)d. Then G contains a spanning d′m-regular subgraph.
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Lemma 4.6. Let 0 < 1/m� ε� d� 1. Let d′ := (1−12ε)(d−ε). Suppose that G
is a [ε, d]-superregular bipartite graph with vertex classes of size m. Then G contains
a spanning d′m-regular subgraph which is also [4

√
ε, d′]-superregular.

Proof. Note that the assumptions imply thatG satisfies the conditions of Lemma 4.5
with ε replaced by 3ε and d replaced by d−ε. So we can apply Lemma 4.5 to obtain
a d′m-regular subgraph G′ with d′ = (1− 12ε)(d− ε). Note that G′ is obtained from
G by removing at most 3εm edges at every vertex. Thus Proposition 4.3(i) (with 3ε
playing the role of d′) implies that G′ is also [4

√
ε, d′]-superregular. �

4.2. Uniform refinements. Let G be a digraph and let P be a partition of V (G)
into an exceptional set V0 and clusters of equal size. Suppose that P ′ is another
partition of V (G) into an exceptional set V ′0 and clusters of equal size. We say that
P ′ is an `-refinement of P if V0 = V ′0 and if the clusters in P ′ are obtained by
partitioning each cluster in P into ` subclusters of equal size. (So if P contains k
clusters then P ′ contains k` clusters.) P ′ is an ε-uniform `-refinement of P if it is
an `-refinement of P which satisfies the following condition:

(URef) Whenever x is a vertex of G, V is a cluster in P and |N+
G (x)∩V | ≥ ε|V | then

|N+
G (x) ∩ V ′| = (1± ε)|N+

G (x) ∩ V |/` for each cluster V ′ ∈ P ′ with V ′ ⊆ V .
The inneighbourhoods of the vertices of G satisfy an analogous condition.

Lemma 4.7. Suppose that 0 < 1/m � 1/k, ε � ε′, d, 1/` ≤ 1 and that m/` ∈ N.
Suppose that G is a digraph on n ≤ 2km vertices and that P is a partition of V (G)
into an exceptional set V0 and k clusters of size m. Then there exists an ε-uniform
`-refinement of P. Moreover, any ε-uniform `-refinement P ′ of P automatically
satisfies the following conditions:

(i) Suppose that V , W are clusters in P and V ′,W ′ are clusters in P ′ with
V ′ ⊆ V and W ′ ⊆W . If G[V,W ] is [ε, d′]-superregular for some d′ ≥ d then
G[V ′,W ′] is [ε′, d′]-superregular.

(ii) Suppose that V , W are clusters in P and V ′,W ′ are clusters in P ′ with
V ′ ⊆ V and W ′ ⊆ W . If G[V,W ] is (ε,≥ d)-regular then G[V ′,W ′] is
(ε′,≥ d)-regular.

Proof. To prove the existence of an ε-uniform `-refinement of P, let P∗ be a partition
obtained by splitting each cluster V ∈ P uniformly at random into ` subclusters.
More precisely, the probability that a vertex x ∈ V is assigned to the ith subcluster
is 1/`, independently of all other vertices. Consider a fixed vertex x of G and a
cluster V ∈ P with d+ := |N+

G (x)∩ V | ≥ εm. Given a cluster V ′ ∈ P∗ with V ′ ⊆ V ,
we say that x is out-bad for V ′ if the outdegree of x into V ′ is not (1 ± ε/2)d+/`.
Then Proposition 3.1 implies that the probability that x is out-bad for V ′ is at most

2e−ε
2d+/3·4` ≤ 2e−ε

4m. Since P∗ contains k` ≤ n clusters, the probability that G
contains some vertex which is out-bad for at least one cluster V ′ ∈ P∗ is at most
n2e−ε

4m < 1/8. We argue analogously for the inneighbourhoods of the vertices in G
(by considering ‘in-bad’ vertices).

We now say that a cluster V ′ of P∗ is good if |V ′| = (1 ± ε2/2)m/`. A similar
argument as above shows that the probability that P∗ has a cluster which is not
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good is at most 1/4. So with probability at least 1/2, all clusters of P∗ are good,
and no vertices are out-bad or in-bad.

Now obtain P ′ from P∗ as follows: for each cluster V of P, equalize the sizes
of the corresponding ` subclusters in P by moving at most ε2m/2` vertices from
one subcluster to another. So whenever x is a vertex of G, V is a cluster in P and
|N+

G (x) ∩ V | ≥ ε|V |, it follows that we have

|N+
G (x) ∩ V ′| = (1± ε/2)|N+

G (x) ∩ V |/`± ε2m/2`

for each cluster V ′ ∈ P ′ with V ′ ⊆ V . The inneighbourhoods of the vertices of
G satisfy an analogous condition. So (URef) holds and so P ′ is an ε-uniform `-
refinement of P.

To prove (i), suppose that P ′ is any ε-uniform `-refinement of P and that G[V,W ]
is [ε, d′]-superregular for some d′ ≥ d (where V and W are clusters in P). Let V ′ and
W ′ be clusters in P ′ with V ′ ⊆ V and W ′ ⊆ W . Then G[V ′,W ′] is ε`-regular and
thus ε′-regular. Consider any x ∈ V ′ and let d+ := |N+

G (x)∩W |. Thus d+ = (d′±ε)m
since G[V,W ] is [ε, d′]-superregular. Together with the ε-uniformity of P ′ this implies
that |N+

G (x)∩W ′| = (1± ε)d+/` = (d′± ε′)m/`. The inneighbourhoods in V ′ of the
vertices in W ′ satisfy the analogous property. Thus G[V ′,W ′] is [ε′, d′]-superregular.

The proof of (ii) is almost the same. �

Note that Theorem 3.2 (with p = 1/`) implies that the above applications of
Proposition 3.1 can be derandomized to find P ′ in polynomial time.

4.3. A sparse notion of ε-regularity. We will also use a ‘sparse’ version of ε-
(super)-regularity, which is defined below. In particular, this definition allows for
d < ε. We will need this notion mainly in Section 8, where we will have to work with
graphs for which we cannot guarantee (ε,≥ d)-regularity with ε ≤ d. In general,
one useful consequence of (ε,≥ d)-regularity is that sets of size between εm and
(1−ε)m expand robustly. With our sparse version, we will also be able to guarantee
that even sets of size less than εm expand robustly. This will follow from condition
(Reg2) below.

More precisely, let G be a bipartite graph with vertex classes U and V , both of size
m. Given 0 < ε, d, c < 1, we say that G is (ε, d, c)-regular if the following conditions
are satisfied:

(Reg1) Whenever A ⊆ U and B ⊆ V are sets of size at least εm, then d(A,B) =
(1± ε)d.

(Reg2) For all u, u′ ∈ U we have |N(u) ∩ N(u′)| ≤ c2m. Similarly, for all v, v′ ∈ V
we have |N(v) ∩N(v′)| ≤ c2m.

(Reg3) ∆(G) ≤ cm.

We say that G is (ε, d, d∗, c)-superregular if it is (ε, d, c)-regular and in addition the
following condition holds:

(Reg4) δ(G) ≥ d∗m.

The next result gives an analogue of Proposition 4.3 for the above notion of
(super)-regularity.
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Proposition 4.8. Suppose that 0 < 1/m � d∗, d, ε, c � 1. Let G be a bipartite
graph with vertex classes U and V of size m. Suppose that G′ is obtained from G by
removing at most ε2dm edges incident to each vertex from G.

(i) If G is (ε, d, c)-regular then G′ is (2ε, d, c)-regular.
(ii) If G is (ε, d, d∗, c)-superregular then G′ is (2ε, d, d∗ − ε2d, c)-superregular.

Proof. Let us first prove (i). Clearly G′ still satisfies (Reg2) and (Reg3). So we
only need to check that it also satisfies (Reg1). Suppose that S ⊆ U , T ⊆ V are
such that |S|, |T | ≥ εm. Then

eG′(S, T ) ≥ (1−ε)d|S||T |−|S|ε2dm ≥ (1−ε)d|S||T |−|S|ε2d·|T |/ε = (1−2ε)d|S||T |.

Since clearly eG′(S, T ) ≤ eG(S, T ) ≤ (1 + ε)d|S||T |, (i) follows. To see (ii) note that
the degrees in G′ are still at least d∗m− ε2dm. �

We will construct sparse (ε, d, c)-regular graphs in the proof of Lemma 4.10. To
verify (Reg1) in the proof of Lemma 4.10, we will use a variant of the well known char-
acterization in terms of codegrees of pairs of vertices which was proved as Lemma 3.2
in [1] (the version in [1] gives more precise bounds but the statement is not suitable
for sparse regularity).

Suppose that G = (U, V ) is a bipartite graph with vertex classes U and V of size m.
We say that G is {ε, d}-regular if for all A ⊆ U and B ⊆ V with |A|, |B| ≥ εm we
have d(A,B) = (1±ε)dm. (So (Reg1) is equivalent to saying that G is {ε, d}-regular.)
Note that this notion allows for d < ε. Moreover, it is stronger than ε-regularity in
the sense that if ε < d� 1 then every {ε, d}-regular pair is also ε-regular of density
(1± ε)d.

Call a pair of distinct vertices in V bad if the number of common neighbours in
U is at least (1 + ε)d2m.

Lemma 4.9. Suppose that 1/m � ε, d ≤ 1/C ≤ 1 and ε � 1/C. Let G = (U, V )
be a bipartite graph with vertex classes U and V of size m. Suppose that all but at
most εm vertices in V have degree at least (1 − ε)dm and for all pairs of distinct
vertices in V the number of common neighbours is at most Cd2m. Suppose also
that the number of bad pairs of distinct vertices in V is at most εm2. Then G is
{ε1/6, d}-regular.

Proof. The proof follows the argument in [1]. Let ε0 := ε1/6. It is easy to see that it
suffices to check that d(X,Y ) = (1±ε0)d for all pairs X ⊆ U and Y ⊆ V with |X| =
|Y | = ε0m. For any pair of vertices y1, y2 ∈ Y , let σ(y1, y2) := |N(y1)∩N(y2)|−d2m.
Then we always have σ(y1, y2) ≤ Cd2m and can improve this to σ(y1, y2) ≤ εd2m if
the pair y1, y2 is not bad. Also define

σ(Y ) :=
1

|Y |2
∑

y1,y2∈Y, y1 6=y2

σ(y1, y2).

Then our assumption on |Y | and on the number of bad pairs implies that

(4.1) σ(Y ) ≤ 1

(ε0m)2

(
(εm2)Cd2m+ (ε0m)2εd2m

)
= Cε4

0d
2m+ εd2m ≤ ε3

0d
2m/3.
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We claim that

(4.2)
∑
x∈X

(|N(x) ∩ Y | − d|Y |)2 ≤ ε3
0d

2m|Y |2.

To prove the claim, we use that the left hand side (as shown in [1]) is at most

e(U, Y ) + σ(Y )|Y |2 + 2d2|Y |2m− 2e(U, Y )d|Y |.

But our assumption on the vertex degrees implies that

e(U, Y ) ≥ (|Y | − εm)(1− ε)dm = |Y |(1− ε/ε0)(1− ε)dm ≥ |Y |(1− ε3
0/6)dm

and so

2d2|Y |2m− 2e(U, Y )d|Y | ≤ ε3
0d

2|Y |2m/3.
So together with (4.1) this implies that the left hand side of (4.2) is at most

e(U, Y ) +
2

3
ε3

0d
2m|Y |2 ≤ |Y |m+

2

3
ε3

0d
2m|Y |2 ≤ ε3

0d
2m|Y |2.

This proves the claim. On the other hand, the Cauchy-Schwarz inequality implies
that ∑

x∈X
(|N(x) ∩ Y | − d|Y |)2 ≥ 1

|X|

((∑
x∈X
|N(x) ∩ Y |

)
− d|X||Y |

)2

.

So together with (4.2), this implies that((∑
x∈X
|N(x) ∩ Y |

)
− d|X||Y |

)2

≤ |X|
(
ε3

0d
2m|Y |2

)
.

Thus dividing both sides by |X|2|Y |2 yields

|d(X,Y )− d|2 ≤ 1

|X|
(
ε3

0d
2m
)

= ε2
0d

2,

as required. �

The first part of the following lemma implies that inside an ε-regular pair we
can find sparse subgraphs which satisfy (Reg1)–(Reg3) with good bounds on the
parameters. Assertion (iii) will only be used in [35, 42].

Lemma 4.10. Suppose that 0 < 1/m� ε, d′ ≤ d ≤ 1 and ε� d.

(i) If G is an ε-regular bipartite graph of density d with vertex classes of size m,

then it contains an (ε1/12, d′, 3d′/2d)-regular spanning subgraph.
(ii) If G is an (ε, d)-superregular bipartite graph with vertex classes of size m,

then it contains an (ε1/12, d′, d′/2, 3d′/2d)-superregular spanning subgraph.
(iii) If ε � d′ and G is an ε-regular bipartite graph of density d with vertex

classes of size m, then it contains an {ε1/12, d′}-regular spanning subgraph J .
Moreover, if x ∈ V (G) satisfies dG(x) = (d± ε)m, then dJ(x) = (d′±

√
ε)m.

(iv) If ε � d′ and G is an [ε, d]-superregular bipartite graph with vertex classes

of size m, then it contains an [ε1/12, d′]-superregular spanning subgraph.
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Proof. We only prove (i). Since a (ε1/12, d′, 3d′/2d)-regular pair is {ε1/12, d′}-
regular, (iii) follows from (i) (and the ‘moreover’ part follows from the proof of (i)).
The argument for (ii) and (iv) is similar to the proof of (i). So suppose that G
is ε-regular of density d with vertex classes U and V of size m. Let G′ be the
spanning subgraph obtained from G by picking every edge of G with probability
p := d′/d, independently from all other edges. Consider any vertex v ∈ V with
dG(v) = (d±ε)m. Then the expected degree of v in G′ is p(d±ε)m = (1±

√
ε/2)d′m.

So Proposition 3.1 implies that

P
(
dG′(v) 6= (1±

√
ε)d′m

)
≤ P

(
|dG′(v)− E(dG′(v))| ≥

√
ε

3
E(dG′(v))

)
≤ 2e−εE(dG′ (v))/27 ≤ 2e−εd

′m/28.

Similarly, consider any vertex x ∈ U ∪ V (with no restriction on its degree dG(x)).
If dG(x) ≤ 3d′m/2d, then clearly dG′(x) ≤ 3d′m/2d. So suppose that dG(x) ≥
3d′m/2d. Then 3(d′)2m/2d2 = p · 3d′m/2d ≤ E(dG′(x)) ≤ pm = d′m/d and so

P
(
dG′(x) ≥ 3d′m

2d

)
≤ P

(
dG′(x) ≥ 3

2
E(dG′(x))

)
≤ e−E(dG′ (x))/12 ≤ e−(d′)2m/8d2 .

For the remainder of the proof, we let the codegree dG(x, x′) of a pair x, x′ of vertices
in G be the number of common neighbours of x and x′. Consider any pair v, v′ ∈ V
of distinct vertices with codegree dG(v, v′) = (d2±ε)m. Then the expected codegree
of v, v′ in G′ is E(dG′(v, v

′)) = p2(d2 ± ε)m = (1±
√
ε/2)(d′)2m. So Proposition 3.1

implies that

P
(
dG′(v, v

′) ≥ (1±
√
ε)(d′)2m

)
≤ P

(
dG′(v, v

′) ≥
(
1 +
√
ε/3
)
E(dG′(v, v

′))
)

≤ e−εE(dG′ (v,v
′))/27 ≤ e−ε(d

′)2m/28.

Similarly, consider any pair x 6= x′ of vertices in G (with no restriction on the code-
gree dG(x, x′)). If dG(x, x′) ≤ 3(d′)2m/2d2, then clearly dG′(x, x

′) ≤ 3(d′)2m/2d2. So
suppose that dG(x, x′) ≥ 3(d′)2m/2d2. Then 3(d′)4m/2d4 ≤ E(dG′(x, x

′)) ≤ p2m =
(d′)2m/d2 and so

P
(
dG′(x, x

′) ≥ 3(d′)2m

2d2

)
≤ P

(
dG′(x, x

′) ≥ 3

2
E(dG′(x, x

′))

)
≤ e−E(dG′ (x,x

′))/12 ≤ e−(d′)4m/8d4 .

Proposition 4.2 implies that V contains at most 2εm vertices whose degree in G is
not (d± ε)m as well as at most 4εm2 pairs of distinct vertices whose codegree in G
is not (d2 ± ε)m. Thus a union bound implies that with probability at least

1− 4me−εd
′m/28 + 2me−(d′)2m/8d2 +m2e−ε(d

′)2m/28 +m2e−(d′)4m/8d4 ≥ 1/2

all of the following properties are satisfied:

• All but at most 2εm vertices v ∈ V satisfy dG′(v) = (1±
√
ε)d′m.

• All but at most 4εm2 pairs v 6= v′ of vertices in V satisfy dG′(v, v
′) =

|NG′(v) ∩NG′(v
′)| ≤ (1 +

√
ε)(d′)2m.

• All pairs v 6= v′ of vertices in V satisfy dG′(v, v
′) ≤ 3(d′)2m/2d2.
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• ∆(G′) ≤ 3d′m/2d.

Thus we can choose G′ to satisfy (Reg2) and (Reg3). Moreover, Lemma 4.9 (applied
with

√
ε, d′, 3/2d2 playing the roles of ε, d, C) together with the first two properties

implies that G′ also satisfies (Reg1) with ε replaced by ε1/12. �

Theorem 3.2 implies that the applications of Proposition 3.1 in the proof of
Lemma 4.10 can be derandomized to find the spanning subgraphs guaranteed by the
lemma in polynomial time. Note that instead of using Lemma 4.9 to check (Reg1)
in our proof of Lemma 4.10, one could have checked (Reg1) directly. But this would
have involved a union bound over exponentially many sets. So we would not have
been able to apply Theorem 3.2.

Let G be a (ε, d, d∗, d/µ)-superregular bipartite graph with vertex classes U =
{u1, . . . , um} and V = {v1, . . . , vm}. The following lemma implies that the digraph
obtained from G by orienting all the edges from U to V and identifying ui and vi for
all i = 1, . . . ,m is a robust (ν, τ)-outexpander of minimum semidegree at least d∗m.
Together with Theorem 6.2 below this will imply that this ‘contracted’ digraph has
a Hamilton cycle, which will in turn be used in the proof of Lemma 6.5.

Lemma 4.11. Let 0 < 1/m � ν � τ � d ≤ ε � µ, ζ ≤ 1/2 and let G be a
(ε, d, ζd, d/µ)-superregular bipartite graph with vertex classes U and V of size m.
Let A ⊆ U be such that τm ≤ |A| ≤ (1 − τ)m. Let B ⊆ V be the set of all those
vertices in V which have at least νm neighbours in A. Then |B| ≥ |A|+ νm.

Proof. Let us first prove the following claim.

Claim. Let U ′ ⊆ U be such that |U ′| ≥ τm/2 and let RN(U ′) be the set of all
those vertices in V which have at least νm neighbours in U ′. Then |RN(U ′)| ≥
min{10εm, |U ′|/

√
ε}. Similarly, let V ′ ⊆ V be such that |V ′| ≥ τm/2 and let RN(V ′)

be the set of all those vertices in U which have at least νm neighbours in V ′. Then
|RN(V ′)| ≥ min{10εm, |V ′|/

√
ε}.

We only prove the first part of the claim. The argument for the second part is
identical. Suppose that |RN(U ′)| ≤ 10εm. Given V ′, V ′′ ⊆ V , let f(V ′, V ′′) denote
the number of paths of length two which have their midpoint in U ′, one endpoint in
V ′ and the other endpoint in V ′′. Since δ(G) ≥ ζdm by (Reg4) we have that

f(V, V ) ≥ |U ′|
(
ζdm

2

)
≥ |U ′|ζ

2d2m2

3
.

On the other hand, f(V \ RN(U ′), V ) ≤ ν|V \ RN(U ′)|m2 since every vertex in
V \RN(U ′) has at most νm neighbours in U ′. Thus

f(V, V ) = f(RN(U ′), RN(U ′)) + f(V \RN(U ′), V )

≤
∑

v,v′∈RN(U ′), v 6=v′
|N(v) ∩N(v′)|+ ν|V \RN(U ′)|m2

(Reg2)

≤ |RN(U ′)|2d
2m

µ2
+ νm3 ≤ |RN(U ′)|10εd2m2

µ2
+ νm3.
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(To obtain the final inequality we use that |RN(U ′)| ≤ 10εm.) Altogether this
implies that

|RN(U ′)| ≥ µ2

10εd2m2

(
|U ′|ζ

2d2m2

3
− νm3

)
≥ µ2

10εd2m2
· |U ′|ζ

2d2m2

4
=
µ2ζ2

40ε
|U ′| ≥ |U

′|√
ε
,

which proves the claim.

In order to prove the lemma, we distinguish several cases according to the size of A.
Suppose first that τm ≤ |A| ≤ εm. Then the claim implies that B = RN(A) has
size at least min{10εm, |A|/

√
ε} ≥ |A|+ νm, as required.

Suppose next that εm ≤ |A| ≤ (1− 2ε)m. Since

e(A, V \B) ≤ νm|V \B| < (1− ε)d|A||V \B|,
together with (Reg1) this implies that |V \B| < εm. Thus |B| ≥ (1−ε)m ≥ |A|+νm.

Finally, consider the case when (1 − 2ε)m ≤ |A| ≤ (1 − τ)m. Suppose for a
contradiction that |B| < |A| + νm. From the previous case it follows that |B| ≥
(1− 2ε)m+ νm. Let V ′ := V \B. Then

(4.3) τm/2 ≤ m− |A| − νm < m− |B| = |V ′| ≤ 2εm.

Let A′ := A ∩ RN(V ′). Since every vertex in A′ has at least νm neighbours in
V ′, but every vertex in V ′ has less than νm neighbours in A ⊇ A′, it follows that
|A′|νm ≤ e(A′, V ′) ≤ |V ′|νm. Thus |A′| ≤ |V ′| and so

|RN(V ′)| ≤ |U \A|+ |A′| ≤ m− |A|+ |V ′| ≤ 2|V ′|+ νm < 3|V ′| ≤ 6εm.

(Here we used (4.3) in the final three inequalities.) On the other hand, the claim
implies that |RN(V ′)| ≥ min{10εm, |V ′|/

√
ε}, a contradiction. �

We will also use the above lemma to show that bipartite graphs satisfying (Reg1)–
(Reg3) have large matchings.

Lemma 4.12. Suppose that 0 < 1/m� d′ � 1/k � ε� d� ζ ≤ 1/2 and let G be
a bipartite graph with vertex classes U and V of size m.

(i) If G is (ε, d′/k, d′/dk)-regular, then it contains a matching of size at least
(1− ε)m.

(ii) If G is (ε, d′, ζd′, d′/d)-superregular, then it has a perfect matching.

Since maximum matchings can be found in polynomial time, this is also the case
for the matchings guaranteed by the lemma.

Proof. To prove (i), note that (Reg1) implies that |N(A)| ≥ (1 − ε)m for every
set A ⊆ U with |A| ≥ εm. Together with the defect version of Hall’s theorem this
implies that G has a matching of size at least (1− ε)m.

To prove (ii), we use Hall’s theorem. Lemma 4.11 implies that Hall’s condition
holds for all sets A ⊆ U with τm ≤ |A| ≤ (1− τ)m (where we apply the lemma with
d′, d playing the roles of d, µ and with some ν, τ satisfying 1/m � ν � τ � d′).
(Reg4) implies that G has minimum degree at least ζd′m ≥ τm, so Hall’s condition
also holds for sets A ⊆ U with |A| ≤ τm or |A| ≥ (1− τ)m. �
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4.4. The Blow-up Lemma. We will use the blow-up lemma of Komlós, Sárközy
and Szemerédi [27] (see [28] for their proof of an algorithmic version). Roughly
speaking, it states that superregular pairs behave like complete bipartite graphs
with respect to embedding subgraphs of bounded degree.

Lemma 4.13 (Blow-up Lemma). Suppose that 0 < 1/m � ε � 1/k, d, 1/∆ ≤ 1.
Let R be a graph with vertex set {1, . . . , k}. Let V1, . . . , Vk be pairwise disjoint sets
of vertices, each of size m. Let R(m) be the graph on V1 ∪ · · · ∪ Vk which is obtained
from R by replacing each edge ij of R with a complete bipartite graph Km,m between
Vi and Vj. Let G be a graph on V1 ∪ · · · ∪ Vk which is obtained from R by replacing
each edge ij of R with some (ε, d)-superregular pair G[Vi, Vj ]. If a graph H with
maximum degree ∆(H) ≤ ∆ is embeddable into R(m) then it is already embeddable
into G.

The following proposition is a very special case of the blow-up lemma. It is also
easy to prove it in the same way as Lemma 4.12(ii).

Proposition 4.14. Suppose that 0 < 1/m � ε � d ≤ 1. Suppose that G is a
(ε, d)-superregular bipartite graph with vertex classes of size m. Then G contains a
perfect matching.

The following consequence of the blow-up lemma states that we can link up arbi-
trary sets of vertices which are joined by a ‘blown-up’ path.

Corollary 4.15. Suppose that 0 < 1/m� ε� d ≤ 1 and that q ≥ 4. Let V1, . . . , Vq
be pairwise disjoint sets of vertices, each of size m. Let G be a graph on V1∪ · · ·∪Vq
such that G[Vi, Vi+1] is (ε, d)-superregular for each i = 1, . . . , q − 1. Let a1, . . . , am
be an arbitrary enumeration of the vertices in V1 and let b1, . . . , bm be an arbitrary
enumeration of the vertices in Vq. Then G contains a set of m vertex-disjoint paths
connecting ai to bi for every i.

Proof. First suppose that q = 4. Consider the graph G′ which is obtained from⋃q−1
i=1 G[Vi, Vi+1] by identifying the vertices ai and bi. Thus G′ can be viewed as the

blow-up of a triangle. The blow-up lemma implies that G′ contains a set of disjoint
triangles covering all vertices of G′ (and where each triangle has a vertex in each
Vi). This corresponds to the desired set of paths connecting the ai and bi for all
i = 1, . . . ,m.

If q > 4, we simply apply Proposition 4.14 q − 4 times to get m vertex-disjoint
paths joining all vertices in V4 to Vq. Then we proceed as in the case when q = 4.

�

5. Robust Outexpanders

The next result (Lemma 14 from [37]) implies that the property of a digraph G
being a robust outexpander is ‘inherited’ by the reduced digraph of G. For this, we
need that G is a robust outexpander, rather than just an outexpander.
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Lemma 5.1. Suppose that 0 < 1/n � ε � d � α, ν, τ < 1 and M ′/n � 1. Let G
be a digraph on n vertices with δ0(G) ≥ αn and such that G is a robust (ν, τ)-
outexpander. Let R be the reduced digraph of G with parameters ε, d and M ′. Then
δ0(R) ≥ α|R|/2 and R is a robust (ν/2, 2τ)-outexpander.

The following result shows that in a robust outexpander, we can guarantee a
spanning subdigraph with a given degree sequence (as long as the required degrees
are not too large and do not deviate too much from each other). We will state a
more general version of this lemma for multidigraphs, which will be used in [42]. In
the current paper, we will only use Lemma 5.2 in the case when Q = G. If x is
a vertex of a multidigraph Q, we write d+

Q(x) for the number of edges in Q whose

initial vertex is x and d−Q(x) for the number of edges in Q whose final vertex is x.

Lemma 5.2. Let q ∈ N. Suppose that 0 < 1/n � ε � ν ≤ τ � α < 1 and that
1/n � ξ ≤ qν2/3. Let G be a digraph on n vertices with δ0(G) ≥ αn which is
a robust (ν, τ)-outexpander. Suppose that Q is a multidigraph on V (G) such that
whenever xy ∈ E(G) then Q contains at least q edges from x to y. For every vertex
x of G, let n+

x , n
−
x ∈ N be such that (1 − ε)ξn ≤ n+

x , n
−
x ≤ (1 + ε)ξn and such that∑

x∈V (G) n
+
x =

∑
x∈V (G) n

−
x . Then Q contains a spanning submultidigraph Q′ such

that d+
Q′(x) = n+

x and d−Q′(x) = n−x for every x ∈ V (G) = V (Q).

Proof. Our aim is to apply the Max-Flow-Min-Cut theorem. So let H be the
(unoriented) bipartite multigraph whose vertex classes A and B are both copies of
V (G) and in which a ∈ A is joined to b ∈ B once for every (directed) edge ab of Q.
Give every edge of H capacity 1. Add a source s∗ which is joined to every vertex
a ∈ A with an edge of capacity n+

a . Add a sink t∗ which is joined to every vertex
b ∈ B with an edge of capacity n−b . Let r :=

∑
x∈V (G) n

+
x /n =

∑
x∈V (G) n

−
x /n. Note

that an integer-valued rn-flow corresponds to the desired spanning submultigraph
Q′ of Q. Thus by the Max-Flow-Min-Cut theorem it suffices to show that every cut
has capacity at least rn.

So consider a minimal cut C. Let S be the set of all those vertices a ∈ A for which
s∗a /∈ C. Similarly, let T be the set of all those vertices b ∈ B for which bt∗ /∈ C. Let
S′ := A \ S and T ′ := B \ T . Thus the capacity of C is

c :=
∑
s∈S′

n+
s + eB(S, T ) +

∑
t∈T ′

n−t .

Suppose first that |T ′| ≥ |S|+ νn/2. But then

c ≥
∑
s∈S′

n+
s +

∑
t∈T ′

n−t ≥ (1−ε)ξn(|S′|+ |T ′|) ≥ (1−ε)ξn(n+νn/2) ≥ (1+ε)ξn2 ≥ rn,

as required.
So suppose next that |T ′| ≤ |S| + νn/2 and τn < |S| < (1 − τ)n. Then at least

νn/2 vertices from T lie in RN+
ν,G(S) and each such vertex receives at least νn edges

from S (in the digraph G). Thus

c ≥ eB(S, T ) ≥ q · eG(S, T ) ≥ qν2n2/2 ≥ (1 + ε)ξn2 ≥ rn,

as required.
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Now suppose that |T ′| ≤ |S| + νn/2 and |S| ≤ τn. Then in G every vertex in S
sends at least αn/2 edges to T as δ0(G) ≥ αn. Thus in Q every vertex in S sends
at least qαn/2 edges to T and so

c ≥
∑
s∈S′

n+
s + |S| · qαn/2 ≥

∑
s∈S′

n+
s + |S|(1 + ε)ξn ≥ rn,

as required.
Finally, suppose that |S| ≥ (1−τ)n. Then in G every vertex in T receives at least

αn/2 edges from S. Thus in Q every vertex in T receives at least qαn/2 edges from
S and so

c ≥
∑
t∈T ′

n−t + |T | · qαn/2 ≥
∑
t∈T ′

n−t + |T |(1 + ε)ξn ≥ rn,

as required. �

Recall from Section 3 that the r-fold blow-up of a digraph G is obtained from G by
replacing every vertex x of G by r vertices and replacing every edge xy of G by the
complete bipartite graph Kr,r between the two sets of r vertices corresponding to x
and y such that all the edges of Kr,r are oriented towards the r vertices corresponding
to y.

Lemma 5.3. Let r ≥ 3 and let G be a robust (ν, τ)-outexpander with 0 < 3ν ≤ τ < 1.
Let G′ be the r-fold blow-up of G. Then G′ is a robust (ν3, 2τ)-outexpander.

Proof. Let n := |G|. So |G′| = rn. Call two vertices in G′ friends if they
correspond to the same vertex of G. (In particular, every vertex is a friend of itself.)
Consider any S′ ⊆ V (G′) with 2τrn ≤ |S′| ≤ (1− 2τ)rn. Call a vertex x ∈ S′ bad if
S′ contains at most ν2r friends of x. So if ν2r < 1 then no vertex in S′ is bad. Let b
denote the number of bad vertices in S′. Then S′ contains a set S∗ of at least b/ν2r
bad vertices corresponding to different vertices of G. (So no two vertices in S∗ are
friends.) But every x ∈ S∗ has at least r − 1− ν2r ≥ r/2 friends outside S′. Thus

b

ν2r
· r

2
≤ |S∗| · r

2
≤ |G′| = rn

and so b ≤ 2ν2rn. Let S′′ ⊆ S′ be the set of all those vertices in S′ which are not
bad and let S be the set of all those vertices x in G for which S′′ contains a copy of
x. Thus

(5.1) |S| ≥ |S′′|/r = (|S′| − b)/r ≥ |S′|/2r ≥ τn.

Since G is a robust (ν, τ)-outexpander, it follows that:

(i) Either |RN+
ν,G(S)| ≥ |S|+ νn;

(ii) or |S| ≥ (1− τ)n, in which case (considering a subset of S of size (1− τ)n)
we have |RN+

ν,G(S)| ≥ (1− τ + ν)n.

Note that if a vertex x of G belongs to RN+
ν,G(S), then any copy x′ of x in G′ has

at least ν2r · νn = ν3|G′| inneighbours in S′′ (since no vertex in S′′ is bad) and so
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x′ ∈ RN+
ν3,G′

(S′). It follows that |RN+
ν3,G′

(S′)| ≥ r|RN+
ν,G(S)|. Thus, in case (i) we

have

|RN+
ν3,G′

(S′)| ≥ r|RN+
ν,G(S)| ≥ r|S|+ rνn

(5.1)

≥ |S′| − b+ rνn ≥ |S′|+ ν3rn,

while in case (ii) we have

|RN+
ν3,G′

(S′)| ≥ r|RN+
ν,G(S)| ≥ (1− τ)rn+ νrn ≥ (1− τ)rn ≥ |S′|+ ν3rn,

as required. �

6. Tools for finding Hamilton cycles

The following well known observation states that every regular multidigraph G
has a 1-factorization, i.e. the edges of G can be decomposed into edge-disjoint 1-
factors. (In a multidigraph G we allow multiple edges between any two vertices. G
is r-regular if every vertex sends out r edges and receives r edges.)

Proposition 6.1. Let G be a regular multidigraph. Then G has a 1-factorization.

Proof. Consider an auxiliary bipartite multigraph G′ whose vertex classes A and
B are copies of the vertex set V (G) of G and in which the number of (undirected)
edges between a ∈ A and b ∈ B equals the number of (directed) edges from a to b in
G. Then G′ is regular and so Hall’s theorem (which holds for bipartite multigraphs
as well) implies that G′ has a decomposition into edge-disjoint perfect matchings.
But every perfect matching in G′ corresponds to a 1-factor of G. �

As mentioned earlier, there are several well known polynomial time algorithms
for finding maximum matchings – these can be applied repeatedly to find the above
factorization.

The following result (Theorem 16 from [37]) guarantees a Hamilton cycle in a
robust outexpander G, as long as the minimum semidegree of G is not too small. As
shown in [12], this Hamilton cycle can be found in polynomial time.

Theorem 6.2. Suppose that 0 < 1/n � ν ≤ τ � α < 1. Let G be a digraph on n
vertices with δ0(G) ≥ αn which is a robust (ν, τ)-outexpander. Then G contains a
Hamilton cycle.

The kth power of a cycle C is obtained from C by adding an edge between every
pair of vertices whose distance on C is at most k. We will also use the following
result of Kómlos, Sárközy and Szemerédi [29] (where they proved the so-called Pósa-
Seymour conjecture for sufficiently large graphs). We do not use the full strength of
the result: any bound of the form (1− ε)n instead of 10n/11 would be sufficient for
our proof. Moreover, we will only apply the result to a graph of bounded size (in
the proof of Lemma 8.7), so an algorithmic version is not necessary.

Theorem 6.3. There exists an n0 ∈ N such that every graph G on n ≥ n0 vertices
with minimum degree at least 10n/11 contains the 10th power of a Hamilton cycle.
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The next two lemmas will be used to turn a 1-regular digraph F into a cycle
on the same vertex set. More precisely, suppose that G is a blow-up of a cycle
C = V1 . . . Vk so that for any successive clusters Vi, Vi+1 the subdigraph G[Vi, Vi+1]
of G is superregular. Suppose also that F is a 1-regular digraph on V1 ∪ · · · ∪ Vk
which ‘winds around’ C, i.e. each edge goes from Vi to Vi+1 for some i. Then we can
replace the edges of F from e.g. V1 to V2 with edges from G between these clusters
to turn F into a Hamilton cycle. (Actually, the lemma is more general and does not
require all edges of F to wind around C.)

To prove the lemmas, we will use an idea from [11].

Lemma 6.4. Suppose that 0 < 1/m � d′ � ε � d � ζ, 1/t ≤ 1/2. Let V1, . . . , Vk
be pairwise disjoint clusters, each of size m and let C = V1 . . . Vk be a directed cycle
on these clusters. Let G be a digraph on V1∪· · ·∪Vk and let J ⊆ E(C). For each edge
ViVi+1 ∈ J , let V 1

i ⊆ Vi and V 2
i+1 ⊆ Vi+1 be such that |V 1

i | = |V 2
i+1| ≥ m/100 and

such that G[V 1
i , V

2
i+1] is (ε, d′, ζd′, td′/d)-superregular. Suppose that F is a 1-regular

digraph with V1 ∪ · · · ∪ Vk ⊆ V (F ) such that the following properties hold:

(i) For each edge ViVi+1 ∈ J the digraph F [V 1
i , V

2
i+1] is a perfect matching.

(ii) For each cycle D in F there is some edge ViVi+1 ∈ J such that D contains a
vertex in V 1

i .
(iii) Whenever ViVi+1, VjVj+1 ∈ J are such that J avoids all edges in the segment

Vi+1CVj of C from Vi+1 to Vj, then F contains a path Pij joining some vertex
ui+1 ∈ V 2

i+1 to some vertex u′j ∈ V 1
j such that Pij winds around C.

Then we can obtain a cycle on V (F ) from F by replacing F [V 1
i , V

2
i+1] with a suitable

perfect matching in G[V 1
i , V

2
i+1] for each edge ViVi+1 ∈ J . Moreover, if J = E(C)

then (iii) can be replaced by

(iii′) V 1
i ∩ V 2

i 6= ∅ for all i = 1, . . . , k.

Proof. For any edge ViVi+1 ∈ J , let Oldi be the perfect matching F [V 1
i , V

2
i+1]. We

will first prove the following:

For any edge ViVi+1 ∈ J , we can find a perfect matching Newi in G[V 1
i , V

2
i+1] =:

Gi so that if we replace Oldi in F with Newi, then all vertices of Gi will lie
on a common cycle in the new 1-factor F ′ thus obtained from F . Moreover
any pair of vertices of F that were formerly on a common cycle in F are still
on a common cycle in F ′.

(†)

To prove (†), we proceed as follows. Pick ν and τ such that 1/m� ν � τ � d′.
For every u ∈ V 2

i+1, we move along the cycle Cu of F containing u (starting at u)

and let f(u) be the first vertex on Cu in V 1
i (note that f(u) exists by (i)). Define

an auxiliary digraph A on V 2
i+1 such that N+

A (u) := N+
Gi

(f(u)). So A is obtained

by identifying each pair (u, f(u)) into one vertex with an edge from (u, f(u)) to
(v, f(v)) if Gi has an edge from f(u) to v. So Lemma 4.11 applied with d′, d/t
playing the roles of d, µ implies that A is a robust (ν, τ)-outexpander. Moreover,
δ0(A) = δ0(Gi) ≥ ζd′|V 2

i+1| = ζd′|A| by (Reg4). Thus Theorem 6.2 implies that A
has a Hamilton cycle, which clearly corresponds to a perfect matching Newi in Gi
with the desired property.
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Now we apply (†) to every edge ViVi+1 ∈ J sequentially. We claim that after
repeating this for every such edge, the resulting 1-regular digraph F ′′ is a cycle. To
see this, note that (ii) and the last part of (†) together imply that every cycle of F ′′

contains a vertex in V 1
i for some edge ViVi+1 ∈ J . Moreover, by the first part of

(†), all the vertices in V 1
i ∪ V 2

i+1 lie on a common cycle of F ′′, Ci say. So all the Ci
together form F ′′. Consider any two edges ViVi+1, VjVj+1 ∈ J such that J avoids all
edges in Vi+1CVj and let Pij = ui+1 . . . u

′
j be the path guaranteed by (iii). Since Pij

winds around C, it follows that Pij ⊆ F ′′. Thus ui+1 and u′j lie on a common cycle

in F ′′. But ui+1 ∈ Ci and u′j ∈ Cj . Thus Ci = Cj and so all the Ci are identical.

Thus F ′′ is a cycle.
It remains to check that if J = E(C) then (iii) can be replaced by (iii′). But this

is clear since in this case we have i+ 1 = j in (iii) and so we can take Pij to be any
vertex in V 2

j ∩ V 1
j . �

We will also use the following slightly different version of Lemma 6.4, which in-
volves the usual notion of ε-regularity. In this paper, we will only use Lemmas 6.4
and 6.5 in the special case when J = E(C). (So in Lemma 6.5 condition (iii) can be
omitted.) The more general version of Lemma 6.5 will be used in [42].

Lemma 6.5. Let 0 < 1/m � ε � d < 1. Let V1, . . . , Vk be pairwise disjoint
clusters, each of size m and let C = V1 . . . Vk be a directed cycle on these clusters.
Let J ⊆ E(C). Let G be a digraph on V1 ∪ · · · ∪ Vk such that G[Vi, Vi+1] is (ε, d)-
superregular for every ViVi+1 ∈ J . For each edge ViVi+1 ∈ J let V 1

i ⊆ Vi and
V 2
i+1 ⊆ Vi+1 be sets of size at least (1− d/2)m such that |V 1

i | = |V 2
i+1|. Suppose that

F is a 1-regular digraph with V1 ∪ · · · ∪Vk ⊆ V (F ) such that the following properties
hold:

(i) For each edge ViVi+1 ∈ J the digraph F [V 1
i , V

2
i+1] is a perfect matching.

(ii) For each cycle D in F there is some edge ViVi+1 ∈ J such that D contains a
vertex in V 1

i .
(iii) Whenever ViVi+1, VjVj+1 ∈ J are such that J avoids all edges in the segment

Vi+1CVj of C from Vi+1 to Vj, then F contains a path Pij joining some vertex
ui+1 ∈ V 2

i+1 to some vertex u′j ∈ V 1
j such that Pij winds around C.

Then we can obtain a cycle on V (F ) from F by replacing F [V 1
i , V

2
i+1] with a suitable

perfect matching in G[V 1
i , V

2
i+1] for each edge ViVi+1 ∈ J . Moreover, if J = E(C)

then (iii) can be omitted.

Proof. The proof is very similar to that of Lemma 6.4. As before, for any edge
ViVi+1 ∈ J let Gi := G[V 1

i , V
2
i+1]. Since |V 1

i |, |V 2
i+1| ≥ (1 − d/2)m, the (ε, d)-

superregularity of G[Vi, Vi+1] implies that Gi is still (2ε, d/2)-superregular. Now
we proceed as before to define A. Using the superregularity of Gi, it is easy to
show that A is a robust (εd, 3ε)-outexpander with δ0(A) ≥ d|A|/3. (Indeed, for the
outexpansion it suffices to observe that for all U ⊆ V 1

i with |U | ≥ 3ε|A|, the number
of vertices in V 2

i+1 which receive at least (d/2 − 2ε)|U | ≥ εd|A| edges from U in Gi
is at least (1 − 2ε)|A|.) So as before we can apply Theorem 6.2 to find a Hamilton
cycle in A, which corresponds to a matching as required in (†). The remainder of
the argument is now identical. �
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7. Schemes, consistent systems, chord sequences, and exceptional
factors

7.1. Schemes and consistent systems. In order to simplify (and shorten) the
statements of our lemmas throughout the paper, we will introduce the notions of a
(k,m, ε, d)-scheme and of a consistent (`∗, k,m, ε, d, ν, τ, α, θ)-system. (G,P, R, C) is
called a (k,m, ε, d)-scheme if the following properties are satisfied:

(Sch1) G and R are digraphs. P is a partition of V (G) into an exceptional set V0 of
size at most ε|G| and into k clusters of size m. The vertex set of R consists
of these clusters.

(Sch2) For every edge UW of R the corresponding pair G[U,W ] is (ε,≥ d)-regular.
(Sch3) C is a Hamilton cycle in R and for every edge UW of C the corresponding

pair G[U,W ] is [ε,≥ d]-superregular.
(Sch4) V0 forms an independent set in G.

So roughly speaking, a scheme consists of a digraph G with a regularity parti-
tion P where the corresponding reduced digraph R contains a Hamilton cycle C.
A consistent system has several additional features: mainly, the digraph G needs
to be a robust outexpander and the definition involves an additional partition P0

which is coarser than P. More precisely, (G,P0, R0, C0,P, R, C) is called a consistent
(`∗, k,m, ε, d, ν, τ, α, θ)-system if the following properties are satisfied (for (CSys3),
recall that an `∗-refinement was defined before Lemma 4.7):

(CSys1) Each of the digraphs G, R0 and R is a robust (ν, τ)-outexpander. Moreover
δ0(G) ≥ αn, where n := |G|, δ0(R0) ≥ α|R0| and δ0(R) ≥ α|R|.

(CSys2) P0 is a partition of V (G) into an exceptional set V 0
0 of size at most εn and

into k/`∗ equal sized clusters. The vertex set of R0 consists of these clusters.
So |R0| = k/`∗. Similarly, P is a partition of V (G) into an exceptional set V0

of size at most εn and into k clusters of size m. The vertex set of R consists
of these clusters. So |R| = k.

(CSys3) P is obtained from an `∗-refinement of P0 by removing some vertices from
each cluster of this refinement and adding them to the exceptional set V 0

0 .
So V0 is the union of V 0

0 with the set of these vertices.
(CSys4) For every edge UW of R the corresponding pair G[U,W ] is (ε,≥ d)-regular.
(CSys5) C0 is a Hamilton cycle in R0. Similarly, C is a Hamilton cycle in R and for

every edge UW of C the corresponding pair G[U,W ] is [ε,≥ d]-superregular.
(CSys6) Suppose that W,W ′ are clusters in P0 and V, V ′ are clusters in P with V ⊆W

and V ′ ⊆W ′. Then WW ′ ∈ E(R0) if and only if V V ′ ∈ E(R).
(CSys7) C can be viewed as obtained from C0 by winding `∗ times around C0, i.e. for

every edge WW ′ of C0 there are precisely `∗ edges V V ′ of C such that V ⊆W
and V ′ ⊆W ′.

(CSys8) Whenever W is a cluster in P0 and x ∈ V (G) is a vertex with n+ ≥ τ |W |
outneighbours in W , then x has at least θn+/`∗ outneighbours in each cluster
V in P with V ⊆ W . A similar condition holds for inneighbours of the
vertices of G.

(CSys9) V0 forms an independent set in G.
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Note that (CSys3) and (CSys6) together imply that R is an `∗-fold blow-up of R0.
Moreover, if (G,P0, R0, C0,P, R, C) is a consistent (`∗, k,m, ε, d, ν, τ, α, θ)-system
then (G,P, R, C) is a (k,m, ε, d)-scheme. We will usually denote the clusters in P
by V1, . . . , Vk and assume that they are labelled in such a way that C = V1 . . . Vk.

The next result states that if (G,P0, R0, C0,P, R, C) is a consistent system and
one deletes only a few edges at every vertex of G, then one still has a consistent
system with slightly worse parameters. The analogue also holds for schemes.

Lemma 7.1. Suppose that 0 < 1/n� 1/k � ε ≤ ε′ � d� ν � τ � α, θ ≤ 1.

(i) Let (G,P0, R0, C0,P, R, C) be a consistent (`∗, k,m, ε, d, ν, τ, α, θ)-system with
|G| = n. Let G′ be a digraph obtained from G by deleting at most ε′m out-
edges and at most ε′m inedges at every vertex of G. Then

(G′,P0, R0, C0,P, R, C)

is still a consistent (`∗, k,m, 3
√
ε′, d, ν/2, τ, α/2, θ/2)-system.

(ii) Let (G,P, R, C) be a (k,m, ε, d)-scheme with |G| = n. Let G′ be a digraph
obtained from G by deleting at most ε′m outedges and at most ε′m inedges
at every vertex of G. Then (G′,P, R, C) is still a (k,m, 3

√
ε′, d)-scheme.

Proof. We only prove (i). The argument for (ii) is similar. It is easy to see
that (G′,P0, R0, C0,P, R, C) still satisfies (CSys2), (CSys3), (CSys6), (CSys7) and
(CSys9). Proposition 4.3 (applied with d′ := ε′) implies that every edge of R still

corresponds to an 2
√
ε′-regular pair in G′ of density at least d−ε−2

√
ε′ ≥ d−3

√
ε′.

Similarly, every edge of C still corresponds to an [2
√
ε′, d]-superregular pair in G′.

Thus (CSys4) and (CSys5) hold with ε replaced by 3
√
ε′. Moreover, it is easy to

check that G′ is still a robust (ν/2, τ)-outexpander with δ0(G) ≥ αn/2. So (CSys1)
holds with ν and α replaced by ν/2 and α/2. Finally, suppose that x, n+, W and
V are as in (CSys8). Note that |W | ≥ `∗m and so

ε′m ≤ θτm/2 ≤ θτ |W |/2`∗ ≤ θn+/2`∗.

Thus in the digraph G′ the number of outneighbours of x in V is at least θn+/`∗ −
ε′m ≥ θn+/2`∗. So (CSys8) holds with θ replaced by θ/2. �

7.2. Shifted walks and chord sequences. Roughly speaking, the Hamilton cycles
we will find usually wind around a blown-up cycle C = V1 . . . Vk. Here the Vi are
clusters. However, we also need to incorporate the vertices of an exceptional set
V0 into the cycle. For each x ∈ V0, Lemma 7.5(i) below will give suitable in- and
outneighbours x− and x+ which attach x to the blown-up cycle. However, to build
a Hamilton cycle, we need additional edges: Suppose for example that V0 = {x} and
x+ is not in the cluster succeeding the cluster containing x−. Then it is impossible to
extend the path x−xx+ into a Hamilton cycle in which all other edges wind around
C. So we need additional edges which will ‘balance out’ the edges x−x and xx+.
These additional edges are found via so-called ‘shifted walks’ and their associated
chord sequences, which we define next. Shifted walks were first introduced in [25],
also in order to find Hamilton cycles in directed graphs.

Let R be a digraph and let C be a Hamilton cycle in R. Given a vertex V of R,
let V + denote the vertex succeeding V on C and let V − denote the vertex preceding
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V . (Later on, the vertices of R will be clusters, so we use capital letters to denote
them.) A shifted walk from a vertex A to a vertex B in R is a walk SW (A,B) of the
form

SW (A,B) = V1CV
−

1 V2CV
−

2 . . . VtCV
−
t Vt+1,

where V1 = A, Vt+1 = B and the edge V −i Vi+1 belongs to R for each i = 1, . . . , t.

(Here we write ViCV
−
i for the path obtained from C by deleting the edge V −i Vi.)

We say that SW (A,B) traverses C t times. We call the edges V −i Vi+1 the chord
edges of SW (A,B). If A = B then A is also a shifted walk from A to B. Without
loss of generality, we may assume that an edge of C is not a chord edge according to
the above definition. (Indeed, suppose that V −i Vi+1 is an edge of C. Then Vi+1 = Vi
and so we can obtain a shorter shifted walk from A to B.)

For our purposes, it turns out that shifted walks contain too many edges. So we
will only use their chord edges. So given a shifted walk

SW (A,B) = V1CV
−

1 V2CV
−

2 . . . VtCV
−
t Vt+1,

the corresponding chord sequence CS(A,B) from A to B consists of all chord edges
in SW (A,B) in the same order as they appear in SW (A,B). (In [38], this was
called a skeleton walk, but we prefer not to use this name here as the chord edges
do not actually form a walk.) We say that V lies in the interior of CS(A,B) if
V ∈ {V2, V

−
2 , . . . , Vt, V

−
t }.

The next result guarantees a short chord sequence between any two vertices in a
robust outexpander. Moreover, this chord sequence can be chosen so that its interior
avoids a given small set. The proof does not require the outexpansion property to
be robust.

Lemma 7.2. Let R be a robust (ν, τ)-outexpander with δ0(R) ≥ 2τ |R| and ν ≤ τ ≤
1/3. Let C be Hamilton cycle in R. Given vertices A,B ∈ V (R) and a set of vertices
V ′ ⊆ V (R) with |V ′| ≤ ν|R|/4, there is a chord sequence CS(A,B) in R containing
at most 3/ν edges whose interior avoids V ′.

Proof. Let V ′′ be the union of V ′ and the set of all those clusters V for which
V − ∈ V ′ (where V − is the predecessor of V on C). Thus |V ′′| ≤ ν|R|/2. Let
V∗ := V (R) \ V ′′. Pick any outneighbour A0 of A− in V∗. Let S1 := N+

R (A−0 ) ∩ V∗.
So |S1| ≥ 2τ |R| − |V ′′| ≥ ν|R|/2. For each i ≥ 2 let Si := N+

R (N−C (Si−1)) ∩ V∗.
Thus Si−1 ⊆ Si and each cluster in Si can be reached by a shifted walk from A0

that traverses C at most i times and avoids V ′. Moreover for each i ≥ 2 either
|Si−1| < (1− τ)|R| and

|Si| ≥ |RN+
ν,R(N−C (Si−1))| − |V ′′| ≥ |N−C (Si−1)|+ ν|R| − |V ′′| ≥ |Si−1|+ ν|R|/2

or |Si−1| ≥ (1− τ)|R| and |Si| ≥ |Si−1| ≥ (1− τ)|R|. But this implies that |Sd2/νe| ≥
(1−τ)|R|. Thus B has a neighbour B0 such that its successor B+

0 on C lies in Sd2/νe.

Since B+
0 ∈ Sd2/νe there is a shifted walk SW (A0, B

+
0 ) which traverses C at most

d2/νe times and which avoids V ′. Thus ACA−A0 ∪ SW (A0, B
+
0 ) ∪ B+

0 CB0B is a
shifted walk from A to B which traverses C at most d2/νe+2 ≤ 3/ν times and which
meets V ′ at most in the clusters A− and B. So the chord sequence corresponding to
this shifted walk is as required. �
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Figure 3. Balancing out a path x−xx+ using a sequence CS′ ob-
tained from the chord sequence CS(U(x+), U(x−)+) = CS(V3, V7) =
(V2V10, V9V4, V3V12, V11V9, V8V5, V4V7). Here C = V1 . . . V12.

The following proposition records the crucial property of chord sequences for later
use. As indicated earlier, it means we can use these sequences to ‘balance out’ an
arbitrary edge x−x+ (or a path x−xx+ with x ∈ V0) to obtain a ‘locally balanced’
set of edges.

Proposition 7.3. Let (G,P, R, C) be a (k,m, ε, d)-scheme. Given vertices x−, x+

which are contained in clusters U(x−) and U(x+) in P respectively, consider any
chord sequence CS(U(x+), U(x−)+) =: CS in R. Let CS′ be obtained from CS by
replacing each edge UW of CS with an edge of G[U,W ]. Suppose that CS′ is a
matching which avoids both x− and x+. Let CS∗ be obtained from CS′ by adding
the edge x−x+. For each cluster U in P, let U1 be the set of vertices of U which are
not an initial vertex of an edge in CS∗ and let U2 be the set of vertices of U which
are not a final vertex of an edge in CS∗. Then for each edge UW on C, we have
|U1| = |W 2|.

Proof. This follows immediately from the fact that for every edge W ∗W of CS
(apart from the final edge of CS), the next edge of CS will be of the form UU∗, where
U is the predecessor of W on C. If W ∗W is the final edge of CS then W = U(x−)+

and so the edge x−x+ ∈ CS∗ has its initial vertex x− in the predecessor of W on C
(see Figure 3). �

In a typical application of this observation, the assertion that |U1| = |W 2| means
that it will be possible to choose a perfect matching in G[U1,W 2]. If we do this for
each pair of consecutive clusters on C, then the union of all these matchings and the
edges in CS∗ forms a 1-regular digraph F covering all vertices in all clusters. We
will then be able to transform F into a Hamilton cycle, e.g. using Lemma 6.4 or 6.5.

7.3. Complete exceptional sequences and exceptional factors. Suppose that
(G,P, R, C) is a (k,m, ε, d)-scheme. Let V1, . . . , Vk denote the clusters in P such that
C = V1 . . . Vk. Recall that V0 denotes the exceptional set. An original exceptional
edge in G is an edge with one endvertex in V0. (So by (Sch4) the other endvertex
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lies in V (G) \ V0.) An exceptional cover EC consists of precisely one outedge and
precisely one inedge incident to every vertex in V0. Thus |EC| = 2|V0|.

Let Gbasic be obtained from G by adding all edges from N−(x) to N+(x) for every
x ∈ V0 and by deleting V0. We call each edge yz from N−(x) to N+(x) that was
added to G in order to obtain Gbasic an exceptional edge and x the vertex associated
with yz. Note that we might have y = z in which case we add a loop. Moreover,
we allow Gbasic to have multiple edges: if e.g. yz ∈ E(G) and yz is an edge from
N−(x) to N+(x) for precisely two exceptional vertices then yz has multiplicity 3 in
Gbasic and precisely two of the edges from y to z in Gbasic are exceptional edges. We
sometimes write Gorig for G.

Given a spanning subdigraphH ofG, we defineHbasic in a similar way. Conversely,
if H is a subdigraph of Gbasic, then Horig is the subdigraph of G obtained from H
by replacing each exceptional edge yz of H with the path yxz, where x ∈ V0 is the
exceptional vertex associated with yz. Note that if F is a 1-factor of G, then F basic

is a 1-factor of Gbasic. Conversely, a 1-factor F of Gbasic which contains exactly one
exceptional edge associated with every exceptional vertex corresponds to a 1-factor
F orig in Gorig. Moreover, in this case F is a Hamilton cycle if and only if F orig is a
Hamilton cycle.

A complete exceptional sequence CES is a matching in Gbasic which consists of pre-
cisely one exceptional edge associated with every exceptional vertex. So in particular
CES does not contain loops. Note that the original version CESorig of CES forms
an exceptional cover. However, if EC is an exceptional cover, then ECbasic might
contain paths, cycles (and loops) and so it might not form a complete exceptional
sequence.

When constructing Hamilton cycles, we will usually do this by constructing a
Hamilton cycle in Gbasic which contains exactly one complete exceptional sequence
and no other exceptional edges. In other words, we will use the following observation,
which is an immediate consequence of the above discussion.

Observation 7.4. Suppose that D is a Hamilton cycle in Gbasic which contains
exactly one complete exceptional sequence CES and no other exceptional edges. Then
Dorig is a Hamilton cycle in G.

For our arguments it is convenient to be able to define and use a digraph which is
regular (when viewed as a subdigraph ofGbasic) and contains many different complete
exceptional sequences – each of these will be part of a different Hamilton cycle in
our decomposition. The exceptional factors EF defined below have the required
properties.

Given L ∈ N which divides k, the canonical interval partition of C into L intervals
consists of the intervals V(i−1)L+1 . . . ViL+1 for all i = 1, . . . , k/L (where Vk+1 := V1).
Given an interval I on C, we write I◦ for the interior of I and I◦◦ for the interior of
I◦. Moreover, we write U ∈ I if U is a cluster on I.

Suppose that k/L,m/K ∈ N and let I be the canonical interval partition of C
into L intervals of equal length. A complete exceptional path system CEPS (with
respect to C) with parameters (K,L) spanning an interval I = UjUj+1 . . . Uj′ with

I ∈ I consists of m/K vertex-disjoint paths P1, . . . , Pm/K in Gbasic such that the
following conditions hold.
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(CEPS1) Every Ps has its initial vertex in Uj and its final vertex in Uj′ .
(CEPS2) CEPS contains a complete exceptional sequence CES (but no other excep-

tional edges) and all the edges in CES avoid the endclusters Uj and Uj′ of
I.

(CEPS3) CEPS contains precisely m/K vertices from every cluster in I and no other
vertices.

Note that the above implies that CEPSorig consists of m/K vertex-disjoint paths
which cover all vertices in V0 as well as m/K vertices in each cluster in I. Moreover,
every path of CEPSorig has its initial vertex in Uj and its final vertex in Uj′ . If
K = 1 (and thus the vertex set of CEPS is the union of all the clusters in I), then
we say that CEPS completely spans I.

Suppose that P ′ is aK-refinement of P. For each cluster U ∈ P, let U(1), . . . , U(K)
denote the subclusters of U in P ′. Consider a complete exceptional path system
CEPS as above. We say that CEPS has style b if its vertex set is Uj(b)∪· · ·∪Uj′(b).
An exceptional factor EF with parameters (K,L) (with respect to C, P ′) is a 1-factor
of Gbasic which satisfies the following properties:

(EF1) On each of the L intervals I ∈ I, EF induces the vertex-disjoint union of K
complete exceptional path systems.

(EF2) Moreover, for each I ∈ I and each b = 1, . . . ,K, exactly one of the excep-
tional path systems in EF spanning I has style b.

Note that EF consists ofKL edge-disjoint complete exceptional path systems. More-
over, the second part of (CEPS2) implies that the union of all the KL complete
exceptional sequences contained in these complete exceptional path systems forms a
matching. This will be used in the proof of Lemma 8.1.

The reason that the definition of a consistent system involves not only the re-
duced digraph R0 but also its refinement R is that this enables us to find complete
exceptional path systems within an interval I of C and thus we will be able to find
exceptional factors (see the proof of Lemma 7.5 for more details).

7.4. Finding exceptional factors in a consistent system. The following lemma
will be used to construct the exceptional factors defined in the previous subsection.
For (a), recall that an ε-uniform K-refinement of a partition P was defined before
Lemma 4.7. Assertion (i) guarantees a ‘localized’ exceptional cover for V0, assertion
(ii) finds chord sequences in the reduced graph which ‘balance out’ this exceptional
cover and (iii) finds edges in G which correspond to these chord sequences.

Lemma 7.5. Suppose that 0 < 1/n � 1/k � ε � ε′ � d � ν � τ � α, θ ≤ 1,
that `∗/L,m/K ∈ N, that L/`∗ � 1 and ε� 1/K, 1/L. Let (G,P0, R0, C0,P, R, C)
be a consistent (`∗, k,m, ε, d, ν, τ, α, θ)-system with |G| = n. Suppose that G′ is a
spanning subdigraph of G and that P ′ is a partition of V (G) such that the following
conditions are satisfied:

(a) P ′ is an ε-uniform K-refinement of P. (So in particular V0 is the exceptional
set in P ′.)

(b) Every vertex x ∈ V0 satisfies d±G(x)− d±G′(x) ≤ εn.

(c) Every vertex x ∈ V (G) \ V0 satisfies d±G(x)− d±G′(x) ≤ (ε′)3m/K.
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For every cluster U in P let U(1), . . . , U(K) denote all those clusters in P ′ which
are contained in U . Let I be the canonical interval partition of C into L intervals
of equal length. Consider any I ∈ I and any j with 1 ≤ j ≤ K. Then the following
properties hold:

(i) For every exceptional vertex x ∈ V0 there is a pair x− 6= x+ such that x− ∈
N−G′(x) ∩

⋃
U∈I◦◦ U(j), x+ ∈ N+

G′(x) ∩
⋃
U∈I◦◦ U(j), such that the vertices in

all these pairs x−, x+ are distinct for different exceptional vertices and where
each cluster in P contains at most ε1/4m vertices in these pairs.

(ii) Given a vertex z ∈ V (G)\V0, let U(z) denote the cluster in P which contains
z and let U(z)+ be the successor of that cluster on C. Then for each of the
pairs x−, x+ guaranteed by (i) there is a chord sequence CSx from U(x+) to
U(x−)+ in R which contains at most 3/ν3 edges such that each of these edges
has both endvertices in I◦ and such that in total no cluster in P is used more
than 4ε1/4m times by all these CSx.

(iii) For each x ∈ V0 there is a sequence CS′x of edges in G′ obtained by replacing
every edge UU ′ in CSx by an edge in G′[U(j), U ′(j)] such that CS′x forms a
matching which avoids all the pairs y−, y+ guaranteed by (i) (for all y ∈ V0)
and such that the CS′x are pairwise vertex-disjoint. (Thus

⋃
x∈V0 CS

′
x is a

matching too.)
(iv) For every edge UW of C the pair G′[U(j),W (j)] is [ε′,≥ d]-superregular.

Proof. Recall that k = |C| denotes the number of clusters in P. We will first
prove (i). We will choose the pairs x−, x+ for every exceptional vertex x in turn. So
suppose that for some exceptional vertices we have already chosen such pairs and
that we now wish to choose such a pair for x ∈ V0. Let S denote the set of all vertices
lying in the pairs that we have chosen already. So |S| < 2|V0| ≤ 2εn. We say that a

cluster of P is full if it contains at least ε1/4m vertices from S. Then the number of
full clusters is at most

|S|
ε1/4m

≤ 2εn

ε1/4m
≤
√
εk.

So for any vertex x ∈ V0, the number of outneighbours of x in the full clusters is at
most

√
εkm ≤

√
εn.

Set k0 := k/`∗ and recall that k0 = |R0| = |C0|. Note that the length of I is
k/L = k0`

∗/L and thus the length of I is a multiple of k0 (as `∗ is a multiple of L
by assumption). But by (CSys7) C was obtained from the Hamilton cycle C0 on
the clusters in P0 by winding `∗ times around C0. Thus for each cluster V in P0, I
contains at least

(7.1)
length(I)

k0
=
k/L

k/`∗
=
`∗

L

clusters of the current partition P which are contained in V .
We say that a cluster V ∈ P0 is friendly if |N+

G (x)∩V | ≥ α|V |/3. (CSys1) implies
that δ0(G) ≥ αn and so at least αk0/3 clusters in P0 are friendly. But (CSys8) now
implies that for each such cluster V , x has at least θ|N+

G (x)∩V |/`∗ outneighbours in
each cluster U of P with U ⊆ V (in the digraph G). Then by (a) and the condition
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(URef) in the definition of an ε-uniform refinement, we have that x has at least

θ|N+
G (x) ∩ V |
2`∗K

≥ θα|V |
6`∗K

≥ θαn

7`∗Kk0

outneighbours in each subcluster U(j) of P ′ with U(j) ⊆ V (again in the digraph
G). Together with (7.1) this implies that x has at least

αk0

3
· θαn

7`∗Kk0
· `
∗

2L
≥ ε1/8n

outneighbours in G which lie in
⋃
U∈I◦◦ U(j). (Here we multiply with `∗/2L instead

of `∗/L since counting outneighbours in
⋃
U∈I◦◦ U(j) means that we lose 4 clusters

when considering I◦◦ instead of I.) Together with (b) and the fact that at most√
εn outneighbours of x lie in full clusters of P this shows that we can always find

an outneighbour x+ ∈
⋃
U∈I◦◦ U(j) \ S of x in G′ such that x+ lies in a cluster of P

which is not full. We can argue similarly to find x−. This proves (i).

Our next aim is to prove (ii). We will choose the sequence CSx for every excep-
tional vertex x in turn. So suppose that for some exceptional vertices we have already
chosen such sequences and that we now wish to choose CSx for x ∈ V0. Call a cluster
in P crowded if it is used at least ε1/4m times by the sequences CSx′ found so far.

Thus the total number of crowded clusters in P is at most |V0|· 6/ν3

ε1/4m
≤ ε2/3k ≤

√
ε|I|.

Let Ufirst and Ufinal denote the first and the final cluster of I. Let I∗ denote the
interval obtained from I by deleting Ufinal. As already observed in our proof of (i),
the length of I is a multiple of k0. So for every cluster V in P0 there are precisely
length(I)/k0 =: D clusters in I∗ which are contained in V . Moreover, Ufirst and Ufinal

are contained in the same cluster of P0. Consider the subgraph R∗ of R induced
by all the clusters in I∗. Note that R∗ contains an edge E∗ from the final cluster
U∗final of I∗ to Ufirst. (This follows since (CSys6) implies that R0 has an edge from
the cluster in P0 containing U∗final to the cluster in P0 containing Ufinal. But Ufirst

and Ufinal are contained in the same cluster of P0. So (CSys6) now implies that R
(and thus also R∗) has an edge from U∗final to Ufirst.) Let C∗ be the Hamilton cycle
of R∗ which consists of I∗ together with this edge E∗. (CSys6) also implies that
R∗ can be viewed as being obtained from R0 by replacing each vertex of R0 by D
vertices and replacing each edge WW ′ of R0 by a complete bipartite graph between
the two corresponding sets of D vertices (where all the edges are directed from the
D vertices corresponding to W to the D vertices corresponding to W ′). In other
words, R∗ is a D-fold blow-up of R0. Together with (CSys1) and Lemma 5.3 this in
turn implies that R∗ is a robust (ν3, 2τ)-outexpander. Moreover, it is easy to check
that δ0(R∗) ≥ α|R∗|.

Apply Lemma 7.2 to R∗ (with V ′ consisting of Ufirst and all the crowded clusters
in I∗ and with C∗ playing the role of C) to find a chord sequence CSx from U(x+)
and U(x−)+ in R∗ which contains most 3/ν3 edges and whose interior avoids Ufirst

as well as all the crowded clusters. Since x−, x+ ∈
⋃
U∈I◦◦ U(j) by (i), this implies

that CSx uses only edges whose endclusters both lie in I◦. But R∗ ⊆ R. Thus CSx
is actually a chord sequence in R.

We proceed in this way to choose CSx for all x ∈ V0. We claim that in total no
cluster in P is used more than 4ε1/4m times by the sequences CSx. To see this, note
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that no cluster in P is used more than ε1/4m+ 3/ν3 ≤ 2ε1/4m times by the interiors
of the all CSx (as all these interiors avoid the crowded clusters). Moreover, since

by (i) no cluster in P contains more than ε1/4m vertices belonging to pairs x−, x+

guaranteed by (i), it follows that no cluster in P is used more than 2ε1/4m times as
one of the two remaining clusters U(x+)−, U(x−)+ of CSx (for all x ∈ V0 together).
This completes the proof of (ii).

It remains to check (iii) and (iv). To do this, we will first prove the following
claim.

Claim 1. For every edge UU ′ of R the pair G′[U(j), U ′(j)] is ε′-regular of density
at least d/2. Moreover, for every edge UW of C the pair G′[U(j),W (j)] is [ε′,≥ d]-
superregular.

To prove the first part of Claim 1, consider any edge UU ′ of R. (CSys4) implies
that G[U(j), U ′(j)] is Kε-regular of density at least d − 2ε. Together with (c) and
Proposition 4.3(i) this implies that G′[U(j), U ′(j)] is still ε′-regular of density at
least d− 2ε′ ≥ d/2.

Now consider any edge UW of C. Then (CSys5), (a) and Lemma 4.7(i) together
imply that G[U(j),W (j)] is [(ε′)3,≥ d]-superregular. As before, together with (c)
and Proposition 4.3(iii) this implies that G′[U(j),W (j)] is still [ε′,≥ d]-superregular.
This proves Claim 1 and thus in particular (iv).

In order to replace the edges of CSx to obtain CS′x, we again consider each excep-
tional vertex x ∈ V0 in turn. By making CSx shorter if necessary, we may assume
that every edge of R occurs at most once in each CSx. Suppose that we have already
chosen CS′x′ for some vertices x′ ∈ V0 and that we now wish to replace the edges of
CSx in order to choose CS′x. Moreover, suppose that we have already replaced some
edges U ′′U ′′′ of CSx and we now wish to replace the edge UU ′ of CSx.

For this, we let U∗(j) denote the set of all those vertices u ∈ U(j) that satisfy the
following three conditions:

• There is no y ∈ V0 such that u lies in the pair y−, y+ guaranteed by (i).
• There exists no x′ ∈ V0 for which we have already defined CS′x′ and for which
u is an endvertex of some edge in CS′x′ .
• u is not an endvertex of an edge of G′[U ′′(j), U ′′′(j)] which was used to replace

some edge U ′′U ′′′ of CSx.

(i) implies that U contains at most ε1/4m vertices violating the first condition and

(ii) implies that U contains at most 4ε1/4m vertices violating the second or third
condition. Thus

(7.2) |U∗(j)| ≥ |U(j)| − 5ε1/4m =
m

K
− 5ε1/4m ≥ |U(j)|

2
.

Our aim is to replace UU ′ in CSx by an edge in G′[U∗(j), U
′
∗(j)]. But by Claim 1,

G′[U(j), U ′(j)] is ε′-regular of density at least d/2. Together with (7.2) this implies
that G′[U∗(j), U

′
∗(j)] contains an edge. We do this for every edge of CSx in turn and

let CS′x denote the sequence obtained in this way. Then these sequences CS′x are as
required in (iii). �
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Based on the previous lemma, it is now straightforward to construct many edge-
disjoint exceptional factors.

Lemma 7.6. Suppose that

0 < 1/n� 1/k � ε� d� ν � τ � α, θ ≤ 1; ε� 1/K, 1/L; Kr0/m� d,

that `∗/L,m/K ∈ N and L/`∗ � 1. Let (G,P0, R0, C0,P, R, C) be a consistent
(`∗, k,m, ε, d, ν, τ, α, θ)-system with |G| = n. Let P ′ be an ε-uniform K-refinement
of P. Then there is a set EF of r0 exceptional factors with parameters (K,L) (with
respect to C, P ′) such that the original versions of all these r0 exceptional factors
are pairwise edge-disjoint subdigraphs of G.

Proof. Choose a new constant ε′ with ε,Kr0/m � ε′ � d. We will choose the
r0 exceptional factors for EF with respect to C,P ′ one by one. So suppose that
for some 0 ≤ s < r0 we have already chosen exceptional factors EF1, . . . , EFs with
parameters (K,L) such that the original versions of these factors are pairwise edge-
disjoint from each other. So our aim is to show that we can choose EFs+1 such that
all these properties still hold.

Let G′ be the digraph obtained from G by deleting all the edges contained in the
original versions of all the exceptional factors chosen so far. Note that

d±G(x)− d±G′(x) ≤ KLr0 ≤ Ldm ≤ Ldn/k ≤ εn.

for every vertex x ∈ V0 and

d±G(x)− d±G′(x) ≤ r0 ≤ (ε′)3m/K

for every vertex x ∈ V (G)\V0. Thus G′ satisfies conditions (b) and (c) of Lemma 7.5.
Let I denote the canonical interval partition of C into L intervals of equal length.

For each cluster U of P let U(1), . . . , U(K) denote the subclusters in P ′ which are
contained in U . Consider any interval I ∈ I and any j with 1 ≤ j ≤ K. In
order to construct EFs+1, it suffices to show that there is a complete exceptional
path system CEPS spanning the interval I whose vertex set is

⋃
U∈I U(j) and such

that CEPSorig ⊆ G′. To do this, we apply Lemma 7.5 to find pairs x−, x+, chord
sequences CSx in R and sequences CS′x (for every vertex x ∈ V0) satisfying (i)–(iii).

Now let CES be the union of all the edges x−x+ over all exceptional vertices x.
(Note that x−x+ is an exceptional edge in (G′)basic and it is irrelevant whether it lies
in G′ or not.) It remains to enlarge CES into a complete exceptional path system
CEPS. For this, we first add all edges in the sequences CS′x guaranteed by (iii)
(for all vertices x ∈ V0). Together with CES, this gives a matching M which meets

every cluster in P in at most 5ε1/4m vertices.
Suppose that U,W ∈ P are consecutive clusters on I. Let U1(j) be the set of all

those vertices in U(j) which are not the initial vertex of an edge in M and let W 2(j)
be the set of all those vertices in W (j) which are not the final vertex of an edge in M .
Then Proposition 7.3 implies that |U1(j)| = |W 2(j)|. Also note that |U(j)\U1(j)| ≤
5ε1/4m ≤ ε′|U(j)|. Together with Lemma 7.5(iv) and Proposition 4.3(iii) this implies

that G′[U1(j),W 2(j)] is still [2
√
ε′,≥ d]-superregular and thus it contains a perfect

matching MUW by Proposition 4.14.
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The union CEPS′ of M with these matchings MUW for all pairs U,W of consec-
utive clusters on I contains paths satisfying (CEPS1) and (CEPS2), but in addition
CEPS′ might contain cycles. (Note each such cycle will contain at least one edge
from M .) So our aim is to apply Lemma 6.5 in order to transform CEPS′ into a path
system. To do this, we let Ufirst ∈ P denote the first cluster in I and let Ufinal ∈ P
denote the last cluster in I. Let CI be the cycle obtained from I by identifying
Ufirst and Ufinal. Let G′Ij be the digraph obtained from

⋃
UW∈E(I)G

′[U(j),W (j)] by

identifying each vertex in Ufirst(j) with a different vertex of Ufinal(j). Let CEPS′′ be
obtained from CEPS′ by identifying these vertices. Note that G′Ij can be viewed as

a blow-up of CI in which every edge of CI corresponds to an [ε′,≥ d]-superregular
pair (the latter holds by Lemma 7.5(iv)). Moreover, CEPS′′ is a 1-regular digraph
on V (G′Ij) which has the property that every cycle D in CEPS′′ contains at least
one edge in some matching MUW for some pair U,W of consecutive clusters on CI .
(To see the latter, recall that M was a matching which avoids both Ufirst and Ufinal.
So every vertex in V (G′Ij) is incident to at most one edge in M .) So D contains

a vertex in U1(j). Thus we can apply Lemma 6.5 with G′Ij , CI , U
1(j), U2(j) and

E(CI) playing the roles of G, C, V 1
i , V 2

i and J . This shows that we can replace each
matching MUW by a different matching in G′[U1(j),W 2(j)] in order to transform
CEPS′′ into a Hamilton cycle of G′Ij . But this Hamilton cycle corresponds to a
complete exceptional path system CEPS spanning the interval I whose vertex set
is
⋃
U∈I U(j) and such that CEPSorig ⊆ G′. (Note that CEPS still contains M and

thus CES.)
We do this for each j = 1, . . . ,K and each interval I in the canonical interval

partition I of C in turn. Then the union EFs+1 of all these complete exceptional
path systems is an exceptional factor with the desired properties. This completes
the proof of the existence of EF . �

8. The preprocessing step

Let G′ be the leftover of G obtained from an application of Theorem 1.3. So G′ is
regular and very sparse. Roughly speaking, the aim of this section is to find a sparse
‘preprocessing graph’ PG so that G′ ∪PG has a set of edge-disjoint Hamilton cycles
covering all edges of G′. We need to do this because the edges at the exceptional
vertices in the leftover G′ might be distributed very badly. So the idea is to choose
PG at the beginning of the proof of Theorem 1.2, to apply Theorem 1.3 to G\E(PG)
and then to cover the leftover G′ by edge-disjoint Hamilton cycles in G′∪PG. In this
way we replace G′ by the resulting leftover PG′ of PG. Moreover, the goal is that
PG′ will have no edges incident to V0. So PG′ will not be regular. But the chord
absorber, which we will use in Section 9 to absorb the edges of PG′, will contain
additional edges at the exceptional vertices to compensate for this, and these edges
will be nicely distributed. (More precisely, this chord absorber will contain some
additional exceptional factors.)

In order to find the Hamilton cycles coveringG′, we decomposeG′ into 1-factorsH,
split each 1-factor H into small path systems Hi and extend Hi into a Hamilton cycle
using the edges of PG. As we shall see, when finding these Hamilton cycles, the most
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difficult part is to find suitable edges joining V0 to the (non-exceptional) clusters.
For this step we use the complete exceptional sequences defined in Section 7.3.

As we shall explain in Section 8.3, the preprocessing graph PG will consist (mainly)
of the edge-disjoint union of exceptional factors and a ‘path system extender’ PE,
which we define and use in Section 8.2. Once we have found suitable edges joining V0

to the clusters, the path system extender will be used to extend these into Hamilton
cycles.

8.1. Cycle breaking. Suppose that H is a 1-factor of the leftover G′. As discussed
above, our aim is to split H into small path systems Hi which we then extend into
Hamilton cycles Ci of G. Note that H contains exactly one exceptional cover Hexc

and each Ci must contain exactly one as well. The most obvious way to achieve the
latter might be to let H1 consist of Hexc, and add a new exceptional cover (from the
preprocessing graph PG) to each of the other Hi when forming the Ci. However,
Hexc might contain cycles, in which case we cannot extend H1 = Hexc to a Hamilton
cycle. So when splitting H into the Hi, we also need to split Hexc to ensure that such
cycles are ‘broken’. As an intermediate step towards extending the Hi into Hamilton
cycles, we then add edges from (the original version of) an exceptional factor CB to
extend each Hi into a path system Qi which contains exactly one exceptional cover.
In other words, one can split H ∪CBorig into small path systems Qi such that each
of them contains precisely one exceptional cover.

Let (G,P, R, C) be a (k,m, ε, d)-scheme and assume that m/50 ∈ N. Consider
an ε-uniform 50-refinement P ′ of P (recall again that these were defined before
Lemma 4.7). For each cluster Vi of P, let Vi(1), . . . , Vi(50) denote all those clusters
in P ′ which are contained in Vi. Suppose J ⊆ {1, . . . , 50}. Generalizing the notion
of styles defined at the end of Section 7.3, we say that a vertex x ∈ V (G) \ V0 has

style J if x ∈
⋃k
i=1

⋃
j∈J Vi(j). We then say that a set E of edges of Gbasic or of

G has style J if every endvertex x of an edge in E with x /∈ V0 has style J . If E
has style J , we say that E has style size |J | (with respect to P ′). Note that in this
definition J need not have minimum size, i.e. if E has style size t, then it also has
style size t+ 1.

Lemma 8.1. Suppose that 0 < 1/n � 1/k � ε � d � 1/s � 1 and that
m/50, 50k/(s − 1) ∈ N. Let (G,P, R, C) be a (k,m, ε, d)-scheme with |G| = n.
Let P ′ be an ε-uniform 50-refinement of P. Let H be a 1-factor of G. Let CB be an
exceptional factor with parameters (50, (s−1)/50) with respect to C,P ′. Suppose that
H and CBorig are edge-disjoint. Then the edges of H ∪ CBorig can be decomposed
into edge-disjoint path systems Q1, . . . , Qs so that

(i) each Qi contains precisely one exceptional cover (and no other original ex-
ceptional edges);

(ii) each Qi has style size 5 (with respect to P ′);
(iii) |E(Qi)| ≤ 1230n/s.

Proof. Let Hexc denote the set of original exceptional edges of H. Note that each
edge in Hexc has precisely one of 50 styles. So we can partition Hexc into H1, . . . ,H50

such that each Hi has style i. Now we split each Hi into H−i and H+
i by placing one

edge from each cycle of Hi into H−i and all the others into H+
i . Enumerate the path
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systems obtained in this way as Hexc
1 , . . . ,Hexc

100. Thus Hexc is the union of all these
path systems. Denote the complete exceptional path systems of CB by CEPSi, for
i = 1, . . . , s − 1, and let CESi denote the complete exceptional sequence contained
in CEPSi. Without loss of generality, we may assume that CEPS1, . . . , CEPS100

are complete exceptional path systems of CB so that exactly 20 of them have style
j for j = 1, . . . , 5 (as there are many more with these styles in CB). Moreover,
by relabeling the CEPSi if necessary, we may assume that Hexc

i and CEPSi have
different styles for all i = 1, . . . , 100.

For each i = 1, . . . , 100, let V +
0,i ⊆ V0 be the set of exceptional vertices x so that

x is the initial vertex of an edge in Hexc
i . Similarly, let V −0,i ⊆ V0 be the set of

exceptional vertices x so that x is the final vertex of an edge in Hexc
i . Let CES′i be

the set of all those (original exceptional) edges xy in CESorig
i for which x ∈ V0 \V +

0,i

as well as all those (original exceptional) edges yx in CESorig
i for which x ∈ V0 \V −0,i.

Let Qi := Hexc
i ∪ CES′i ∪ (CEPSi \ CESi). Note that Qi contains the exceptional

cover Hexc
i ∪CES′i. Moreover, since Hexc

i and CEPSi have different styles it follows
that Qi is a path system, i.e. it does not contain any cycles. Furthermore, Qi has
style size 2 and |E(Qi)| ≤ |V0|+ n/(s− 1) ≤ 2n/s.

Now let Q101 consist of those edges of CESorig
1 , . . . , CESorig

100 which are not con-
tained in any of Q1, . . . , Q100. Using the fact that Hexc = Hexc

1 ∪ · · · ∪ Hexc
100 is an

exceptional cover, it is easy to see that Q101 also forms an exceptional cover. More-
over, as remarked after the definition of an exceptional factor, CES1 ∪ · · · ∪CES100

is a matching. In particular, every vertex in V (G) \ V0 is incident to at most one

edge in CESorig
1 ∪ · · · ∪ CESorig

100 . Together with the fact that Q101 is an excep-
tional cover, it follows that Q101 is a path system. Also, Q101 has style size 5 and
|E(Q101)| = 2|V0| ≤ 2εn ≤ n/s.

Note that each edge of H \ Hexc has at least one of
(

50
2

)
= 1225 styles ij with

i 6= j. (Recall that if an edge has style i then it also has style ij for any j.) Partition
H \Hexc into 1225 sets Hi,j such that all edges in Hi,j have style ij. Greedily split
each set Hi,j further into (s− 1)/1226 sets such that each of them has size at most
d1226n/(s− 1)e and none of them contains a cycle. Let s′ := 1225(s− 1)/1226 and
let H∗1 , . . . ,H

∗
s′ denote the resulting sets of edges.

Claim. We may assume that CEPS101, . . . , CEPSs−1 are enumerated in such a
way that for all t = 1, . . . , s′ the following property holds: if H∗t has style ij and
CEPS100+t has style j′ then j′ /∈ {i, j}.
To prove the claim, we consider the auxiliary bipartite graph Y with vertex classes A
and B, where A consists of all the H∗t and B consists of CEPS101, . . . , CEPSs−1. (So
|A| = s′ and |B| = (s−1)−100 > s′.) Suppose that H∗t has style ij and CEPS` has
style j′, where j′ /∈ {i, j}. Then H∗t and CEPS` are connected by an edge in Y . Note
that every CEPS` has degree at least |A| − 49 · (s− 1)/1226 ≥ |A|/2 (since if j′ = i
then there are only 49 possibilities for j and since only (s− 1)/1226 of the H∗t have
the same style). Similarly every H∗t has degree at least (s−1−100)−2 · (s−1)/50 ≥
|B|/2. So Y has a matching covering A. (Indeed, this follows from Hall’s theorem:
Consider any A′ ⊆ A. If |A′| > |A|/2 then NY (A′) = B and if |A′| ≤ |A|/2 then
|NY (A′)| ≥ |B|/2 ≥ |A|/2 ≥ |A′|.) This completes the proof of the claim.
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For i = 102, . . . , 101 + s′, let Qi := H∗i−101 ∪ CEPS
orig
i−1 . Then the claim implies

that Qi is a path system. Moreover, Qi has style size 3 and |E(Qi)| ≤ d1226n/(s−
1)e+n/(s−1)+εn ≤ 1230n/s. Finally, for i = 102+s′, . . . , s we let Qi := CEPSorig

i−1 .
Then Q1, . . . , Qs have the desired properties. �

8.2. Extending path systems into Hamilton cycles. Suppose that (G,P, R, C)
is a (k,m, ε, d)-scheme. Recall that V0 denotes the exceptional set in P. The purpose
of this subsection is to define and use the ‘path system extender’ PE. To motivate
its purpose, let G′ be the leftover of G obtained by an application of Theorem 1.3
and let H be a 1-factor in a 1-factorization of G′. Recall that Lemma 8.1 assigns
edges of H to edge-disjoint path systems Qi. PE will be used to extend each path
system Qi into a Hamilton cycle. Altogether this means that we will find edge-
disjoint Hamilton cycles in the union of G′ ∪PE with some exceptional factors CBi
which cover both the edges of G′ and the edges of CBi. Since PE will be a spanning
subdigraph of G − V0, this in turn implies that we have replaced G′ by a digraph
(namely the digraph obtained from the leftover of PE by adding V0) in which every
exceptional vertex is isolated.

A path system extender PE (for C,R) with parameters (ε, d, d′, ζ) is a spanning
subgraph of G− V0 consisting of an edge-disjoint union of two graphs B(C)PE and
B(R)PE on V (G) \ V0 which are defined as follows:

(PE1) B(C)PE is a blow-up of C in which every edge UW of C corresponds to an
(ε, d′, ζd′, 2d′/d)-superregular pair B(C)PE [U,W ].

(PE2) B(R)PE is a blow-up of R in which every edge UW of R corresponds to an
(ε, d′/k, 2d′/dk)-regular pair B(R)PE [U,W ].

Note that the path system extender PE is not necessarily a regular digraph. (Reg3)
and the fact that ∆(R) ≤ 2k imply that

(8.1) ∆(PE) ≤ 2 · 2d′m

d
+ ∆(R) · 2d′m

dk
≤ 8d′m

d
.

In order to cover the edges of the leftover of the path system extender PE with
Hamilton cycles in the chord-absorbing step (Section 9), we will need that this
maximum degree is small compared to εm (so PE is a rather sparse graph). This
is what forces us to use the above more technical notion of regularity when defining
PE, rather than the usual ε-regularity.

Lemma 8.2. Suppose that 0 < 1/n � d′ � 1/k � ε � d � ζ ≤ 1/2. Let
(G,P, R, C) be a (k,m, ε, d)-scheme with |G| = n. Then G contains a path system

extender for C,R having parameters (ε1/25, d, d′, ζ).

Proof. Recall that by (Sch3) every edge UW of C corresponds to an [ε, dUW ]-
superregular pair G[U,W ] for some dUW ≥ d. Thus we can apply Lemma 4.10(ii)
to each such G[U,W ] to obtain a blow-up B(C)PE of C in which every edge of

C corresponds to an (ε1/12, d′, d′/2, 3d′/2dUW )-superregular pair (which is therefore

also (ε1/25, d′, ζd′, 2d′/d)-superregular). Let G∗ be the digraph obtained from G by
deleting all the edges in B(C)PE .
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Now consider any edge UW of R and recall from (Sch2) that G[U,W ] is ε-
regular of density dUW ≥ d− ε. Since G∗[U,W ] is obtained from G[U,W ] by delet-
ing at most 2d′m/d ≤ εm edges at every vertex, Proposition 4.3(i) with d′ := ε
implies that G∗[U,W ] is still 2

√
ε-regular of density at least 3dUW /4. Thus we

can apply Lemma 4.10(i) to find a ((4ε)1/24, d′/k, 2d′/dUWk)-regular spanning sub-

graph G′[U,W ] of G∗[U,W ] (which is therefore also (ε1/25, d′/k, 2d′/dk)-regular).
Let B(R)PE be the union of all the G′[U,W ] over all edges UW of R. Then

B(C)PE∪B(R)PE is a path system extender for C,R with parameters (ε1/25, d, d′, ζ).
�

The following lemma implies that we can use the edges of a path system extender
to extend the path systems Qi obtained from Lemma 8.1 into Hamilton cycles.

Lemma 8.3. Suppose that 0 < 1/n � d′ � 1/k � ε � 1/`∗ � d � ν � τ �
α, θ ≤ 1, that d � ζ ≤ 1/2 and that m/50 ∈ N. Let (G,P0, R0, C0,P, R, C) be a
consistent (`∗, k,m, ε, d, ν, τ, α, θ)-system with |G| = n. Let P ′ be a (d′)2-uniform
50-refinement of P. Let PE be a path system extender with parameters (ε, d, d′, ζ)
for C, R. Let s := 107/ν2 and suppose that Q is a path system in G such that

• Q and PE are edge-disjoint;
• Q contains precisely one exceptional cover and no other original exceptional

edges;
• Q has style size 5 (with respect to P ′);
• |E(Q)| ≤ 1230n/s.

Then G contains a Hamilton cycle D such that Q ⊆ D ⊆ PE ∪Q.

For the proof of Lemma 8.3, we add additional edges to Q to obtain a ‘locally
balanced’ path system. (To ensure the existence of these additional edges we need to
work with a consistent system rather than the simpler notion of a scheme.) This path
system can then be extended into a 1-factor using matchings between consecutive
clusters of C. Finally, we apply Lemma 6.4 to transform this 1-factor into a Hamilton
cycle.

Proof. Recall that Qbasic is obtained from Q by replacing each path of the form
x−xx+ (where x ∈ V0) by the exceptional edge x−x+ ∈ E(Gbasic). For each edge
e = ab of Qbasic in turn, our aim is to apply Lemma 7.2 to find a chord sequence
CS(U(b), U(a)+) in R which consists of at most 3/ν edges. (Here U(b) denotes the
cluster in P containing b and U(a)+ denotes the successor on C of the cluster in P
containing a.) We say that a cluster in P is full if it is visited at least m/110 times
by the interiors of the chord sequences chosen so far. (Recall that we disregard the
first cluster U(b)− and the final cluster U(a)+ of CS(U(b), U(a)+) when considering
its interior.) Then the number of full clusters is at most

2|Qbasic|(3/ν)

m/110
≤ 811800n

νsm
≤ νk

4
.

After each application of Lemma 7.2, let V ′ ⊆ V (R) be the set of all those clusters
which are now full. So we can apply Lemma 7.2 to R and V ′ as above to find a chord
sequence CS(U(b), U(a)+) whose interior avoids the full clusters. Thus altogether
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the interiors of all the CS(U(b), U(a)+) (for all edges ab of Qbasic) visit each cluster
in P at most m/110 + 3/ν ≤ m/100 times.

Note that since Q has style size 5, every cluster in P meets Qbasic in at most
5m/50 = m/10 vertices. Thus every cluster plays the role of U(b)− or U(a)+ for at
most 2m/10 edges ab of Qbasic. This implies that the union S(Q) of all the chord
sequences CS(U(b), U(a)+) (over all edges ab of Qbasic) visits each cluster at most

(8.2) m/100 + 2m/10 = 21m/100

times (where we count the edges in S(Q) with multiplicities).
Now for each edge E of R, let sE be the number of times that E occurs in S(Q).

Note that if E occurs in CS(U(b), U(a)+) then at least one of the endclusters of
E lies in the interior of CS(U(b), U(a)+). In particular, suppose that E = UW
occurs as an initial edge in CS(U(b), U(a)+). Then W lies in the interior of the
sequence. Since altogether the interiors of all the CS(U(b), U(a)+) visit W at most
m/100 times, this implies that altogether E can occur at most m/100 times as an
initial edge of some CS(U(b), U(a)+). Similarly, suppose that E = UW occurs in
CS(U(b), U(a)+), but not as an initial edge. Then U lies in the interior of the
sequence and altogether E can occur at most m/100 times in this way. It follows
that sE ≤ 2 ·m/100 = m/50.

Let J ⊆ {1, . . . , 50} be a set of size 5 so that Q has style J . Without loss of
generality, we may assume that J = {1, . . . , 5}. Let BE be the bipartite subgraph
of B(R)PE which corresponds to E. Let B′E be the induced bipartite subgraph of
BE of style {6, . . . , 29}. (So if E = UW then B′E is the subgraph of BE induced by
U(6) ∪ · · · ∪ U(29) and W (6) ∪ · · · ∪W (29), where U(1), . . . , U(50) are the clusters
in P ′ contained in U .)

For each edge E of R in turn, we choose a matching ME of size sE in B′E such
that ME avoids all matchings chosen previously. To see that this can be done, recall
from (PE2) that BE is (ε, d′/k, 2d′/dk)-regular. Since the size of the vertex classes
of B′E is precisely 24/50 times the size of the vertex classes of BE , this implies that
B′E is still (3ε, d′/k, 6d′/dk)-regular. Thus Lemma 4.12(i) implies that B′E contains
a matching M ′E of size (1− 3ε) · 24m/50 ≥ 23m/50. But (8.2) implies that at most
2 · 21m/100 = 21m/50 edges of M ′E are incident to an edge of a previously chosen
matching (the extra factor 2 comes from the fact that there is a contribution from
both endclusters of E). So we can indeed find the required matchings ME .

Let Q∗ consist of the edges of Qbasic together with the edges in the matchings ME

(for all edges E of R). So Q∗ is a path system whose style is {1, . . . , 29}.
Let Qin denote the set of final vertices of the edges in Q∗ and let Qout denote

the set of their initial vertices. For each cluster U in P, let U2 := U \ Qin and
U1 := U \ Qout. Consider any edge UW on C. Then Proposition 7.3 implies that
|U1| = |W 2|. Let B∗UW be the bipartite subgraph of B(C)PE [U,W ] induced by U1

and W 2. Recall from (PE1) that B(C)PE [U,W ] is (ε, d′, ζd′, 2d′/d)-superregular.
Together with the facts that B∗UW contains all vertices of U ∪W of style 30, . . . , 50
and that P ′ is an (d′)2-uniform refinement of P this implies that B∗UW is still
(3ε, d′, ζd′/3, 6d′/d)-superregular. So Lemma 4.12(ii) implies that B∗UW contains
a perfect matching MUW . The union of all the MUW (over all edges UW of C)
together with all the edges of Q∗ forms a 1-factor F of Qbasic ∪ PE.
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Since Q∗ is a path system, each cycle of F has a vertex in U1 for some cluster
U in P. Now apply Lemma 6.4 with B(C)PE , F , C, E(C), U1 and U2 playing the
roles of G, F , C, J , V 1

i and V 2
i in order to modify F into a Hamilton cycle D′ of

Gbasic. (Note that U1∩U2 6= ∅ as they both contain all vertices of style {30, . . . , 50}.)
Then Observation 7.4 implies that D := (D′)orig is a Hamilton cycle of G = Gorig,
as required. �

We obtain the following lemma by repeated applications of Lemma 8.1 and 8.3.

Lemma 8.4. Suppose that 0 < 1/n � r/m � d′ � 1/k � ε � 1/`∗ � d � ν �
τ � α, θ ≤ 1 and that d� ζ ≤ 1/2. Let s := 107/ν2. Suppose that m/50, 50k/(s−
1) ∈ N. Let (G,P0, R0, C0,P, R, C) be a consistent (`∗, k,m, ε, d, ν, τ, α, θ)-system
with |G| = n. Let P ′ be a (d′)2-uniform 50-refinement of P. Let H be an r-factor of
G. Let CB1, . . . , CBr be r exceptional factors with parameters (50, (s− 1)/50) with
respect to C,P ′. Let PE be a path system extender with parameters (ε, d, d′, ζ) for
C,R. Suppose that H, PE and the original versions of CB1, . . . , CBr are pairwise
edge-disjoint. Then G contains edge-disjoint Hamilton cycles C1, . . . , Csr such that

(i) altogether C1, . . . , Csr contain all edges of H ∪ CBorig
1 ∪ · · · ∪ CBorig

r ;

(ii) each Ci lies in PE ∪H ∪ CBorig
1 ∪ · · · ∪ CBorig

r .

Proof. Consider a 1-factorization F1, . . . , Fr of H (which exists by Proposition 6.1).
So each Fj contains precisely one exceptional cover (and no other original exceptional
edges). For each j = 1, . . . , r apply Lemma 8.1 with Fj and CBj playing the roles
of H and CB to obtain path systems Qj,1, . . . , Qj,s as described there. Relabel all
these path systems as Q1, . . . , Qsr. Note that the Qi form a decomposition of the

edges of H ∪ CBorig
1 ∪ · · · ∪ CBorig

r .
Apply Lemma 8.3 to obtain a Hamilton cycle C1 in G with Q1 ⊆ C1 ⊆ PE ∪Q1.

Repeat this for each of Q2, . . . , Qsr in turn, with the subdigraph PE′ of PE obtained
by deleting all the edges in the Hamilton cycles found so far playing the role of PE.
Note that at each stage we have removed at most sr = 107r/ν2 ≤ ε2d′m/k outedges
and at most sr ≤ ε2d′m/k inedges at each vertex of PE. So using Proposition 4.8 it is
easy to check that PE′ is still a path system extender with parameters (2ε, d, d′, ζ/2).
Thus we can indeed apply Lemma 8.3 in each step. �

8.3. The preprocessing graph. Let G be the digraph given in Theorem 1.2. As
described at the beginning of Section 8.2, the purpose of Lemma 8.4 was to replace
the leftover H of an almost decomposition of G by a digraph H ′ on V (G)\V0, i.e. by
a digraph in which every exceptional vertex can be thought of as being isolated. This
digraph H ′ is obtained from PE by deleting all the edges in the Hamilton cycles
guaranteed by Lemma 8.4. But this means that H ′ will not be regular since PE was
not regular. However, for later purposes we want to assume that this leftover H ′ is
regular. So we will need to add another digraph PG� to H ′ whose degree sequence
complements that of PE. Then the union of H ′ and PG� will be regular. So the
preprocessing graph defined below contains all the digraphs which we need in order
to replace H by a regular digraph on V (G)\V0 not containing any exceptional edges.
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Suppose that (G,P, R, C) is a (k,m, ε, d)-scheme and that m/50, 50k/(s − 1) ∈
N. Let P ′ be an ε-uniform 50-refinement of P. A preprocessing graph PG with
parameters (s, ε, d, r′, r′′, r, ζ) (with respect to C,R,P ′) is the edge-disjoint union of
two graphs PG∗ and PG� satisfying the following conditions:

(PG1) PG∗ is the edge-disjoint union of a path system extender PGPE with param-
eters (ε, d, r′/m, ζ) (for C,R) and of r exceptional factors CB1, . . . , CBr with
parameters (50, (s − 1)/50) (with respect to C,P ′). Moreover, the original
versions of these r exceptional factors are pairwise edge-disjoint.

(PG2) PG� is a spanning subgraph of G−V0 which satisfies d+
PG�(x) = r′′−d+

PG∗(x)

and d−PG�(x) = r′′ − d−PG∗(x).

Note that PG is a spanning r′′-regular subgraph of Gbasic. Moreover, in PGorig we
have

(8.3) d±(x) = r(s− 1) ∀x ∈ V0 and d±(y) = r′′ ∀y ∈ V (G) \ V0.

Note also that (8.1) implies that

(8.4) ∆(PG∗) ≤ 8r′

d
+ 2r.

The following corollary is an immediate consequence of Lemma 8.4.

Corollary 8.5. Suppose that 0 < 1/n � r/m � r′/m � r′′/m � 1/k �
ε � 1/`∗ � d � ν � τ � α, θ ≤ 1 and that d � ζ ≤ 1/2. Let s :=
107/ν2. Suppose that m/50, 50k/(s − 1) ∈ N. Let (G,P0, R0, C0,P, R, C) be a con-
sistent (`∗, k,m, ε, d, ν, τ, α, θ)-system with |G| = n. Let P ′ be a (r′/m)2-uniform 50-
refinement of P. Let H be an r-factor of G. Let PG be a preprocessing graph with
respect to C,R,P ′ with parameters (s, ε, d, r′, r′′, r, ζ). Suppose that H and PGorig

are edge-disjoint. Then G contains edge-disjoint Hamilton cycles C1, . . . , Crs such
that the following conditions hold:

(i) Altogether C1, . . . , Crs cover all edges of H and Ci ⊆ H ∪ PGorig for each
i = 1, . . . , rs.

(ii) Every vertex x ∈ V0 is isolated in PG′ := PGorig \ E(C1 ∪ · · · ∪ Crs) and
every vertex x ∈ V (G) \ V0 has in- and outdegree r′′ − (s− 1)r in PG′.

Proof. Apply Lemma 8.4 with PGPE playing the role of PE. This gives us edge-
disjoint Hamilton cycles C1, . . . , Crs of G as described there. So in particular condi-
tion (i) of Corollary 8.5 holds. By (i) of Lemma 8.4, all the C1, . . . , Crs together cover

all the original exceptional edges of PGorig (as they cover CBorig
1 , . . . , CBorig

r and

each original exceptional edge in PGorig is contained in one of CBorig
1 , . . . , CBorig

r ).
Since V0 is an independent set in G by (CSys9), it follows that every vertex x ∈ V0

is isolated in PG′. Moreover, every vertex x ∈ V (G) \ V0 has indegree r + r′′ in
H ∪ PGorig and indegree rs in C1 ∪ · · · ∪ Crs. So the indegree of x in PG′ is
r + r′′ − rs = r′′ − (s − 1)r. Similarly, every vertex in V (G) \ V0 has outdegree
r′′ − (s− 1)r in PG′. Altogether, this implies condition (ii) of Corollary 8.5. �
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The next lemma shows that one can find a preprocessing graph within a consistent
system.

Lemma 8.6. Suppose that 0 < 1/n � r/m � d′ � d′′ � 1/k � ε � ε′ �
1/`∗ � d � ν � τ � α, θ ≤ 1 and that d � ζ ≤ 1/2. Let s := 107/ν2.
Suppose that m/50, 50`∗/(s − 1) ∈ N. Let (G,P0, R0, C0,P, R, C) be a consistent
(`∗, k,m, ε, d, ν, τ, α, θ)-system with |G| = n. Let P ′ be an ε-uniform 50-refinement
of P. Then Gbasic contains a preprocessing graph with respect to C,R,P ′ with pa-
rameters (s, ε′, d, d′m, d′′m, r, ζ).

Proof. Apply Lemma 7.6 to find r exceptional factors CB1, . . . , CBr with parame-

ters (50, (s−1)/50) (with respect to C,P ′) whose original versions CBorig
1 , . . . , CBorig

r

are pairwise edge-disjoint. (So we apply the lemma with K := 50, L := (s−1)/50 and

r0 := r.) Let G1 be obtained from G by deleting all the edges in CBorig
1 , . . . , CBorig

r .
Thus G1 is obtained from G by deleting at most (s−1)r outedges and at most (s−1)r
inedges at each vertex. Since (s− 1)r ≤ εm we can apply Lemma 7.1 with ε playing
the role of ε′ in Lemma 7.1 to see that (G1,P0, R0, C0,P, R, C) is still a consistent
(`∗, k,m, 3

√
ε, d, ν/2, τ, α/2, θ/2)-system. Apply Lemma 8.2 to find a path system

extender PGPE in G1 with parameters (ε′, d, d′, ζ) (with respect to C,R). Let PG∗

be the union of PGPE and CB1, . . . , CBr.
To find PG�, for every vertex x ∈ V (G) \ V0 let n+

x := d′′m − d+
PG∗(x) and

n−x := d′′m− d−PG∗(x). Note that (8.4) implies that

(8.5) ∆(PG∗) ≤ 8d′m/d+ 2r ≤ 9d′m/d.

So for every vertex x ∈ V (G) \ V0 we have that

(8.6)

(
1− 9d′

dd′′

)
d′′m = d′′m− 9d′m

d
≤ n+

x , n
−
x ≤ d′′m.

Let G2 be the digraph obtained from G−V0 by deleting all the edges in PG∗. Then
(8.5) and the fact that G is a robust (ν, τ)-outexpander with δ0(G) ≥ αn imply that
G2 is still a robust (ν/2, 2τ)-outexpander with δ0(G2) ≥ αn/2. Together with (8.6)
this shows that we can apply Lemma 5.2 with q = 1, with G2 playing the role of
G = Q, and with d′′m/|G2|, 9d′/dd′′ playing the roles of ξ, ε to obtain a spanning
subgraph PG� of G2 satisfying d±PG�(x) = n±x for every vertex x. Then PG∗ ∪ PG�
is a preprocessing graph as required. �

The following lemma decomposes the leftover PG′ of the preprocessing graph
obtained from Corollary 8.5 into path systems Hi. In Section 9, these path systems
will be extended into Hamilton cycles using the ‘chord absorber’.

Suppose that k/g ∈ N and that C = V1 . . . Vk. Consider the canonical interval
partition of C into g edge-disjoint intervals of equal length and for each i = 1, . . . , g
let Xi denote the union of all clusters in the ith interval. So Xi = V(i−1)k/g+1 ∪
· · · ∪ Vik/g+1. We say that an edge of G − V0 has double-type ij if its endvertices

are contained in Xi ∪ Xj . So the number of double-types is
(
g
2

)
. A digraph has

double-type ij if all its edges have double-type ij.

Lemma 8.7. Suppose that 0 < 1/n � 1/k, ε, d, 1/q∗, 1/g � 1 and that 2q∗/3g(g −
1), k/g ∈ N. Let (G,P, R, C) be a (k,m, ε, d)-scheme with |G| = n and C = V1 . . . Vk.
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Suppose that H is a 1-regular digraph on V1∪· · ·∪Vk. Then we can decompose E(H)
into q∗ (possibly empty) matchings H1, . . . ,Hq∗ such that the following conditions
hold.

(i) For all i = 1, . . . , q∗, Hi consists of at most 2g2km/q∗ edges.
(ii) If |i−j| ≤ 10, then Hi and Hj are vertex-disjoint, with the indices considered

modulo q∗.
(iii) Each Hi consists entirely of edges of the same double-type and for each t ∈

(
g
2

)
the number of Hi of double-type t is q∗/

(
g
2

)
.

Proof. First split the edges of H into 2q∗/3g(g− 1) sets whose sizes are as equal as
possible. Now we arbitrarily split each of these sets into three matchings. Finally,
we split each of these matchings further into submatchings consisting of edges of
the same double-type. Since there are

(
g
2

)
different double-types this gives

(
g
2

)
· 3 ·

2q∗/3g(g − 1) = q∗ matchings, which we denote by H1, . . . ,Hq∗ . Moreover, each Hi

consists of at most 2g2km/q∗ edges. Thus the Hi satisfy (i) and (iii).
Given a double-type ij, let cl(ij) denote the set of all those numbers s for which

at least one of s− 1, s, s+ 1 belongs to {i, j}. (So cl(23) = {1, 2, 3, 4} and cl(27) =
{1, 2, 3, 6, 7, 8}.)

To obtain (ii), we first show the following claim: there is a cyclic ordering of the
double-types so that if two double-types ab and cd have distance at most 10 in the
ordering, then cl(ab) ∩ cl(cd) = ∅.

To prove the claim, consider the following auxiliary graph A: the vertices are the
double-types (i.e. the unordered pairs of numbers in {1, . . . , g}). We connect two
double-types ab and cd by an edge if cl(ab) ∩ cl(cd) = ∅. Then A has minimum
degree at least

(
g
2

)
− 6(g − 1) ≥ 10

11

(
g
2

)
. So A contains the 10th power of a Hamilton

cycle by Theorem 6.3. The ordering of the double-types on the Hamilton cycle gives
the required ordering of the double-types.

We now relabel the Hi as follows: first we take one Hi of each double-type in this
ordering of the double-types, and then repeat with another Hi of each double-types
and so on. �

9. The chord absorbing step

Recall from the previous section that we have a ‘leftover’ digraph G′ which is a
regular subdigraph of G− V0. (G′ is a subdigraph of the preprocessing graph.) The
aim of this section is to define and use a ‘chord absorber’ CA in Gbasic so that

(a) G′ ∪CA contains a collection of Hamilton cycles Ci which together cover all
edges of G′;

(b) removing the Ci from CA leaves a digraph which is a blow-up of the cycle C =
V1 . . . Vk;

(c) each Ci contains exactly one complete exceptional sequence and thus Corig
i

corresponds to a Hamilton cycle in G.

Similarly to the previous section, we first split G′ into 1-factors. Then we split each
such 1-factor H into small matchings Hi (as described in Lemma 8.7). Then each
Hi is extended into a Hamilton cycle Ci using edges of the chord absorber CA. This
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is achieved mainly by Lemma 9.5. The main difficulty compared to the argument in
the previous section is that we need to achieve (b).

The chord absorber consists of a blow-up of the cycle C = V1 . . . Vk, some excep-
tional factors as well as some additional edges which are constructed via a ‘universal
walk’. These additional edges will be used to ‘balance out’ the edges in the Hi. The
universal walk U will be constructed in the next subsection using the chord sequences
defined in Section 7.2.

It turns out that a natural way to construct the universal walk U and CA would be
the following (where we ignore requirement (c) for the moment): for each pair Vi, Vi+1

of consecutive clusters on the cycle C, we fix a shifted walk SWi from Vi to Vi+1

(recall these were also defined in Section 7.2). We then let U be the concatenation
of all the SWi with 1 ≤ i ≤ k. Then it is not hard to check that U is a closed walk
which visits each cluster the same number of times. CA is then defined to be the
union of a regular blow-up B(C) of C (which is also ε-regular) together with a regular
blow-up B(U) of U . As a step towards extending each Hi into a Hamilton cycle,
we balance out each edge e = xjxj′ of Hi by adding a suitable shifted walk SWjj′

(see also the proof of Lemma 8.3 for a similar argument). We do this as follows:
for any j, let s(j) be such that xj ∈ Vs(j). Then we add the shifted walk SWjj′

consisting of the concatenation SWs(j′)SWs(j′)+1 . . . SWs(j)−1SWs(j). If we replace
each edge E of each SWjj′ used for Hi with an edge from the bipartite subgraph of
B(U) corresponding to E, then the union of these edges together with Hi satisfy a
‘local balance property’ (as described in Proposition 7.3) and can thus be extended
into a Hamilton cycle using edges of B(C). The crucial fact now is that since H is
a 1-factor, it turns out that altogether (i.e. when considering the union of the Hi),
each SWj is used the same number of times in this process. So for each edge E of
U , overall we use the same number t of edges from the bipartite subgraph of B(U)
corresponding to E. Thus t is independent of E. This means that we can indeed
choose B(U) to be regular, which will enable us to satisfy (b).

Unfortunately, the above construction of U makes U too long – U would visit
each cluster more than k times, which would create major technical difficulties in
the proof of Lemma 9.5. So in Lemma 9.1 we present a ‘compressed’ construction
(based on chord sequences) which has the same set of chord edges as the one given
above, but which visits each cluster only `′ times, where 1/k � ε� 1/`′.

9.1. Universal walks, setups and chord absorbers. Suppose that R is a digraph
whose vertices are k clusters V1, . . . , Vk and that C := V1 . . . Vk is a Hamilton cycle in
R. A closed walk U in R is a universal walk for C with parameter `′ if the following
conditions hold:

(U1) For every i = 1, . . . , k there is a chord sequence ECS(Vi, Vi+1) from Vi to
Vi+1 such that U contains all edges of all these chord sequences (counted
with multiplicities) and all remaining edges of U lie on C.

(U2) Each ECS(Vi, Vi+1) consists of at most
√
`′/2 edges.

(U3) U enters every cluster Vi exactly `′ times and it leaves every cluster Vi exactly
`′ times.

We will often view U as a multidigraph. Whenever U is a universal walk for C with
parameter `′, then ECS(Vi, Vi+1) will always refer to the chord sequence from Vi
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to Vi+1 which is contained in U . We will call ECS(Vi, Vi+1) an elementary chord
sequence from Vi to Vi+1 and the edges in ECS(V1, V2)∪· · ·∪ECS(Vk, V1) the chord
edges of U .

Note that condition (U1) means that if an edge ViVj ∈ E(R) \ E(C) occurs in
total 5 times (say) in ECS(V1, V2), . . . , ECS(Vk, V1) then it occurs precisely 5 times
in U . We will identify each occurrence of ViVj in ECS(V1, V2), . . . , ECS(Vk, V1)
with a (different) occurrence of ViVj in U . Note that the edges of ECS(Vi, Vi+1) are
allowed to appear in a different order within ECS(Vi, Vi+1) and within U .

Suppose that F is a chord edge of U and that F ′ is the next chord edge of U .
We let P (F ) denote the subwalk of U from F to F ′ (without the edges F and
F ′). So P (F ) contains no chord edges and if F1 and F2 are two occurrences of
the same chord edge on U then P (F1) and P (F2) might be different from each
other. We say that the edges in P (F ) are the cyclic edges associated with F . The
augmented elementary chord sequence AECS(Vi, Vi+1) consists of all edges F in
the elementary chord sequence ECS(Vi, Vi+1) together with all the edges in the
corresponding subwalks P (F ). We order the edges of AECS(Vi, Vi+1) by taking the
ordered sequence ECS(Vi, Vi+1) and by inserting the edges of P (F ) (in their order
on U) after each edge F ∈ ECS(Vi, Vi+1). Thus the collection of all augmented
elementary chord sequences AECS(Vi, Vi+1) forms a partition of the edges of U into
k parts. But AECS(Vi, Vi+1) might not necessarily be connected (i.e. it might not
form a walk in R).

Lemma 9.1. Suppose that 0 < 1/k � ν � τ � α < 1. Suppose that R is a
robust (ν, τ)-outexpander whose vertices are k clusters V1, . . . , Vk and δ0(R) ≥ αk.
Let C := V1 . . . Vk be a Hamilton cycle in R. Then there exists a universal walk U
for C with parameter `′ := 36/ν2.

Proof. Let P := {V1, . . . , Vk}. Our first aim is to choose the elementary chord
sequences ECS(Vj , Vj+1) greedily in such a way that they satisfy (U2). Suppose
that we have already chosen ECS(V1, V2), . . . , ECS(Vj−1, Vj) such that each of them

contains at most 3/ν =
√
`′/2 edges and together the interiors of these elementary

chord sequences visit every cluster in P at most 2`′/3+3/ν times. (Here the number
of visits for a cluster Vi is the sum of the number of entries into Vi and the number of
exits from Vi.) We say that a cluster in P is full if it is visited at least 2`′/3 times by
the interiors of the previously chosen chord sequences. Since each elementary chord
sequence contains at most 3/ν edges, it follows that the number of full clusters is
at most 2 · (3j/ν)/(2`′/3) ≤ 9k/ν`′ = νk/4. Let V ′ denote the set of clusters in
P which are full. Then we can apply Lemma 7.2 to obtain an (elementary) chord
sequence ECS(Vj , Vj+1) which has at most 3/ν edges and whose interior avoids V ′.
We continue in this way to choose ECS(V1, V2), . . . , ECS(Vk, V1) such that together
their interiors visit every cluster in P at most 2`′/3 + 3/ν times and let U∗ be
the union of these chord sequences. Then U∗ visits every cluster in P at most
2`′/3 + 3/ν + 2 ≤ 3`′/4 times. Thus U∗ satisfies (U2) and the first part of (U1).

Our next aim is to add further edges to U∗ so that we will be able to satisfy (U3)
and the second part of (U1). For each j = 1, . . . , k, let nout

j denote the number of

edges of U∗ which leave the cluster Vj and let nin
j denote the number of edges of U∗
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which enter the cluster Vj . We claim that for each j, we have nout
j = nin

j+1. To see
this, suppose that VW is an edge of an elementary chord sequence which is not its
final edge. Then the next edge of this elementary chord sequence leaves the cluster
W− preceding W on C. If VW is the final edge of the elementary chord sequence,
then the first edge of the next elementary chord sequence will leave W−. This proves
the claim.

Now let `j := `′ − 1 − nin
j for each j = 1, . . . , k. Note that `j > 0. Let U� be

obtained from U∗ by adding exactly `j copies of the edge Vj−1Vj for all j. The above
claim implies that U� is (`′ − 1)-regular.

Finally we add another copy of each edge of C to U� and denote the resulting
multidigraph by U . So now U satisfies (U1)–(U3). It remains to show that the edges
in U can be ordered so that the resulting sequence forms a (connected) closed walk
in R. To see this, note that since U� is an (`′ − 1)-regular multidigraph, it has a
decomposition into 1-factors by Proposition 6.1. We order the edges of U as follows:
We first traverse all cycles of the 1-factor decomposition of U� which contain the
cluster V1. Next, we traverse the edge V1V2 of C. Next we traverse all those cycles
of the 1-factor decomposition which contain V2 and which have not been traversed
so far. Next we traverse the edge V2V3 of C and so on until we reach V1 again. This
completes the construction of U . �

(G,P,P ′, R, C, U, U ′) is called an (`′, k,m, ε, d)-setup if (G,P, R, C) is a (k,m, ε, d)-
scheme and the following conditions hold:

(ST1) U is a universal walk for C = V1 . . . Vk with parameter `′ and P ′ is an ε-
uniform `′-refinement of P.

(ST2) Let V 1
j , . . . , V

`′
j denote the clusters in P ′ which are contained in Vj (for each

j = 1, . . . , k). Then U ′ is a closed walk on the clusters in P ′ which is obtained
from U as follows: When U visits Vj for the ath time, we let U ′ visit the
subcluster V a

j (for all a = 1, . . . , `′).

(ST3) Each edge of U ′ corresponds to an [ε,≥ d]-superregular pair in G.

Since U visits every cluster in P precisely `′ times, it follows that U ′ visits every
cluster in P ′ exactly once. So U ′ can be viewed as a Hamilton cycle on the clusters
in P ′. We call U ′ the universal subcluster walk (with respect to C, U and P ′).

Given a digraph T whose vertices are clusters, an (ε, r)-blow-up B(T ) of T is
obtained by replacing each vertex V of T with the vertices in the cluster V and
replacing each edge VW of T with a bipartite graph B(T )[V,W ] with vertex classes
V and W which satisfies the following three properties:

• B(T )[V,W ] is ε-regular.
• All the edges in B(T )[V,W ] are oriented towards the vertices in W .
• The underlying undirected graph of B(T )[V,W ] is r-regular.

An r-blow-up of T is defined similarly: we do not require the bipartite graphs to be
ε-regular.

We say that a digraph CA on V (G) \ V0 = V1 ∪ · · · ∪ Vk is a chord absorber for
C, U ′ with parameters (ε, r, r′, r′′, q, f) if CA is the union of two digraphs B(C) and
B(U ′) on V (G) \ V0 satisfying conditions (CA1)–(CA3) below. In (CA1), P∗ is a
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(q/f)-refinement of P. For (CA2), recall from (ST2) that P ′ denotes the partition
whose clusters correspond to the vertices of U ′.

(CA1) B(C) is the union of B(C)∗ and CAexc. B(C)∗ is an (ε, r)-blow-up of C.
CAexc consists of r′′ exceptional factors with parameters (q/f, f) (with re-
spect to C, P∗) whose original versions are pairwise edge-disjoint.

(CA2) B(U ′) is an r′-blow-up of U ′. Moreover, B(U ′) has the following stronger
property: for every cluster A in P ′ there is a partition A1, . . . , A4 of A into
sets of equal size such that for every edge AB of U ′ and each j = 1, . . . , 4
there are r′ edge-disjoint perfect matchings between Aj and Bj such that
B(U ′)[A,B] is the union of all these 4r′ matchings.

(CA3) B(C)∗, B(U ′) and the original version of CAexc are pairwise edge-disjoint
subdigraphs of G.

Thus CA is a (r + r′ + r′′)-regular subdigraph of Gbasic. However, in the original
version CAorig = B(C)∗ ∪ B(U ′) ∪ (CAexc)orig of CA we have

(9.1) d±(x) = r′′q ∀x ∈ V0 and d±(y) = r + r′ + r′′ ∀y ∈ V (G) \ V0.

9.2. Bi-universal walks, bi-setups and chord absorbers. Suppose that R is
a digraph whose vertices are k clusters V1, . . . , Vk, where k is even, and that C :=
V1 . . . Vk is a Hamilton cycle in R. Let Veven denote the set of all those clusters Vi
for which i is even and define Vodd similarly. We will now define a bi-universal walk,
which is an analogue of a universal walk for a bipartite setting. The difference to
Section 9.1 is that now we only assume the existence of a chord sequence from V
to V ′ whenever V, V ′ ∈ Veven or V, V ′ ∈ Vodd. Roughly speaking, if H is a bipartite
graph whose vertex classes are

⋃
Veven and

⋃
Vodd, U is a bi-universal walk and U ′

is a bi-universal subcluster walk, then a chord absorber for C, U ′ can still absorb all
edges of H. (Note that C is also bipartite with vertex classes Veven and Vodd.) This
will only be used in [14] and not in this paper.

A closed walk U in R is a bi-universal walk for C with parameter `′ if the following
conditions hold:

(BU1) The edge set of U has a partition into Uodd and Ueven. For every i = 1, . . . , k
there is a chord sequence ECSbi(Vi, Vi+2) from Vi to Vi+2 such that Ueven

contains all edges of all these chord sequences for even i (counted with multi-
plicities) and Uodd contains all edges of these chord sequences for odd i. All
remaining edges of U lie on C.

(BU2) Each ECSbi(Vi, Vi+2) consists of at most
√
`′/2 edges.

(BU3) Ueven enters every cluster Vi exactly `′/2 times and it leaves every cluster Vi
exactly `′/2 times. The same assertion holds for Uodd.

Whenever U is a bi-universal walk for C with parameter `′, then ECSbi(Vi, Vi+2)
will always refer to the chord sequence from Vi to Vi+2 which is contained in U . As
before, we will call ECSbi(Vi, Vi+2) an elementary chord sequence from Vi to Vi+2

and the edges in ECSbi(V1, V3)∪ECSbi(V2, V4)∪· · ·∪ECSbi(Vk, V2) the chord edges
of U .

If F is a chord edge of U then P (F ) is defined as in Section 9.1 and we again call
the edges in P (F ) are the cyclic edges associated with F . The augmented elementary
chord sequence AECSbi(Vi, Vi+2) consists of all edges F in the elementary chord
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sequence ECSbi(Vi, Vi+2) together with all the edges in the corresponding subwalks
P (F ). So similarly as in Section 9.1, the collection of all augmented elementary
chord sequences AECSbi(Vi, Vi+2) forms a partition of the edges of U into k parts.

We define an (`′, k,m, ε, d)-bi-setup (G,P,P ′, R, C, U, U ′) similarly as an (`′, k,m, ε, d)-
setup, the only difference is that U is a bi-universal walk for C (rather than a universal
walk). We call U ′ the bi-universal subcluster walk (with respect to C, U and P ′). A
chord absorber for C, U ′ with parameters (ε, r, r′, r′′, q, f) is defined analogously as
before.

9.3. Finding chord absorbers. The first lemma of this subsection states that if
one is given a setup and one deletes a few edges at every vertex, then one still has a
setup with slightly worse parameters.

Lemma 9.2. Suppose that 0 < 1/n � 1/k � ε ≤ ε′ � d � 1/`′ � 1. Let
(G,P,P ′, R, C, U, U ′) be an (`′, k,m, ε, d)-setup with |G| = n. Let G′ be a digraph
obtained from G by deleting at most ε′m outedges and at most ε′m inedges at every
vertex of G. Then (G′,P,P ′, R, C, U, U ′) is still a (`′, k,m, (ε′)1/3, d)-setup. The
analogue holds if (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-bi-setup.

Proof. We only consider the case when (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-
setup. The argument for bi-setups is identical. By Lemma 7.1(ii) (G′,P, R, C) is

still a (k,m, 3
√
ε′, d)-scheme. Moreover, (ST1) and (ST2) clearly still hold. So we

only need to check that (ST3) still holds with ε replaced by (ε′)1/3. But since the
clusters in P ′ have size m/`′, Proposition 4.3(iii) implies that each edge of U ′ still

corresponds to a [2
√
ε′`′,≥ d]-superregular pair in G′ (and thus to an [(ε′)1/3,≥ d]-

superregular pair). �

The next lemma asserts that we can find a blow-up of the cycle C and of the
universal subcluster walk U ′ within a setup, so that each edge of C corresponds to
a graph which is both regular and superregular and each edge of U ′ corresponds to
a regular graph.

Lemma 9.3. Suppose that 0 < 1/n � 1/k � ε � ε′ � d � 1/`′ � 1, that
r0/m, r

′
0/m � d and that m/4`′ ∈ N. If (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-

setup with |G| = n, then G − V0 contains edge-disjoint spanning subdigraphs B(C)
and B(U ′) such that

(i) B(C) is an (ε′, r0)-blow-up of C;
(ii) B(U ′) is an r′0-blow-up of U ′ which satisfies (CA2) with r′0 playing the role

of r′.

The analogue holds if (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-bi-setup.

Proof. Choose new constants ε∗ and ε1 with ε � ε∗ � ε′ and ε∗, r0/m, r
′
0/m �

ε1 � d. For each edge VW of C let dVW denote the density of G[V,W ]. (So
dVW ≥ d− ε.) Apply Lemma 4.10(iv) with

d′ :=
r0/m

1− 12 · ε∗
+ ε∗

to each edge VW of C to obtain a spanning subgraph G′[V,W ] of G[V,W ] which is
[ε∗, d′]-superregular. Now apply Lemma 4.6 to obtain a spanning r0-regular subgraph
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G′′[V,W ] of G′[V,W ] which is also [ε′, r0/m]-superregular. Let B(C) be the union of
all the G′′[V,W ] over all edges VW of C. Then B(C) is an (ε′, r0)-blow-up of C.

To construct B(U ′) we now proceed as follows. First we apply Lemma 4.7(i) with
` = 4 to obtain a partition of each cluster A in P ′ into subclusters A1 . . . A4 such that,
for every edge AB of U ′, the pair G[Aj , Bj ] is [ε∗,≥ d]-superregular. Let G1 be the
digraph obtained from G by deleting every edge in B(C). Thus G1 is obtained from
G by deleting r0 outedges and r0 inedges at every vertex in V (G)\V0 (and no edges at
the vertices in V0). Since the subclusters Aj have size m/4`′ and since r0 ≤ ε3

1m/4`
′,

this means that G1[Aj , Bj ] is still [ε1,≥ d]-superregular by Proposition 4.3(iii). For
every edge AB of U ′ and for all j = 1, . . . , 4, we choose r′0 edge-disjoint perfect
matchings in G1[Aj , Bj ] (recall that these are guaranteed by Proposition 4.14). At
each stage we delete the edges in all the matchings chosen so far before we choose
the next matching. Since r′0 ≤ ε1m/4`

′, this means that the leftover of G1[Aj , Bj ]
will always be [2

√
ε1,≥ d]-superregular by Proposition 4.3(iii). So we can choose the

next matching. The union B(U ′) of all these perfect matchings (over all edges of U ′)
is an r′0-blow-up of U ′ which satisfies (CA2).

The proof for bi-setups is identical. �

The next lemma is an immediate consequence of Lemma 9.3. Given suitable
exceptional factors, it guarantees a chord absorber within a setup which contains
these exceptional factors. Since Lemma 7.6 implies the existence of such exceptional
factors in a consistent system, this will enable us to find a chord absorber.

Lemma 9.4. Suppose that 0 < 1/n � 1/k, qr′′0/m � ε � ε′ � d � 1/`′ � 1,
that r0/m, r

′
0/m � d and that q/f, fm/q,m/4`′ ∈ N. Let (G,P,P ′, R, C, U, U ′)

be an (`′, k,m, ε, d)-setup with |G| = n. Suppose that P∗ is a (q/f)-refinement of
P and EF1, . . . , EFr′′0 are exceptional factors with parameters (q/f, f) with respect
to C, P∗ whose original versions are pairwise edge-disjoint. Then there is a chord
absorber CA for C, U ′ in G having parameters (ε′, r0, r

′
0, r
′′
0 , q, f) such that CAexc =

EF1 ∪ · · · ∪ EFr′′0 . The analogue holds if (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-
bi-setup.

Proof. We only consider the case when (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-
setup. The proof for bi-setups is identical. Let G1 be the digraph obtained from G
by deleting every edge in (CAexc)orig. Thus G1 is obtained from G by deleting r′′0
outedges and r′′0 inedges at every vertex in V (G) \ V0 and by deleting qr′′0 outedges
and qr′′0 inedges at every vertex in V0. Since qr′′0/m ≤ ε, Lemma 9.2 implies that

(G1,P,P ′, R, C, U, U ′) is still a (`′, k,m, ε1/3, d)-setup. So we can apply Lemma 9.3
to find edge-disjoint subgraphs B(C)∗ and B(U ′) in G1 as guaranteed by (i) and (ii).
Let CAexc := EF1 ∪ · · · ∪EFr′′0 . We then take CA := B(C)∗ ∪B(U ′)∪CAexc. �

9.4. Absorbing chords into a blown-up Hamilton cycle. The following lemma
contains the key statement of this section (and of the entire proof of Theorem 1.2).
Let (G,P,P ′, R, C, U, U ′) be a (`′, k,m, ε, d)-setup. Suppose we are given a 1-factor
H of G− V0 which is split into small matchings Hi and that we are given complete
exceptional path systems H ′′i which avoid the Hi (see conditions (b)–(d)). The
lemma states that we can extend each path system H ′i := Hi ∪H ′′i into a Hamilton
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cycle Ci using edges from the chord absorber CA. The crucial point is that the set
of edges we are allowed to use for Ci from B(U ′) is predetermined, i.e. this set does
not depend on H. More precisely, for each 1-factor H we will split off a regular
digraph B′(U ′) from B(U ′). The Hamilton cycles guaranteed by Lemma 9.5 cover
H ∪B′(U ′), but no other edges of B(U ′). In Lemma 9.7 we will use this property to
ensure that when we cover the leftover of the preprocessing graph from the previous
section with edge-disjoint Hamilton cycles, we use all edges of B(U ′) in the process.
So, as mentioned earlier, the leftover from the chord absorbing step is a subdigraph
of B(C).

The basic strategy is similar to that of Lemma 8.3: first we balance out the edges of
each Hi by adding edges corresponding to (augmented) chord sequences (see Claims 1
and 4) in order to obtain path systems W ′′i containing Hi. As mentioned above, we
will use all edges of B′(U ′) in this process. Claim 2 is a step towards this – it
implies that the set of edges we added to the Hi in the above step are themselves
‘globally balanced’ in the sense that we use the same number from each bipartite
graph corresponding to an edge of U ′. (Note however that we achieve this ‘global
balance’ property only when considering all the Hi together – it need not hold when
we consider H1 on its own say.) Then we extend the path system W ′′i into a 1-factor
Fi. Fi is then transformed into a Hamilton cycle Ci using Lemma 6.5 (see Claim 5).

Moreover, Lemma 9.5 also works for (`′, k,m, ε, d)-bi-setups, as long as H is bi-
partite with vertex classes

⋃
Veven and

⋃
Vodd.

Lemma 9.5. Suppose that 0 < 1/n� 1/k, 1/q � ε� φ, ε′ � r1/m� d� 1/`′ �
1 and that m/4`′ ∈ N. Let

(9.2) r2 := 12φ`′q.

Suppose that (G,P,P ′, R, C, U, U ′) is a (`′, k,m, ε, d)-setup with |G| = n and C =
V1 . . . Vk. Let B(C)∗ be a blow-up of C such that every edge of C corresponds to
an (ε′, r1/m)-superregular pair in B(C)∗. Let B′(U ′) be an r2-blow-up of U ′ which
satisfies the following condition:

(a) For every cluster A in P ′ there is a partition A1, . . . , A4 of A into sets of
equal size such that for every edge AB of U ′ and each j = 1, . . . , 4 there are

r2 edge-disjoint perfect matchings Sj1(AB), . . . , Sjr2(AB) between Aj and Bj
such that B′(U ′)[A,B] is the union of all these 4r2 matchings.

Suppose that H is a 1-factor of G− V0 and that H1, . . . ,Hq is a partition of H into
matchings which satisfy the following properties:

(b) For each i = 1, . . . , q there is a complete exceptional path system H ′′i (with
respect to C) which is vertex-disjoint from Hi.

(c) Write H ′i := Hi ∪H ′′i for i = 1, . . . , q. Then for all i = 1, . . . , q the original
versions (H ′i)

orig = Hi ∪ (H ′′i )orig of H ′i are pairwise edge-disjoint, each H ′i
consists of at most φm paths and |H ′i ∩ Vj | ≤ φm for every cluster Vj in P.
Moreover, H ′i and H ′j are pairwise vertex-disjoint whenever |i− j| ≤ 10.

(d) B(C)∗, B′(U ′) and the original version of H ′ := H ′1 ∪ · · · ∪H ′q are pairwise
edge-disjoint subdigraphs of G.

Then there are edge-disjoint Hamilton cycles C1, . . . , Cq in G such that the following
properties hold:
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• H ′i ⊆ Cbasic
i for all i = 1, . . . , q.

• All the C1, . . . , Cq together cover all the edges of (H ′)orig ∪ B′(U ′) and all
remaining edges in C1, . . . , Cq are contained in B(C)∗.

The analogue holds for an (`′, k,m, ε, d)-bi-setup (G,P,P ′, R, C, U, U ′) if we assume
in addition that H is bipartite with vertex classes

⋃
Veven and

⋃
Vodd (where Veven

is the set of all those Vi such that i is even and Vodd is defined analogously).

Proof. Recall that C = V1 . . . Vk. So V1, . . . , Vk are the clusters in P, |Vj | = m for
each j = 1, . . . , k and each cluster in P ′ has size

(9.3) m′ := m/`′.

Given a vertex x of G− V0, we will write V (x) for the cluster in P containing x and
V (x)+ for the successor of V (x) on C. For each i = 1, . . . , q in turn, we will find a
Hamilton cycle Ci in G which contains the original version of H ′i. So consider any
i. We will first add suitable edges of R to Hi to form a sequence W ′i of edges which
is ‘locally balanced’. So W ′i will consist both of edges of H and edges of R. When
constructing the Hamilton cycle Ci, we will replace each occurrence of an edge from
R in W ′i by an edge in the corresponding bipartite subgraph of G.

We will first consider the case when (G,P,P ′, R, C, U, U ′) is a (`′, k,m, ε, d)-setup.
Recall that the augmented elementary chord sequence AECS(Va, Va+1) was defined
in Section 9.1. Given clusters Vj and Vj′ , the augmented chord sequence ACS(Vj , Vj′)
in U from Vj to Vj′ is the (ordered) sequence defined as

ACS(Vj , Vj′) := AECS(Vj , Vj+1) ∪AECS(Vj+1, Vj+2) ∪ · · · ∪AECS(Vj′−1, Vj′);

where the indices are modulo k. If j = j′ we take ACS(Vj , Vj′) := ∅. Let W ′i be
obtained from Hi by including the augmented chord sequence ACS(V (y), V (x)+)
after each edge xy in Hi. Ordering the edges in Hi gives us an ordering of the edges
of W ′i . Suppose for example that xy is an edge of Hi with x, y both contained in the
cluster V . Then we include exactly AECS(V, V +). If x ∈ V and y ∈ V +, where V +

is the successor of V on C, then we do not include any edge (apart from xy itself).

Claim 1. ‘Sequences are locally balanced.’ For each cluster Vj in P and each
i = 1, . . . , q, the number of edges of W ′i leaving Vj equals the number of edges of W ′i
entering Vj+1.

Here (and below) multiple occurrences of edges in W ′i are considered separately, i.e. if
the edge AB appears u times in W ′i , then we count it u times in Claim 1. Moreover,
if xy is an edge of Hi whose endvertices lie in the same cluster V , then (here and
below) we count xy both as an edge leaving V and an edge entering V .

To prove Claim 1, consider any edge xy of Hi. Recall that each augmented elemen-
tary chord sequence AECS(Vj , Vj+1) consists of chord edges (namely those in the
elementary chord sequence ECS(Vj , Vj+1) corresponding to AECS(Vj , Vj+1)) and of
cyclic edges (namely those in the subwalks P (F ) which were added to ECS(Vj , Vj+1)
in order to obtain AECS(Vj , Vj+1)). But every cyclic edge, joining Vj to Vj+1 say,
contributes both to the number of edges leaving Vj and to the number of edges
entering Vj+1. On the other hand, in the (cyclic) sequence

xy ∪ ECS(V (y), V (y)+) ∪ ECS(V (y)+, V (y)++) ∪ · · · ∪ ECS(V (x), V (x)+)
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obtained from xy∪ACS(V (y), V (x)+) by deleting all cyclic edges in the augmented
elementary chord sequences, every edge entering some cluster Vj+1 is followed by
an edge leaving Vj . (This is essentially the same observation as Proposition 7.3.)
Altogether this shows that for each cluster Vj in P the number of edges of xy ∪
ACS(V (y), V (x)+) leaving Vj equals the number of edges of xy∪ACS(V (y), V (x)+)
entering Vj+1. Thus this is also true for the union W ′i of the xy∪ACS(V (y), V (x)+)
over all edges xy ∈ Hi. So the claim follows.

In what follows, the order of the edges in W ′i does not matter anymore. So we
will view W ′i as a multiset consisting of edges in E(U) ∪ E(H).

Recall that each occurrence of an edge in U corresponds to an edge in U ′ (and that
these edges in U ′ are different for different occurrences of the same edge from R in
U). So we might also view each W ′i as a multiset consisting of edges in E(U ′)∪E(H).

Claim 2. ‘Unions of sequences are globally balanced.’ Let W denote the
union of W ′1, . . . ,W

′
q. Then there is an integer t so that W contains each edge

of U exactly t times. Thus if W is viewed as a multiset consisting of edges in
E(U ′) ∪ E(H), then W also contains each edge of U ′ exactly t times.

As before, here (and below) multiple occurrences of an edge in U are considered
separately, i.e. if the edge AB appears u times in U , then it altogether appears ut
times in W .

To prove Claim 2, consider the auxiliary multidigraph D whose vertices are
V1, . . . , Vk and which contains an edge from Vi to Vj for every ACS(Vi, Vj) included
into W . So the multiplicity of the edge ViVj in D is the number of edges xy of H
with V (y) = Vi and V (x)+ = Vj . Let Hc be obtained from H by first reversing the
orientation of every edge and then contracting all the vertices lying in each cluster
Vi into a new vertex vi. So Hc is an m-regular multigraph (which might contain
loops). Moreover, D can be obtained from Hc by replacing each edge vivj with the
edge vivj+1. Thus D is m-regular too and so it can be decomposed into edge-disjoint
1-factors. Consider any cycle D′ = Vi1 . . . Vir in one of these 1-factors. Then W
contains all edges in the multiset

S(D′) := ACS(V (xi1), V (xi2)) ∪ACS(V (xi2), V (xi3)) ∪ · · · ∪ACS(V (xir), V (xi1)).

But

ACS(Vij , Vij+1) = AECS(Vij , Vij+1) ∪ · · · ∪AECS(Vij+1−1, Vij+1).

So it follows that S(D′) contains every AECS(Vi, Vi+1) the same number of times
and thus S(D′) is a multiple of E(U). (As an example, if D′ = V9V4V8, then S(D′)
will contain each edge of E(U) once. If however D′ = V9V8V4, then S(D′) will
contain each edge of E(U) twice.) Since W is the union of the S(D′) over all cycles
D′ in the 1-factor decomposition of D, this implies that W is a multiple of E(U),
i.e. there exists t such that W contains every edge in U exactly t times.

Since we consider multiple occurrences of an edge in U separately and each such
occurrence corresponds to an edge of U ′ it follows immediately that W (viewed as a
multiset consisting of edges in E(U ′) ∪ E(H)) also contains each edge of U ′ exactly
t times. This proves Claim 2.
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Let

(9.4) s′ := φm.

Note that (9.3) implies that

(9.5) s′ = φ`′m′ ≤ m′/104.

We will need the following claim when replacing the edges of U by edges in G.

Claim 3. ‘Sequences are well spread out.’ For all i = 1, . . . , q, any edge of U ′

(and of U) occurs in W ′i at most s′ times.

To prove Claim 3, note that for each j = 1, . . . , k each edge in Hi contributes at
most one occurrence of AECS(Vj , Vj+1) in W ′i . But H ′′i and Hi are vertex-disjoint
by (b) and H ′i = Hi ∪ H ′′i consists of at most φm paths by (c). So Hi consists of
at most φm edges and thus the total number of occurrences of AECS(Vj , Vj+1) in
W ′i is at most φm = s′. This proves Claim 3 since AECS(V1, V2), . . . , AECS(Vk, V1)
forms a partition of E(U).

By summing over all i with 1 ≤ i ≤ q, it immediately follows that the constant t
defined in Claim 2 satisfies

(9.6) t ≤ s′q.
We will now add some further edges to W to obtain W ′ which contains all edges of
H and which uses every edge AB of U ′ (and thus of U) exactly t′ times, where

(9.7) t′ := r2m
′ (9.2)

= 12φ`′qm′
(9.3)
= 12φqm

(9.4)
= 12s′q.

Claim 4. By adding some some further edges of U to each W ′i we can obtain
multisets W ′′i which satisfy the following properties (as before, we also view W ′′i as
a multiset consisting of edges in E(U ′) ∪ E(H)):

• Each W ′′i is still locally balanced. That is, for every cluster Vj in P and each
i = 1, . . . , q, the number of edges of W ′′i leaving Vj equals the number of edges
of W ′′i entering Vj+1.
• For each i = 1, . . . , q and each edge AB of U ′, let si(AB) be the number of

times that W ′′i uses AB. Then

(9.8)

q∑
i=1

si(AB) = t′

and

(9.9) 11s′ ≤ si(AB) ≤ 13s′

for each i = 1, . . . , q.

To prove Claim 4, first note that

t+ 11s′q
(9.6)

≤ 12s′q
(9.7)
= t′.

Choose integers s′1, . . . , s
′
q so that

q∑
i=1

s′i = t′ − t and 11s′ ≤ s′i ≤ 12s′ for all i = 1, . . . , q.
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(The s′i exist since 11s′q ≤ t′− t ≤ 12s′q.) For each i = 1, . . . , q, let W ′′i be obtained
from W ′i by adding s′i copies of U . Then clearly (9.8) holds. Also, Claim 3 and the
bounds on s′i imply that

11s′ ≤ s′i ≤ si(AB) ≤ s′i + s′ ≤ 13s′

for each i = 1, . . . , q. So (9.9) holds too.
The fact that each W ′′i is still locally balanced immediately follows from Claim 1

and the fact that W ′′i was obtained from W ′i by adding copies of U . (Note that (U3)
implies that each copy of U contributes exactly `′ to the number of edges entering
a cluster and `′ to the number of edges leaving a cluster.) This completes the proof
of Claim 4.

Let W ′ be the union of the multisets W ′′i over all i = 1, . . . , q. Thus Claim 4
implies that in total W ′ contains each edge AB of U ′ exactly t′ times. Since B′(U ′)
is an r2-blow-up of U ′, it follows that for any edge AB of U ′, t′ equals the number
of edges in the subgraph

(9.10) S(AB) := B′(U ′)[A,B]

of B′(U ′) spanned by the clusters A and B. (So here A and B are clusters in P ′.)
Next we will replace each occurrence of an edge AB of U ′ in W ′′i \ E(Hi) by an

edge of S(AB) to obtain a digraph W ′′′i with V (W ′′′i ) = V (H) = V (G) \ V0 which
has the following properties:

(α1) W ′′′i contains all edges in Hi.
(α2) For each edge AB of U ′, the bipartite subgraph W ′′′i [A,B] consisting of all

edges in W ′′′i from A to B contains exactly si(AB) edges of S(AB).
(α3) W ′′′i ∪H ′i is a path system.
(α4) For every pair V, V + of consecutive clusters on C and every i = 1, . . . , q,

there is an integer wi(V ) ≤
√
φm/2 so that

(9.11) wi(V ) =
∑
v∈V

d+
W ′′′i

(v) =
∑
v∈V +

d−
W ′′′i

(v).

(α5) W ′′′1 , . . . ,W
′′′
q are pairwise edge-disjoint.

Note that (α2) is equivalent to stating that each occurrence of AB in W ′′i is replaced
by an edge of S(AB). Moreover (α1), (α2), (α5), (9.7) and (9.8) together imply that
the edge sets of the W ′′′i form a partition E(H ∪ B′(U ′)).

Before describing the construction of W ′′′i , first note that (α4) is an immediate
consequence of (α2) and Claim 4: any edge AB of W ′′i (where AB ∈ E(U ′) and so
A and B are clusters in P ′) corresponds to an edge in W ′′′i which goes from A to
B. So (9.11) holds. To check that wi(V ) ≤

√
φm/2 recall from (U3) and (ST2) that

for each cluster V on C there are exactly `′ edges AB of U ′ leaving V . (9.9) implies
that each such edge AB contributes at most 13s′ = 13φm to wi(V ). Together with
(c) this implies that

wi(V ) ≤ |Hi ∩ V |+ 13φ`′m ≤ φm+ 13φ`′m ≤
√
φm/2.

To construct W ′′′i for each i, we proceed as follows. Let u be the length of U ′

and label the edges of U ′ as E1, . . . , Eu. Consider any edge Ea = AB of U ′. For

each j = 1, . . . , 4 let Sj(AB) := Sj1(AB) ∪ · · · ∪ Sjr2(AB). (Recall the Sji (AB) were
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defined in condition (a) of the lemma.) Then S(AB) = S1(AB) ∪ · · · ∪ S4(AB)
(where S(AB) is as defined in (9.10)) and (a) implies that

(9.12) |Sj(AB)| = |S(AB)|/4 = r2m
′/4.

Order the edges of S(AB) in such a way that the following conditions hold:

(β1) Every set of at most m′/20 consecutive edges in S(AB) forms a matching.
(β2) If AB 6= Eu then for each j = 1, 2, 3 all the edges in Sj(AB) precede all those

in Sj+1(AB).
(β3) If AB = Eu then all the edges in S3(AB) precede all those in S4(AB), which

in turn precede those in S1(AB) and all the edges in S2(AB) are at the end
of the ordering.

(β3) will be used to ensure that (α3) holds in the construction of the W ′′′i .
To see that the above properties can be guaranteed, we use the properties of

S(AB) described in the assumption (a) of the lemma: for each edge AB 6= Eu of U ′,
order the edges in S(AB) so that (β2) is satisfied and so that within some Sj(AB) all

the edges of the matching Sji (AB) come before all edges of the matching Sji+1(AB)

(for all i = 1, . . . , r2 − 1). Order the edges of Sj1(AB) arbitrarily. Given an ordering

of the edges in Sji (AB), order the edges of Sji+1(AB) in such a way that the first

m′/20 edges of Sji+1(AB) avoid the m′/10 endvertices of the final m′/20 edges of

Sji (AB). This ensures that (β1) will be satisfied. If AB = Eu then the argument is
similar, but we start with an ordering of the edges in S(AB) so that (β3) is satisfied.

We now carry out the actual construction of the W ′′′i , where we consider the W ′′′i
in batches of 10. For each a = 1, . . . , q/10 and each edge Ej of U ′ we let

ua(Ej) := s10(a−1)+1(Ej) + · · ·+ s10a(Ej).

Thus (9.9) implies that for all a = 1, . . . , q/10,

(9.13) 110s′ ≤ ua(Ej) ≤ 130s′.

We let S∗a(Ej) denote the set of all those edges whose position in the ordering of

the edges of S(Ej) lies between 1 +
∑a−1

a′=1 ua′(Ej) and
∑a

a′=1 ua′(Ej). So ua(Ej) =
|S∗a(Ej)|. Together with (β1) and the fact that ua(Ej) ≤ 130s′ ≤ m′/20 by (9.5),
this implies that S∗a(Ej) forms a matching. Note that ua(Ej) is the total number of
edges in S(Ej) that we need to choose for W ′′′10(a−1)+1, . . . ,W

′′′
10a. We will choose all

these edges from S∗a(Ej).
To choose these edges, we consider an auxiliary bipartite graph B∗ which is defined

as follows. The first vertex class B1 of B∗ consists of ua(Ej) placeholders for the
edges in S(Ej) that we need to choose for W ′′′10(a−1)+1, . . . ,W

′′′
10a, so for each i =

10(a − 1) + 1, . . . , 10a there will be precisely si(Ej) of these placeholders for (the
edges to be chosen for) W ′′′i . The second vertex class of B∗ is S∗a(Ej). So

110s′ ≤ |S∗a(Ej)| = |B1| ≤ 130s′

by (9.13). We join an edge e ∈ S∗a(Ej) to a placeholder for W ′′′i if e is vertex-disjoint
from H ′i. Since by condition (c) of the lemma H ′10(a−1)+1, . . . ,H

′
10a are pairwise

vertex-disjoint, each edge e ∈ S∗a(Ej) can meet at most twoH ′i with 10(a−1)+1 ≤ i ≤
10a and so e will be joined to all placeholders apart from those for the corresponding
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two W ′′′i . Since there are si(Ej) ≤ 13s′ placeholders for each W ′′′i , this means that e
is joined in B∗ to all but at most 2 ·13s′ ≤ |B1|/2 placeholders in B1. Similarly, since
S∗a(Ej) forms a matching and since by (c) every H ′i meets each of the two endclusters
of Ej in at most φm vertices, each placeholder in B1 is joined to all but at most
2φm = 2s′ ≤ |S∗a(Ej)|/2 edges in S∗a(Ej). Thus B∗ has a perfect matching. For each
i = 10(a− 1) + 1, . . . , 10a we add the si(Ej) edges to W ′′′i which are matched to the
placeholders for W ′′′i .

We carry out this procedure for every edge Ej of U ′ in turn. This completes the
construction of the W ′′′i . Clearly, (α1) and (α2) are satisfied. To check that (α5)
holds, note that the W ′′′i \E(Hi) are pairwise edge-disjoint by construction and the
Hi are pairwise edge-disjoint by definition (as they form a partition of the edges of
H into matchings). Also W ′′′i \ E(Hi) is edge-disjoint from any Hj by (d).

So let us now check that (α3) is satisfied. To do this, let W ′′′i [Ej ] denote the
bipartite subdigraph of W ′′′i which consists of all edges from the first endcluster
of Ej to the final endcluster of Ej . Note that by definition of B∗, the edges of
W ′′′i \E(Hi) and those of H ′i have no endvertices in common. Moreover, (b) implies
that H ′i is a path system. So for (α3), it suffices to show that W ′′′i \ E(Hi) is a
path system. Now recall that the definition of B∗ implies that W ′′′i [Ej ] \ E(Hi)
forms a matching for each edge Ej of U ′. Thus the only possibility for a cycle C ′ in
W ′′′i \ E(Hi) would be for C ′ to ‘wind around’ U ′.

So in order to show that W ′′′i \E(Hi) is a path system, it suffices to show that no
vertex is incident to both an edge in W ′′′i [E1]\E(Hi) and an edge in W ′′′i [Eu]\E(Hi).
But this follows from (β2) and (β3). Indeed, recall that when choosing the edges in
W ′′′i [E1] \E(Hi) we considered all the W ′′′i in batches of 10. Let a := di/10e. So the
edges in W ′′′i [E1] \ E(Hi) were chosen in the ath batch. Let pfirst

1 and pfinal
1 denote

the first and the final position of an edge from W ′′′i [E1] \ E(Hi) in the ordering of
all edges of S(E1). Define pfirst

u and pfinal
u similarly. Note that

(9.14) 110s′(a− 1)
(9.13)

≤ pfirst
1 , pfinal

1

(9.13)

≤ 130s′a.

But

130s′a−110s′(a−1) = 20s′a+110s′ ≤ 20s′
q

10
+110s′ < 3s′q

(9.7)
=

r2m
′

4

(9.12)
= |Sj(E1)|.

Together with (9.14) this implies that

(9.15) 110s′(a− 1) ≤ pfirst
1 , pfinal

1 < 110s′(a− 1) + |Sj(E1)|.

Then (9.15), its analogue for pfirst
u and pfinal

u , (β2) and (β3) together imply that there
is some j ≤ 3 such that

W ′′′i [E1] \E(Hi) ⊆ Sj(E1)∪ Sj+1(E1) and W ′′′i [Eu] \E(Hi) ⊆ Sj+2(Eu)∪ Sj+3(Eu)

(where S5(Eu) := S1(Eu) and S6(Eu) := S2(Eu), see Figure 4). So no vertex
is incident to both an edge in W ′′′i [E1] \ E(Hi) and an edge in W ′′′i [Eu] \ E(Hi).
Altogether this shows that (α3) holds. So we have shown that (α1)–(α5) hold.

We now add all the edges in H ′′i = H ′i \ E(Hi) to W ′′′i and let W ∗i denote the
graph on V (H) = V (W ′′′i ) obtained in this way. Recall that by (b), H ′′i consists of a
complete exceptional path system with respect to C. Thus (CEPS1) and (CEPS3)
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Figure 4. The shaded area corresponds to the possible positions of
the edges in W ′′′i [E1] \ E(Hi) within the set S(E1) and the edges in
W ′′′i [Eu] \ E(Hi) within the set S(Eu).

together imply that H ′′i is ‘locally balanced’, in the sense that for every cluster V in
P the number of edges in H ′′i leaving V equals the number of edges in H ′′i entering
V +. (c) implies that the number of edges leaving V is at most φm. Together with
(α4) this implies that condition (γ3) below holds. (γ1) and (γ2) follow from (α1)
and (α3) respectively. (γ4) follows from (α5), the fact that the original versions
of the H ′i (and thus of the H ′′i ) are pairwise edge-disjoint by (c) and the fact that
W ∗i \ E((H ′′i )orig) is edge-disjoint from any (H ′′j )orig by (d).

(γ1) W ∗i contains all edges in H ′i.
(γ2) W ∗i is a path system.
(γ3) For every pair V, V + of consecutive clusters on C and every i, there is an

integer wi(V ) ≤
√
φm so that

wi(V ) =
∑
v∈V

d+
W ∗i

(v) =
∑
v∈V +

d−W ∗i
(v).

(γ4) The original versions of W ∗1 , . . . ,W
∗
q are pairwise edge-disjoint.

Note that for each i = 1, . . . , q every exceptional edge in W ∗i lies in H ′′i . Our next
aim is to turn the original versions of W ∗1 , . . . ,W

∗
q into edge-disjoint Hamilton cycles

by adding suitable edges from B(C)∗.

Claim 5. For all i = 1, . . . , q, there is a Hamilton cycle Ci in G which contains all
edges in the original version (W ∗i )orig of W ∗i and such that all the edges in E(Ci) \
(W ∗i )orig lie in B(C)∗. Moreover, all these Hamilton cycles Ci are pairwise edge-
disjoint.

Choose a new constant ε′′ such that

φ, ε′ � ε′′ � r1/m.

Suppose that we have already transformed the original versions of W ∗1 , . . . ,W
∗
i−1 into

Hamilton cycles C1, . . . , Ci−1. Let B(C)∗i denote the subdigraph of B(C)∗ obtained
by removing all edges in C1, . . . , Ci−1. For every cluster Vj ∈ P let V 1

j be the set

of all those vertices v ∈ Vj for which d+
W ∗j

(v) = 0 and let V 2
j be the set of all those
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vertices v ∈ Vj for which d−W ∗j
(v) = 0. Thus (γ3) implies that

|V 1
j | ≥ m− wi(Vj) ≥ (1−

√
φ)m ≥ (1− (ε′′/2)2)m,

and similarly |V 2
j | ≥ (1 − (ε′′/2)2)m. Proposition 4.3(ii) applied with d′ = (ε′′/2)2

now implies that B(C)∗i [V
1
j , V

2
j+1] is still (ε′′, r1/m)-superregular. (To see that Propo-

sition 4.3(ii) can be applied we use that the removal of each Cj decreases the min-
imum out- and indegree of every vertex of B(C)∗[Vj , Vj+1] by at most 1. Thus
B(C)∗i [V

1
j , V

2
j+1] is obtained from B(C)∗[Vj , Vj+1] by deleting at most q ≤ (ε′′/2)2m

edges at every vertex and by removing at most (ε′′/2)2m vertices from each vertex
class.)

On the other hand, (γ2) and (γ3) imply that |V 1
j | = |V 2

j+1|. So we can apply

Proposition 4.14 to find a perfect matching Mj in B(C)∗i [V
1
j , V

2
j+1]. Then the union

Fi of the Mj (for all j = 1, . . . , k) and of W ∗i is a 1-regular digraph on V (G)\V0. We
can now apply Lemma 6.5 with Fi, B(C)∗i , E(C), ε′′, r1/m playing the roles of F , G,
J , ε, d to replace each Mj with a suitable other perfect matching in B(C)∗i [V

1
j , V

2
j+1]

to make Fi into a Hamilton cycle C ′i on V (G) \ V0. To see that (ii) of Lemma 6.5 is
satisfied, consider any cycle D in Fi. If D does not contain any edges from W ∗i , then
it meets V 1

j for every j = 1, . . . , k. So suppose that D contains some edges from W ∗i
and let v be a final vertex on a subpath in W ∗i ∩ D (such a vertex exists by (γ2)).
Then v ∈ V 1

j , where Vj is the cluster containing v.

Let Ci be the original version (C ′i)
orig of C ′i. Then Observation 7.4 implies that Ci

is a Hamilton cycle of G. By (γ4) all the Hamilton cycles C1, . . . , Cq will be pairwise
edge-disjoint. This completes the proof of Claim 5.

Let us now consider the case when (G,P,P ′, R, C, U, U ′) is a (`′, k,m, ε, d)-bi-
setup. The argument for this case is similar, so we only highlight the places where
it differs. Given clusters Vj and Vj′ such that |j′ − j| is even, we now define

ACS(Vj , Vj′) := AECSbi(Vj , Vj+2)∪AECSbi(Vj+2, Vj+4)∪· · ·∪AECSbi(Vj′−2, Vj′).

Since H is bipartite with vertex classes
⋃
Veven and

⋃
Vodd, every edge xy of H

either satisfies V (x)+, V (y) ∈ Veven or V (x)+, V (y) ∈ Vodd. Thus we can define the
W ′i as before and Claim 1 still holds.

Recall that Ueven and Uodd form a partition of the edges of U . Since each occur-
rence of an edge in U corresponds to an edge in U ′, this also defines sets U ′even and
U ′odd corresponding to Ueven and Uodd. Moreover, U ′even and U ′odd form a partition of
the edges of U ′. Instead of Claim 2 we now have the following claim.

Claim 2′. Let W denote the union of W ′1, . . . ,W
′
q. Then there are integers teven

and todd so that W contains each edge of Ueven exactly teven times and every edge
of Uodd exactly todd times. Thus if W is viewed as a multiset consisting of edges in
E(U ′)∪E(H), then W also contains each edge of U ′even exactly teven times and every
edge of U ′odd exactly todd times.

To prove Claim 2′, define an auxiliary digraph D as before. Note that this time,
if ViVj ∈ E(D) then either both i and j are even or both i and j are odd. As
before, D is regular and thus there exists a decomposition of D into edge-disjoint
1-factors. Consider any cycle D′ = Vi1 . . . Vir in one of these 1-factors. Then either
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all of i1, . . . , ir are even or all of them odd. Suppose first that the former holds.
Then W contains all edges in the multiset

S(D′) := ACS(V (xi1), V (xi2)) ∪ACS(V (xi2), V (xi3)) ∪ · · · ∪ACS(V (xir), V (xi1)).

But

ACS(Vij , Vij+1) = AECS(Vij , Vij+2) ∪ · · · ∪AECS(Vij+1−2, Vij+1).

So it follows that S(D′) contains every AECS(Vi, Vi+2) for which i is even the same
number of times and thus S(D′) is a multiple of E(Ueven).

If all of i1, . . . , ir are odd then it follows that S(D′) is a multiple of E(Uodd). Since
W is the union of the S(D′) over all cycles D′ in the 1-factor decomposition of D,
this implies Claim 2′.

As before, one can show that Claim 3 holds and so instead of (9.6) we now have
teven, todd ≤ s′q and so

teven + 11s′q, todd + 11s′q ≤ 12s′q
(9.7)
= t′.

Choose integers seven
1 , . . . , seven

q so that

q∑
i=1

seven
i = t′ − teven and 11s′ ≤ seven

i ≤ 12s′ for all i = 1, . . . , q.

Define sodd
1 , . . . , sodd

q similarly. For each i = 1, . . . , q, let W ′′i be obtained from W ′i
by adding seven

i copies of Ueven and sodd
i copies of Uodd. Then the W ′′i are as desired

in Claim 4. The remainder of the proof is now identical. �

Suppose we are given a 1-factor H of G−V0 which is split into suitable matchings
Hi. We will apply the following lemma in the proof of Lemma 9.7 to assign a
complete exceptional path system CEPSi to each Hi so that CEPSi can play the
role of H ′′i in Lemma 9.5. We then use Lemma 9.5 to extend Hi into a Hamilton
cycle.

Lemma 9.6. Suppose that 0 < 1/n � 1/k, 1/q, ε, 1/f � 1, that t, k/f, fm/q ∈ N
and that (G,P, R, C) is a (k,m, ε, d)-scheme on n vertices. Suppose that P∗ is a
(q/f)-refinement of P and that EF1, . . . , EFt are exceptional factors with parameters
(q/f, f) with respect to C, P∗. Let I denote the canonical interval partition of C into
f intervals of equal length. Suppose that H1, . . . ,Htq are subdigraphs of G satisfying
the following properties:

(a) For each i = 1, . . . , tq there are at most f/100 intervals I ∈ I such that Hi

contains a vertex lying in a cluster on I.
(b) For each interval I ∈ I there are at most tq/100 indices i with 1 ≤ i ≤ tq

and such that Hi contains a vertex lying in a cluster on I.
(c) If |i−j| ≤ 10, then Hi and Hj are vertex-disjoint, with the indices considered

modulo tq.

Then the tq complete exceptional path systems contained in EF1, . . . , EFt can be
labelled CEPS1, . . . , CEPStq such that the following conditions hold:
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• Hi∪CEPSi and Hj ∪CEPSj are pairwise vertex-disjoint whenever |i− j| ≤
10.
• Hi and CEPSi are vertex-disjoint.

Proof. Let CEPS denote the set of the tq complete exceptional path systems
contained in EF1, . . . , EFt. In order to label them, we consider an auxiliary bi-
partite graph B defined as follows. The first vertex class B1 of B consists of all
the Hi. The second vertex class B2 is CEPS. So |B1| = |B2| = tq. We join
Hi ∈ B1 to CEPS ∈ B2 by an edge in B if CEPS is vertex-disjoint from each of
Hi−10, Hi−9, . . . ,Hi+10. Our aim is to find a perfect matching in B which has the
following additional property:

For all 1 ≤ i < j ≤ tq with |i − j| ≤ 10 the two complete exceptional path
systems which are matched to Hi and Hj are vertex-disjoint from each other.

(♥)

To show that such a perfect matching exists, let M be a matching of maximum
size satisfying (♥) and suppose that M is not perfect. Pick Hi ∈ B1 and CEPS∗ ∈
B2 such that they are not covered by M . We say that an interval I ∈ I is bad
for Hj if Hj contains a vertex lying in a cluster on I. Let I ′ denote the set of
all those intervals I ∈ I which are bad for at least one of Hi−10, Hi−9, . . . ,Hi+10.
Thus |I ′| ≤ 21f/100 by (a). But every complete exceptional path system which
spans an interval I ∈ I \ I ′ is vertex-disjoint from each of Hi−10, Hi−9, . . . ,Hi+10.
Since for each such I the set CEPS contains precisely qt/f complete exceptional
path systems spanning I, it follows that the degree of Hi in B is at least (1 −
21/100)tq. On the other hand, for each CEPS ∈ CEPS there are precisely 3t − 1
other complete exceptional path systems in CEPS which are not vertex-disjoint from
CEPS. This implies that at most 20·3t neighbours CEPS of Hi in B are not vertex-
disjoint from each of the at most 20 complete exceptional path systems matched to
Hi−10, . . . ,Hi−1, Hi+1, . . . ,Hi+10 in M . Call a neighbour CEPS of Hi in B nice if
CEPS is vertex-disjoint from each of these at most 20 complete exceptional path
systems. So Hi has at least

(9.16) (1− 21/100)tq − 60t ≥ (1− 22/100)tq = (1− 22/100)|B2|

nice neighbours in B. Note that each nice neighbour CEPS of Hi has to be covered
by M (otherwise we could enlarge M into a bigger matching satisfying (♥) by adding
the edge between Hi and CEPS). Thus in particular,

(9.17) |M | ≥ (1− 22/100)|B2|.

Let I∗ ∈ I be the interval which CEPS∗ spans. Then (b) implies that I∗

is bad for at most tq/100 of the Hj . But this implies that there are at most
21tq/100 indices j with 1 ≤ j ≤ tq and such that I∗ is bad for at least one of
Hj−10, Hj−9, . . . ,Hj+10. Thus the degree of CEPS∗ in B is at least (1− 21/100)tq.
Together with (9.17) this implies that CEPS∗ has at least (1 − 43/100)|B1| neigh-
bours in B which are covered by M . We call such a neighbour Hj useful if CEPS∗

is vertex-disjoint from each of the (at most) 21 complete exceptional path systems
matched toHj−10, Hj−9, . . . ,Hj+10 inM . Recall CEPS contains precisely 3t−1 other
complete exceptional path systems which are not vertex-disjoint from CEPS∗. But
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each of these can force at most 21 neighbours Hj of CEPS∗ to become useless (by
being matched to one of Hj−10, Hj−9, . . . ,Hj+10). So CEPS∗ has at least

(1− 43/100)|B1| − 63t = (1− 43/100)|B1| − 63|B1|/q ≥ (1− 44/100)|B1|

useful neighbours which are covered by M . Together with (9.16) this implies that
there is a matching edge e ∈M such that its endpoint in B1 is a useful neighbour of
CEPS∗ while its endpoint in B2 is a nice neighbour of Hi. Let Hj and CEPS be the
endpoints of e. Let M ′ be the matching obtained from M by deleting e and adding
the edge between Hi and CEPS and the edge between Hj and CEPS∗. Then M ′

is a larger matching which still satisfies (♥), a contradiction.
This shows that B has a perfect matching satisfying (♥). For each i = 1, . . . , tq

we take CEPSi to be the complete exceptional path system which is matched to Hi.
Then (c), the definition of our auxiliary graph B and (♥) together imply that the
CEPSi are as desired. �

To obtain an algorithmic version of the above proof, we simply start with an
empty matching in the auxiliary graph B and use the above argument to gradually
extend the matching into a perfect one.

For the final lemma of this section, we are given an r-factor H of G−V0. H is then
split into 1-factors Fi and these 1-factors are split further into small matchings H i

j .

We use Lemma 9.6 to assign a suitable complete exceptional path system CEPSij
to each H i

j . We then apply Lemma 9.5 to extend each CEPSij ∪H i
j into a Hamilton

cycle using edges of CA. Since Lemma 9.5 allows us to prescribe a regular subgraph
B′(U ′) of B(U ′) whose edges will all be used for the Hamilton cycles, this means we
can use up all edges of B(U ′) in the process, so the leftover of the entire process is
a blow-up of C, as required.

Lemma 9.7. Suppose that 0 < 1/n � 1/k � ε � 1/q � 1/f � r1/m � d �
1/`′, 1/g � 1 and that rk ≤ m/f2. Let

s := rfk, r2 := 96`′g2kr, r3 := s/q

and suppose that k/f, k/g, q/f,m/4`′, fm/q, 2fk/3g(g − 1) ∈ N. Suppose that

(G,P,P ′, R, C, U, U ′)

is an (`′, k,m, ε, d)-setup with |G| = n and C = V1 . . . Vk. Suppose that H is an
r-factor of G− V0 and that CA = B(C)∗ ∪B(U ′)∪CAexc is a chord absorber for C,
U ′ with parameters (ε, r1, r2, r3, q, f) whose original version is edge-disjoint from H.
Then there are edge-disjoint Hamilton cycles C1, . . . , Cs in G which satisfy the fol-
lowing conditions:

(i) Altogether C1, . . . , Cs contain all the edges of H ∪B(U ′)∪ (CAexc)orig. More-
over, all remaining edges in C1, . . . , Cs are contained in B(C)∗.

(ii) CAorig \
⋃
iE(Ci) = B(C)∗ \

⋃
iE(Ci) is an (r1 + r2 + r− (q−1)s/q)-blow-up

of C.
(iii) Each Cbasic

i contains one of the s complete exceptional path systems contained
in CAexc.
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The analogue holds for an (`′, k,m, ε, d)-bi-setup (G,P,P ′, R, C, U, U ′) if we assume
in addition that H is bipartite with vertex classes

⋃
Veven and

⋃
Vodd (where Veven

is the set of all those Vi such that i is even and Vodd is defined analogously).

Proof. Define new constants by

q′ := fk and φ := 8g2k/q′ = 8g2/f.

Thus

s = rq′ and r2 = 12`′φq′r.

Recall that V1, . . . , Vk denote the clusters in P. Apply Proposition 6.1 to decompose
the edges of H into r edge-disjoint 1-factors F1, . . . , Fr of G− V0. We now consider
each Fi∗ with i∗ = 1, . . . , r. Apply Lemma 8.7 with Fi∗ and q′ playing the roles of H
and q∗ to decompose Fi∗ into q′ matchings H i∗

1 , . . . ,H
i∗
q′ which satisfy the following

properties:

(a1) For all i = 1, . . . , q′, H i∗
i consists of at most 2g2km/q′ = φm/4 edges. More-

over |H i∗
i ∩ Vj | ≤ 4g2km/q′ ≤ φm/2 for all j = 1, . . . , k.

(a2) If |i− j| ≤ 10, then H i∗
i and H i∗

j are vertex-disjoint, with the indices consid-

ered modulo q′.
(a3) Each H i∗

i consists entirely of edges of the same double-type and for each
t ∈
(
g
2

)
the number of H i∗

i of double-type t is q′/
(
g
2

)
.

Note that the ‘moreover part’ of (a1) follows immediately from the first part of (a1).
For (a3), recall that we considered a canonical interval partition Ig of C into g edge-
disjoint intervals of equal length and for each j = 1, . . . , g we denote the union of
the clusters in the jth interval by Xj . Then H i∗

i has double-type ab (where a, b ≤ g)
if all its vertices are contained in Xa ∪Xb.

For each i∗ = 1, . . . , r and each i = 1, . . . , q′ we now assign a suitable complete
exceptional path system CEPSi

∗
i from CAexc to H i∗

i . We do this in such a way
that all these complete exceptional path systems are distinct from each other and
the following properties hold:

(b1) For all i = 1, . . . , q′ and all j = 1, . . . , k we have |(H i∗
i ∪CEPSi

∗
i )∩Vj | ≤ φm.

Moreover, each H i∗
i ∪ CEPSi

∗
i consists of at most φm paths.

(b2) H i∗
i ∪ CEPSi

∗
i and H i∗

j ∪ CEPSi
∗
j are pairwise vertex-disjoint whenever

|i− j| ≤ 10 (for each i∗ = 1, . . . , r).
(b3) H i∗

i and CEPSi
∗
i are vertex-disjoint.

(b4) H i∗
i ∪ (CEPSi

∗
i )orig and H i∗

j ∪ (CEPSi
∗
j )orig are pairwise edge-disjoint when-

ever i 6= j (for each i∗ = 1, . . . , r).

Note that since CAexc consists of exceptional factors with parameters (q/f, f), the
CEPSi

∗
i will always satisfy |CEPSi∗i ∩ Vj | ≤ fm/q ≤ m/f ≤ φm/2 and each

CEPSi
∗
i will always consist of fm/q ≤ φm/2 paths. So (b1) will follow from (a1)

and (b3). (b4) follows immediately from the fact that H and (CAexc)orig are edge-
disjoint.

In order to choose the CEPSi
∗
i we proceed as follows. Let t := q′/q = r3/r. Let

I be the canonical interval partition of C into f intervals of equal length. So CAexc

consists of r3 exceptional factors EF1, . . . , EFr3 , where each EFj induces the disjoint
union of q/f complete exceptional path systems on each interval I ∈ I. For each
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i∗ = 1, . . . , r let CEPSi∗ denote the set of all complete exceptional path systems
contained in EF(i∗−1)t+1, . . . , EFi∗t. Each of these exceptional factors contains q

complete exceptional path systems, so altogether we have tq = q′ of them in CEPSi∗ .
We will take CEPSi

∗
1 , . . . , CEPS

i∗
q′ to be the complete exceptional path systems in

CEPSi∗ .
To choose a suitable labeling of the CEPSi

∗
i , we aim to apply Lemma 9.6 with

H i∗
1 , . . . ,H

i∗
q′ playing the roles of H1, . . . ,Htq and EF(i∗−1)t+1, . . . , EFi∗t playing the

roles of EF1, . . . , EFt. So we need to check that conditions (a)–(c) of Lemma 9.6 hold.
Condition (c) follows from (a2). To check (a), consider any H i∗

i and let ab denote its
double-type. Note that I can be obtained from Ig by splitting each interval in Ig
into f/g intervals of equal length. Thus at most 4 + 2f/g ≤ f/100 intervals I ∈ I
have the property that Xa ∪Xb ⊇ V (H i∗

i ) contains a vertex lying in a cluster on I
(the extra 4 accounts for those intervals sharing exactly one cluster with Xa or Xb).
To check (b), consider any interval I ∈ I. Then there are at most 2g double-types
ab such that the set Xa ∪Xb does not avoid all the clusters on I. Since by (a3) for
each double-type precisely q′/

(
g
2

)
of H i∗

1 , . . . ,H
i∗
q′ have that double-type, this implies

at most 2gq′/
(
g
2

)
≤ q′/100 of H i∗

1 , . . . ,H
i∗
q′ contain a vertex lying in a cluster on I.

Thus we can indeed apply Lemma 9.6 to find a labeling CEPSi
∗

1 , . . . , CEPS
i∗
q′ of the

complete exceptional path systems in CEPSi∗ as described there. Then the CEPSi
∗
i

also satisfy (b2) and (b3).
Our aim now is to apply Lemma 9.5. Let r∗ := 12`′φq′. Note that r2 = r∗r. Recall

that (CA2) implies that B(U ′) is an r2-blow-up of U ′ so that for each edge AB of U ′,
there is a partition of both A andB into four subclusters A1, . . . , A4 andB1, . . . , B4 of
equal size so that B(U ′)[Aj , Bj ] consists of exactly r2 edge-disjoint perfect matchings
between each pair Aj , Bj (for all j = 1, . . . , 4). So we can decompose the edges of
B(U ′) into edge-disjoint graphs S1, . . . , Sr so that each of these contains exactly r∗

of these perfect matchings for each pair Aj , Bj of subclusters of each edge AB. (So
Si∗ is an r∗-blow-up of U ′ for each i∗ = 1, . . . , r.) Thus we can satisfy condition (a)
of Lemma 9.5 if we let Si∗ and r∗ play the roles of B′(U ′) and r2.

In particular, we can now apply Lemma 9.5 with S1 playing the role of B′(U ′), F1

playing the role of H, and φ, q′, 2/f1/2, r∗ playing the roles of φ, q, ε′, r2 to obtain a
collection C1 of q′ edge-disjoint Hamilton cycles in Gorig. We next apply Lemma 9.5
for each of F2, . . . , Fr in turn to find collections C2, . . . , Cr, each consisting of q′ edge-
disjoint Hamilton cycles in Gorig. For each Fi∗ we use only Si∗ , the unused part of
B(C)∗ and the complete exceptional path systems CEPSi

∗
i guaranteed by (b1)–(b4).

Note that in each of the applications of Lemma 9.5 the in- and outdegrees of a vertex
in B(C)∗ decrease by at most q′. So in total the in- and outdegrees will decrease by
at most rq′ = rfk ≤ m/f . Thus Proposition 4.3(ii) applied with d′ := 1/f implies

that in each step the remainder of B(C)∗ will still be (2/f1/2, r1/m)-superregular.
So this means we can indeed apply Lemma 9.5.

We take C1, . . . , Cs to be the Hamilton cycles in C1 ∪ · · · ∪ Cr. Then clearly
C1, . . . , Cs are pairwise edge-disjoint and they satisfy (i) and (iii). To check (ii),
consider any vertex x ∈ V (G) \ V0. Then x has outdegree s in C1 ∪ · · · ∪ Cs and all
the r2 + r3 + r outedges at x in B(U ′)∪ (CAexc)orig ∪H are covered by C1 ∪ · · · ∪Cs.
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Moreover, the outdegree in B(C)∗ is r1. Thus the outdegree of x in B(C)∗ \
⋃
iE(Ci)

is

r1 + r2 + r3 + r − s = r1 + r2 + r − (q − 1)s

q
.

Since the analogue also holds for the indegree of x, this proves (ii). The proof of the
bipartite analogue goes through unchanged. �

10. Absorbing a blown-up cycle via switches

Our main aim in this section is to define (and find) a ‘cycle absorber’ CyA which
will be removed from the original digraph G at the start of the proof of Theorem 1.2.
We would like to find a Hamilton decomposition of the union of several cycle ab-
sorbers CyA and the ‘leftover’ G′ of the chord absorber obtained by an application
of Lemma 9.7. Recall that this leftover G′ is a blow-up of C. Consider a 1-factor H
in a 1-factorization of the leftover G′ – so the edges of H wind around C. CyA will
also be a blow-up of C (if one ignores the edges in the complete exceptional path
systems which will be contained in CyA). We will first find a special 1-factorization
of H ∪ CyA which makes use of this property. In particular, either half or all the
edges of each 1-factor will come from CyA. We will then successively switch pairs of
edges between pairs of these 1-factors of H ∪ CyA with the goal of turning each of
them into a Hamilton cycle after a certain number of these switches (see Figure 2).
These switches will always involve edges from CyA and not from H.

However, it will turn out that if these switches only involve pairs of 1-factors,
then the parity of the total number of cycles in a 1-factorization is preserved. In
particular, this will imply that we cannot find a Hamilton decomposition of H∪CyA
if we start of with a 1-factorization into an odd number of cycles. So in Section 10.4,
we also define a ‘parity switcher’ which involves switches between triples of 1-factors
to overcome this problem. We then extend the cycle absorber CyA into a ‘parity
extended cycle absorber’ PCA and find a Hamilton decomposition of H ∪PCA. We
proceed in the same way for each 1-factor H in the above 1-factorization of G′.

10.1. Definition of the cycle absorber. Let C4 denote the orientation of a 4-
cycle in which two vertices have outdegree 2 (and thus the two other vertices have
indegree 2). Given digraphs H and H ′, we say they form a switchable pair if there
are vertices x, x+, y, y+ so that xx+, yy+ are edges of H and xy+, yx+ are edges of
H ′. So the union C∗4 of these four edges forms a copy of C4. We say that C∗4 is a
HH ′-switch. More generally, we also say that a copy of C4 in a digraph G (again
with the above orientation) is a potential switch. A C∗4 -exchange consists of moving
the edges xx+, yy+ from H to H ′ and moving the edges xy+, yx+ from H ′ to H
(see Figure 2). The following proposition (whose proof follows immediately from the
definition of a C∗4 -exchange) states the crucial property of switches.

Proposition 10.1. Given 1-regular digraphs H and H ′, suppose there is a HH ′-
switch C∗4 and let Hnew and H ′new be obtained from H and H ′ via a C∗4 -exchange.

(i) If the two edges of C∗4 ∩ H lie on the same cycle of H, then Hnew has one
more cycle than H.
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(ii) If the two edges of C∗4 ∩ H lie on different cycles D1 and D2 of H, then
Hnew has one less cycle than H. More precisely, the set of cycles of Hnew

is the same as that of H except that the vertices of D1 and D2 now lie on a
common cycle.

Moreover, the analogous assertions hold for H ′.

Consider a (k,m, ε, d)-scheme (G,P, R, C). As usual, let C = V1, . . . , Vk and recall
that V0 denotes the exceptional set in P. Throughout this section, when referring
to ‘clusters’, we will mean the clusters in P, i.e. V1, . . . , Vk. We assume that k is a
multiple of 14.

Given a subdigraph F of G− V0, we say the top half of F is the subdigraph Ftop

of F induced by all the vertices in V1 ∪ V2 ∪ · · · ∪ Vk/2+1. The lower half of F is the
subdigraph Flow of F induced by all the vertices in Vk/2+1 ∪ · · · ∪ Vk−1 ∪ Vk ∪ V1.

Roughly speaking, a cycle absorber consists of three edge-disjoint 1-factors F , S
and S′ whose edges wind around C (we ignore exceptional vertices and edges in
this explanatory paragraph). There will be switches C4,j between F and S and C ′4,j
between F and S′. Suppose we are given a 1-factor H which also winds around
C. In the proof of Lemma 10.2, we will construct two 1-factors T := Hlow ∪ Ftop

and T ′ := Htop ∪ Flow. The switches C4,j between F and S will then correspond to
switches between T and S. We will use these to turn T into a Hamilton cycle in
Lemma 10.2. Moreover, after these switches, the resulting 1-factor obtained from S
will be either a Hamilton cycle or will consist of two cycles. We will proceed similarly
for T ′ and S′. If necessary, S and S′ will then be transformed into Hamilton cycles
using the parity switcher in Section 10.4.

A bicycle B on V is a digraph with V (B) = V which consists of exactly two
vertex-disjoint (directed) cycles. A spanning bicycle B in a digraph G is a 1-factor
of G which consists of exactly two vertex-disjoint cycles.

Let I1, . . . , I7 be a canonical interval partition of C into 7 intervals of equal length.
Recall that a complete exceptional path system CEPS completely spans Ii if CEPS
spans Ii and the vertex set of CEPS is the union of all the clusters in Ii. Suppose
that H is a digraph on V (G)\V0 which contains s complete exceptional path systems
(for some s) and whose other edges lie in G. We say that H agrees with C if for
every edge vv′ of H which does not lie in one of the s complete exceptional path
systems there is an i with 1 ≤ i ≤ k so that v ∈ Vi and v′ ∈ Vi+1. So if s = 0 then
H agrees with C if and only if H winds around C.

Below we assume that the vertices in V1 and in Vk/2+1 are ordered. A cycle
absorber CyA (with respect to C) in G is a digraph on V (G) \V0 with the following
properties:

(CyA0) CyA is the union of three 1-regular digraphs F , S and S′, each with vertex
set V (G) \ V0. Ftop, Flow, S and S′ each contain a complete exceptional
path system (labelled CEPS3, CEPS5, CEPS4 and CEPS2 respectively)
and CEPSi completely spans the interval Ii. Moreover, all the edges of
F ∪ S ∪ S′ which are not contained in CEPS2 ∪ · · · ∪ CEPS5 lie in G− V0

and each of F , S and S′ agrees with C. Finally, F orig, Sorig and (S′)orig are
pairwise edge-disjoint subdigraphs of G.
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(CyA1) For each j = 1, . . . ,m, let Pj denote the path of length k/7 in Ftop starting
at the jth vertex of V1 and ending in Vk/7+1. (So each Pj contains precisely
one vertex from each cluster in I1.) Then Pj ∪ Pj+1 forms a switchable pair
with S for all j = 1, . . . ,m (with indices considered modulo m). Denote the
switch by C4,j .

(CyA2) There is a potential switch C4,m+1 in G−V0 so that S contains two indepen-
dent edges of C4,m+1 but the other two edges of C4,m+1 do not lie in CyAorig.
Moreover, V (C4,j) ⊆

⋃
V ∈I1 V for each j = 1, . . . ,m+ 1 and all the C4,j are

pairwise vertex-disjoint.
(CyA3) For each j = 1, . . . ,m+ 1, denote the edges of C4,j which are contained in S

by `j and rj . Let L be the (ordered) sequence of edges `1, . . . , `m+1 and R
be the (ordered) sequence of edges r1, . . . , rm+1. S is a bicycle on V (G) \ V0

where one cycle contains all edges of L in the given order and the other cycle
contains all edges of R in the given order.

Moreover, Flow and S′ will satisfy the following conditions which are analogous to
(CyA1)–(CyA3). In (CyA2′), we define I4,low to be the subinterval Vk/2+1 . . . V4k/7+1

of I4.

(CyA1′) For each j = 1, . . . ,m, let P ′j denote the path of length k/14 in Flow starting at

the jth vertex of Vk/2+1 and ending in V4k/7+1. (So each P ′j contains precisely

one vertex from each cluster in I4,low.) Then P ′j ∪ P ′j+1 forms a switchable

pair with S′ for all j = 1, . . . ,m (with indices considered modulo m). Denote
the switch by C ′4,j .

(CyA2′) There is a potential switch C ′4,m+1 in G−V0 so that S′ contains two indepen-

dent edges of C4,m+1 but the other two edges of C ′4,m+1 do not lie in CyAorig.

Moreover, V (C ′4,j) ⊆
⋃
V ∈I4,low V for each j = 1, . . . ,m + 1 and all the C ′4,j

are pairwise vertex-disjoint.
(CyA3′) For each j = 1, . . . ,m+ 1, denote the edges of C ′4,j which are contained in S′

by `′j and r′j . Let L′ be the (ordered) sequence of edges `′1, . . . , `
′
m+1 and R′

be the (ordered) sequence of edges r′1, . . . , r
′
m+1. S′ is a bicycle on V (G) \V0

where one cycle contains all edges of L′ in the given order and the other cycle
contains all edges of R′ in the given order.

The switches C4,j and C ′4,j with j < m will be used in the proof of Lemma 10.2
to ‘transform’ a given 1-regular graph H whose edges wind around C into a Hamil-
ton cycle. We will not actually use the two switches C4,m and C ′4,m defined above.
However, they make our description of the construction of F a little simpler. The
potential switches C4,m+1 and C ′4,m+1 will be used to ‘attach’ the cycle absorber to
the parity switcher defined in Section 10.4. This will ensure that the ‘leftover’ of the
cycle absorber after the above transformation step also has a Hamilton decomposi-
tion.

Note that CyAorig is a spanning subdigraph of G in which the vertices in V0 have
in- and outdegree 4, while the others have in- and outdegree 3. However, CyA is
not actually a subdigraph of G, so saying that it is a cycle absorber in G is a slight
abuse of notation.
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Figure 5. The exceptional factor which contains the complete excep-
tional path systems CEPSi of the (parity extended) cycle absorber.
Each CEPSi spans the interval Ii and the diagram shows how these
are assigned to the 1-factors of the cycle absorber in (CyA0) and to
the bicycles B′i of the parity switcher in the proof of Lemma 10.5.

The complete exceptional path systems CEPSi contained in CyA will be chosen
within a single exceptional factor, which has parameters (1, 7) (see Figure 5). The
assignment of the CEPSi to the different 1-factors of the cycle absorber (and the
parity switcher) is chosen in such a way that the switches of the 1-factor can be
chosen to be vertex disjoint from the CEPSi contained in this 1-factor.

10.2. Using the cycle absorber. The following lemma shows that given an arbi-
trary 1-factor H of G − V0 which winds around C and a cycle absorber CyA, we
can ‘almost’ decompose H ∪ CyA into Hamilton cycles: we obtain a decomposition
into at least two Hamilton cycles and at most two spanning bicycles in G. The final
step of transforming the bicycles into Hamilton cycles is done by means of a ‘parity
switcher’, defined in Section 10.4. (As discussed at the beginning of Section 10.4,
the difficult case is when Lemma 10.2 yields a decomposition with exactly three
Hamilton cycles and exactly one bicycle.)

Lemma 10.2. Suppose that 0 < 1/n � 1/k � ε � d � 1, that k/14 ∈ N and that
(G,P, R, C) is a (k,m, ε, d)-scheme with |G| = n. Suppose that H is a 1-factor of
G− V0 which winds around C. Let CyA be a cycle absorber with respect to C in G
such that CyAorig and H are edge-disjoint. Then H ∪ CyAorig has a decomposition
into four 1-factors F1, F2, F3 and F4 of G satisfying the following conditions:

(i) F1 contains CEPSorig
3 , F2 contains CEPSorig

5 , F3 contains CEPSorig
4 and

F4 contains CEPSorig
2 (where the CEPSi are as defined in (CyA0)).

(ii) F1 and F2 are Hamilton cycles in G.
(iii) Each of F3 and F4 is either a Hamilton cycle or a spanning bicycle in G. If

F3 is a bicycle, then one of the cycles contains `m+1 and the other contains
rm+1. Similarly, if F4 is a bicycle, then one of the cycles contains `′m+1 and
the other contains r′m+1.
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Proof. Similarly as for F (as defined in (CyA0)), we partition H into Htop and
Hlow. So both Ftop and Htop consist of m vertex-disjoint paths from V1 to Vk/2+1

and both Flow and Hlow consist of m vertex-disjoint paths from Vk/2+1 to V1. Let
T := Hlow∪Ftop and let T ′ := Htop∪Flow. Then (CyA0) implies that both T and T ′

are 1-regular digraphs on V (G) \V0 which agree with C and correspond to 1-factors
T orig and (T ′)orig of G.

Our first aim is to perform switches between T and S to transform T into a
Hamilton cycle on V (G)\V0. (T orig will then turn out to be a Hamilton cycle of G.)
Suppose that T is not a Hamilton cycle. For j = 1, . . . ,m, let Pj be as defined in
(CyA1). Recall from (CyA0) that CEPS3 is the complete exceptional path system
contained in Ttop = Ftop. But since CEPS3 completely spans I3, the paths in
CEPS3 link all vertices of V2k/7+1 to those in V3k/7+1. It follows that every cycle D
in T visits every cluster on C except possibly V2k/7+2, . . . , V3k/7. In particular, the
following assertion holds (where the Pj are as defined in (CyA1)):

For each j = 1, . . . ,m, any cycle D in T either contains Pj or it avoids all
vertices of Pj. Moreover, D contains at least one of the Pj and so it contains
the jth vertex xj of V1 for some j with 1 ≤ j ≤ m.

(?)

We say that i with 1 ≤ i < m is a switch index for T if xi and xi+1 lie on different
cycles of T (i.e. if the initial vertices of Pi and Pi+1 lie on different cycles of T ).
Since T is not a Hamilton cycle, (?) implies that there must be an i with 1 ≤ i < m
which is a switch index. Our approach will be to perform a switch between the cycles
D and D′ which contain xi and xi+1 respectively. This will reduce the number of
cycles of T and turn S into a Hamilton cycle. We continue in this way until T is a
Hamilton cycle. The only difference in the later steps is that S might already be a
Hamilton cycle, in which case it is transformed into a bicycle after the switch.

More precisely, for i = 1, . . . ,m + 1, we define Li := (`i, . . . , `m+1) and Ri :=
(ri, . . . , rm+1). So L1 = L and R1 = R (where `i, ri, L,R are as defined in (CyA3)).
Suppose that 1 ≤ i < m and that Ti and Si are 1-regular digraphs on V (G) \ V0

which satisfy (ai) and (bi) below as well as either (CyA3−i ) or (CyA3+
i ):

(ai) Let D be any cycle of Ti. For each j = i+ 1, . . . ,m, D either contains Pj or
it avoids all vertices of Pj . Moreover, let ei−1 denote the edge in C4,i−1 ∩Pi.
Then D either contains all edges in E(Pi) \ {ei−1} (possibly D even contains
Pi) or D avoids all vertices of Pi.

(bi) All of x1, . . . , xi lie on a common cycle in Ti.
(CyA3+

i ) Si is a bicycle on V (G) \ V0 where one cycle contains all edges of Li in the
given order and the other cycle contains all edges of Ri in the given order.

(CyA3−i ) Si is a Hamilton cycle on V (G) \ V0 which contains all edges of Li and Ri in
the given order and where all edges of Li come before all edges of Ri.

Thus if i = 1, T1 := T and S1 := S, then (?) and (CyA3) together imply that (ai),
(bi) and (CyA3+

i ) hold. (Note that we view {e0} as being the empty set, so the last
part of (a1) says that D either contains all edges of P1 or D avoids all vertices of
P1.) So suppose first that (CyA3+

i ) holds for some 1 ≤ i < m. We define a switch
index for Ti in the same way as for T . If i is not a switch index, let Si+1 := Si
and Ti+1 := Ti. Then clearly (ai+1), (bi+1) and (CyA3+

i+1) hold. If i is a switch
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Figure 6. Transforming Si into Si+1. The left hand side illustrates
the case when Si satisfies (CyA3−i ) and the right hand side illustrates

the case when Si satisfies (CyA3+
i ).

index, let D be the cycle of Ti which contains xi and let D′ be the cycle of Ti
which contains xi+1. Then (ai) implies that D contains all edges in E(Pi) \ {ei−1}
and D′ contains Pi+1. But ei−1 /∈ C4,i since C4,i−1 and C4,i are vertex-disjoint by
(CyA2). Thus we can carry out the C4,i-exchange to obtain Si+1 and Ti+1. Then
Proposition 10.1 implies that the vertices of D and D′ now lie on a common cycle D′′

of Ti+1 In particular, Ti+1 satisfies (bi+1). Moreover, this new cycle D′′ will contain
all edges in E(Pi+1) \ {ei}. Together with the fact that C4,i avoids all the Pj for
j = i+ 2, . . . ,m, it follows that Ti+1 satisfies (ai+1). Moreover, it is easy to see that
Si+1 satisfies (CyA3−i+1) (see Figure 6). Suppose next that (CyA3−i ) holds for some
1 ≤ i < m. If i is not a switch index, let Si+1 := Si and Ti+1 := Ti. Then clearly
(ai+1), (bi+1) and (CyA3−i+1) hold. If i is a switch index, define D and D′ as above.
Again carry out the C4,i-exchange to obtain Si+1 and Ti+1. Again, Proposition 10.1
implies that the vertices of D and D′ now lie on a common cycle of Ti+1. Also, it is
easy to see that (ai+1), (bi+1) and (CyA3+

i+1) hold (see Figure 6).

So, by induction, Tm and Sm satisfy (am) and (bm) as well as one of (CyA3+
m)

and (CyA3−m). Moreover, in both of the above cases, Proposition 10.1(ii) implies
that all vertices which lie on a common cycle in Ti still lie on a common cycle in
Ti+1. Together with (bm) and the fact that by (?) every cycle in T = T1 contains
xj for some 1 ≤ j ≤ m this means that Tm is a Hamilton cycle. Note that both
CEPS3 and CEPS4 are edge-disjoint (actually even vertex-disjoint) from all C4,j

(by (CyA2) and the fact that CEPS3 spans I3 and CEPS4 spans I4). Thus both
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CEPS3 and CEPS4 are unaffected by the switches we carried out and so Tm and

Sm still contain CEPS3 and CEPS4 respectively. So we can take F1 := T orig
m and

F3 := Sorig
m . (In particular, Observation 7.4 implies that F1 is a Hamilton cycle of G

and the argument for F3 is similar.).
In a similar way, we obtain F2 from T ′ and F4 from S′. This time, we let T ′1 := T ′

and S′1 := S′. We then carry out the above procedure with S′i, T
′
i , P

′
j playing the

roles of Si, Ti, Pj to obtain a Hamilton cycle T ′m on V (G) \ V0. Since by (CyA2′)
both CEPS2 and CEPS5 are edge-disjoint from all C ′4,j , both CEPS2 and CEPS5

are unaffected by the switches we carried out and so T ′m and S′m still contain CEPS5

and CEPS2 respectively. We let F2 := (T ′m)orig and F ′4 := (S′m)orig. �

10.3. Finding the cycle absorber. The following lemma guarantees the existence
of a cycle absorber in a (k,m, ε, d)-scheme.

Lemma 10.3. Suppose that 0 < 1/n � 1/k � ε � d � 1, that k/14,m/2 ∈ N
and that (G,P, R, C) is a (k,m, ε, d)-scheme with |G| = n and C = V1 . . . Vk. Let
I1, . . . , I7 be the canonical interval partition of C into 7 intervals of equal length. Let
EF be an exceptional factor with parameters (1, 7) with respect to C, P. For each
i = 1, . . . , 7, let CEPSi be the complete exceptional path system which is contained
in EF and completely spans Ii. Then there is a cycle absorber CyA with respect to
C in G which satisfies the following properties:

(i) CEPS2, . . . , CEPS5 are the complete exceptional path systems described in
(CyA0).

(ii) C4,m+1 ⊆ G[V12, V13] and C ′4,m+1 ⊆ G[Vk/2+12, Vk/2+13] (where C4,m+1 and

C ′4,m+1 are as defined in (CyA2) and (CyA2′) respectively).

Proof. We first construct Ftop. Below, we assume the existence of an ordering
of the vertices in any cluster Vi. Let B(C) be the union of G[Vi, Vi+1] over all
i = 1, . . . , k. So B(C) is a blow-up of C in which every edge of C corresponds to an
[ε,≥ d]-superregular pair.

Claim 1. B(C) contains a system Q1, . . . , Qm of vertex-disjoint paths and m vertex-
disjoint copies C4,1, . . . , C4,m of C4 such that the following properties are satisfied:

• Qj joins the jth vertex of V1 to the jth vertex of V2k/7+1.
• For each j = 1, . . . ,m, C4,j shares exactly one edge with Qj and one edge

with Qj+1 (where Qm+1 := Q1).
• V (C4,j) ⊆

⋃
V ∈I1 V for each j = 1, . . . ,m.

To prove the claim, we first apply the Blow-up lemma (Lemma 4.13) to G[V4, V5] to
find m/2 vertex-disjoint copies C4,1, C4,3, . . . , C4,m−1 of C4. Now we choose a perfect
matching in each of the C4,j . Next apply the Blow-up lemma to G[V8, V9] to find
m/2 vertex-disjoint copies C4,2, C4,4, . . . , C4,m of C4. As before we choose a perfect
matching in each of the C4,j . This gives a perfect matching M1 in G[V4, V5] and a
perfect matching M2 in G[V8, V9]. Order the edges of each Mi such that the following
properties are satisfied:

• Edges belonging to the same C4 are consecutive.
• The edges of C4,j+2 come directly after those of C4,j (modulo m).
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• The edges of C4,1 are the first two edges of M1 and the edges of C4,2 are the
second and third edge of M2.

These matchings induce a new ordering on the vertices in the clusters V4, V5, V8, V9

with which we replace the orderings chosen initially.
Now we apply Corollary 4.15 three times to obtain a system of m vertex-disjoint

paths in B(C) which for each j = 1, . . . ,m link the jth vertex of V1 to the jth vertex
of V4, a system of m vertex-disjoint paths which link the jth vertex of V5 to the jth
vertex of V8 and a system of m vertex-disjoint paths which link the jth vertex of V9

to the jth vertex of V2k/7+1. The union of M1, M2 and all these path systems forms
a system Q1, . . . , Qm of paths as required in Claim 1.

Recall that the paths in CEPS3 join V2k/7+1 to V3k/7+1. Now let Q′1, . . . , Q
′
m be

a system of vertex-disjoint paths in B(C) linking the vertices in V3k/7+1 to those
Vk/2+1 (in an arbitrary way). We let Ftop := Q1 ∪ . . . Qm ∪ CEPS3 ∪Q′1 ∪ . . . Q′m.
Flow is constructed similarly, but this time we choose C ′4,1, C

′
4,3, . . . , C

′
4,m−1 in

G[Vk/2+4, Vk/2+5] and C ′4,2, C
′
4,4, . . . , C

′
4,m in G[Vk/2+8, Vk/2+9] (and Flow will contain

CEPS5).
So let us now construct S. Let B′(C) be obtained from B(C) by deleting all the

edges in F = Ftop ∪Flow and define G′ similarly (since this decreases the in- and the
outdegrees by at most 1, the superregularity of the pairs G′[Vi, Vi+1] is not affected
significantly). Choose a copy C4,m+1 of C4 in G′[V12, V13]. Let `m+1 and rm+1 be a
matching in C4,m+1. For each j = 1, . . . ,m let `j and rj be the edges of C4,j which
are not contained in F .

When we refer to an endvertex of an edge e below, this is allowed to be either
the initial or the final vertex of e (it will be clear from the context which one is
meant). For all odd j with 1 ≤ j < m, apply Corollary 4.15 to find a system of
m vertex-disjoint paths in B′(C) linking the endvertex of `j in V5 to the endvertex
of `j+1 in V8 and the endvertex of rj in V5 to the endvertex of rj+1 in V8. Apply
Corollary 4.15 again to find a system of m vertex-disjoint paths in B′(C) such that
one of these paths links the endvertex of `m in V9 to the endvertex of `m+1 in V12,
another path links the endvertex of rm in V9 to the endvertex of rm+1 in V12 and
the remaining m − 2 paths join the remaining vertices in V9 to those in V12. We
also choose a matching M3 in G′[V12, V13] which consists of m− 2 edges and avoids
the endvertices of `m+1 and rm+1 (we find M3 by applying Proposition 4.14 to the
subgraph of G′[V12, V13] obtained by deleting the endvertices of `m+1 and rm+1).
Next we apply Corollary 4.15 to find a system of m vertex-disjoint paths in B′(C)
joining the vertices in V13 to those in V3k/7+1.

Let Q denote the system of paths obtained from the union of all the paths chosen
previously, of `1, . . . , `m+1, of r1, . . . , rm+1 and of the edges in M3. So each path
in Q joins some vertex in V4 to some vertex in V3k/7+1. Consider the system Q′ of
paths obtained by concatenating the paths in Q with those in CEPS4 (recall that
CEPS4 completely spans the interval I4 = V3k/7+1 . . . V4k/7+1). For each even j with
1 ≤ j ≤ m, let r′j denote the vertex in V4k/7+1 which is connected to the edge rj by

a path in Q′ and define `′j similarly. Apply Corollary 4.15 to find a system Q′′ of

m vertex-disjoint paths in B′(C) from V4k/7+1 to V4 such that for each even j with
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1 ≤ j < m the vertex r′j is linked to the endvertex of rj+1 in V4 and `′j is linked

to the endvertex of `j+1 in V4. Also, `′m is linked to `1 and r′m is linked to r1 (see
Figure 7). We let S be the union of all the paths in Q′ and Q′′. Then F and S
satisfy (CyA0)–(CyA3).
S′ is constructed similarly. This is possible as the switches C ′4,1, . . . , C

′
4,m+1 lie in

I4,low ⊆ I4 whereas the complete exceptional path system CEPS2 contained in S′

spans I2 (see Figure 5). �

10.4. The parity switcher. Suppose that we are given a decomposition D of a
regular digraph into r edge-disjoint 1-factors and suppose that the total number of
cycles is K, say. If we carry out C4-exchanges between the cycles in these 1-factors,
then Proposition 10.1 implies that the resulting total number of cycles either stays
the same, increases by two or decreases by two after each exchange. So if e.g. r is odd
and K is even, then we will never be able to transform D into a set of edge-disjoint
Hamilton cycles if we rely only on C4-exchanges between cycles in D. The following
concept of ‘triple switches’ will allow us to change the parity of the total number of
cycles in a decomposition. In particular, the resulting parity switcher will allow us
to transform the spanning bicycles which are potentially returned by Lemma 10.2
into Hamilton cycles.

Let K2,3 denote the orientation of a complete bipartite graph with vertex classes
of size 2 and 3 in which every edge is oriented towards the vertex class of size 3. Note
that K2,3 is the edge-disjoint union of three matchings M1, M2 and M3 of size 2.
Given edge-disjoint bicycles B1, B2 and B3 on the same vertex set, we say that
they are triply-switchable if for each i = 1, 2, 3 there are independent edges `i and
ri lying on different cycles of Bi such that the union of `i and ri over all i = 1, 2, 3
forms a copy K∗2,3 of K2,3. We say that K∗2,3 is a B1B2B3-switch. A K∗2,3-exchange
consists of deleting the edges `i =: xxi and ri =: yyi from Bi and adding the edges
xyi and yxi for each i = 1, 2, 3 (see Figure 8). Thus for each i = 1, 2, 3 one of
the edges `i, ri will be added to Bi+1 and the other edge will be added to Bi+2

(where the B4 := B1 and B5 := B2). Note that the digraph obtained from Bi via
a K∗2,3-exchange is a Hamilton cycle (for each i = 1, 2, 3). Thus the union of three
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edge-disjoint triply-switchable bicycles has a decomposition into three edge-disjoint
Hamilton cycles as well as a decomposition into six cycles (two for each Bi). As
mentioned above, this parity difference will enable us to turn the bicycle(s) which
are potentially returned by Lemma 10.2 into Hamilton cycles (without creating any
additional bicycles elsewhere).

A parity extended cycle absorber PCA in G with respect to C is digraph on
V (G) \ V0 with the following properties:

(PCA1) PCA is the union of two digraphs CyA and TSB, each with vertex set
V (G) \ V0. CyA = F ∪ S ∪ S′ is a cycle absorber in G. TSB is the union
of three 1-regular digraphs B′1, B′2 and B′3 on V (G) \ V0 such that each
B′i contains a complete exceptional path system CEPS(B′i) (but no other
exceptional edges) and such that B′i is a bicycle on V (G) \ V0. Let Bi :=
(B′i)

orig. Then CyAorig, B1, B2 and B3 are pairwise edge-disjoint subdigraphs
of G.

(PCA2) B1, B2 and B3 are triply-switchable. Let K∗2,3 denote the corresponding
B1B2B3-switch and let `∗i and r∗i denote the edges of K∗2,3 contained in Bi.

(So `∗i and r∗i lie on different cycles of Bi.)
(PCA3) Recall that `m+1 and rm+1 are the two edges of the switch C4,m+1 which are

contained in S (where C4,m+1 is as defined in (CyA2)). Then B1 contains the
other two edges `S and rS of C4,m+1. Similarly, recall that `′m+1 and r′m+1

are the two edges of the switch C ′4,m+1 which are contained in S′ (where

C ′4,m+1 is as defined in (CyA2′)). Then B1 also contains the other two edges

`S′ and rS′ of C ′4,m+1.

(PCA4) B2 and B3 are pairwise switchable. Let C4,B2B3-denote the corresponding
switch.



78 DANIELA KÜHN AND DERYK OSTHUS

(PCA5) All the switches K∗2,3, C4,m+1, C ′4,m+1 and C4,B2B3 are pairwise edge-disjoint.

Both C4,m+1 and C ′4,m+1 are vertex-disjoint from CEPS(B′1) while both K∗2,3
and C4,B2B3 are vertex-disjoint from CEPS(B′i) for all i = 1, 2, 3.

(PCA6) One cycle of the bicycle B1 contains the edges `S , `S′ , `
∗
1 in that order while

the other cycle of B1 contains rS , rS′ , r
∗
1 in that order.

An s-fold parity extended cycle absorber PCA(s) with respect to C in G consists of
s parity extended cycle absorbers whose original versions are pairwise edge-disjoint.
Note that PCA(s) is a 6s-regular spanning subdigraph of Gbasic which contains
precisely 7s complete exceptional path systems (and no other exceptional edges).
Moreover, PCA(s)orig is a spanning subdigraph of G and

(10.1) d±(x) = 7s ∀x ∈ V0 and d±(y) = 6s ∀y ∈ V (G) \ V0.

Lemma 10.4. Suppose that 0 < 1/n � 1/k � ε � d � 1, that k/14 ∈ N and that
(G,P, R, C) is a (k,m, ε, d)-scheme with |G| = n. Suppose that H is an s-factor
of G − V0 such that H is a blow-up of C. Let PCA(s) be an s-fold parity extended
cycle absorber with respect to C in G such that PCA(s)orig and H are edge-disjoint.
Then H ∪ PCA(s)orig has a decomposition into 7s edge-disjoint Hamilton cycles of
G. Moreover, each of these Hamilton cycles contains the original version of one of
the 7s complete exceptional path systems contained in PCA(s)orig.

Proof. Let PCA1, . . . , PCAs denote the parity extended cycle absorbers contained
in PCA(s). We apply Proposition 6.1 to find a 1-factorization of H into H1, . . . ,Hs.

Since H is a blow-up of C, each Hi winds around C. We claim that Hi ∪ PCAorig
i

has a decomposition into Hamilton cycles C7(i−1)+1, . . . , C7i of G.
Note that the claim follows if we can prove it for the case i = 1. So let CyA

and TSB = B′1 ∪ B′2 ∪ B′3 be as defined in (PCA1)–(PCA6). Apply Lemma 10.2
to obtain a decomposition of H1 ∪ CyAorig into 1-factors F1, . . . , F4 satisfying the
following conditions:

(a) F1 and F2 are Hamilton cycles in G.
(b) Each of F3 and F4 is either a Hamilton cycle or a spanning bicycle in G. If

F3 is a bicycle, then one of the cycles contains `m+1 and the other contains
rm+1. Similarly, if F4 is a bicycle, then one of the cycles contains `′m+1 and
the other contains r′m+1.

(c) Each Fi contains (the original version of) a complete exceptional path system
CEPS∗i (which is one of those contained in PCA(1)orig). Moreover, CEPS∗3
spans I4 and CEPS∗4 spans I2 (where Ii is the ith interval of the canonical
interval partition into 7 intervals defined earlier).

If both F3 and F4 are Hamilton cycles, we perform the K∗2,3-exchange to decompose

TSBorig = B1 ∪ B2 ∪ B3 into three edge-disjoint Hamilton cycles of G. Then these
Hamilton cycles together with F1, . . . , F4 form a Hamilton decomposition of H1 ∪
PCAorig

1 .
So suppose next that both F3 and F4 are bicycles. First perform the C4,m+1-

exchange. This turns both F3 and B1 into Hamilton cycles. Let B1
1 denote the

Hamilton cycle obtained from B1. Then (PCA6) implies that the edges `S′ , `
∗
1, rS′ , r

∗
1

appear on B1
1 in that order. Next we perform the C ′4,m+1-exchange. This turns F4
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into a Hamilton cycle and B1
1 into a bicycle B2

1 . Note that one of the cycles of B2
1

contains `∗1 while the other cycle contains r∗1 (this is a special case of the argument
illustrated in Figure 6). So we can now perform the K∗2,3-exchange. This turns

each of B2
1 , B2 and B3 into a Hamilton cycle. Altogether this gives a Hamilton

decomposition of H1 ∪ PCAorig
1 .

So suppose next that F3 is a bicycle but F4 is a Hamilton cycle. In this case
we perform the C4,m+1-exchange. This turns both F3 and B1 into Hamilton cycles.
We then perform the C4,B2B3-exchange. This turns both B2 and B3 into Hamilton

cycles. As before, altogether this gives a Hamilton decomposition of H1 ∪ PCAorig
1 .

The case when F3 is a Hamilton cycle but F4 is a bicycle is similar to the previous
case, but we perform the C ′4,m+1-exchange instead of the C4,m+1-exchange.

The ‘moreover part’ follows since the switches involved in the above argument
are edge-disjoint from the complete exceptional path systems of the bicycles and
Hamilton cycles involved in the corresponding exchanges. More precisely, for the
Hamilton cycles originating from the Bi, the ‘moreover part follows from (PCA1)
and (PCA5). For F1 and F2, it follows from (a) and (c) above. For F3, it follows
from (CyA2) and (c), and for F4 it follows from (CyA2′) and (c). �

Lemma 10.5. Suppose that 0 < 1/n � 1/k � ε � d � 1, that s/m � d and
that k/14,m/2 ∈ N. Let (G,P, R, C) be a (k,m, ε, d)-scheme with |G| = n. Suppose
that EF1, . . . , EFs are exceptional factors with parameters (1, 7) with respect to C, P
whose original versions are pairwise edge-disjoint. Then there exists an s-fold parity
extended cycle absorber PCA(s) with respect to C in G such that the 7s complete
exceptional path systems contained in PCA(s) are precisely those in EF1∪· · ·∪EFs.

Proof. Choose an additional constant ε′ with ε, s/m � ε′ � d. Let G′ be the

digraph obtained from G by deleting all the edges in EF orig
1 , . . . , EF orig

s . Note that
|N+

G (x)\N+
G′(x)| ≤ 7s ≤ (ε′/3)2m for every vertex x ofG and the analogous condition

holds for the inneighbourhoods of x. Thus Lemma 7.1(ii) implies that (G′,P, R, C)
is still a (k,m, ε′, d)-scheme.

Let us first show how to find a single parity extended cycle absorber PCA1 with
respect to C in G′. Let I1, . . . , I7 be the canonical interval partition of C into
7 intervals I1, . . . , I7 of equal length and let CEPSi denote the complete excep-
tional path system in EF1 which completely spans Ii (for all i = 1, . . . , 7). Apply
Lemma 10.3 to find a cycle absorber CyA with respect to C in G′ which contains
CEPS2, . . . , CEPS5 (in the way described in (CyA0)).

Recall that `S and rS denote the edges of the (potential) switch C4,m+1 described
in (CyA2) and (PCA3) which are not contained in CyA. Similarly, recall `S′ and rS′
denote the edges of the (potential) switch C ′4,m+1 described in (CyA2′) and (PCA3)
which are not contained in CyA. Recall from Lemma 10.3 that `S and rS lie in
G′[V12, V13] and that `S′ and rS′ lie in G′[Vk/2+12, Vk/2+13]. Remove the edges of

CyAorig from G′ to obtain G′′. Let B′′(C) be the union of G′′[Vi, Vi+1] over all
i = 1, . . . , k. Proposition 4.3(iii) implies that B′′(C) is a blow-up of C in which every

edge of C corresponds to an [2
√
ε′,≥ d]-superregular pair.



80 DANIELA KÜHN AND DERYK OSTHUS

When we refer to an endvertex of an edge e below, this is allowed to be either
the initial or the final vertex of e (it will be clear from the context which one is
meant). Our next aim is to find TSB. We start by finding B′1. First we apply
Proposition 4.14 to choose a perfect matching in G′′[V12, V13] which extends `S and
rS . Now apply Corollary 4.15 to find a system of m vertex-disjoint paths in B′′(C)
which link all vertices of V13 to those in Vk/2+12 such that the endvertex of `S in V13

is linked to the endvertex of `S′ in Vk/2+12 and the endvertex of rS in V13 is linked to
the endvertex of rS′ in Vk/2+12. Choose a perfect matching in G′′[Vk/2+12, Vk/2+13]
which extends `S′ and rS′ .

Next choose a copy K∗2,3 of K2,3 in G′′[Vk/2+16, Vk/2+17]. For each i = 1, 2, 3
let `∗i and r∗i be two independent edges in K∗2,3 such that all these six edges are

distinct from each other (and so K∗2,3 is the union of all these six edges). Now

apply Lemma 4.15 to find a system of m vertex-disjoint paths in B′′(C) which link
the vertices in Vk/2+13 to those in Vk/2+16 in such a way that the endvertex of `S′ in
Vk/2+13 is linked to the endvertex of `∗1 in Vk/2+16 and the endvertex of rS′ in Vk/2+13

is linked to the endvertex of r∗1 in Vk/2+16. Extend `∗1 and r∗1 into a perfect matching
of G′′[Vk/2+16, Vk/2+17]. Now apply Lemma 4.15 to find a system of m vertex-disjoint
paths in B′′(C) which (arbitrarily) link all vertices of Vk/2+17 to those in V5k/7+1.
Altogether this gives us a system Q of m vertex-disjoint paths joining all vertices in
V12 to all vertices in V5k/7+1.

Now extend this path system by concatenating the paths in Q with the ones
forming CEPS6. (Recall that CEPS6 spans the interval I6 = V5k/7+1 . . . V6k/7+1

completely.) Denote the resulting path system by Q′. Order the vertices of V12 so
that the first vertex is the endvertex of `S and the last vertex is the endvertex of rS .
For each j = 1, . . . ,m, let qj ∈ V6k/7+1 denote the vertex which is linked to the jth
vertex of V12 by a path in Q′. Thus the path in Q′ ending in q1 contains `S , `S′ , `

∗
1

(in that order) while the path in Q′ ending in qm contains rS , rS′ , r
∗
1 (in that order).

Now apply Lemma 4.15 to find a system Q′′ of m vertex-disjoint paths in B′′(C)
which link each qj to the (j + 2)nd vertex in V12 (where the indices are considered
modulo m). Let B′1 be the union of all the paths in Q′ and Q′′. Then B′1 is a bicycle

on V (G)\V0 and B1 := (B′1)orig = Q∪CEPSorig
6 ∪Q′′ satisfies (PCA3) and (PCA6).

We next show how to find B′2. Remove all edges of B1 from G′′ to obtain G′′′.
Let B′′′(C) be the union of G′′′[Vi, Vi+1] over all i = 1, . . . , k. Extend `∗2 and r∗2
into a perfect matching of G′′′[Vk/2+16, Vk/2+17]. Choose a copy C4,B2B3 of C4 in
G′′′[Vk/2+20, Vk/2+21]. Choose two independent edges `�2 and r�2 of C4,B2B3 and let `�3
and r�3 denote the other two edges. Now apply Lemma 4.15 to find a system of m
vertex-disjoint paths in B′′′(C) which link all vertices of Vk/2+17 to those in Vk/2+20

such that the endvertex of `∗2 in Vk/2+17 is linked to the endvertex of `�2 in Vk/2+20

and the endvertex of r∗2 in Vk/2+17 is linked to the endvertex of r�2 in Vk/2+20. Extend
`�2 and r�2 into a perfect matching of G′′′[Vk/2+20, Vk/2+21]. Now apply Lemma 4.15
to find a system of m vertex-disjoint paths in B′′′(C) which (arbitrarily) link all
vertices of Vk/2+21 to those in V6k/7+1. Altogether this gives us a system S of m
vertex-disjoint paths joining all vertices in Vk/2+16 to all vertices in V6k/7+1.

Now extend this path system by concatenating the paths in S with the ones form-
ing CEPS7. (Recall that CEPS7 spans the interval I7 = V6k/7+1 . . . V1 completely.)
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Denote the resulting path system by S ′. Order the vertices of Vk/2+16 so that the
first vertex is the endvertex of `∗2 and the last vertex is the endvertex of r∗2. For
each j = 1, . . . ,m, let sj ∈ V1 denote the vertex which is linked to the jth vertex of
Vk/2+16 by a path in S ′. Now apply Lemma 4.15 to find a system S ′′ of m vertex-
disjoint paths in B′′′(C) which link each sj to the (j+ 2)nd vertex in Vk/2+16 (where
the indices are considered modulo m). Let B′2 be the union of all the paths in S ′
and S ′′. Then B′2 is a bicycle on V (G) \ V0. B′3 can be chosen in a similar way
as B′2 except that it contains `∗3, r

∗
3, `
�
3, r
�
3 and CEPS1 instead of `∗2, r

∗
2, `
�
2, r
�
2 and

CEPS7. Let TSB := B1∪B2∪B3 and PCA1 := CyA∪TSB. Then PCA1 satisfies
(PCA1)–(PCA6)

We now remove the edges of PCAorig
1 from G′ and repeat the above process to find

the remaining s− 1 edge-disjoint parity extended cycle absorbers PCA2, . . . , PCAs.
To see that this is possible, denote the digraph obtained from G′ by the removal

of the edges of PCAorig
1 , . . . , PCAorig

i by Gi (where i < s). Note that |N+
G′(x) \

N+
Gi

(x)| ≤ 7s ≤ ε′m for every vertex x of G′ and the analogous condition holds for the

inneighbourhoods of x. Thus by Lemma 7.1(ii) (Gi,P, R, C) is still a (k,m, 3
√
ε′, d)-

scheme. �

11. Proof of Theorem 1.2

The following lemma shows that we can cover all edges induced by a small excep-
tional set using a small number of edge-disjoint Hamilton cycles.

Lemma 11.1. Suppose that 0 < 1/n � ε � ν ≤ τ � α ≤ 1. Let G be a robust
(ν, τ)-outexpander with δ0(G) ≥ αn and let V0 be a set of vertices in G with |V0| ≤ εn.
Then there is a set of εn edge-disjoint Hamilton cycles in G which contain all edges
of G[V0].

Proof. Note that when viewed as an undirected graph, G[V0] has maximum degree
less than εn. So by Vizing’s theorem, we can partition the edges of G[V0] into t := εn
matchings M1, . . . ,Mt (some of these may be empty). For each matching Mi in turn,
we find a Hamilton cycle Ci which contains all edges of Mi and which is edge-disjoint
from C1, . . . , Ci−1. Suppose that we have found C1, . . . , Ci−1. Let Gi be the graph
obtained from G by removing the edges of C1, . . . , Ci−1. Note that Gi is still a
robust (ν/2, τ)-outexpander with δ0(Gi) ≥ αn−(i−1) ≥ αn/2. Let G′i be the graph
obtained from Gi by contracting the edges of Mi. More precisely, we successively
replace each directed edge ab of Mi by a vertex whose outneighbours are the current
outneighbours of b and whose inneighbours are the current inneighbours of a. Then
G′i is still a robust (ν/3, 2τ)-outexpander with δ0(G′i) ≥ αn/3. Thus G′i contains a
Hamilton cycle C ′i by Theorem 6.2. But C ′i corresponds to a Hamilton cycle Ci in
Gi (and thus G) containing Mi. So we can continue until we have found C1, . . . , Ct
as required. �

Before proving Theorem 1.2, we will combine the chord absorbing step and the
cycle absorbing step into a single ‘robust decomposition’ lemma. Roughly speaking,
this means that we can find a sparse ‘robustly decomposable digraph’ Grob, so that
for an arbitrary very sparse regular digraph H on the same vertex set, the digraph
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H∪Grob always has a Hamilton decomposition. We will state a variant of this lemma
in Section 12. This variant will be used in [14, 32]. The main advantage of combining
the chord absorbing step and the cycle absorbing step into a single lemma is that in
future applications one will not need to know the definitions of the chord absorber
and (the more involved) definition of the cycle absorber in order to apply it.

Lemma 11.2. Suppose that 0 < 1/n � 1/k � ε � 1/q � 1/f � r1/m � d �
1/`′, 1/g � 1 and that rk2 ≤ m. Let

r2 := 96`′g2kr, r3 := rfk/q, r� := r1 + r2 + r − (q − 1)r3, s′ := rfk + 7r�

and suppose that k/14, k/f, k/g, q/f,m/4`′, fm/q, 2fk/3g(g − 1) ∈ N. Suppose that
(G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-setup with |G| = n and C = V1 . . . Vk.
Suppose that P∗ is a (q/f)-refinement of P and that EF1, . . . , EFr3 are exceptional
factors with parameters (q/f, f) with respect to C, P∗ whose original versions are
pairwise edge-disjoint. Let EF be the union of the EFi over all i = 1, . . . , r3. Then
there exists a spanning subdigraph CA�(r) of G− V0 for which the following holds:

(i) CA�(r) is an (r1 + r2)-regular spanning subdigraph of G− V0 which is edge-
disjoint from EForig.

(ii) Suppose that EF ′1, . . . , EF
′
r� are exceptional factors with parameters (1, 7)

with respect to C, P such that the original versions of all these exceptional
factors are pairwise edge-disjoint from each other and edge-disjoint from
CA�(r) ∪ EForig. Let EF ′ be the union of the EF ′i over all i = 1, . . . , r�.
Then there exists a spanning subdigraph PCA�(r) of G − V0 for which the
following holds:
(a) PCA�(r) is a 5r�-regular spanning subdigraph of G− V0 which is edge-

disjoint from CA�(r) ∪ (EF ∪ EF ′)orig.
(b) Let CEPS be the set consisting of all the s′ complete exceptional path

systems contained in EF ∪ EF ′. Whenever H is an r-factor of G − V0

which is edge-disjoint from Grob := CA�(r)∪PCA�(r)∪ (EF ∪EF ′)orig,
then H ∪Grob has a decomposition into s′ edge-disjoint Hamilton cycles
C1, . . . , Cs′ of G. Moreover, for each i = 1, . . . , s′, the basic version
Cbasic
i of Ci contains one of the complete exceptional path systems from
CEPS.

The analogue holds for an (`′, k,m, ε, d)-bi-setup (G,P,P ′, R, C, U, U ′) if we assume
in addition that H is bipartite with vertex classes

⋃
Veven and

⋃
Vodd (where Veven

is the set of all those Vi such that i is even and Vodd is defined analogously).

Note that the definition of an exceptional factor and (i) together imply that in
the original version CA�(r) ∪ EForig of CA�(r) ∪ EF we have

(11.1) d±(x) = r3q ∀x ∈ V0 and d±(y) = r1 + r2 + r3 ∀y ∈ V (G) \ V0.

Similarly, in the original version PCA�(r) ∪ (EF ′)orig of PCA�(r) ∪ EF ′ we have

(11.2) d±(x) = 7r� ∀x ∈ V0 and d±(y) = 6r� ∀y ∈ V (G) \ V0.

In order to construct CA�(r) we will choose a chord absorber CA with CAexc = EF .
Similarly, in order to construct PCA�(r) we will choose a parity extended cycle
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absorber PCA(r�) such that the complete exceptional path systems contained in
PCA(r�) are those in EF ′.

Proof of Lemma 11.2. Choose new constants ε1, d1 such that ε � ε1 � 1/q �
1/f � r1/m� d1 � d. Note that

(11.3) r/m, r2/m, qr3/m� ε and r� ≤ d1m.

We first apply Lemma 9.4 with ε1, r1, r2, r3 playing the roles of ε′, r0, r
′
0, r
′′
0 to find a

chord absorber CA for C, U ′ with parameters (ε1, r1, r2, r3, q, f) such that CAexc =
EF . Let CA�(r) := CA \ CAexc. Then (9.1) and the fact that CAexc is r3-regular
imply that CA�(r) satisfies (i).

Note that by definition of a setup, (G,P, R, C) is a (k,m, ε, d)-scheme. Let G1

be obtained from G by deleting all edges in CAorig. Thus (9.1) implies that G1 is
obtained from G by deleting r3q outedges and r3q inedges at every vertex in V0 and
deleting r1+r2+r3 outedges and r1+r2+r3 inedges at every vertex in V (G)\V0. But
r3q ≤ εm and r1 +r2 +r3 ≤ d1m by (11.3). So Lemma 7.1 implies that (G1,P, R, C)
is still a (k,m, 3

√
d1, d)-scheme. Since r�/m ≤ d1 � d by (11.3), we can apply

Lemma 10.5 to (G1,P, R, C) to obtain an r�-fold parity extended cycle absorber
PCA(r�) such that the complete exceptional path systems contained in PCA(r�)
are precisely those in EF ′. Let PCA�(r) := PCA(r�) \ EF ′. Then (10.1) implies
that PCA�(r) satisfies (ii)(a).

To check (ii)(b), suppose that H is an r-factor of G − V0 which is edge-disjoint
from Grob = CAorig ∪ PCA(r�)orig. Note that an (`′, k,m, ε, d)-setup is also an
(`′, k,m, ε1, d)-setup. So we can apply Lemma 9.7 to the (`′, k,m, ε, d)-setup

(G,P,P ′, R, C, U, U ′)

and the chord absorber CA = B(C)∗∪B(U ′)∪CAexc with parameters (ε1, r1, r2, r3, q, f)
chosen before. This gives us a set C1 of rfk edge-disjoint Hamilton cycles in G such
that the following conditions hold:

• Altogether the Hamilton cycles in C1 contain all the edges of H ∪ B(U ′) ∪
(CAexc)orig. Moreover, all remaining edges of these Hamilton cycles are con-
tained in B(C)∗.
• The digraph H1 obtained from CAorig by deleting all the edges lying on

Hamilton cycles in C1 is a regular blow-up of C of degree (r1 + r2 + r− (q −
1)rfk/q) = r�.
• The basic version of each cycle in C1 contains one of the s complete excep-

tional path systems contained in CAexc = EF .

Finally, we apply Lemma 10.4 to the (k,m, ε, d)-scheme (G,P, R, C) with H1 playing
the role of H and with the r�-fold parity extended cycle absorber PCA(r�) chosen
before to find a Hamilton decomposition C2 of H1 ∪ PCA(r�)orig such that each
Hamilton cycle in C2 contains one of the 7r� complete exceptional path systems con-
tained in PCA(r�), and thus one of the complete exceptional path systems contained
in EF ′. Then C1 ∪C2 is a Hamilton decomposition of H ∪Grob as required in (ii)(b).

For the bipartite analogue, we apply the bipartite version of Lemmas 9.4 and 9.7
in the above argument. Since a (`′, k,m, ε, d)-bi-setup is a (k,m, ε, d)-scheme, the
remainder of the proof is the identical. �



84 DANIELA KÜHN AND DERYK OSTHUS

Finally, we can put together all of the previous results in order to prove Theo-
rem 1.2. First we apply Szemerédi’s regularity lemma to G. Based on the resulting
partition, we find a consistent system and a universal walk (so that we have a cor-
responding setup). Within these, we find and remove a preprocessing graph PG, a
chord absorber CA and a parity extended cycle absorber PCA. (Actually, instead of
choosing CA and PCA separately, we choose suitable exceptional factors and apply
Lemma 11.2 to find a robustly decomposable graph Grob which is essentially the
union of CA and PCA.) Then we apply Lemma 11.1 to cover all edges of G[V0].
Next we find an approximate Hamilton decomposition using Theorem 1.3 in the
remainder G# of G, which leaves a sparse leftover H0. We then find a Hamilton
decomposition of H0 ∪ PGorig ∪Grob.

Proof of Theorem 1.2. Let τ∗ := τ(α/2) be as defined in Theorem 1.3. Choose
τ ≤ τ∗ such that 0 < τ � α. Note that whenever ν ′ ≤ ν, every robust (ν, τ)-
outexpander is also a robust (ν ′, τ)-outexpander. So we may assume that 0� ν � τ .
Choose n0 ∈ N so that 0 < 1/n0 � ν. (τ and n0 will be the constants returned
by Theorem 1.2.) Now let G be an r-regular robust (ν, τ)-outexpander on n ≥ n0

vertices with r ≥ αn. We have to show that G has a Hamilton decomposition.
Choose additional positive constants so that

0 < 1/n0 � η � d′0 � d′′0 � 1/k∗2 � 1/k∗1 � ε0 � ε1 � ε2 � ε� ε′ �
� 1/q � 1/f � d1 � d� ν � τ � α < 1 and d� 1/g � ζ ≤ 1/2,(11.4)

and where n0, k
∗
1, k
∗
2, q, f, g ∈ N. Let

(11.5) `′ :=
64 · 36

ν6
, s :=

64 · 107

ν6
and `∗ := f2.

Note that we can choose q, f ∈ N and ν in such a way that q/f, 50`∗/(s−1), `∗/7 ∈ N.
As before, we can replace ν with a suitable ν ′ < ν if necessary (and then prove
the theorem for all (ν ′, τ)-outexpanders), so we can ensure that these divisibility
conditions hold.

Apply Szemerédi’s regularity lemma (Lemma 4.1) with parameters ε0, d, k
∗
1 to

obtain a partition P0 = {V ′0 , . . . , V ′k0} of the vertices of G into k0 clusters and an

exceptional set V ′0 , where 1/k∗2 � 1/k0 ≤ 1/k∗1 and |V ′0 | ≤ ε0n. Note that by adding
at most 42g(g− 1)f clusters to the exceptional set if necessary, we may assume that
k0/14, k0/f, k0/g, 2fk0/3g(g−1) ∈ N. Moreover, by moving at most `∗ vertices from
each cluster V ′i to the exceptional set we may assume that the cluster size is divisible
by `∗. Note that we still have that |V ′0 | ≤ 2ε0n. Let R0 denote the corresponding
reduced digraph. So every edge of R0 corresponds to an (2ε0,≥ d)-regular pair. Let

k := `∗k0.

So
1/k∗2 ≤ 1/k ≤ 1/k∗1

and k/14, k/f, k/g, 2fk/3g(g − 1), 50k/(s − 1) ∈ N. By Lemma 5.1, R0 is a robust
(ν/2, 2τ)-outexpander with minimum semidegree at least αk0/2. So by Theorem 6.2,
R0 contains a Hamilton cycle C0.

Apply Lemma 4.7 with C0 playing the role of C to obtain an ε0-uniform `∗-
refinement P = {V ′0 , V1 . . . , Vk} of P0. Let R be the digraph obtained from R0 by
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replacing every V ′i by the `∗ subclusters in P which are contained in V ′i and by
replacing every edge V ′i V

′
j of R0 by a complete bipartite graph K`∗,`∗ between the

two corresponding sets of subclusters in P, where all the edges of K`∗,`∗ are oriented
towards those subclusters which are contained in V ′j . So R is an `∗-fold blow-up

of R0 and |R| = k. By Lemma 4.7(ii) each edge of R corresponds to an (ε1,≥ d)-
regular pair in G. Moreover, Lemma 5.3 implies that R is still a robust (ν3/8, 4τ)-
outexpander with minimum semidegree at least αk/2. Let C be a Hamilton cycle
in R obtained from C0 by winding `∗ times around C0. By relabeling the clusters
in P if necessary, we may assume that C = V1 . . . Vk. Later on will use that this
construction satisfies (CSys8) with 1/2 playing the role of θ (since P is an ε0-uniform
`∗-refinement of P0).

Apply Lemma 9.1 to R and C in order to obtain a universal walk U for C with
parameter `′. Let H be the spanning subgraph of R which consists of all the edges
contained in C∪U . Thus ∆(H) ≤ 2(1+`′) ≤ 1/ν7. Since each edge of R corresponds
to an (ε1,≥ d)-regular pair in G, Lemma 4.4 implies that we can move

√
ε1|Vi|

vertices from each Vi to the exceptional set V ′0 to achieve that every edge of H (and
thus of C ∪ U) corresponds to an [ε2/2,≥ d]-superregular pair in G. We denote the
modified exceptional set by V0 and still denote the modified clusters by V1, . . . , Vk.
From now on, we will view C as a cycle on these clusters and U as a universal walk
on these clusters. We also still write P for the partition of V (G) into the exceptional
set V0 and clusters V1, . . . , Vk. Let

m := |V1| = · · · = |Vk|.

By adding at most 200`′q/f vertices from each cluster in P to V0 if necessary, we
may assume that m/50,m/4`′, fm/q ∈ N (in particular, m is even). Note that

(11.6) |V0| ≤ |V ′0 |+
√
ε1n+ 200`′q/f ≤ ε2n

and that every edge of R still corresponds to an (ε2,≥ d)-regular pair in G and every
edge of C ∪ U still corresponds to an [ε2,≥ d]-regular pair in G. Let

(11.7) r0 := ηr, r′0 := d′0m, r′′0 := d′′0m and r1 := d1m.

(11.4) and the fact that ηαn ≤ r0 = ηr ≤ ηn together imply that

(11.8) 1/n0 � r0/m� r′0/m� r′′0/m� 1/k.

Let G0 denote the digraph obtained from G by deleting all the edges between vertices
in V0. Then

(G0,P0, R0, C0,P, R, C)

is a consistent (`∗, k,m, ε2, d, ν
3/8, 4τ, α/2, 1/2)-system.

Apply Lemma 4.7 to obtain an ε2-uniform `′-refinement P ′ of P. Let U ′ be the
universal subcluster walk with respect to C, U and P ′. (So U ′ satisfies (ST2).) Then

(G0,P,P ′, R, C, U, U ′)

is an (`′, k,m, ε, d)-setup. Here we use that Lemma 4.7(i) implies that (ST3) is
satisfied.

Apply Lemma 4.7 to obtain an η-uniform 50-refinement P ′′ of P. Apply Lemma 8.6
to the consistent system (G0,P0, R0, C0,P, R, C) to find a preprocessing graph PG
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in Gbasic
0 with parameters (s, ε′, d, r′0, r

′′
0 , r0, ζ) with respect to C, R, P ′′. (Here (11.4)

and (11.8) imply that the conditions of the lemma are satisfied.)
Let G1 be obtained from G0 by deleting all edges in PGorig. Thus (8.3) implies

that G1 is obtained from G0 by deleting r0(s − 1) outedges and r0(s − 1) inedges
at every vertex in V0 and by deleting r′′0 outedges and r′′0 inedges at every vertex in
V (G) \ V0. But r0(s − 1), r′′0 ≤ εm by (11.4) and (11.8). So Lemma 7.1(i) implies
that

(G1,P0, R0, C0,P, R, C)

is still a consistent (`∗, k,m, 3
√
ε, d, ν3/16, 4τ, α/4, 1/4)-system. Furthermore, Lemma 9.2

implies that (G1,P,P ′, R, C, U, U ′) is still an (`′, k,m, ε1/3, d)-setup. Let

r∗ := r′′0 − (s− 1)r0, r2 := 96`′g2kr∗ and r3 :=
r∗fk

q
.

Note that

r∗k2 ≤ r′′0k2 ≤ r′′0(k∗2)2 = d′′0m(k∗2)2 ≤ d1m = r1(11.9)

≤ m.(11.10)

In particular, (11.9) implies that

(11.11) r∗, r′′0 , r2, r3 ≤ r1
(11.7)

= d1m.

So

(11.12)
r2

m

(11.11)

≤ d1

(11.4)
� d and

r3

m
≤ r∗k

m

(11.9)

≤ r′′0k
∗
2

m

(11.7)
= d′′0k

∗
2

(11.4)
� ε.

Also, note that (11.5) implies that f/`∗ = 1/f � 1. Moreover, r3q/fm = r∗k/m�
d by (11.12). Apply Lemma 4.7 to obtain an ε-uniform q/f -refinement P ′′′ of P.
Apply Lemma 7.6 to (G1,P0, R0, C0,P, R, C) in order to obtain exceptional factors
EF1, . . . , EFr3 with parameters (q/f, f) with respect to C, P ′′′ such that the original
versions of all these exceptional factors are pairwise edge-disjoint. Let EF denote
the union of the EFi over all i = 1, . . . , r3. Let

r� := r1 + r2 + r∗ − (q − 1)r3.

Note that

(11.13) r�/m ≤ (r1 + r2 + r∗)/m
(11.11)

≤ 3d1

(11.4)
� d.

(11.10) guarantees that we can now apply Lemma 11.2 to the (`′, k,m, ε1/3, d)-setup
(G1,P,P ′, R, C, U, U ′) with r∗ playing the role of r and with the exceptional factors
EF1, . . . , EFr3 chosen before to find a spanning subdigraph CA�(r∗).

Let G2 be obtained from G1 by deleting all edges in CA�(r∗) ∪ EForig. Thus
(11.1) implies that G2 is obtained from G1 by deleting r3q outedges and r3q inedges
at every vertex in V0 and by deleting r1 +r2 +r3 outedges and r1 +r2 +r3 inedges at
every vertex in V (G)\V0. But r3q = r∗fk ≤ d1m by (11.4) and (11.9) while r1 +r2 +
r3 ≤ 3d1m by (11.11). So Lemma 7.1 implies that (G2,P0, R0, C0,P, R, C) is still a
consistent (`∗, k,m, 3

√
3d1, d, ν

3/32, 4τ, α/8, 1/8)-system. Together with (11.13) this
shows that we can apply Lemma 7.6 to (G2,P0, R0, C0,P, R, C) in order to obtain
exceptional factors EF ′1, . . . , EF

′
r� with parameters (1, 7) with respect to C, P such
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that the original versions of all these exceptional factors are pairwise edge-disjoint.
Let EF ′ denote the union of the EF ′i over all i = 1, . . . , r�.

Let PCA�(r∗) be as guaranteed by Lemma 11.2(ii). Let

Grob := CA�(r∗) ∪ PCA�(r∗) ∪ (EF ∪ EF ′)orig and Gabsorb := PGorig ∪Grob.

Let rabs
0 be the outdegree of the exceptional vertices (i.e. those in V0) in Gabsorb.

Then (8.3), (11.1) and (11.2) imply that rabs
0 is also the indegree of the exceptional

vertices. Moreover, they imply that

rabs
0 = r0(s− 1) + r3q + 7r�.

Let rabs be the outdegree of the non-exceptional vertices in Gabsorb. Again, (8.3),
(11.1) and (11.2) imply that rabs is also the indegree of the non-exceptional vertices
Moreover,

rabs = r′′0 + (r1 + r2 + r3) + 6r�.

But

rabs
0 − rabs = r0(s− 1) + (q − 1)r3 + r� − r′′0 − r1 − r2

= r0(s− 1) + (q − 1)r3 + (r1 + r2 + r∗ − (q − 1)r3)− r′′0 − r1 − r2

= r0(s− 1) + r∗ − r′′0 = 0.

So Gabsorb is rabs-regular. Moreover,

(11.14) rabs ≤ r′′0 + (r1 + r2 + r3) + 6(r1 + r2 + r∗)
(11.11)

≤ 22d1m
(11.4)
� dm ≤ dn.

Let G4 denote the digraph obtained from G by removing the edges of Gabsorb. Let
r4 := r − rabs be the degree of G4. Note that (11.14) implies that G4 is still
a robust (ν/2, τ)-outexpander with δ0(G4) = r4 ≥ αn/2. Let r# := r4 − εn.
Then (11.6) implies that we can apply Lemma 11.1 to obtain a set C4 of εn edge-
disjoint Hamilton cycles in G4 which cover all the edges in G4[V0]. Let G# be the
r#-regular digraph obtained from G4 by deleting all the edges in these Hamilton
cycles.

Note that r − r# = rabs + εn ≤ dn + εn ≤ 2dn by (11.14). Thus G# is still
a robust (ν/2, τ)-outexpander (and thus also a robust (ν/2, τ∗)-outexpander) with
δ0(G#) = r# ≥ αn/2. Together with our choice of τ∗, ν, η and n0 this shows that
we can apply Theorem 1.3 to obtain a set C# of r# − ηr = r# − r0 edge-disjoint
Hamilton cycles in G#. Let H0 be the digraph obtained from G# by deleting all the
edges in these Hamilton cycles. Note that our application of Lemma 11.1 ensures
that V0 forms an independent set in H0 and so H0 is a r0-regular subdigraph of
G0. Together with (11.4) and (11.8) this ensures that we can apply Corollary 8.5
to (G0,P0, R0, C0,P, R, C) with H0, P ′′ playing the roles of H, P ′ and with the
preprocessing graph PG with parameters (s, ε′, d, r′0, r

′′
0 , r0, ζ) chosen before to obtain

a set C0 of r0s edge-disjoint Hamilton cycles such that the following conditions hold:

• Altogether the Hamilton cycles in C0 contain all edges of H0 and each of
these Hamilton cycles lies in H0 ∪ PGorig.
• Let PG′ be the digraph obtained from PGorig by deleting all the edges lying

in the Hamilton cycles in C0. Then every vertex x ∈ V0 is isolated in PG′
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and every vertex x ∈ V (G) \ V0 has in- and outdegree r′′0 − (s− 1)r0 = r∗ in
PG′.

The second condition above implies that H1 := PG′−V0 is an r∗-regular subdigraph
of G0−V0. Lemma 11.2(ii)(b) guarantees that H1∪Grob has a Hamilton decomposi-
tion C1. Then C4∪C#∪C0∪C1 is a Hamilton decomposition of G, as required. �

12. Statement of the robust decomposition lemma for further use

We now present a ‘standalone’ version (Lemma 12.1) of the robust decomposition
lemma (Lemma 11.2) which is suitable for further use. Instead of exceptional edges
and exceptional path systems, it involves ‘fictive edges’ and ‘special path systems’.
One can use these in the same way as in the current proof to deal with edges at
exceptional vertices. A crucial additional advantage is that one can also use them to
deal with a small number of edges connecting G to another digraph. In particular,
in [32] we can use it for a digraph G∗ which consists of robust expanders G and G′

which are connected by a small number of edges (so G∗ is not a robust expander).
Similarly, in the bipartite version, we can apply it to an ‘almost bipartite’ digraph
and use the fictive edges to deal e.g. with the small number of edges which do not
respect the (approximate) bipartition. This is the case in [14].

Suppose that (G,P, R, C) is an (k,m, ε, d)-scheme with C = V1 . . . Vk. The next
definition is a generalization of a complete exceptional path system. Suppose that
k/L,m/K ∈ N and let I be the canonical interval partition of C into L intervals of
equal length. A special path system SPS (with respect to C) with parameters (K,L)
spanning an interval I = UjUj+1 . . . Uj′ with I ∈ I consists of m/K vertex-disjoint
paths P1, . . . , Pm/K such that the following conditions hold.

(SPS1) Every Ps has its initial vertex in Uj and its final vertex in Uj′ .
(SPS2) SPS contains a matching Fict(SPS) such that all the edges in Fict(SPS)

avoid the endclusters Uj and Uj′ of I and such that E(Ps) \ Fict(SPS) ⊆
E(G).

(SPS3) SPS contains precisely m/K vertices from every cluster in I and no other
vertices.

The edges in Fict(SPS) are called fictive edges of SPS. Note that a complete
exceptional path system CEPS containing a complete exceptional sequence CES is
a special path system where CES plays the role of the set of fictive edges.

Suppose that P∗ is aK-refinement of P. For each cluster U ∈ P, let U(1), . . . , U(K)
denote the subclusters of U in P∗. Consider a special path system SPS as above.
We say that SPS has style b if its vertex set is Uj(b)∪· · ·∪Uj′(b). A special factor SF
with parameters (K,L) (with respect to C, P∗) is a 1-regular digraph on V (G) \ V0

satisfying the following properties:

(SF1) On each of the L intervals I ∈ I, SF induces the vertex-disjoint union of K
special path systems.

(SF2) Moreover, for each I ∈ I and each b = 1, . . . ,K, exactly one of the special
path systems in SF spanning I has style b.

We write Fict(SF ) for the union of the sets Fict(SPS) over all the KL special path
systems SPS contained in SF and call the edges in Fict(SF ) fictive edges of SF .
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Note that an exceptional factor EF is a special factor where the exceptional edges
in EF play the role of the fictive edges.

We will always view fictive edges as being distinct from each other and from the
edges in other digraphs. So if we say that SF1, . . . , SFr are pairwise edge-disjoint
from each other and from some digraph Q on V (G)\V0, then this means that Q and
all the SFi \Fict(SFi) are pairwise edge-disjoint, but for example there could be an
edge from x to y in Q as well as in Fict(SFi) for five indices i (say). But these are
the only instances of multiedges that we allow, i.e. if there is more than one edge
from x to y, then all but at most one of these edges are fictive edges.

Given two multidigraphs M and M ′ on the same vertex set, we write M +M ′ for
the multidigraph whose vertex set is V (M) = V (M ′) and in which the multiplicity
of xy is the sum of the multiplicities of xy in M and in M ′ (for all x, y ∈ V (M)).
So in the above example Q+ SF1 + · · ·+ SFr contains six edges from x to y.

We can now state the variant of the robust decomposition lemma. The proof is
the same as that of Lemma 11.2 – the special factors play the role of the exceptional
factors and the Hamilton cycles in Lemma 12.1 correspond to the basic versions of
the Hamilton cycles returned by Lemma 11.2. The existence of fictive edges means
that we formally consider multidigraphs (rather than digraphs) at several steps.
However, this does not affect the argument. Indeed, fictive edges only occur within
(pre-defined) special path systems and these are fixed building blocks that are never
modified during the construction of the Hamilton cycles. The only other difference
is that in Lemma 12.1, H need not be a subdigraph of G, but this does not affect
the proof either.

Lemma 12.1. Suppose that 0 < 1/n � 1/k � ε � 1/q � 1/f � r1/m � d �
1/`′, 1/g � 1 and that rk2 ≤ m. Let

r2 := 96`′g2kr, r3 := rfk/q, r� := r1 + r2 + r − (q − 1)r3, s′ := rfk + 7r�

and suppose that k/14, k/f, k/g, q/f,m/4`′, fm/q, 2fk/3g(g − 1) ∈ N. Suppose
that (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-setup with |G| = n, V0 = ∅ and
C = V1 . . . Vk. Suppose that P∗ is a (q/f)-refinement of P and that SF1, . . . , SFr3
are edge-disjoint special factors with parameters (q/f, f) with respect to C, P∗. Let
SF := SF1 + · · ·+ SFr3. Then there exists a spanning subdigraph CA�(r) of G for
which the following holds:

(i) CA�(r) is an (r1+r2)-regular spanning subdigraph of G which is edge-disjoint
from SF .

(ii) Suppose that SF ′1, . . . , SF
′
r� are special factors with parameters (1, 7) with

respect to C, P which are edge-disjoint from each other and from CA�(r) +
SF . Let SF ′ := SF ′1 + · · ·+ SF ′r�. Then there exists a spanning subdigraph
PCA�(r) of G for which the following holds:
(a) PCA�(r) is a 5r�-regular spanning subdigraph of G which is edge-disjoint

from CA�(r) + SF + SF ′.
(b) Let SPS be the set consisting of all the s′ special path systems contained

in SF + SF ′. Whenever H is an r-regular digraph on V (G) which is
edge-disjoint from Grob := CA�(r)+PCA�(r)+SF+SF ′, then H+Grob

has a decomposition into s′ edge-disjoint Hamilton cycles C1, . . . , Cs′.
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Moreover, Ci contains one of the special path systems from SPS, for
each i = 1, . . . , s′.

The analogue holds for an (`′, k,m, ε, d)-bi-setup (G,P,P ′, R, C, U, U ′) if we assume
in addition that H is bipartite with vertex classes

⋃
Veven and

⋃
Vodd (where Veven

is the set of all those Vi such that i is even and Vodd is defined analogously).

13. Proofs of Theorems 1.1 and 1.4

The next result implies that a regular oriented graph with minimum semidegree
at little larger than 3n/8 is a robust outexpander. Together with Theorem 1.2 this
implies Theorem 1.1.

Lemma 13.1. Let 0 < 1/n � ν � τ ≤ ε/2 ≤ 1 and suppose that G is an oriented
graph on n vertices with δ+(G) + δ−(G) + δ(G) ≥ 3n/2 + εn. Then G is a robust
(ν, τ)-outexpander.

Proof. Suppose not and let X ⊆ V (G) be a set of vertices such that τn ≤ |X| ≤
(1 − τ)n and |RN+

ν (X)| < |X| + νn. Let A := X ∩ RN+
ν (X), B := RN+

ν (X) \X,
D := X \RN+

ν (X) and C := V (G) \ (A ∪B ∪D). Note that

(13.1) |B| < |D|+ νn.

Claim 1. |A|+ |B|+ |D| ≥ 2δ+(G)− 2τn

To prove the claim, let us first assume that |A| ≥ τn/2. Note that e(A,C ∪ D) ≤
νn(|C| + |D|) since every vertex in C ∪D has at most νn inneighbours in X ⊇ A.
Thus

e(A,A ∪ C ∪D) = e(A,A) + e(A,C ∪D) ≤ |A|
2

2
+ νn(|C|+ |D|)

≤ |A|
2

2
+

2ν

τ
|A|(|C|+ |D|) ≤ |A|

2

2
+ |A|τn

2
.

So there exists a vertex x ∈ A such that |N+(x)∩(A∪C∪D)| ≤ |A|/2+τn/2. Hence
δ+(G) ≤ d+(x) ≤ |A|/2 + |B| + τn/2. Together with (13.1) this implies Claim 1 in
this case.

So let us next assume that |A| ≤ τn/2. Then |D| ≥ τn/2 and

e(D,A ∪ C ∪D) = e(D,A) + e(D,C ∪D) ≤ |D|τn
2

+ νn(|C|+ |D|)

≤ |D|τn
2

+
2ν

τ
|D|(|C|+ |D|) ≤ |D|3τn

4
.

So there exists a vertex x ∈ D such that |N+(x) ∩ (A ∪ C ∪ D)| ≤ 3τn/4. Hence
δ+(G) ≤ d+(x) ≤ |B|+ 3τn/4. As before, together with (13.1) this implies Claim 1.

Claim 2. |B|+ |C|+ |D| ≥ 2δ−(G)− 3νn

To prove Claim 2, we first consider the case when C 6= ∅. An averaging argument
shows that there is a vertex x ∈ C with |N−(x)∩C| ≤ |C|/2. But since |N−(x)∩X| ≤
νn this means that δ−(G) ≤ d−(x) ≤ |B| + |C|/2 + νn. Together with (13.1) this
implies Claim 2.

So let us now assume that C = ∅. Together with the fact that |A ∪ B| =
|RN+

ν (X)| < |X| + νn ≤ (1 − τ)n + νn < n this implies that D 6= ∅. But each
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vertex x ∈ D satisfies |N−(x) ∩ X| ≤ νn and so δ−(G) ≤ d−(x) ≤ νn + |B|. To-
gether with (13.1) this implies Claim 2.

Claim 3. |A|+ |B|+ |C| ≥ δ(G)− 2νn

This clearly holds if D = ∅ (since δ(G) < n). So suppose that D 6= ∅. Then
e(D,D) ≤ e(X,D) ≤ νn|D| and so there is a vertex x ∈ D with |N+(x) ∩D| ≤ νn.
But since D ∩ RN+

ν (X) = ∅ we also have that |N−(x) ∩ D| ≤ νn. Thus d(x) ≤
|A|+ |B|+ |C|+ 2νn, which in turn implies Claim 3.

Now Claims 1–3 together imply that

3n
(13.1)

≥ 3|A|+ 4|B|+ 3|C|+ 2|D| − νn ≥ 2(δ+(G) + δ−(G) + δ(G))− 3τn > 3n,

a contradiction. �

Proof of Theorem 1.1. Let τ∗ := τ(3/8), where τ(3/8) is as defined in Theo-
rem 1.2. Choose new constants n0 ∈ N and ν, τ such that 0 < 1/n0 � ν � τ ≤
ε/2, τ∗. Lemma 13.1 implies that G is a robust (ν, τ)-outexpander and thus also a
robust (ν, τ∗)-outexpander. So we can apply Theorem 1.2 with α := 3/8 to find a
Hamilton decomposition of G. �

The next result implies that a regular digraph with minimum semidegree at little
larger than n/2 is a robust outexpander. Similarly as before, together with Theo-
rem 1.2 this implies Theorem 1.4.

Lemma 13.2. Suppose that 0 < ν ≤ τ ≤ ε < 1 are such that ε ≥ 2ν/τ . Let G be
a digraph on n vertices with minimum semidegree δ0(G) ≥ (1/2 + ε)n. Then G is a
robust (ν, τ)-outexpander.

Proof. Consider any set S ⊆ V (G) with τn ≤ |S| ≤ (1−τ)n. Let RN := RN+
ν,G(S).

We have to show that |RN | ≥ |S| + νn. Suppose first that |S| ≥ n/2. Then every
vertex of G has at least εn ≥ νn inneighbours in S. So RN = V (G). So we may
assume that |S| ≤ n/2. But

(1/2 + ε)n|S| ≤ e(S, V (G)) = e(S,RN) + e(S, V (G) \RN) ≤ |S||RN |+ νn2

≤ |S||RN |+ ν

τ
n|S|

and so |RN | ≥ (1/2 + ε− ν/τ)n ≥ (1 + ε)n/2 ≥ |S|+ νn, as required. �

Proof of Theorem 1.4. Let τ∗ := τ(1/2), where τ(1/2) is as defined in Theo-
rem 1.2. Choose new constants n0 ∈ N and ν, τ such that 0 < 1/n0 � ν � τ ≤ ε, τ∗.
Lemma 13.2 implies that G is a robust (ν, τ)-outexpander and thus also a robust
(ν, τ∗)-outexpander. So we can apply Theorem 1.2 with α := 1/2 to find a Hamilton
decomposition of G. �
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