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Abstract

Two-component systems (TCSs) are widely employed by bacteria s specific external signals and conduct an
appropriate response via a phosphorylation cascade within the cell. JB@fltheagr operon in the bacteriurStaphy-
lococcus aureugorms part of a regulatory process termed quorum sensing, a cedlit@ommunication mechanism
used to assess population density. Si@caureusnanipulates this “knowledge” in order to co-ordinate production of its
armoury of exotoxin virulence factors required to promote infection,iinjgortant to understand fully how this process
works. We present three models of thgr operon, each incorporating a different phosphorylation cascadbddarCS
since the precise nature of the cascade is not fully understood. Usingrizal and asymptotic techniques we examine
the effects of inhibitor therapy, a novel approach to controlling bacteriattion through the attenuation of virulence,
on each of these three cascades. We present results which, if edadgaiast appropriate experimental data, provide
insights into the potential effectiveness of such therapy. Moreovef,@&models presented here are of broad relevance

given that TCSs are widely conserved throughout the bacterial kingdo
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1 Introduction

A two-component system (TCS) is a signal-transduction mechanisnmbydetteria as a means of detecting and eliciting
an appropriate response to an external signal [1]. This signal caylébbexample, temperature, pH or (in the case
of the agr operon ofStaphylococcus aureuthe bacterial population density, as monitored via a self-generated signa
molecule. A TCS comprises a sensor/receptor protein in the membrahe oéll and a response regulator within the
cell cytoplasm. The receptor recognises a specific external cuearsddrs this “knowledge” to the response regulator
via a phosphorylation cascade, thus allowing the cytoplasmic protein tolgamome appropriate response from the
cell, usually a change in gene expression which will facilitate adaptation dfabierium to the specific environmental
challenge.

The activation cascade can vary between TCSs (for a review, geé2]classical TCS, detection of the signal by the
receptor protein results in autophosphorylation followed by the trankfee @hosphate to the response regulator protein.
When gene expression is the ultimate target, the phosphorylated protellyirss a higher affinity for the relevant DNA
binding site than when in the un-phosphorylated state. This phosphorytssmade can vary between TCSs and we
shall investigate the implications of the possibility that the TCS ofidgeoperon might not take this conventional form.

The agr operon was first discovered in the Gram-positive bact®riaureug3] and, as mentioned above, is a cell-
to-cell communication device which is generally considered to facilitate therdioation of gene expression at the
population level rather than individual cell level. Cell-to-cell communicaiiobacteria is usually called quorum sensing
(QS) and is used b@. aureusn order to, amongst other things, control the production of virulencefa during infec-
tion. While its population size is smalb. aureugproduces surface proteins which facilitate adherence to host tissue and
aid immune evasion. As the population grows, a switch to the productiorcadted virulence factors occurs, leading to
the damage and degradation of the surrounding host cells and tisaugeactively attacking the host. Since tissue dam-
age will alert host defence systems, such a delayed ‘deployment taetjcallow the infecting bacteria time to reach a
sufficient population size to be able to overwhelm the host [4]. The seingpof large numbers of bacterial genomes has
revealed thahgr-type QS systems are conserved in many more Gram-positive basggei@ks, including the pathogens
Clostridium botulinunj5], Clostridium perfringen$6], Enterococcus faecel[§] andListeria monocytogend8]. Thus,

while the implications of this study are discussed principally in relatio®. @ureusthe results are more widely relevant.
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Figure 1: A schematic representation of tigy feedback loop irs. aureus The arrows with a filled head illustrate the

positive feedback loop. The dotted box encloses the eledihe TCS.

In S. aureusthe operon consists of two transcription units, terragdBDCAand RNAIII (for reviews see [9] or [10]).
These are driven by regulatory proteins which bind to promoters teRexhd P3, thereby permitting RNA polymerase
to transcribe the DNA into mRNA prior to translation ajr mRNA into proteins at the ribosomes. The P2 transcript
consists of four genes that are transcribed and translated to givautharédeins AgrB, AgrD, AgrC and AgrA. AgrBis a
transmembrane protein and is involved in the post-translational commeibe membrane-anchored AgrD pro-peptide
into a cyclic peptide QS signal molecule termed an autoinducing peptide.(Ake)AIP is secreted into the external
environment of the cell [11] where it is sensed by the transmembrgn@ protein which acts as the receptor of the TCS
by binding to free AIP molecules [12]. This is an effective method of eafiing population size or density since bacterial
numbers will, to a certain extent, correlate with the level of AIP molecules imtheediate environment of th#. aureus
cells. Bound AgrC then activates AgrA, the response regulator [9a yihosphorylation cascade. Activated AgrA has
a higher affinity than non-activated AgrA for the DNA binding sites situatetthe two promoters P2 and P3. The P2
promoter controls thagr genes, so a positive feedback loop, see Figure 1, is created. ThenB8ript is a regulatory
RNA termed RNAIII [13] which directs the increased translation of sect@irulence factors and repression of surface
protein production [14]. The presence of enough activated AgrAltads to a switch in the behaviour of the population,
from what we will call a down-regulated state to an up-regulated onethier dacteria, thagr operon largely takes on
this form, though the specifiagr-induced responses differ.

The emergence of multi-antibiotic resiste®it aureus(including methicillin- and vancomycin-resistaSt aureus



MRSA and VRSA respectively), enterococci a@tbstridium difficilemeans that understanding the virulence mecha-
nisms employed by these pathogens to cause diseases should aid tbprdent of novel therapies to combat infection
through attenuation of virulence. This may be achieved either throughrévergion of virulence factor action or by
blocking virulence factor production. With respect to the latter, the inhibitib@$® offers one potential therapeutic
strategy which is already evident $i aureussince some strains were found to interfere with QS in others, a process
sometimes referred to as quorum quenching. This is because within gig/lsizocci,agr polymorphisms occurS.
aureushas four different specificity groups with distinct AIPs and AgrC semigonains and cross group AlP-AgrC in-
teractions are inhibitory. Furthermore, intra-group activation and greup inhibition are both mediated exclusively
by the same group-specific AgrC receptor [5, 6]. Thus while the A& fdifferentS. aureugyroups are sufficiently
similar that they will bind to the AgrC receptor proteins of any other strairy tamnot activate the sensor protein and
so block activation by the endogenous AIP. Thus intracellular AgrA witllecome activated so effectively blocking
the QS loop and forcing the fells into, or maintaining them in, a down-regukdtad. Staphylococcus epidermidigso
employs aragr operon in its regulation of virulence factor production [15] and it is destrated in [16] that its AIP is a
potent inhibitor of theagr systems of three of th®8. aureugyroups and, conversely, AlP-4 inhibits that®fepidermidis
suggesting that AlIP-4 may have evolved to compete Bitepidermidis We include in our model an inhibitor therapy
which capitalises on this natural cross-inhibition®yaureussynthetic inhibitor molecules have been designed to block
the QS loop of any strain &. aureug17], thus downregulating them and potentially providing the immune systigmaw
greater chance of eradicating the bacteria (see [18] or [19] forwewié this concept). Experimental work has confirmed
the potential success of this approach - see for example [20], whawgiae S. aureusskin abscess infection caused
by a strain producing AIP-1 could be prevented by coadministeringAIBince the therapy would not directly kill the
bacteria, the chance of resistance developing is greatly reduced iradsopwith antibiotic treatment.

While much work has been done on defining the molecular basis by whicyttsystem operates, a question mark
remains over the mechanisms governing the TCS in all strains and splegiasseagr. Although it is clear which
proteins play the role of receptor and response regulator, it is noyslewédent how the phosphorylation cascade occurs;
in [21], the phosphorylation cascade of thgr operon has been highlighted as one of the important open questions
requiring investigation before the QS system can be fully exploited forpleeti gain. In a classical TCS, AgrC would
autophosphorylate on binding to an AIP molecule and then transfer thipphte to AgrA, making the phosphorylated
form of this protein the activator of the system. It has recently been showaboratory derivatives db. aureusthat
AgrC does indeed autophosphorylate [22], implying that in this case, itigssical TCS in operation. However, given

the variety of TCSs in existence [2], suggestions that both AgrA and Agu@ be phosphorylated constitutively in [9]



and evidence that AgrA can bind the relevant DNA binding site in either itsgitarylated or unphosphorylated forms
(though it has a higher affinity in the former case) in [23] open up thsipibisy that the phosphorylation cascade may
vary within and between strains depending on the nature of the TCS. @ieeaase of testing different hypotheses
with mathematical models, as compared with experimental work and) tieeprevalence of similar TCSs performing a

variety of roles in different bacteria, we investigate in some detail thresilpidities for the phosphorylation cascade:
| the agr operon employs a classical TCS;

Il AgrA is constitutively phosphorylated (so in this case dephosphoylAgrA is the activator which binds to the

DNA);

Il transmembrane AgrC is constitutively phosphorylated (and phaggéited AgrA is the activator which binds to

the DNA).

We examine the effect of inhibition with synthetic antagonists on the QS sygfemesned by each of these three sce-
narios, presenting time-dependent numerical solutions and bifurcdidggmams showing the response to changes in
inhibitor therapy dosage for each of the three models. We are thus ablkeeomparisons between the three cascade
mechanisms, demonstrating that the model assuming AgrA to be constitytivosphorylated (Model II) is the most
sensitive to inhibitor therapy, followed by Model IlI (which assumesdmambrane AgrC to be phosphorylated in the
absence of AIP molecules), with the classical TCS cascade being theahast. Additionally, we give asymptotic ap-
proximations to the steady-state solutions in order to clarify which reactiorerig the behaviour of the cells in both the
down-regulated and up-regulated states, to give analytical expredsidhe threshold levels of inhibitor and to highlight
simplified models which could be used for further analysis. These rgzuitsde a characterisation of when inhibitor
therapy may be successful if the phosphorylation cascade is kn@mwersely, given suitable experimental data, they

may aid the identification of which phosphorylation cascade is dominantiirea gtrain or species.

2 Model formulation

This work is an extension of our previous model in [24], which treatecetitgeagr operon in the absence of inhibitor
molecules. We performed a time-dependent asymptotic analysis on thed, faxusing on the feedback loop, in order to
investigate the roles of the various interactions which make up the QS systemamnitor how a population @&. aureus
may shift from a relatively harmless state to a highly virulent one. To aonkedge, the only other mathematical model
of the agr operon is [25] (also focusing o8. aureu¥ which isolates the TCS (taken to be of the classical form) and

examines the effect of SarA, another protein involved in the regulatimraience factors, on the TCS. In the interests
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Figure 2: A schematic representation of three differensiiigies for the phosphorylation cascade of the TCS of the
agr operon (the small square represents a phosphate and thatedtform of AgrA is in each case shown shaded).
Model | follows the classical TCS, as describedsih Model 1l allows for the possibility that AgrA is constiiuely
phosphorylated and consequently it is dephosphorylated Adnich takes on the role of activator of ttegyr operon.
Model Il assumes that transmembrane AgrC is phosphoylatéhe absence of AIP - upon binding to an AIP molecule

it transfers this phosphate to the AgrA protein.

of brevity, we do not provide the full details of the derivation of the folations of our three models in this paper (they
can be found in both [24] and [26], the latter also containing further degfilghat follows). We instead focus on the
assumptions required to differentiate between the three models. Figurstéailés the different phosphorylation cascades

and the following is a summary of the differences.
e Model |

In the case of a classical TCS, once a receptor has bound to an AlButeofat a rates) it can autophospho-
rylate. To simplify the system we will assume that this process is sufficiesmslytfiat it in effect happens as
soon as the receptor binds to the AIP molecule. When the receptor taitsfghosphate to the AgrA protein
(at aratep) it is free to autophosphorylate again, and the phosphorylated AgrAdés@bind to the promoter

site of the DNA and upregulate mRNA transcription.



e Model Il

AgrA is phosphorylated constitutively by kinases at a ate We assume that when an AIP molecule binds to
a receptor, the latter phosphorylates by removing the phosphate frofn(Again, we assume that this occurs

sufficiently fast that it effectively happens as soon as the receptds barthe AIP), and this dephosphorylated

AgrA is then free to bind to the promoter site of the DNA. We assume that tepter can obtain a phosphate

only from AgrA and not from any other source within the cell; this is reqlite isolate the TCS from

influences outside of thagr loop and would reflect specificity of the protein structure.
e Model I

Model 11l assumes that once AgrC has become transmembrane éutaphosphorylate at a rate;. Only
when it is bound to an AIP molecule can it transfer this phosphate to an papt&in, and only phosphorylated
AgrC is able to bind to AIP or to inhibitor molecules. Dephosphorylated Agnhot re-phosphorylate while
still bound to an AIP molecule. We therefore need to distinguish betweetblind phosphorylated and de-
phosphorylated receptors, as well as unbound phosphorylatedarghosphorylated receptors, and so extra
variables are required for this third scenario. (In Models | and liepsars are able to re-phosphorylate while
still bound to an AIP molecule so these additional variables are not reuiée assume that housekeeping
dephosphorylation of transmembrane AgrC is not required since it atitiinectly affect the level of activator
(phosphorylated AgrA) in the cells: if a cell has reached an active $tatehen all the AIP is washed away
from the cell’s environment, housekeeping dephosphorylation of Agithaid restoration of the cell to an
inactive state; however, housekeeping dephosphorylation of tranlsraae AgrC would not alter activator

level once AIP is no longer present.

In all the models we assume that AIP- and inhibitor-bound receptorspmamtaneously separate [27], at raesnd-y;
respectively and that AgrA is subject to housekeeping dephosplioryl&Ve assume that proteins are present at a large
enough level to make a continuous approximation appropriate and thaiplation is well-mixed, so that spatial effects
can be neglected. Mass-action expressions are used for all the neleiciics - these equations are, for conciseness,
shown only in Figures 3, 4 and 5; see Tables 1 and 2 for definitions @blas and parameters and Appendix A for the
default initial conditions (these being the naturally down-regulated stdatBsf the system in the absence of inhibitor
molecules; ing3 we also use the initial conditions near the unstable steady state of the felinsym order to examine

their bistability).



Variable Concentration of Units

M MRNA molecules cm?
A, B,C,D cytoplasmic AgrA, AgrB, AgrC, AgrD molecules cm?
T R transmembrane AgrB, AgrC molecules cm?
S anchored AgrD molecules cm?
a free AIP molecules cm?
i free inhibitor molecules cm?
R}, R AIP, inhibitor-bound receptor molecules cm?
Ap phosphorylated AgrA molecules cm?
P proportion of cells that is up-regulated -

i.e. in which theagr promoter is bound

Model 1l only variables Concentration of Units
Rp phosphorylated receptor (transmembrane Agr@olecules cm?
RS, inhibitor-bound phosphorylated receptor | molecules cm?
R* AlP-bound dephosphorylated receptor | molecules cm?

Table 1: Definitions of the variables. Note the slight chaafeotation from [24]: AIP-bound receptor in its phosphory-

lated form is denotedr’, in this work rather than simplyR*.

We do not consider the possibility that both AgrA and AgrC are constitutpktsphorylated as there would then be
no phosphate transfer between the two, meaning that there could benabtsdmsduction. The three models presented
here thus complete the possibilities for the TCS, allowing for a thoroughtigegisn of the different cases.

Whilst most equations follow directly from conventional kinetic theory, ttesticribing the proportion of up-regulated
cells is less intuitive and for this we adopt a standard approach used iellmgdjene regulation, see for example [28].
Assuming that the activator protein can bind to, and subsequently sefrara, a promoter site, the rate of change of the
probability that a promoter site is bound (for our purposes this is equivideghe proportion ogr up-regulated cells)
is given by

dP b

%:NAP(I—P)—UP, (1)



Parameter Rate constant for Units
m basal production of MRNA molecules cells! s~!
v QS-induced mRNA transcription molecules cells! s~!
K protein translation s!
ar, QR AgrB and AgrC taken up into cell membrane s!
Qag AgrD anchoring to cell membrane s!
Ax natural degradation of variablg s!
r dilution through cell division st
Sx degradation and dilutiordg = Ax + 7) s!
k AIP production from AgrD, mediated by AgrB molecules! cm? 5!
k; introduction of inhibitor into the system molecules cm3 s—!
B, Bi binding of AIP, inhibitor to the receptor molecules! cm?® s~!
v, Vi separation of AIP, inhibitor from the receptor s!
o activation of AgrA by AIP-bound AgrC molecules! cn? s7!
I dephosphorylation of AgrA by phosphatases s!
b binding of the promoter site molecules! cells s°!
u unbinding of the promoter site s!
A AgrA phosphorylation on production (Model 1l only) s!
YR AlP-independent phosphorylation of transmembrane Agrédai 111 only) st
N total number of bacteria per unit volume cells cnt3

Table 2: Definitions of the parameters.
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Figure 3: A schematic representation of the complete mamtethieagr circuit with a classical TCS, i.e. Model | with
synthetic inhibition. See Tables 1 and 2 for definitions &f variables and parameters. The dimensionless versioisof th
model is shown in Figure 6. The dashed and dotted boxes ocomspectively the equations which change for Model I

and for Model Ill. The arrows illustrate the direction of thesitive feedback loop.
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Figure 4: A schematic representation of the section of theehtor theagr circuit with synthetic inhibition which
changes from Model | for Model Il. See Tables 1 and 2 for deéini of variables and parameters and Figure 7 for the

dimensionless version.
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da N N di . : .
e = kTS — BRpa+v(R* + Rp) — Aaa o =ki — BiRpi+ viRp — \ii
\

dR%
dt
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Ttp =4YrR — fRpa+ vRp — BiRpi + viRp *5RPRP] [
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Figure 5: A schematic representation of the section of thdehtor theagr circuit with synthetic inhibition which
changes from Model | for Model Ill. See Tables 1 and 2 for thinikons of variables and parameters and Figure 8 for

the dimensionless version.

for Models | and Ill, and
aP b

e NA(l — P) —uP, 2)

for Model I, wherein the activator concentration (molecules per wlitme) is scaled with the population size (number
of cells per unit volume)NV, in order to obtain the average number of molecules of activator perwelassume the
proportion of cells which isagr up-regulated to be dependent upon this rate. Notice that taking (1) tw () quasi-
steady would simply give Michaelis-Menten kinetics for mRNA transcription.

We employ the same nondimensionalisations for Models | and Il in ordeiateeroomparisons easy, but due to the
extra variables in Model Il this is not possible. Instead, the nondimea#gation of Model Il is chosen to ensure
equivalent terms in Model Il have coefficient unity as in Models | andrie nondimensional systems are shown in
Figures 6, 7 and 8. In brief, the steady states of the system are notaiil&a@xplicitly, so we nondimensionalise those
variables that would be present in a completely down-regulated cellvtyeee AIP production is turned off and no
inhibitor is present) by their down-regulated steady states. The remaioihdimensionalisations are chosen to simplify
the equations as much as possible, namely to set the coefficients ofnRRBE transcription, AlP-receptor binding,
AgrA activation and phosphorylated AgrA binding to the promoter site ite@®equations to unity. Details are provided
in Appendix A and further information can be found in [24] and [26].

As discussed in [24], we do not have sufficient data for full parasston of the models. However, we do have
enough information to estimate their relative sizes and, given the qualitetivee of our investigations, this is sufficient.
We here list our parameter scalings, but more details can be found ,j2gR4we remark that certain definitions of
nondimensional parameters differ in [24], notablyks, ¢ andk,, with k; and 3, being new parameters introduced in

this study, making the equations superficially different whilst essentialhyghthe same; this is largely due to a minor

11
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[) with synthetic inhibition. For details of the nondimeosalisation, see Appendix A. We have scaled the parameters
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Figure 7: A schematic representation of the section of thedimoensional model of thagr circuit with synthetic in-

hibition which changes from Model | for the Model Il TCS. Wevieascaled the parameters according to (4),(5) and

(7).
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Figure 8: A schematic representation of the section of threlimensional model of thagr circuit with synthetic inhibi-

tion which changes from Model | for Model Ill. We have scalbd parameters according to (4),(5) and (7).

alteration in the parameter scalings, namely thatgfwhich is outlined below). We set ourselves up to apply asymptotic
techniques by estimating relative sizes of the nondimensional paranwteoverall parameter choice being motivated by
a desire to ensure that the mathematical analysis be revealing as welbagdailly plausible. For instance, fundamental
to our parameter choice is the ratio of basal transcription to QS-controdleddription {n/v). To ensure that the cells
can ‘switch’ between an up-regulated and down-regulated state, th#methis transformation being gradual (which

would be contrary to the concept of a quorum), this ratio must be smalthMgedefine our basic small parameter as

e=2, ®3)
v
wheree << 1 (this is consistent with previously published models of QS, for example32p, and scale
’ 1 ~ / 14 ’ 1
v=-9 B =-6, Bi=-5 4
€ € €

The first follows directly from (3) while the latter two stem from the assumptiia signal binding to receptors is fast in
comparison to basal transcription and degradation or translation ofnedsee the nondimensional definitions of these
parameters given by (29) in Appendix A). We remark that smaller @soafv’ result in the bacteria being unable to
achieve a fully up-regulated state even in the absence of inhibitor, whilestigp3’ this large enables a rapid switch
between active and inactive states [24].

We choose our largest parameters to be the rates of AIP producticroastitutive AgrA phosphorylation:
1- 1 -
ka == 72ka and wA = 3¢A (5)
€ €

The scaling fork,, follows from examination of the dimensional parameters which fogm

_ kBGbATRS

ka ,
Nt

(6)
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(X is the initial condition ofX given by (22), forX = A, T, R, S) where we see thai, has a higher ratio of rates of
activation to those of degradation and basal transcription than eithér or 3; and it is therefore logical to takie, to

be larger than either of these three nondimensional parameters.ifiibpgo beO(¢~?) also ensures that, at all times
and regardless of how active the cells are initially, enough AIP will beyred (in the absence of any QS inhibition) to
upregulate the cells if it is retained within their environment. Constitutive Adrdsphorylation appears only in Model

Il and is chosen to b@(¢~2) to ensure that that there is not enough activator present in the atufekigefor the cells to

be activated. Additionally, this scaling ensures that Model Il displayshilgta a number of the QS systems previously
studied demonstrate bistable behaviour (see [25, 30, 32] for examle)eby in a certain parameter regime whether the
cells reach an up-regulated or a down-regulated state depends upiaiti#heonditions. Choosingb4 to be O(¢~?)
results in such bistable behaviour. Hence, both mathematically and bidlggida logical to choose) 4 to be large.

Finally, we choose two of the nondimensional parameters 10 (2¢. These are
W =en, and kg = eks. (7)

The first represents the rate of housekeeping dephosphorylatiogréf #&nd we assume that the bacteria can eliminate
unwanted phosphorylated AgrA via degradation and dilution sufficientigiefitly to make little of this housekeeping
process required. In [24] we uséd = O(1) in order to simplify the asymptotics; however, we here return to the
biologically-motivated scaling employed in [26]. The implicationkgfbeingO(¢) is that AgrD is rapidly turned over in
the production of AIPs and reflects the efficiency of the signalling system.

For the timebeing, we leave, the source of inhibitor molecules (corresponding to their entry into thie@ment of
the cells) ag)(1). We will investigate how large this parameter must be to make synthetic inhibérapy effective for
each of the three models. Unless otherwise stated, all dimensionlessgparain our numerical solutions (excepwill
be taken to be unity, with = 102, Table 3 displays the default parameter set with the scaled paramefaey/disin
their non-hatted form in order to be able to see their relative magnitudf4,126] we were able to demonstrate through
a time-dependent asymptotic analysis that for this parameter choi¢ep&#ee reactions involved in upregulating the
agr operon will appear in the leading-order behaviour of the system in theeseg expected from biological knowledge.
Thus the parameters are biologically realistic in addition to ensuring that ttiens are amenable to asymptotic

analysis.
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Nondimensional parameter Default value
ks, p 102
@, A Ay 10,7 Vi @ VR, G u 1
v, B, Bi 102
kayta 10*
€ 102

Table 3: The default parameter set. In this work, we conesmtn examining the effects of varying the rateat which

inhibitor is introduced to the cells.
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Figure 9: The solid lines (stable) and dashed lines (unstaiebpresent the steady statesifr), P, for varying k;

for (a) Model I, (b) Model Il and (c) Model lll, plotted with thdata obtained using XPPAUT 5.91. We plot the data
on a log scale in order to be able to see clearly the locatiomefiower fold bifurcations. The dotted lines are the
asymptotic approximations to these solution curves, ttheiivation being provided if4 (one captures the upper stable
and intermediate unstable steady states, while the otipeodimates the lower stable steady state). Parameters/ahee
provided in Table 3. While the three cases are qualitativiehylar, Model | requires a much larger value bf than the
other two models to guarantee downregulation and it is theidetast sensitive to suppression by inhibitor. In thiseesp
Model Il has the weakest of the three cascades, as it canyfgrazameter set) be suppressed with the lowest valige of

We investigate why this might be the case in the context oéttapendent solutions of the three models.
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3 Numerical solutions

Our aim is to investigate the effects of inhibitor therapy on the three diffeastades of the TCS. We begin by looking
at the steady-state profile &f, the proportion of up-regulated cells, as we VAyyi.e. the rate, per unit volume and time,

at which inhibitor molecules are introduced into the environment of the deitgire 9 illustrates the resulting solution
curves using our default parameter set; the solid lines represent stabtly states, the dashed lines unstable ones and
the dotted lines track the asymptotic approximation to these curves which vadéied ing4.

Each model exhibits three regimes of steady-state behaviour. ForVaess ofk; there is not enough inhibitor to
block the QS systems and the cells will always reach an up-regulated atéate[R4], wherek; = 0). For sufficiently
large values of:;, there is enough inhibitor present to downregulate the cells whatever thé stétia. Intermediate
values ofk; give bistability, so that the success of inhibitor therapy will be dependaom the initial conditions of the
system, notably on the level of upregulation of the population when the inhikitiirst applied (the position of the
unstable branch gives some indication of the basins of attraction): if the@ops in the early stages of self-activation
then inhibitor therapy stands a chance of blocking enough receptorsvtaretgulate the operon; however, if the cells
have already reached a sufficiently active state at the time that inhibitoccubedeare introduced, the receptors will
already be predominantly bound to AIP and the inhibitor will be unable to birshtmgh receptors to prevent the cells
from reaching an active state, albeit one with a slightly reduced leveltivftgdrom when no inhibitor is present. This
hysteretic behaviour is consistent both with results derived in [25] andexjterimental results which illustrate that the
crucial step of staphylococcal murine abscess formation is in the initg¢staf infection [33]: blocking thaegr operon
with inhibitor molecules during this early phase alone (the half-life of the inhiloitolecules, which are introduced only
at the start of the experiment, is short in comparison with the length of timkeis t® cause an infection) is sufficient to
render the bacteria incapable of forming the abscess as the mice gaiaseditime to fight the weakened bacteria.

While each of the three cases produces this hysteresis curve, theildistabvals correspond to considerably dif-
ferent ranges of;. Model Il has the smallest range and smallest upper and lower limits drigtable region, followed
by Model Il and then Model I. Models | and Il differ to such an extémit their bistable regions do not overlap. This
suggests that the classical TCS cascade, represented by Modebigisahust to inhibitor therapy than either of the other
two, since a much larger value bf is required before the inhibitor therapy can have any chance of siddeslel 1l on
the other hand, would be most sensitive to the inhibitor and therefore ettt least effective (in the current context)
TCS cascade to have evolved in tigr operon of the three proposed here. It must be remembered, owieat care is

needed when making comparisons between the three models, giveathatontains parameters which do not appear in
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Figure 10: Parameter plots of the fold locations for (a) Mddé) Model Il and (c) Model lll; in each case, the shaded
area illustrates the range kf that would display bistable behaviour for a given choice .of he left edge of the shaded
area corresponds with the lower fold bifurcation and thiatragige with the upper fold bifurcation. For sufficiently sma
v, the models do not have bistable behaviour and so for a spealfie ofk; there will exist only one stable steady state.
Our parameter choice (= 100) is consistent with previous mathematical and experimeasalts which suggest that the

agr operon is likely to display bistable behaviour.

the others. Nevertheless, if the appropriate data were available sueteddés would provide some insight into which
phosphorylation cascade operates in such TCSs, in particular givetrittieg difference in the bistable region between
Model | and Model Il, allowing greater knowledge of when inhibitor thranay and may not be successful.

We can also track the location of the fold bifurcations as we vary specifapaters (this we do using the package
XPPAUT 5.91). For example, Figures 10 and 11 illustrate the fold locatisge vary the parametersand« 4 respec-
tively (these parameters are in their unscaled but nondimensiong| &srdefined in (29)). We choose these parameters
to emphasise the mathematical significance of our parameter choiceh(imhtisese figures corresponds«#o= 100
andya = 10%). We recall thai represents the ratio of the QS-controlled transcription rate to the basahnate 4
represents the rate of constitutive AgrA phosphorylation (in Model ly)orFor biological reasons we expect both of
these parameters to be large (§2p In each case, the shaded area represents the parameter regidigiays bistable
behaviour. So, for example, for sufficiently smatihe fold bifurcations are absent and only a single stable steady state is
possible for any given value @f. Our parameter choice is therefore consistent with the idea thaptheperon would
display hysteretic behaviour. Notice that the lower fold in each case varieh less withk; than does the upper one.

The implication of this is that the higher the valueuahe larger the bistable region will be, i.e. the minimum valué,of
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Figure 11: Parameter plot of the fold locations for Model Iithwarying k; and 4, the latter parameter representing the
rate of constitutive AgrA phosphorylation (we recall thiaistparameter appears only in Model I1). As in Figure 10, the
left edge of the shaded area corresponds with the lower faldchation and the right edge with the upper fold bifurcatio
Our parameter choicei(y = 10%) is consistent with previous mathematical and experinieasalts which suggest that

theagr operon is likely to display bistable behaviour.

at which it is possible for the inhibitor to downregulate the cells does notgehararkedly (at least relative to the upper
fold) while the minimum value of; required toguaranteedownregulation increases greatly withThus increasing the
ratio of the rates of QS-controlled transcription to basal transcription isatidécof the cells augmenting their ability
to self-activate in spite of the inhibitor. Conversadgcreasing) 4 (see Figure 11) increases this bistable range because
more non-phosphorylated AgrA (which is active) will be present in glksanerely because the act of constitutive phos-
phorylation is slower and not because more has been activated viaghghuainylation cascade. Such comments illustrate
how results can be dependent upon parameter choice. For exankpig, dasufficiently low value of) 4 in Model Il
induces a bistable region comparable with those of Models | and Il (ajthowe believe this likely to be biologically
inappropriate since activator would be present in the absence of IhIB)ite of the parameter-dependency, this type of
comparison enables us to envisage when inhibitor therapy would bességiceand how much would be required for each
TCS cascade; if4 we derive analytical expressions for this threshold level.

Figures 12-14 give some time-dependent numerical solutions to datie three models. To save space only a
selection of variables is illustrated. In each case we first demonstrater¢sid2(a)-14(a)) what happens when no
inhibitor is present, using the completely down-regulated steady state (vghil@scribed in Appendix A) as the initial

condition. The cells quickly reach an up-regulated state, Withpproaching 1. The concentrations of all the proteins
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Figure 12: Selected numerical solutions to the nondimerasiblodel | using the parameters from Table 3. Infg}= 0
and (b)k; = 3/¢°. The initial conditions for (a) are given by (31). For (b),drder to demonstrate the bistable nature of
the model, we obtain the initial conditions by perturbing tinstable steady statefat= 3/¢° for each variable either
in the direction of its active stable steady state (solid)lior of its inactive stable steady state (dashed line) tainlthe

initial conditions.
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Figure 13: Selected numerical solutions to the nondimeasgimodel Il using the parameters from Table 3. Inka}= 0
and (b)k; = 3/€3. The initial conditions for (a) are given by (31) and (32),ilelor (b) we calculate the unstable steady
state fork; = 3/¢3 and for each variable we perturb the state either towardeftge stable state (solid line) or its inactive
stable state (dashed line) to obtain the initial conditjtimss demonstrating the bistable nature of the model. Thibitor
molecules can downregulate the bacteria of this model ahrtaveer values of;. Note that the roles of phosphorylated

and non-phosphorylated AgrA are reversed in this model.
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Figure 14: Selected numerical solutions to the nondimessilodel Il using the parameters from Table 3. Inka)= 0
and (b)k; = 10/€3. The initial conditions for (a) are given by (31) and (35),iletor (b) we perturb the unstable steady
state fork; = 10/€3 either towards its active stable state (solid line) or i&ctive stable state (dashed line) in order to

obtain the initial conditions, thus demonstrating thedhtt nature of the model.
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except those of inactive AgrA and free receptors (the latter is not shimerease accordingly. As would be expected,
in Models | and Il the level of inactive AgrA (i.e., non-phosphorytatégrA in these cases) decreases to much less
than that of active AgrA, and any increase due to synthesis can besBeearly on when the QS loop has yet to take
full effect. This increase is much more evident in Model Il (see Fégi4(a)). In Model Il inactive AgrA is of the
phosphorylated form and we see in Figure 13(a) that in this instance tdtystiate levels of active and inactive AgrA
are roughly the same due to the balance between phosphorylation arcfwodand dephosphorylation via activation.
We see in Figure 13(b) that once inhibitor is introduced this balance tips dufaf inactive AgrA, since the inhibitor
molecules induce lower levels of activation. In each case, the levelmfund receptors decreases dramatically as more
and more become bound to AIP molecules. Notice that Model | is the cgiitikeeach upregulation, followed by Model
Il and then Model Il i.e. it would seem likely that the sensitivity of the T©Snhibition is linked to the time the cell
takes to become active: the longer this process takes, the more ogiydtttere is for the inhibitor to suppress thgr
operon and the larger the bistable region will be.

The second set of solutions in each case (Figures 12(b)-14(bYrdgrates the bistable behaviour of each model
for specific values of;. From the data calculated in plotting the bifurcation diagrams, we obtain &breiable the
unstable steady state for a given(this value differs in each case since the bistable parameter regime wétiethe
model) and then perturb the initial condition for each variable either towa@radtive stable steady state (solid line) or
toward the inactive stable steady state (dashed line). It is evident thaglthevil either reach a highly active state in
which the inhibitor therapy has been unsuccessful, or a suppresseabtre inhibitor therapy has clearly taken effect,
the former occurring when the initial conditions associated withattpeoperon are higher. In other words, the lower
the activity of the operon when inhibitor therapy is administered, the maenpal the therapy has to be effective. For
all variables the solutions remain close to the unstable steady state for a tiraee(the solution appears flat) before
diverging towards one of the two stable steady states. We note that it iss&ibfe to distinguish between the active and
inactive steady state concentrations of inhibitpin Model I; this result can be manipulated to simplify the model and in
84 we derive the approximation to this steady state which could be used ingfldwe equation representing the rate of
change of inhibitor concentration.

The amount of AlIP-bound receptoR}) that is required to upregulate the cells is a convenient measure of the
efficiency of the QS loop: in the presence of inhibif®}p reaches a considerably lower level for all models than in the
absence of any inhibitor and for Models | and Il there is actually a hidgael of inhibitor-bound receptor than its
AIP-bound counterpart even when the cell becoamrsactive (see the solid lines of Figures 12(b) and 14(b)). Figure 15

illustrates the steady-state curves ®} for each model. Remembering that the entirety of the upper stable settion o
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Figure 15: The steady states®f,(7), R}, for varyingk;, solved numerically for (a) Model I, (b) Model Il and (c) Mdde
. Solid lines illustrate stability and dashed ones ihgity (for Models | and Il the unstable branch is not clgavisible
due to its proximity to the lower stable curve). Since thehigf curve in each case represents an up-regulated populati
it is clear that relatively small amounts of AIP-bound reloe@re required to upregulate the cell in comparison with th

actual level of this complex achieved when no inhibitor isdis

the curve represents an active population, it is clear that the concento&t#dP-bound receptor required to upregulate
the cells is not as high as is produced when no inhibitor is present: mudtesmaantities will suffice. For Models |
and Il we have adjusted theaxis to illustrate clearly the difference between the upper stable branictheatower two
branches. Even so, the drop in the levelRjf ask; increases is so drastic for these two models that it is impossible to

distinguish between the unstable branch and the lower stable branch inlihgsens.

4 Asymptotic approximation to the steady-state curves

The full steady states of the three models cannot be expressed explitiigad, we exploit asymptotic techniques
to derive approximations to the steady-state curves of Figure 9 (thexaptions are given by the dotted lines) and
the corresponding curves for all variables. The approximations réded in this section, while, for conciseness,
their derivations are given only in Appendix B. The scalinggpfnd each variable needed to produce the asymptotic
approximation to the active and unstable branches are denot&d byhen they are scaled to approximate the inactive
branch we us&¥. The steady-state approximations for each varidblere denoted t and X*.

An asymptotic approach enables the inference of more precise infornfeom the models than could be obtained

by examining the numerical solutions in isolation. For instance, for eaatehwe obtain analytical estimates of the
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Figure 16: The real and positive roots of equations (a) (8) @ (11). These approximate (a) the active stable branch,
unstable branch and upper fold bifurcation, and (b) thetiastable branch and lower fold bifurcation of the solatio

curve for Model | given in Figure 9(a). In (c) we plot the asytotiz approximations with the full numerical solutions.

threshold levels of inhibitor required for it to be successful in downiamg theagr operon (both possible success, initial
conditions permitting, and guaranteed success), providing insight intthyglarameters are predominantly responsible

for the efficacy of inhibitor therapy.

41 Modd |

4.1.1 Activestablebranch and unstable branch

The asymptotic approximations to the active stable branch and unstabéhtzne given by
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where the possible leading-ordBf are given by the physically-meaningful roots of

A —.4 ) A _
A+ yi)Xivikad* (PT = PT) + (A + ) Aaukstk! PT + (X + ) Mauk! =0, 9)

(we note that the approximations 8y, C', D andT here, and henceforth, are identical to thab6y. It is noteworthy that
the gene expression level is fully under the control of the QS loop, aseicription being negligible (see’’ ~ ¢ P7
in (8)).

Equation (9) has four roots but only two of these are positive and raa. dDthese approximates the active stable
branch and the other the unstable branch. The two roots meet at theffaichbon joining these two branches, see

Figures 9(a) and 16(a). The Iocatiohj&, P,B), of this upper bifurcation point is given at leading order by
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i.e. the value of; at which it can be guaranteed that inhibitor therapy be successful isrdeéal principally (assuming
rates of degradation and separation from receptors are compaeabksim AIP and inhibitor) by the rates of AIP produc-
tion, mRNA transcription and separation of inhibitor molecules from reee@nd of AgrA from the DNA binding site.
The only parameter of these which could be optimised, at least to an ektenigh the design of the inhibitor molecule
is the rate of separation of inhibitor molecules from the receptgraninimising this parameter will decrease the value

of k; at which inhibitor success can be guaranteed. Finally, we note that thatgxtilevel is determined solely by AIP

production, mRNA transcription and degradation rates.

4.1.2 Inactive branch

The asymptotic approximations to the inactive branch are given by

_ L _ i (6Pt 2 - 1
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whereP* is given at leading order by a physically-meaningful root of
A+ 7)) Aivika (0P +1)" — (A + ) Aauk! PT = 0. (11)

As with equation (9), (11) has four roots but only two give positive sedlitions. This time, the two relevant roots meet
at the fold bifurcation joining the inactive branch to the unstable brandahtlalower one of these approximates this
inactive branch, see Figures 9(a) and 16(b).

While QS-induced transcription still features at leading order, basadrgation now also appears due to the high
proportion of suppressed cells (sk& ~ 9P* + 1 in (10)). Similarly, we do not see the loss of transmembrane AgrD
(S) as a result of AIP production in the leading-order behaviour of thiireacells (the parametérs does not feature
in our approximation ofS in (10)) because when the QS loop is repressed much less AIP is pehditanight seem
logical to expect the activating binding reactions (representegidnydn) to be present in the leading-order behaviour of
the active cells (i.e. in (8) and (9)) and the inhibitory binding reactighstp be in that of the repressed cells (in (10) and
(11)). However, even in an active state, the activating binding reaatiom®t come into the leading-order behaviour of
these equations. We shall see that this is also the case for Model IlI, Mbdel Il displays more unexpected behaviour

in this respect. The lack of activating binding reactions at leading ordeismtbdel demonstrates that the QS circuit
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is sufficiently efficient that even when it appears as though the inhibitéecules are dominating the behaviour, there
can still be enough free receptors and AIP molecules to overcome thudtiom, and is consistent with the numerical
solutions of Figures 12(b) (and 14(b) for Model Ill) where finaPAbound receptor levels are much lower than those of
inhibitor-bound receptor even when the cells reach an active state.

The location, ka, Pf), of the lower fold bifurcation is given at leading order by

. 256(\ + vi) Aiyika® 5 _ 1
iL 27T + )M au L

i.e. it is the same parameters governing the threshold valée loélow which inhibitor therapy is guaranteed to fail as
those governing the threshold valuekgfabove which it is guaranteed to succeed; here, minimisingill decrease the
value ofk; below which inhibitor is guaranteed to fail. In the inactive state, the propoofiative cells is determined (at
leading order) simply by the rate of mMRNA transcription: since the cell igiv@dhe contributions of all other reactions
are negligible.

Finally, notice that the approximation faris the same regardless of whether the operon is active or inactive. We
could thus simplify the model by approximating inhibitor concentratiorkb\; (the balance between its production

and degradation), in particular if the focus of attention is on the steady sfates system.

4.2 Modd Il

4.2.1 Activestable branch and unstable branch

The asymptotic approximations to the active stable branch and unstablhbiraModel Il (where dephosphorylated

AgrA is the activator) are
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where the possible leading-ord@f are given by the physically-meaningful roots of
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A4 ) Maiyikad* (P — PT) + (A + V) Aauthaks ki PT 4+ (A + 7)) Mautpak! = 0. 13)

Only the approximations fad /_ﬂ, andP' differ from Model I: here AgrA levels are governed by constitutivegpho-
rylation and activation, rather than translation and degradation as in Mdded two positive real roots of (13) represent

the upper stable branch and the unstable branch of the solution curstngnat the fold bifurcation which joins these

26



a b c
(a) L (b) L (c) 1\
% 05 % 05 I
OJ 0 0
0 5 0 5 0 5
ki w10 ki 10 ki ya0

Figure 17: The positive real roots of equations (a) (13) @)d16). These approximate (a) the active stable branch,
unstable branch and upper fold bifurcation, and (b) thetimastable branch and lower fold bifurcation of the solntio

curve for Model Il given in Figure 9(b). In (c) we plot the asptutic approximations with the full numerical solutions.

two branches, see Figures 9(b) and 17(a), which, at leading actrrs at
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this, again, is very similar to Model I: the parameter groupings are the gath the exception of a dependence upiqn

the rate of constitutive phosphorylation of AgrA, in Model Il. The lev&iribitor required to ensure downregulation
of the agr operon (regardless of initial conditions) decreases with increaginglt would, therefore, be tempting to
speculate that a Model || TCS would be stronger if were smaller, but the result of this would be that increased levels
of active AgrA would be present constitutively and not as a conseruehan activeagr operon, thus defeating the

purpose of the signal transduction system.

4.2.2 Inactive branch

The asymptotic approximations for the inactive stable branch of Modeél|
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whereP* andR* are given at leading order by
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eliminating R* gives a 7th order polynomial i*. Solving (15) and (16) produces only two meaningful roots, which
join at the lower fold bifurcation; one of these provides an approximatidhednactive stable branch, see Figures 9(b)
and 17(b). Itis possible to derive an expression for the location of therltold bifurcation as the solution to a 5th order
polynomial, omitted for brevity.

As mentioned ing4.1, we now see some unexpected results in terms of the leading-ondigngbreactions. In
the active state, only the inhibitory binding reactions played a part in the dombehaviour of the system (see the
dependence on; in (12) and (13). However, in the suppressed state, the activating bimdactions also appear at
leading order §, 3;, v and~; all play a role in (14)-(16)), whereas one might anticipate that, if theyewgeing to arise,
we would see the activating binding reactions in the active state (i.e. in (tR§18)). This can be understood if we
bear in mind that the active and inactive systems capture the behavithe célls in the region of the fold bifurcations.
The upper fold bifurcation (on the active branch) represents thehibicbgevel of inhibitor above which the inhibitor
will certainly suppress thagr operon. The lower fold bifurcation (on the inactive branch) reprissire threshold level
of inhibitor below which theagr operon cannot be suppressed, i.e. where AIP dominates over imhibitough non-
intuitive at first, it is actually therefore reasonable that the activating hinaiactions should appear at leading order on
the lower branch, alongside the inhibitory ones. This behaviour is natisédodels | or Il because inhibitor levels are

much larger in comparison to Model Il, preventing the AlP-binding tieas from being dominant at leading order.

4.3 Modd 111

4.3.1 Activestablebranch and unstable branch

We recall that this model requires additional variables to model the \sghasphorylation states in which transmem-
brane AgrC can lie. Despite the extra variables, the leading-order nesatie very similar to Model I. Of those which are
directly comparable, the only noteworthy difference is the appeardneading-order of the loss of AlP-bound receptor
through activation (in this model) rather than degradation (as happensdelN). This difference makes the asymptotic

approximations for certain variables in Model lll appear quite diffeterthe previous two models:

_ . _.2
o pt 52 pt
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Figure 18: The roots of equations (a) (18) and (b) (20) whighkmth positive and real, i.e. the physically meaningful
roots. These approximate (a) the active stable branchabiesbranch and upper fold bifurcation, and (b) the inactive
stable branch and lower fold bifurcation of the solutionveufor Model Il given in Figure 9(c). In (c) we plot the

asymptotic approximations with the full numerical solato
where at leading ordeP' is given by the roots of the cubic
~ —.3 — N ~ _
A+ v Aiyikad® (PT = P12) + NuBk! (\ + ksoPT) = 0 (18)

which has two real positive solutions approximating the active brancthanghstable branch: see Figures 9(c) and 18(a).

The upper fold bifurcation occurs at leading order at

Novinch 53(PT2 _ pi3 B 2
(/\+%))\ﬁj?7§kaij (P} — P} )7 P = 1(1 B A3)\ n (1 B A3 ) n }6>\>.
NaufB(ksoPl + \) 4 ks kst kst

Thus the key parameters determining the threshold level of inhibitor abbigd inhibitor therapy will always suppress

T
ki =

the agr operon are similar to those of Model | but, in addition, the combination cdrpaters representing the rate of
AgrA activation (B/ng) in Model 111 will also affect this threshold level; the same applies to theraximation to the
lower fold bifurcation, (21), given below ig5.

4.3.2 Inactive branch

The following asymptotic expressions approximate the inactive bramdddel IIl:

io(5 Pt 2 :
B AP R § o 0P 41, aiwka(’”li\iJrl)’ giw%7
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where at leading ordeP* is given by the roots of the cubic

A+ 7)1 Aika (0P +1)° — Aaufki Pt =0, (20)
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which has two positive real solutions. These two roots meet at the lowkbifrcation and one follows the unstable

branch, see Figures 9(c) and 18(b). This lower fold bifurcation alihegorder occurs at

27(X + 7i)nCAiyika?

ki = -
L AdM\quf

, ﬁ:%. (21)

The differences between the active and inactive leading-order readtioModel 11l are equivalent to those discussed
for Model I, namely the absence of basal transcription in the active aetishe loss of transmembrane AgrD through
AIP production in the inactive cells. Additionally, as for Model |, the inhibibmncentration has the same asymptotic
approximation for both the stable branches, thus providing a meansibi tehsimplify the model.

We have been able to derive analytical expressions for the steady staash of the models both when thgr
operon reaches an active state and when inhibitor therapy is sudéegefaing the operon into an inactive state. These
expressions can be used for further study of the operon and, siaan#iysis reveals which parameters govern the

threshold levels of inhibitor therapy, in the design of synthetic inhibitor mééscu

5 Discussion

We have examined the impact of a novel approach for combatting Eddtdection by developing models of three
potential TCS cascades of thgr operon (the primary operon involved in the regulation of virulence fadtos. aureus
and prevalent in many other pathogens), demonstrating the ease of teistiogical hypotheses with mathematical
models. In each case we saw bistable behaviour by the cells in respotieeithibitor therapy, making its success
dependent on not only the rafg, at which inhibitor was introduced into the bacteria, but also the initial condittbthe
system. The implication of this is that, unlgsscan be increased sufficiently, this type of staphylococcal QS inhibition
may only be useful as a therapy if it can be implemented in the early stdgefection, otherwise the autoinductive
nature of the QS circuit is so efficient that tagr operon and thus the population of bacteria will still reach (or remain
in) an active and virulent state regardless of inhibitor molecule condmtral his would clearly be a major drawback
if QS inhibition were to be used as a therapy against bacterial infectionthencomplements the experimental results
of [33] which demonstrate the importance of suppressingatireoperon in the initial stages of infection to prevent
staphylococcal abscess formation in a mouse. Although downregutatidd be guaranteed for large enough values of
k; (so that the models lose their bistability), it is important to bear in mind that€disich cost-effectiveness) there would
presumably be a maximum amount of these inhibitor molecules that coudrbduced to an infection site before they
have adverse consequences upon the host.

Using numerical solutions we have shown that the dosage requiredhibitor therapy to be successful is heavily
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dependent upon the phosphorylation cascade of the TCS and hatiéedemhich of the three cascades is likely to be the
most susceptible to inhibitor therapy and which is likely to be the most robiestldissical cascade, of the three, is the
best equipped to evade inhibitor therapy and the Model Il cascadedwggA is constitutively phosphorylated) is the

weakest in this respect. Itis clear that the Model Il cascade is the f&aitra of the three, since AgrA must be converted
from its active form to an inactive state and then back to its active formremlseAgrA in the other models simply goes
from inactive to active. This would explain why Model Il takes the longesteach an active state, thus rendering it
the most susceptible to inhibition. The Model Ill cascade also requirditi@uhl steps but these concern the transition
between different phosphorylation states of the receptor, as oppwsled activator, hence making it more vulnerable
to inhibition than Model | because its phosphorylation cascade is less effibigt stronger than Model 1l because its
inefficiency only indirectly affects activator levels (whereas that of Bdtlies in the actual activator dynamics).

Given the large differences between the models, if the appropriata (eg semi-quantitative) experimental data
were available, these investigations into the effect of inhibitor therapy atiffeeent types of TCS cascade would provide
an insight into which cascade is in operation in a particular stral. @ureusr alternative species. Furthermore, if the
TCS cascade mechanism of the strain of interest is already knownricafriavestigations should help estimate the
amount of inhibitor therapy required to suppress an infection suadssAdditionally, our asymptotic analysis g4
indicates which parameters are primarily responsible for determinindftbaay of inhibitor therapy. Of these, only the
rate of separation of inhibitor and receptor could be influenced throwgthetbign of the inhibitor. Interestingly, however,
the rate of binding between inhibitor and receptor affects the leading-bef@viour of the cells at steady state only in
one scenario (Model Il when the cells were suppressed); accaamg analysis, targetting the rate of separation should
be much more effective in enhancing the potency of inhibitor therapy.

It is becoming increasingly clear thagr-like QS systems are employed by many Gram-positive bacteria, including
a number of important pathogens. Although the focus of this study hesdreS. aureusthe discovery ofgr systems
in the clostridial species has comparable significari@edifficile has, in recent years, parallell& aureusn terms of
nosocomial infections. Although the contributionamr to virulence gene regulation i@. difficile and hence infection
are not yet knownagr systems regulate virulence factors in enterococci [Bé}eria[8] andC. perfringeng6]. Hence
the importance of understanding tagr operon extends far beyond its significanceSinaureusalone, not only for its
medical implications but for fundamental questions of intra- and intecisp bacterial signalling. Similarly, TCSs are
prevalent throughout the bacterial kingdom, and while we have chostady TCSs in the context of tlagr operon, the
results (for instance in comparing the robustness of the three TCSdea3eae likely to be transferable across different

systems.
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Appendix A: Nondimensionalisation and initial conditions

For Models | and Il we employ the same nondimensionalisations in ordeake masier comparisons. Due to the extra

variables in Model 11l we need to adapt the nondimensionalisation so tisedstconsistent as possible with the first two.
We start by describing the totally down-regulated steady states of the tlu@elan This is what would arise if no

AIP were producedi = 0) and no inhibitor molecules are preseht & 0), so that QS has absolutely no effects. For

Model | these are given by

M:Niﬂﬁ A:N“m, a, Ry, Ap, P,i,Ri =0,
S O0mda
~ Nkm ~ Nrm ~ Nrm
B= —+~——, C=—=~——, D= —+ ———, 22
v (ar + 0B) om(ar + d0c) onm(as +dp) (22)
o Narsm B Nagsm - Naskm
N Samdr(ar +68)’ N Smdr(ar + dc)’ N Smds(as +6p)’

whereX denotes the completely down-regulated steady state of varkafile. where protein levels are directed only by
basal MRNA transcription and not lagr-induced transcription. It is important to remember that these are netehdy
states of a system where inhibitor molecules have suppressadrtbperon.

Those which change for Model Il are

i Nem(p+9dap) Ap— Nipakm
om((ha +0a)(p+0ap) —hap)’ om((Ya +0a)(p+0ap) —ap)’ 23)
P bem(p + 0ap) .
bem(p 4 0ap) +udn((Ya +0a)(+0ap) —Yap)
Those which differ from (22) for Model Il are
- Noarkm ~ Niyrarkm Sk i
R= , Rp= , R, Rp=0. 24
onm(ar +6c)(Yr + dr) r 0mOrp(ar + 6c)(Yr + OR) r (24)
Models| and [

We now use (22) to nondimensionalise the relevant variables (namelyyaR&lall unphosphorylated proteins, with the
exception of phosphorylated AgrA in Model Il, since these are the quégies present in a totally down-regulated cell).

Hence we set

oM ; 0mda ; Ou(ay +dx) ; Omdy(ay) +dx
M A = X ="-—__=2’X y/' = 222X \vrJ e A
Nm "’ Nem ™’ Nkm ’ Naykm

Y, (25)

for X = B,C,D andY = T, R, S respectively. The remaining nondimensionalisations are chosen to sirtipgif
corresponding equations as much as possible, namely to set theieatdfif basal mMRNA transcription, AlP-receptor

binding, AgrA activation and phosphorylated AgrA binding to the promsiir in certain equations to unity. They are
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given by
b

, BebN ark*m? . Pbrm . _
" Néu

a = a, = ——Rp, Ap'
Sm5840r(ar + 6¢) r Sn6a " F

Ap,
(26)

. Bivi . . vior(ar +0c¢) ;
= R = ————R
‘ 5]»[227 Naan ’

P already being dimensionless. Time is thus scaled with the rate of mMRNA degradation. Dimensionless parameters

T = §Mt,

are introduced according to

Nx = ;LX for X =A,T,R,S, Rp,Ap,i, R, (27)
M
’ ay +0x
anyz(si for (X7Y):(BvT)7(CvR) Or(D,S), (28)
M
and
Ao v BR BiR NBon / gl r_ i
Aazi, /:77 /:77 i/: ) = ~ = < i = )
6Nf ! m b oM oM K PbA 7 oM :y~ B oM 29)
kT u 1% N(S]w ﬁi’yi k‘»L kﬁ(]ﬁbATRS ’L/)A
]g:i, ':77 /:7’ ! = — ki/: , ka:77 ’:7’
57 S “ O K Onm ¢ bA o’ Nt V4 oM

whereX is the initial condition ofX given by (22), forX = A, T, R, S.
We assume that protein degradation rates are negligible in comparisorditutien rate so, sincéx = Ax + r we
set all the parameters in (27) to be equal. By additionally assuming th&t &mt AgrC are taken into the membrane at

the same rate and that AgrD is anchored at this same rate, we can doh@ég@8). Thus we take

Nx=X for X=AT,R,S Rp,Ap,
(30)

dxy=a for (X,Y)=(B,T),(C,R)or(D,S).
Dropping’’s we get the nondimensional models represented by Figures 6 artte7nifial conditions are given by the

dimensionless natural down-regulated steady state which for Modehhsys

(31)
a(0) = R*(0) = Ap(0) = P(0) =0
Those which change for Model Il are
Y _ ha _ é
A= e O e PO S S N @ NN — b &

and differ because constitutive AgrA phosphorylation means Ho#ind Ap will be present in a down-regulated cell
and some induction of the operon will occur (makifgnon-zero also in a down-regulated state) in response to the
(presumably low) levels of AgrA. These are used as initial conditions imtmeerical simulations illustrated by Figures

12(a) and 13(a).
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Model I11

We nondimensionalise the relevant variables using the down-regulatety states of this model (rather than those of
Model I) and choose the remaining nondimensionalisations to ensurguh&lkent terms have coefficient unity as in the
previous two models.

The nondimensional variables which alter from (25) and (26) are
b

_ om(ar + 6c)(Yr + Or) _ O0mORrp(ar +0c) (YR + IR)

/ ! */ _ *
R NO[RIQT)’L R7 RP o Nz/)RaR/-zm RP’ R o N(S]\/[R ’ (33)
' BN arr?m? o BL — Yidrp (ar + 6c) (YR + 5R)Ri
5r%0a(ar +0c)(r +0r) Niragkm P’
The nondimensional parameters which differ from (27)-(30) are
)\X/:(Si)(:)\ fOI’ X:A7T7R7S7RP7R;7R*7R§37AP7a7i7
Ot o ) ) i (34)
VR = YR o — kBpbATRpS g = BRp B = B:Rp __ bRp
f Onr’ “ Néat ’ S’ ' Sar Non®

Dropping’’s the resulting nondimensional model is illustrated by Figure 8. The initiatlitmns (again, the nondimen-

sional natural down-regulated steady states) which change fronfi@1Model I) are
Rp(0)=1 and R*(0),R5(0) = 0. (35)

These are used as initial conditions in Figure 14(a).

Appendix B: Derivation of the asymptotic approximations

We here describe the derivation of our asymptotic approximations (inteztin§3 and given explicitly in§4) to the
steady-state curves of Figure 9. In each case, the appropriate saaflingare chosen in order to capture the requisite
information from the asymptotic analysis in order to represent each seafithe curve. These (distinguished-limit)
scalings reflect how sensitive each TCS cascade is to inhibitor therajpgramprovided in Table 4. We recall that our
small parametee represents the ratio of the rate of basal mMRNA transcription to that ofd@8etled transcription.
Notice that considerably larger scalings/afare required in Model | due to the fact that it is the least susceptible to
inhibition of the three models.

For each model we obtain two sets of scalings which cover the full solutiorecone represents both the active stable
branch and the unstable branch, while the other incorporates the instetite branch and the lower fold bifurcation; in
each case there is, in the usual way, an intermediate regime in which thepraxemations overlap (i.e. furnish the

same solutions at leading order) and we also derive these regimesltherscalings ok; and each variable needed to
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Model I scaling | Model Il scaling | Model Il scaling
Active | Inactive | Active | Inactive | Active | Inactive
1 1 1 1 1 1
) Al R Al R A Bl R
ki | okl | Sk | ok -k, Skl | Sk
P pt ePt pt ePt pt ePt
1 1 1
M | -Mt WE — Mt M - Mt M
€ € €
1 1
Ry | eRbT | eRLY | SR | SR | R | RS
€ €
1 ,
Ap | AL Al EA} Al Al AL
1 1
A ZAT Al Af eAf ZAT At
€ €
. 1
R Rt €3 R¥ e3Rf eR* ~Rt Rt
€
1 1 1, 1 1 1,
a 6—4aT E—Qai 6—4aT ?ai E—4aT =
1. 1. 1. 1. 1. 1.
1 g’LT gli gZT E'Li glf gﬁi
Rp - - - - 63EL GQRiP
R* - - - - R*T | R

Table 4: The distinguished scalings required for the asgtigpapproximation to the active and inactive sections of
the solution curves illustrated in Figure 9 (the former dlsmrporate the unstable branch). The scalings required fo
B(7),C(1),D(7),S(1), T (1), R(T) and R% (1) are the same as those given di(7). The variables? » andR* appear

in Model Il only.

38



produce the asymptotic approximation to the active and unstable bram@hdsnoted by ; when they are scaled to
approximate the inactive branch we uké. The steady state approximations for each vari@blare denotedt f and
X*. Since, in the steady statd/ = B = C = D = T (mRNA concentration and natural degradation, which we
have assumed to occur at the same rate for all proteins, are the oetipnsanfluencing the levels of these proteins), we

eliminateB, C, D andT in favour of M in the remainder of this appendix.

Model |

Active stable branch and unstable branch

Substituting the scalings from Table 4 into Model | (given in Figure 6) weinlitee following steady-state equations:

0=ALQ1Q - P’ —uP, (36) 0=rhkaM'S"— *BRY! + *ByRET — Naal,  (42)
0=oP" - M+, @7 0=kl — AR + By — A, (42)
0=AM" -8 —ksM'ST, (B8)  o=~Ra' = (A+9)R}, (43)
0=AMM"—A") —egATRp + €6AL, (39) o= R — (A 4R, (44)
0=A"Rp" — (A 4+ €p)AL, (40)

0= M"— AR — eS%RTaT + 63%}%};* - iRTiT + R (45)

The leading-order balances of (36)-(45) (i.e. those in which all ténradving ¢ are neglected) can be solved to obtain

(8) and (9).

I nactive branch

Using the scalings from Table 4 we derive the steady-state equationsréseapthe stable branch which represents

inactive cells. Equations (39),(40),(43) and (44) also hold for trastin; the equations which change are

0=AL(1 — ePY) —uP, (46) 0 =kaM*S* — €BRa’ + EByRpT — Naat,  (49)
0=oP" — M* 41, @7) 0=k —EBRY + EBRT — At (50)
0=AM!—S*) — eksM*S* (48)

0= M — EXRT - EQ%Riai + 62%73321 - %R*ii + R (51)

Solving the leading-order terms of (39),(40),(43),(44) and (88)-gives us the asymptotic approximations on the inac-

tive stable branch, i.e. (10) and (11). We note that the ‘near-field’ [’lhjit—> 0) of (9) and the ‘far-field’ onel(ir — 00)
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of (11) are

1
Bt Pt o (M)k
(A 4+ 7i) Aivi0tkq ’

(Wherekj = kf), i.e. this describes the intermediate region in which the two approximatamtsteld.

Modd |1

Active stable branch and unstable branch

Using the scalings provided in Table 4, we find that equations (37)433)and (44) also apply to Model Il. Those

equations that differ are,

0= %ATU — phy—upt, (52) 0=k M'S" — 23Rl + EpyRE — Aeal, (54)
) A . A 'l .
0= %Af” —GALRR — (A +ep)AL,  (83) 0=kl —EBRY + PR — i, (55)
0=eAM" — EXAT — faAT + $*ALRET + oAl (56)
P P
0= M — AR — E%RW + e%R*pT - iRM’T + R (57)

We manipulate the leading-order terms to obtain the approximations to the antivunstable branches of the solution

curves, i.e. (12) and (13).

I nactive branch

For the inactive branch we again find that some of the steady state equddiont alter from Model |, namely (43), (44),

(47), and (48). The remaining equations are given by

0— %Ai(l — ePh) — uPt, (58) 0= i M*ST — BRYa® + ByRBY — Aea,  (60)

— 7‘2)7‘4 t 1 pxi AL 0= ki _ B.Riii + B _Rii _ )\’Li (61)
0—6 ¢ A _¢APRP —()\+6/,L)AP, (59) i 7 i7Yi (2]

0= eAM* — EXAY — oAt + QP ALRL + g AL, (62)

0= AM' — eARY — %Ria* + %R}Si ~ Lptt 4 p7 (63)

The leading-order terms of these equations allow us to calculate the a&pptimns to the inactive stable branch, i.e.
(14)-(16). The region where both (13) and this approximation to theiimalranch hold, i.ek! — 0 andk} — oo, is
given by
Pt Pt ( A +7)Xautba );’kfré.
( i

A+ %)/\mifcaf)‘*
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Model I11

Active stable branch and unstable branch

We have that (36) and (38)-(40) all also hold for Model Ill. In additive have

_ t_ pt VYR pt .

0=A+vr)(M"-R )+6T<R ; (64) 0=RbLi" — (A +)R5", (67)
0=Rha' - ;%A*R}* - €N +7)Rp',  (65) 0=kl — BiRLi" + 3Ry — Nil,  (68)
0=ATRp" — A+ 7R, (66)

0= AR — AR — eI Rbal + TRyt - LREi 4 RLT (69)

B B i
7oartot 2apt T, A5 p* Tt 2327 *f i
0=k M'S" — e BRpa' + ¢ BYRp' +¢ WR — Aaa'. (70)

The dominant terms give (17) and (18), i.e. the asymptotic approxingtdthe active stable and unstable branches for

Model 111

I nactive branch

Equations (39), (40) and (46)-(48) all also apply for this model. €hekich differ are

_ t_ pt YR put .
0=Rpa' — %AiR}Bi —e(A+MRR, (72 0=k! — eBiRLi + efiviRb" — Mit,  (75)
0=A*Rp' — (A +7)R™, (73)
0= AR — EARL — IRbat + @ RLE — L RES 4 R (76)
B B Vi
7 A 25 * BQ’Y * I I
0=kaM*S* — efRLGY + E€BVR} + eER — daat. (77)

As before, the leading-order terms can be rearranged to give (t9)28). The intermediate region in which (18) and

(20) each hold, i.ek] — 0 andk! — oo, is given by

. 1
PTN]BIN< )\Aauﬂ S )21{31-%
(A 4 vi) AivinCha 3 ’
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