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Abstract

Two-component systems (TCSs) are widely employed by bacteria to sense specific external signals and conduct an

appropriate response via a phosphorylation cascade within the cell. The TCS of theagr operon in the bacteriumStaphy-

lococcus aureusforms part of a regulatory process termed quorum sensing, a cell-to-cell communication mechanism

used to assess population density. SinceS. aureusmanipulates this “knowledge” in order to co-ordinate production of its

armoury of exotoxin virulence factors required to promote infection, it isimportant to understand fully how this process

works. We present three models of theagr operon, each incorporating a different phosphorylation cascade for the TCS

since the precise nature of the cascade is not fully understood. Using numerical and asymptotic techniques we examine

the effects of inhibitor therapy, a novel approach to controlling bacterialinfection through the attenuation of virulence,

on each of these three cascades. We present results which, if evaluated against appropriate experimental data, provide

insights into the potential effectiveness of such therapy. Moreover, theTCS models presented here are of broad relevance

given that TCSs are widely conserved throughout the bacterial kingdom.
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1 Introduction

A two-component system (TCS) is a signal-transduction mechanism usedby bacteria as a means of detecting and eliciting

an appropriate response to an external signal [1]. This signal could be, for example, temperature, pH or (in the case

of the agr operon ofStaphylococcus aureus) the bacterial population density, as monitored via a self-generated signal

molecule. A TCS comprises a sensor/receptor protein in the membrane ofthe cell and a response regulator within the

cell cytoplasm. The receptor recognises a specific external cue and transfers this “knowledge” to the response regulator

via a phosphorylation cascade, thus allowing the cytoplasmic protein to provoke some appropriate response from the

cell, usually a change in gene expression which will facilitate adaptation of thebacterium to the specific environmental

challenge.

The activation cascade can vary between TCSs (for a review, see [2]). In a classical TCS, detection of the signal by the

receptor protein results in autophosphorylation followed by the transfer of the phosphate to the response regulator protein.

When gene expression is the ultimate target, the phosphorylated protein usually has a higher affinity for the relevant DNA

binding site than when in the un-phosphorylated state. This phosphorylationcascade can vary between TCSs and we

shall investigate the implications of the possibility that the TCS of theagr operon might not take this conventional form.

Theagr operon was first discovered in the Gram-positive bacteriaS. aureus[3] and, as mentioned above, is a cell-

to-cell communication device which is generally considered to facilitate the co-ordination of gene expression at the

population level rather than individual cell level. Cell-to-cell communication in bacteria is usually called quorum sensing

(QS) and is used byS. aureusin order to, amongst other things, control the production of virulence factors during infec-

tion. While its population size is small,S. aureusproduces surface proteins which facilitate adherence to host tissue and

aid immune evasion. As the population grows, a switch to the production of secreted virulence factors occurs, leading to

the damage and degradation of the surrounding host cells and tissues, thus actively attacking the host. Since tissue dam-

age will alert host defence systems, such a delayed ‘deployment tactic’ may allow the infecting bacteria time to reach a

sufficient population size to be able to overwhelm the host [4]. The sequencing of large numbers of bacterial genomes has

revealed thatagr-type QS systems are conserved in many more Gram-positive bacterialspecies, including the pathogens

Clostridium botulinum[5], Clostridium perfringens[6], Enterococcus faecelis[7] andListeria monocytogenes[8]. Thus,

while the implications of this study are discussed principally in relation toS. aureus, the results are more widely relevant.
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Figure 1: A schematic representation of theagr feedback loop inS. aureus. The arrows with a filled head illustrate the

positive feedback loop. The dotted box encloses the elements of the TCS.

In S. aureus, the operon consists of two transcription units, termedagrBDCAand RNAIII (for reviews see [9] or [10]).

These are driven by regulatory proteins which bind to promoters termedP2 and P3, thereby permitting RNA polymerase

to transcribe the DNA into mRNA prior to translation ofagr mRNA into proteins at the ribosomes. The P2 transcript

consists of four genes that are transcribed and translated to give the four proteins AgrB, AgrD, AgrC and AgrA. AgrB is a

transmembrane protein and is involved in the post-translational conversion of the membrane-anchored AgrD pro-peptide

into a cyclic peptide QS signal molecule termed an autoinducing peptide (AIP). The AIP is secreted into the external

environment of the cell [11] where it is sensed by the transmembrane AgrC protein which acts as the receptor of the TCS

by binding to free AIP molecules [12]. This is an effective method of estimating population size or density since bacterial

numbers will, to a certain extent, correlate with the level of AIP molecules in theimmediate environment of theS. aureus

cells. Bound AgrC then activates AgrA, the response regulator [9], viaa phosphorylation cascade. Activated AgrA has

a higher affinity than non-activated AgrA for the DNA binding sites situated at the two promoters P2 and P3. The P2

promoter controls theagr genes, so a positive feedback loop, see Figure 1, is created. The P3 transcript is a regulatory

RNA termed RNAIII [13] which directs the increased translation of secreted virulence factors and repression of surface

protein production [14]. The presence of enough activated AgrA thusleads to a switch in the behaviour of the population,

from what we will call a down-regulated state to an up-regulated one. In other bacteria, theagr operon largely takes on

this form, though the specificagr-induced responses differ.

The emergence of multi-antibiotic resistantS. aureus(including methicillin- and vancomycin-resistantS. aureus;

3



MRSA and VRSA respectively), enterococci andClostridium difficilemeans that understanding the virulence mecha-

nisms employed by these pathogens to cause diseases should aid the development of novel therapies to combat infection

through attenuation of virulence. This may be achieved either through the prevention of virulence factor action or by

blocking virulence factor production. With respect to the latter, the inhibition of QS offers one potential therapeutic

strategy which is already evident inS. aureussince some strains were found to interfere with QS in others, a process

sometimes referred to as quorum quenching. This is because within the staphylococci,agr polymorphisms occur;S.

aureushas four different specificity groups with distinct AIPs and AgrC sensor domains and cross group AIP-AgrC in-

teractions are inhibitory. Furthermore, intra-group activation and inter-group inhibition are both mediated exclusively

by the same group-specific AgrC receptor [5, 6]. Thus while the AIPs from differentS. aureusgroups are sufficiently

similar that they will bind to the AgrC receptor proteins of any other strain, they cannot activate the sensor protein and

so block activation by the endogenous AIP. Thus intracellular AgrA will not become activated so effectively blocking

the QS loop and forcing the fells into, or maintaining them in, a down-regulatedstate.Staphylococcus epidermidisalso

employs anagr operon in its regulation of virulence factor production [15] and it is demonstrated in [16] that its AIP is a

potent inhibitor of theagr systems of three of theS. aureusgroups and, conversely, AIP-4 inhibits that ofS. epidermidis,

suggesting that AIP-4 may have evolved to compete withS. epidermidis. We include in our model an inhibitor therapy

which capitalises on this natural cross-inhibition byS. aureus: synthetic inhibitor molecules have been designed to block

the QS loop of any strain ofS. aureus[17], thus downregulating them and potentially providing the immune system with a

greater chance of eradicating the bacteria (see [18] or [19] for reviews of this concept). Experimental work has confirmed

the potential success of this approach - see for example [20], where amurineS. aureusskin abscess infection caused

by a strain producing AIP-1 could be prevented by coadministering AIP-2. Since the therapy would not directly kill the

bacteria, the chance of resistance developing is greatly reduced in comparison with antibiotic treatment.

While much work has been done on defining the molecular basis by which theagr system operates, a question mark

remains over the mechanisms governing the TCS in all strains and speciesthat useagr. Although it is clear which

proteins play the role of receptor and response regulator, it is not always evident how the phosphorylation cascade occurs;

in [21], the phosphorylation cascade of theagr operon has been highlighted as one of the important open questions

requiring investigation before the QS system can be fully exploited for therapeutic gain. In a classical TCS, AgrC would

autophosphorylate on binding to an AIP molecule and then transfer this phosphate to AgrA, making the phosphorylated

form of this protein the activator of the system. It has recently been shown in laboratory derivatives ofS. aureus, that

AgrC does indeed autophosphorylate [22], implying that in this case, it is aclassical TCS in operation. However, given

the variety of TCSs in existence [2], suggestions that both AgrA and AgrCcould be phosphorylated constitutively in [9]
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and evidence that AgrA can bind the relevant DNA binding site in either its phosphorylated or unphosphorylated forms

(though it has a higher affinity in the former case) in [23] open up the possibility that the phosphorylation cascade may

vary within and between strains depending on the nature of the TCS. Giventhe ease of testing different hypotheses

with mathematical models, as compared with experimental work and, given the prevalence of similar TCSs performing a

variety of roles in different bacteria, we investigate in some detail three possibilities for the phosphorylation cascade:

I theagr operon employs a classical TCS;

II AgrA is constitutively phosphorylated (so in this case dephosphorylated AgrA is the activator which binds to the

DNA);

III transmembrane AgrC is constitutively phosphorylated (and phosphorylated AgrA is the activator which binds to

the DNA).

We examine the effect of inhibition with synthetic antagonists on the QS systemsgoverned by each of these three sce-

narios, presenting time-dependent numerical solutions and bifurcationdiagrams showing the response to changes in

inhibitor therapy dosage for each of the three models. We are thus able to make comparisons between the three cascade

mechanisms, demonstrating that the model assuming AgrA to be constitutively phosphorylated (Model II) is the most

sensitive to inhibitor therapy, followed by Model III (which assumes transmembrane AgrC to be phosphorylated in the

absence of AIP molecules), with the classical TCS cascade being the most robust. Additionally, we give asymptotic ap-

proximations to the steady-state solutions in order to clarify which reactions govern the behaviour of the cells in both the

down-regulated and up-regulated states, to give analytical expressions for the threshold levels of inhibitor and to highlight

simplified models which could be used for further analysis. These resultsprovide a characterisation of when inhibitor

therapy may be successful if the phosphorylation cascade is known; conversely, given suitable experimental data, they

may aid the identification of which phosphorylation cascade is dominant in a given strain or species.

2 Model formulation

This work is an extension of our previous model in [24], which treated theentireagr operon in the absence of inhibitor

molecules. We performed a time-dependent asymptotic analysis on the model, focusing on the feedback loop, in order to

investigate the roles of the various interactions which make up the QS system and monitor how a population ofS. aureus

may shift from a relatively harmless state to a highly virulent one. To our knowledge, the only other mathematical model

of the agr operon is [25] (also focusing onS. aureus) which isolates the TCS (taken to be of the classical form) and

examines the effect of SarA, another protein involved in the regulation ofvirulence factors, on the TCS. In the interests
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Figure 2: A schematic representation of three different possibilities for the phosphorylation cascade of the TCS of the

agr operon (the small square represents a phosphate and the activated form of AgrA is in each case shown shaded).

Model I follows the classical TCS, as described in§1. Model II allows for the possibility that AgrA is constitutively

phosphorylated and consequently it is dephosphorylated AgrA which takes on the role of activator of theagr operon.

Model III assumes that transmembrane AgrC is phosphorylated in the absence of AIP - upon binding to an AIP molecule

it transfers this phosphate to the AgrA protein.

of brevity, we do not provide the full details of the derivation of the formulations of our three models in this paper (they

can be found in both [24] and [26], the latter also containing further detailsof what follows). We instead focus on the

assumptions required to differentiate between the three models. Figure 2 illustrates the different phosphorylation cascades

and the following is a summary of the differences.

• Model I

In the case of a classical TCS, once a receptor has bound to an AIP molecule (at a rateβ) it can autophospho-

rylate. To simplify the system we will assume that this process is sufficiently fast that it in effect happens as

soon as the receptor binds to the AIP molecule. When the receptor transfers its phosphate to the AgrA protein

(at a rateφ) it is free to autophosphorylate again, and the phosphorylated AgrA is able to bind to the promoter

site of the DNA and upregulate mRNA transcription.
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• Model II

AgrA is phosphorylated constitutively by kinases at a rateψA. We assume that when an AIP molecule binds to

a receptor, the latter phosphorylates by removing the phosphate from AgrA (again, we assume that this occurs

sufficiently fast that it effectively happens as soon as the receptor binds to the AIP), and this dephosphorylated

AgrA is then free to bind to the promoter site of the DNA. We assume that the receptor can obtain a phosphate

only from AgrA and not from any other source within the cell; this is required to isolate the TCS from

influences outside of theagr loop and would reflect specificity of the protein structure.

• Model III

Model III assumes that once AgrC has become transmembrane it canautophosphorylate at a rateψR. Only

when it is bound to an AIP molecule can it transfer this phosphate to an AgrAprotein, and only phosphorylated

AgrC is able to bind to AIP or to inhibitor molecules. Dephosphorylated AgrC cannot re-phosphorylate while

still bound to an AIP molecule. We therefore need to distinguish between AIP-bound phosphorylated and de-

phosphorylated receptors, as well as unbound phosphorylated and non-phosphorylated receptors, and so extra

variables are required for this third scenario. (In Models I and II, receptors are able to re-phosphorylate while

still bound to an AIP molecule so these additional variables are not required.) We assume that housekeeping

dephosphorylation of transmembrane AgrC is not required since it will not directly affect the level of activator

(phosphorylated AgrA) in the cells: if a cell has reached an active state,but then all the AIP is washed away

from the cell’s environment, housekeeping dephosphorylation of AgrAwill aid restoration of the cell to an

inactive state; however, housekeeping dephosphorylation of transmembrane AgrC would not alter activator

level once AIP is no longer present.

In all the models we assume that AIP- and inhibitor-bound receptors canspontaneously separate [27], at ratesγ andγi

respectively and that AgrA is subject to housekeeping dephosphorylation. We assume that proteins are present at a large

enough level to make a continuous approximation appropriate and that thepopulation is well-mixed, so that spatial effects

can be neglected. Mass-action expressions are used for all the reaction kinetics - these equations are, for conciseness,

shown only in Figures 3, 4 and 5; see Tables 1 and 2 for definitions of variables and parameters and Appendix A for the

default initial conditions (these being the naturally down-regulated steady states of the system in the absence of inhibitor

molecules; in§3 we also use the initial conditions near the unstable steady state of the full systems in order to examine

their bistability).
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Variable Concentration of Units

M mRNA molecules cm−3

A,B,C,D cytoplasmic AgrA, AgrB, AgrC, AgrD molecules cm−3

T,R transmembrane AgrB, AgrC molecules cm−3

S anchored AgrD molecules cm−3

a free AIP molecules cm−3

i free inhibitor molecules cm−3

R∗
P
, Ri AIP, inhibitor-bound receptor molecules cm−3

AP phosphorylated AgrA molecules cm−3

P proportion of cells that is up-regulated -

i.e. in which theagr promoter is bound

Model III only variables Concentration of Units

RP phosphorylated receptor (transmembrane AgrC)molecules cm−3

Ri
P

inhibitor-bound phosphorylated receptor molecules cm−3

R∗ AIP-bound dephosphorylated receptor molecules cm−3

Table 1: Definitions of the variables. Note the slight changeof notation from [24]: AIP-bound receptor in its phosphory-

lated form is denotedR∗
P

in this work rather than simplyR∗.

We do not consider the possibility that both AgrA and AgrC are constitutivelyphosphorylated as there would then be

no phosphate transfer between the two, meaning that there could be no signal transduction. The three models presented

here thus complete the possibilities for the TCS, allowing for a thorough investigation of the different cases.

Whilst most equations follow directly from conventional kinetic theory, thatdescribing the proportion of up-regulated

cells is less intuitive and for this we adopt a standard approach used in modelling gene regulation, see for example [28].

Assuming that the activator protein can bind to, and subsequently separate from, a promoter site, the rate of change of the

probability that a promoter site is bound (for our purposes this is equivalent to the proportion ofagr up-regulated cells)

is given by

dP

dt
=

b

N
AP (1− P )− uP, (1)
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Parameter Rate constant for Units

m basal production of mRNA molecules cells−1 s−1

v QS-induced mRNA transcription molecules cells−1 s−1

κ protein translation s−1

αT , αR AgrB and AgrC taken up into cell membrane s−1

αS AgrD anchoring to cell membrane s−1

λX natural degradation of variableX s−1

r dilution through cell division s−1

δX degradation and dilution (δX = λX + r) s−1

k AIP production from AgrD, mediated by AgrB molecules−1 cm3 s−1

ki introduction of inhibitor into the system molecules cm−3 s−1

β, βi binding of AIP, inhibitor to the receptor molecules−1 cm3 s−1

γ, γi separation of AIP, inhibitor from the receptor s−1

φ activation of AgrA by AIP-bound AgrC molecules−1 cm3 s−1

µ dephosphorylation of AgrA by phosphatases s−1

b binding of the promoter site molecules−1 cells s−1

u unbinding of the promoter site s−1

ψA AgrA phosphorylation on production (Model II only) s−1

ψR AIP-independent phosphorylation of transmembrane AgrC (Model III only) s−1

N total number of bacteria per unit volume cells cm−3

Table 2: Definitions of the parameters.
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dM

dt
= Nm+NvP − δMM

dA

dt
= κM − φAR∗

P + µAP − δAA
dB

dt
= κM − (αT + δB)B

dC

dt
= κM − (αR + δC)C

dD

dt
= κM − (αS + δD)D

dS

dt
= αSD − δSS − kTS

dT

dt
= αTB − δTT

da

dt
= kTS − βRa+ γR∗

P − λaa

dR

dt
= αRC − βRa+ γR∗

P − βiRi + γiR
i
− δRR

dR∗

P

dt
= βRa− (γ + δR∗

P
)R∗

P

dAP

dt
= φAR∗

P − (µ+ δAP
)AP

dP

dt
=

b

N
AP (1 − P ) − uP

di

dt
= ki − βiRi + γiR

i
− λii

dRi

dt
= βiRi− (γi + δ

Ri )R
i

Outside the cell

Cell

Inside

membrane

the cell

Figure 3: A schematic representation of the complete model for theagr circuit with a classical TCS, i.e. Model I with

synthetic inhibition. See Tables 1 and 2 for definitions of the variables and parameters. The dimensionless version of this

model is shown in Figure 6. The dashed and dotted boxes contain respectively the equations which change for Model II

and for Model III. The arrows illustrate the direction of thepositive feedback loop.

dA

dt
= κM + φAPR

∗

P + µAP − (ψA + δA)A

dAP

dt
= ψAA− φAPR

∗

P − (µ+ δAP
)AP

dP

dt
=

b

N
A(1 − P ) − uP

Figure 4: A schematic representation of the section of the model for theagr circuit with synthetic inhibition which

changes from Model I for Model II. See Tables 1 and 2 for definitions of variables and parameters and Figure 7 for the

dimensionless version.
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da

dt
= kTS − βRPa + γ(R∗ + R∗

P ) − λaa
di

dt
= ki − βiRP i+ γiR

i
P − λii

dRi
P

dt
= βiRP i− (γi + δ

Ri
P

)Ri
P

dR∗

dt
= φAR∗

P − (γ + δR∗ )R∗
dR∗

P

dt
= βRPa− φAR∗

P − (γ + δR∗

P
)R∗

P

dRP

dt
= ψRR− βRPa+ γR∗

P − βiRP i + γiR
i
P − δ

RP RP

dR

dt
= αRC − ψRR + γR∗

− δRR

Figure 5: A schematic representation of the section of the model for theagr circuit with synthetic inhibition which

changes from Model I for Model III. See Tables 1 and 2 for the definitions of variables and parameters and Figure 8 for

the dimensionless version.

for Models I and III, and

dP

dt
=

b

N
A(1− P )− uP, (2)

for Model II, wherein the activator concentration (molecules per unit volume) is scaled with the population size (number

of cells per unit volume),N , in order to obtain the average number of molecules of activator per cell:we assume the

proportion of cells which isagr up-regulated to be dependent upon this rate. Notice that taking (1) or (2)to be quasi-

steady would simply give Michaelis-Menten kinetics for mRNA transcription.

We employ the same nondimensionalisations for Models I and II in order to make comparisons easy, but due to the

extra variables in Model III this is not possible. Instead, the nondimensionalisation of Model III is chosen to ensure

equivalent terms in Model II have coefficient unity as in Models I and II. The nondimensional systems are shown in

Figures 6, 7 and 8. In brief, the steady states of the system are not obtainable explicitly, so we nondimensionalise those

variables that would be present in a completely down-regulated cell (onewhere AIP production is turned off and no

inhibitor is present) by their down-regulated steady states. The remaining nondimensionalisations are chosen to simplify

the equations as much as possible, namely to set the coefficients of basalmRNA transcription, AIP-receptor binding,

AgrA activation and phosphorylated AgrA binding to the promoter site in certain equations to unity. Details are provided

in Appendix A and further information can be found in [24] and [26].

As discussed in [24], we do not have sufficient data for full parametrisation of the models. However, we do have

enough information to estimate their relative sizes and, given the qualitativenature of our investigations, this is sufficient.

We here list our parameter scalings, but more details can be found in [24, 26] (we remark that certain definitions of

nondimensional parameters differ in [24], notablyη, kS , φ andka, with ki andβi being new parameters introduced in

this study, making the equations superficially different whilst essentially being the same; this is largely due to a minor
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dM

dτ
= 1 +

1

ǫ
v̂P −M

dA

dτ
= λ(M − A) − φAR∗ + ǫµ̂φAP

dB

dτ
= α(M − B)

dC

dτ
= α(M − C)

dD

dτ
= α(M −D)

dS

dτ
= λ(D − S) − ǫk̂STS

dT

dτ
= λ(B − T )

da

dτ
=

1

ǫ2
k̂aTS −

1

ǫ
β̂Ra +

1

ǫ
β̂γR∗

− λaa

dR

dτ
= λ(C − R) − ǫ

η

β̂
Ra+ ǫ

ηγ

β̂
R∗

−

1

γi

Ri + RidR∗

dτ
= Ra − (λ+ γ)R∗

dAP

dτ
= AR∗

− (λ+ ǫµ̂)AP

dP

dτ
= AP (1 − P ) − uP

di

dτ
= ki −

1

ǫ
βiRi +

1

ǫ
βiγiR

i
− λii

dRi

dτ
= Ri− (λ + γi)R

i

Outside the cell

membrane

Inside

Cell

the cell

Figure 6: A schematic representation of the nondimensionalmodel of theagr circuit incorporating a classical TCS (Model

I) with synthetic inhibition. For details of the nondimensionalisation, see Appendix A. We have scaled the parameters

according to (4),(5) and (7). The dashed and dotted boxes contain respectively the equations which change for Model II

and for Model III.

dA

dτ
= λ(M − A) −

1

ǫ2
ψ̂AA+ φ2APR

∗

P + ǫµ̂φAp

dAP

dτ
=

1

ǫ2

ψ̂A

φ
A− φAPR

∗

P − (λ+ ǫµ̂)AP

dP

dτ
=

1

φ
A(1 − P ) − uP

Figure 7: A schematic representation of the section of the nondimensional model of theagr circuit with synthetic in-

hibition which changes from Model I for the Model II TCS. We have scaled the parameters according to (4),(5) and

(7).
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da

dτ
=

1

ǫ2
k̂aTS −

1

ǫ
β̂RPa+

1

ǫ
β̂γR∗

P +
1

ǫ2

β̂2γ

ηζ
R∗

− λaa
di

dτ
= ki −

1

ǫ
β̂iRP i +

1

ǫ
β̂iγiR

i
P − λii

dRi
P

dτ
= RP i− (λ + γi)R

i
P

dR∗

dτ
= AR∗

P − (λ+ γ)R∗
dR∗

P

dτ
= RP a−

1

ǫ

β̂

ηζ
AR∗

P − (λ + γ)R∗

P

dRP

dτ
= λ(R− RP ) − ǫ

η

β̂
RP a+ ǫ

ηγ

β̂
R∗

P −

1

γi

RP i + Ri
P

dR

dτ
= (λ+ ψR)(C − R) +
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Figure 8: A schematic representation of the section of the nondimensional model of theagr circuit with synthetic inhibi-

tion which changes from Model I for Model III. We have scaled the parameters according to (4),(5) and (7).

alteration in the parameter scalings, namely that ofkS , which is outlined below). We set ourselves up to apply asymptotic

techniques by estimating relative sizes of the nondimensional parameters, our overall parameter choice being motivated by

a desire to ensure that the mathematical analysis be revealing as well as biologically plausible. For instance, fundamental

to our parameter choice is the ratio of basal transcription to QS-controlled transcription (m/v). To ensure that the cells

can ‘switch’ between an up-regulated and down-regulated state, ratherthan this transformation being gradual (which

would be contrary to the concept of a quorum), this ratio must be small. Wethus define our basic small parameter as

ǫ ≡
m

v
, (3)

whereǫ << 1 (this is consistent with previously published models of QS, for example [29–31]), and scale

v′ =
1

ǫ
v̂, β′ =

1

ǫ
β̂, β′

i =
1

ǫ
β̂i. (4)

The first follows directly from (3) while the latter two stem from the assumptionthat signal binding to receptors is fast in

comparison to basal transcription and degradation or translation of proteins (see the nondimensional definitions of these

parameters given by (29) in Appendix A). We remark that smaller choices ofv′ result in the bacteria being unable to

achieve a fully up-regulated state even in the absence of inhibitor, while choosingβ′ this large enables a rapid switch

between active and inactive states [24].

We choose our largest parameters to be the rates of AIP production andconstitutive AgrA phosphorylation:

ka =
1

ǫ2
k̂a and ψA =

1

ǫ2
ψ̂A. (5)

The scaling forka follows from examination of the dimensional parameters which formka:

ka =
kβφbÃT̃ R̃S̃

NδM
4

, (6)
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(X̃ is the initial condition ofX given by (22), forX = A, T,R, S) where we see thatka has a higher ratio of rates of

activation to those of degradation and basal transcription than eitherv′, β′ or β′
i and it is therefore logical to takeka to

be larger than either of these three nondimensional parameters. Choosing ka to beO(ǫ−2) also ensures that, at all times

and regardless of how active the cells are initially, enough AIP will be produced (in the absence of any QS inhibition) to

upregulate the cells if it is retained within their environment. Constitutive AgrA phosphorylation appears only in Model

II and is chosen to beO(ǫ−2) to ensure that that there is not enough activator present in the absenceof AIP for the cells to

be activated. Additionally, this scaling ensures that Model II displays bistability: a number of the QS systems previously

studied demonstrate bistable behaviour (see [25,30,32] for example), whereby in a certain parameter regime whether the

cells reach an up-regulated or a down-regulated state depends upon theinitial conditions. ChoosingψA to beO(ǫ−2)

results in such bistable behaviour. Hence, both mathematically and biologically, it is logical to chooseψA to be large.

Finally, we choose two of the nondimensional parameters to beO(ǫ). These are

µ′ = ǫµ̂, and kS = ǫk̂S . (7)

The first represents the rate of housekeeping dephosphorylation of AgrA and we assume that the bacteria can eliminate

unwanted phosphorylated AgrA via degradation and dilution sufficiently efficiently to make little of this housekeeping

process required. In [24] we usedkS = O(1) in order to simplify the asymptotics; however, we here return to the

biologically-motivated scaling employed in [26]. The implication ofkS beingO(ǫ) is that AgrD is rapidly turned over in

the production of AIPs and reflects the efficiency of the signalling system.

For the timebeing, we leaveki, the source of inhibitor molecules (corresponding to their entry into the environment of

the cells) asO(1). We will investigate how large this parameter must be to make synthetic inhibitortherapy effective for

each of the three models. Unless otherwise stated, all dimensionless parameters in our numerical solutions (exceptǫ) will

be taken to be unity, withǫ = 10−2. Table 3 displays the default parameter set with the scaled parameters displayed in

their non-hatted form in order to be able to see their relative magnitudes. In[24,26] we were able to demonstrate through

a time-dependent asymptotic analysis that for this parameter choice, each of the reactions involved in upregulating the

agr operon will appear in the leading-order behaviour of the system in the sequence expected from biological knowledge.

Thus the parameters are biologically realistic in addition to ensuring that the equations are amenable to asymptotic

analysis.
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Nondimensional parameter Default value

kS , µ 10−2

α, λ, λa, η, γ, γi, φ, ψR, ζ, u 1

v, β, βi 102

ka, ψA 104

ǫ 10−2

Table 3: The default parameter set. In this work, we concentrate on examining the effects of varying the rateki at which

inhibitor is introduced to the cells.
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Figure 9: The solid lines (stable) and dashed lines (unstable) represent the steady states ofP (τ), P̄ , for varying ki

for (a) Model I, (b) Model II and (c) Model III, plotted with the data obtained using XPPAUT 5.91. We plot the data

on a log scale in order to be able to see clearly the location ofthe lower fold bifurcations. The dotted lines are the

asymptotic approximations to these solution curves, theirderivation being provided in§4 (one captures the upper stable

and intermediate unstable steady states, while the other approximates the lower stable steady state). Parameter values are

provided in Table 3. While the three cases are qualitatively similar, Model I requires a much larger value ofki than the

other two models to guarantee downregulation and it is thus the least sensitive to suppression by inhibitor. In this respect,

Model II has the weakest of the three cascades, as it can (for our parameter set) be suppressed with the lowest value ofki.

We investigate why this might be the case in the context of time-dependent solutions of the three models.
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3 Numerical solutions

Our aim is to investigate the effects of inhibitor therapy on the three differentcascades of the TCS. We begin by looking

at the steady-state profile ofP , the proportion of up-regulated cells, as we varyki, i.e. the rate, per unit volume and time,

at which inhibitor molecules are introduced into the environment of the cells.Figure 9 illustrates the resulting solution

curves using our default parameter set; the solid lines represent stablesteady states, the dashed lines unstable ones and

the dotted lines track the asymptotic approximation to these curves which will bederived in§4.

Each model exhibits three regimes of steady-state behaviour. For lowervalues ofki there is not enough inhibitor to

block the QS systems and the cells will always reach an up-regulated state (as in [24], whereki = 0). For sufficiently

large values ofki, there is enough inhibitor present to downregulate the cells whatever the initial state. Intermediate

values ofki give bistability, so that the success of inhibitor therapy will be dependent upon the initial conditions of the

system, notably on the level of upregulation of the population when the inhibitor is first applied (the position of the

unstable branch gives some indication of the basins of attraction): if the operon is in the early stages of self-activation

then inhibitor therapy stands a chance of blocking enough receptors to downregulate the operon; however, if the cells

have already reached a sufficiently active state at the time that inhibitor molecules are introduced, the receptors will

already be predominantly bound to AIP and the inhibitor will be unable to bind toenough receptors to prevent the cells

from reaching an active state, albeit one with a slightly reduced level of activity from when no inhibitor is present. This

hysteretic behaviour is consistent both with results derived in [25] and withexperimental results which illustrate that the

crucial step of staphylococcal murine abscess formation is in the initial stages of infection [33]: blocking theagr operon

with inhibitor molecules during this early phase alone (the half-life of the inhibitor molecules, which are introduced only

at the start of the experiment, is short in comparison with the length of time it takes to cause an infection) is sufficient to

render the bacteria incapable of forming the abscess as the mice gain increased time to fight the weakened bacteria.

While each of the three cases produces this hysteresis curve, their bistable intervals correspond to considerably dif-

ferent ranges ofki. Model II has the smallest range and smallest upper and lower limits on thebistable region, followed

by Model III and then Model I. Models I and II differ to such an extentthat their bistable regions do not overlap. This

suggests that the classical TCS cascade, represented by Model I, is more robust to inhibitor therapy than either of the other

two, since a much larger value ofki is required before the inhibitor therapy can have any chance of success. Model II on

the other hand, would be most sensitive to the inhibitor and therefore wouldbe the least effective (in the current context)

TCS cascade to have evolved in theagr operon of the three proposed here. It must be remembered, however, that care is

needed when making comparisons between the three models, given thateach contains parameters which do not appear in
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Figure 10: Parameter plots of the fold locations for (a) Model I, (b) Model II and (c) Model III; in each case, the shaded

area illustrates the range ofki that would display bistable behaviour for a given choice ofv. The left edge of the shaded

area corresponds with the lower fold bifurcation and the right edge with the upper fold bifurcation. For sufficiently small

v, the models do not have bistable behaviour and so for a specific value ofki there will exist only one stable steady state.

Our parameter choice (v = 100) is consistent with previous mathematical and experimental results which suggest that the

agr operon is likely to display bistable behaviour.

the others. Nevertheless, if the appropriate data were available such differences would provide some insight into which

phosphorylation cascade operates in such TCSs, in particular given thestriking difference in the bistable region between

Model I and Model II, allowing greater knowledge of when inhibitor therapy may and may not be successful.

We can also track the location of the fold bifurcations as we vary specific parameters (this we do using the package

XPPAUT 5.91). For example, Figures 10 and 11 illustrate the fold locationsas we vary the parametersv andψA respec-

tively (these parameters are in their unscaled but nondimensional form, as defined in (29)). We choose these parameters

to emphasise the mathematical significance of our parameter choice (which in these figures corresponds tov = 100

andψA = 104). We recall thatv represents the ratio of the QS-controlled transcription rate to the basal rate, andψA

represents the rate of constitutive AgrA phosphorylation (in Model II only). For biological reasons we expect both of

these parameters to be large (see§2). In each case, the shaded area represents the parameter regime that displays bistable

behaviour. So, for example, for sufficiently smallv the fold bifurcations are absent and only a single stable steady state is

possible for any given value ofki. Our parameter choice is therefore consistent with the idea that theagr operon would

display hysteretic behaviour. Notice that the lower fold in each case variesmuch less withki than does the upper one.

The implication of this is that the higher the value ofv the larger the bistable region will be, i.e. the minimum value ofki
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Figure 11: Parameter plot of the fold locations for Model II with varyingki andψA, the latter parameter representing the

rate of constitutive AgrA phosphorylation (we recall that this parameter appears only in Model II). As in Figure 10, the

left edge of the shaded area corresponds with the lower fold bifurcation and the right edge with the upper fold bifurcation.

Our parameter choice (ψA = 104) is consistent with previous mathematical and experimental results which suggest that

theagr operon is likely to display bistable behaviour.

at which it is possible for the inhibitor to downregulate the cells does not change markedly (at least relative to the upper

fold) while the minimum value ofki required toguaranteedownregulation increases greatly withv. Thus increasing the

ratio of the rates of QS-controlled transcription to basal transcription is indicative of the cells augmenting their ability

to self-activate in spite of the inhibitor. Conversely,decreasingψA (see Figure 11) increases this bistable range because

more non-phosphorylated AgrA (which is active) will be present in the cells merely because the act of constitutive phos-

phorylation is slower and not because more has been activated via the phosphorylation cascade. Such comments illustrate

how results can be dependent upon parameter choice. For example, taking a sufficiently low value ofψA in Model II

induces a bistable region comparable with those of Models I and III (although we believe this likely to be biologically

inappropriate since activator would be present in the absence of AIP).In spite of the parameter-dependency, this type of

comparison enables us to envisage when inhibitor therapy would be successful and how much would be required for each

TCS cascade; in§4 we derive analytical expressions for this threshold level.

Figures 12-14 give some time-dependent numerical solutions to each of the three models. To save space only a

selection of variables is illustrated. In each case we first demonstrate (Figures 12(a)-14(a)) what happens when no

inhibitor is present, using the completely down-regulated steady state (whichis described in Appendix A) as the initial

condition. The cells quickly reach an up-regulated state, withP approaching 1. The concentrations of all the proteins

18



0 5 10
0

0.5

1

0 5 10
0

50

100

0 5 10
0

2

4

6
x 10

7

0 5 10
0

5000

10000

0 5 10
0

0.5

1

0 5 10
0

50

100

0 5 10
−1

0

1

0 5 10
−1

0

1

0 50 100
0

0.5

1

0 50 100
0

50

100

0 50 100
0

2

4

x 10
7

0 50 100
0

0.1

0.2

0 50 100
0

50

100

0 50 100
0

10

20

0 50 100
2.8

3

3.2
x 10

10

0 50 100
0

50

100

(b)

(a)

ττττ

ττττ

ττττ

ττττ

P
P

M
M

a
a

R
∗ P

R
∗ P

A
A

A
P

A
P

i
i

R
i

R
i

Figure 12: Selected numerical solutions to the nondimensional Model I using the parameters from Table 3. In (a)ki = 0

and (b)ki = 3/ǫ5. The initial conditions for (a) are given by (31). For (b), inorder to demonstrate the bistable nature of

the model, we obtain the initial conditions by perturbing the unstable steady state atki = 3/ǫ5 for each variable either

in the direction of its active stable steady state (solid line) or of its inactive stable steady state (dashed line) to obtain the

initial conditions.
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Figure 13: Selected numerical solutions to the nondimensional Model II using the parameters from Table 3. In (a)ki = 0

and (b)ki = 3/ǫ3. The initial conditions for (a) are given by (31) and (32), while for (b) we calculate the unstable steady

state forki = 3/ǫ3 and for each variable we perturb the state either towards itsactive stable state (solid line) or its inactive

stable state (dashed line) to obtain the initial conditions, thus demonstrating the bistable nature of the model. The inhibitor

molecules can downregulate the bacteria of this model at much lower values ofki. Note that the roles of phosphorylated

and non-phosphorylated AgrA are reversed in this model.
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Figure 14: Selected numerical solutions to the nondimensional Model III using the parameters from Table 3. In (a)ki = 0

and (b)ki = 10/ǫ3. The initial conditions for (a) are given by (31) and (35), while for (b) we perturb the unstable steady

state forki = 10/ǫ3 either towards its active stable state (solid line) or its inactive stable state (dashed line) in order to

obtain the initial conditions, thus demonstrating the bistable nature of the model.
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except those of inactive AgrA and free receptors (the latter is not shown) increase accordingly. As would be expected,

in Models I and III the level of inactive AgrA (i.e., non-phosphorylated AgrA in these cases) decreases to much less

than that of active AgrA, and any increase due to synthesis can be seenonly early on when the QS loop has yet to take

full effect. This increase is much more evident in Model III (see Figure 14(a)). In Model II inactive AgrA is of the

phosphorylated form and we see in Figure 13(a) that in this instance the steady state levels of active and inactive AgrA

are roughly the same due to the balance between phosphorylation on production and dephosphorylation via activation.

We see in Figure 13(b) that once inhibitor is introduced this balance tips in favour of inactive AgrA, since the inhibitor

molecules induce lower levels of activation. In each case, the level of unbound receptors decreases dramatically as more

and more become bound to AIP molecules. Notice that Model I is the quickest to reach upregulation, followed by Model

III and then Model II, i.e. it would seem likely that the sensitivity of the TCSto inhibition is linked to the time the cell

takes to become active: the longer this process takes, the more opportunity there is for the inhibitor to suppress theagr

operon and the larger the bistable region will be.

The second set of solutions in each case (Figures 12(b)-14(b)) demonstrates the bistable behaviour of each model

for specific values ofki. From the data calculated in plotting the bifurcation diagrams, we obtain for each variable the

unstable steady state for a givenki (this value differs in each case since the bistable parameter regime varieswith the

model) and then perturb the initial condition for each variable either toward the active stable steady state (solid line) or

toward the inactive stable steady state (dashed line). It is evident that the cells will either reach a highly active state in

which the inhibitor therapy has been unsuccessful, or a suppressed state where inhibitor therapy has clearly taken effect,

the former occurring when the initial conditions associated with theagr operon are higher. In other words, the lower

the activity of the operon when inhibitor therapy is administered, the more potential the therapy has to be effective. For

all variables the solutions remain close to the unstable steady state for a time (where the solution appears flat) before

diverging towards one of the two stable steady states. We note that it is not possible to distinguish between the active and

inactive steady state concentrations of inhibitor,i, in Model I; this result can be manipulated to simplify the model and in

§4 we derive the approximation to this steady state which could be used in placeof the equation representing the rate of

change of inhibitor concentration.

The amount of AIP-bound receptor (R∗
P ) that is required to upregulate the cells is a convenient measure of the

efficiency of the QS loop: in the presence of inhibitorR∗
P reaches a considerably lower level for all models than in the

absence of any inhibitor and for Models I and III there is actually a higherlevel of inhibitor-bound receptor than its

AIP-bound counterpart even when the cell becomesagr-active (see the solid lines of Figures 12(b) and 14(b)). Figure 15

illustrates the steady-state curves forR∗
P for each model. Remembering that the entirety of the upper stable section of
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Figure 15: The steady states ofR∗
P
(τ), R̄∗

P
, for varyingki, solved numerically for (a) Model I, (b) Model II and (c) Model

III. Solid lines illustrate stability and dashed ones instability (for Models I and III the unstable branch is not clearly visible

due to its proximity to the lower stable curve). Since the highest curve in each case represents an up-regulated population,

it is clear that relatively small amounts of AIP-bound receptor are required to upregulate the cell in comparison with the

actual level of this complex achieved when no inhibitor is used.

the curve represents an active population, it is clear that the concentration of AIP-bound receptor required to upregulate

the cells is not as high as is produced when no inhibitor is present: much smaller quantities will suffice. For Models I

and III we have adjusted they-axis to illustrate clearly the difference between the upper stable branch and the lower two

branches. Even so, the drop in the level ofR̄∗
P aski increases is so drastic for these two models that it is impossible to

distinguish between the unstable branch and the lower stable branch in thesediagrams.

4 Asymptotic approximation to the steady-state curves

The full steady states of the three models cannot be expressed explicitly;instead, we exploit asymptotic techniques

to derive approximations to the steady-state curves of Figure 9 (the approximations are given by the dotted lines) and

the corresponding curves for all variables. The approximations are provided in this section, while, for conciseness,

their derivations are given only in Appendix B. The scalings ofki and each variable needed to produce the asymptotic

approximation to the active and unstable branches are denoted byX†; when they are scaled to approximate the inactive

branch we useX‡. The steady-state approximations for each variableX are denoted̄X† andX̄‡.

An asymptotic approach enables the inference of more precise information from the models than could be obtained

by examining the numerical solutions in isolation. For instance, for each model we obtain analytical estimates of the
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Figure 16: The real and positive roots of equations (a) (9) and (b) (11). These approximate (a) the active stable branch,

unstable branch and upper fold bifurcation, and (b) the inactive stable branch and lower fold bifurcation of the solution

curve for Model I given in Figure 9(a). In (c) we plot the asymptotic approximations with the full numerical solutions.

threshold levels of inhibitor required for it to be successful in downregulating theagr operon (both possible success, initial

conditions permitting, and guaranteed success), providing insight into which parameters are predominantly responsible

for the efficacy of inhibitor therapy.

4.1 Model I

4.1.1 Active stable branch and unstable branch

The asymptotic approximations to the active stable branch and unstable branch are given by

M̄† ∼ Ā† ∼ v̂P̄ †, S̄† ∼
λv̂P̄ †

λ+ k̂S v̂P̄ †
, ā† ∼

k̂aλv̂
2P̄ †2

(λ+ k̂S v̂P̄ †)λa

,

ī† ∼
k†i
λi

, R̄† ∼
(λ+ γi)λiγiv̂P̄

†

k†i
, R̄i† ∼ γiv̂P̄

†,

Ā†
P ∼

(λ+ γi)λiγiv̂
4k̂aP̄

†4

(λ+ γ)(λ+ k̂S v̂P̄ †)λak
†
i

, R̄∗†
P ∼

(λ+ γi)λλiγiv̂
3k̂aP̄

†3

(λ+ γ)(λ+ k̂S v̂P̄ †)λak̂i
,

(8)

where the possible leading-orderP̄ † are given by the physically-meaningful roots of

(λ+ γi)λiγik̂av̂
4(P̄ †4

− P̄ †3
) + (λ+ γ)λauk̂S v̂k

†
i P̄

† + (λ+ γ)λλauk
†
i = 0, (9)

(we note that the approximations for̄B, C̄, D̄ andT̄ here, and henceforth, are identical to that ofM̄ ). It is noteworthy that

the gene expression level is fully under the control of the QS loop, basaltranscription being negligible (seēM† ∼ v̂P̄ †

in (8)).

Equation (9) has four roots but only two of these are positive and real. One of these approximates the active stable

branch and the other the unstable branch. The two roots meet at the fold bifurcation joining these two branches, see

Figures 9(a) and 16(a). The location, (k†iU , P̄
†
U ), of this upper bifurcation point is given at leading order by
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k†iU =
(λ+ γi)λiγik̂av̂

4(P̄ †3
U − P̄ †4

U )

(λ+ γ)λau(k̂S v̂P̄
†
U + λ)

, P̄ †
U =

1

3

(

1−
2λ

k̂S v̂
−

√

(

1−
2λ

k̂S v̂

)

2

+
9λ

k̂S v̂

)

,

i.e. the value ofki at which it can be guaranteed that inhibitor therapy be successful is determined principally (assuming

rates of degradation and separation from receptors are comparable between AIP and inhibitor) by the rates of AIP produc-

tion, mRNA transcription and separation of inhibitor molecules from receptors and of AgrA from the DNA binding site.

The only parameter of these which could be optimised, at least to an extent,through the design of the inhibitor molecule

is the rate of separation of inhibitor molecules from the receptors,γi: minimising this parameter will decrease the value

of ki at which inhibitor success can be guaranteed. Finally, we note that the activation level is determined solely by AIP

production, mRNA transcription and degradation rates.

4.1.2 Inactive branch

The asymptotic approximations to the inactive branch are given by

M̄‡ ∼ Ā‡ ∼ S̄‡ ∼ v̂P̄ ‡ + 1, ā‡ ∼
k̂a(v̂P̄

‡ + 1)2

λa

, ī‡ ∼
k‡i
λi

,

R̄i‡ ∼ γi(v̂P̄
‡ + 1), R̄‡ ∼

(λ+ γi)(v̂P̄
‡ + 1)λiγi

k‡i
,

R̄∗‡
P ∼

(λ+ γi)(v̂P̄
‡ + 1)3λiγik̂a

(λ+ γ)λak
‡
i

, Ā‡
P ∼

(λ+ γi)(v̂P̄
‡ + 1)4λiγik̂a

(λ+ γ)λλak
‡
i

,

(10)

whereP̄ ‡ is given at leading order by a physically-meaningful root of

(λ+ γi)λiγik̂a(v̂P̄
‡ + 1)

4

− (λ+ γ)λλauk
‡
i P̄

‡ = 0. (11)

As with equation (9), (11) has four roots but only two give positive realsolutions. This time, the two relevant roots meet

at the fold bifurcation joining the inactive branch to the unstable branch, and the lower one of these approximates this

inactive branch, see Figures 9(a) and 16(b).

While QS-induced transcription still features at leading order, basal transcription now also appears due to the high

proportion of suppressed cells (seēM‡ ∼ v̂P̄ ‡ + 1 in (10)). Similarly, we do not see the loss of transmembrane AgrD

(S) as a result of AIP production in the leading-order behaviour of the inactive cells (the parameterkS does not feature

in our approximation ofS in (10)) because when the QS loop is repressed much less AIP is produced. It might seem

logical to expect the activating binding reactions (represented byβ andη) to be present in the leading-order behaviour of

the active cells (i.e. in (8) and (9)) and the inhibitory binding reactions (βi) to be in that of the repressed cells (in (10) and

(11)). However, even in an active state, the activating binding reactionsdo not come into the leading-order behaviour of

these equations. We shall see that this is also the case for Model III, whileModel II displays more unexpected behaviour

in this respect. The lack of activating binding reactions at leading order in this model demonstrates that the QS circuit
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is sufficiently efficient that even when it appears as though the inhibitor molecules are dominating the behaviour, there

can still be enough free receptors and AIP molecules to overcome the inhibition, and is consistent with the numerical

solutions of Figures 12(b) (and 14(b) for Model III) where final AIP-bound receptor levels are much lower than those of

inhibitor-bound receptor even when the cells reach an active state.

The location, (k‡iL, P̄
‡
L), of the lower fold bifurcation is given at leading order by

k‡iL =
256(λ+ γi)λiγik̂av̂

27(λ+ γ)λλau
, P̄ ‡

L =
1

3v̂
,

i.e. it is the same parameters governing the threshold value ofki below which inhibitor therapy is guaranteed to fail as

those governing the threshold value ofki above which it is guaranteed to succeed; here, minimisingγi will decrease the

value ofki below which inhibitor is guaranteed to fail. In the inactive state, the proportionof active cells is determined (at

leading order) simply by the rate of mRNA transcription: since the cell is inactive, the contributions of all other reactions

are negligible.

Finally, notice that the approximation fori is the same regardless of whether the operon is active or inactive. We

could thus simplify the model by approximating inhibitor concentration byki/λi (the balance between its production

and degradation), in particular if the focus of attention is on the steady statesof the system.

4.2 Model II

4.2.1 Active stable branch and unstable branch

The asymptotic approximations to the active stable branch and unstable branch in Model II (where dephosphorylated

AgrA is the activator) are

M̄† ∼ v̂P̄ †, S̄† ∼
λv̂P̄ †

λ+ k̂S v̂P̄ †
, ā† ∼

k̂aλv̂
2P̄ †2

(λ+ k̂S v̂P̄ †)λa

, ī† ∼
k†i
λi

,

R̄† ∼
(λ+ γi)λiγiv̂P̄

†

k†i
, R̄∗†

P ∼
(λ+ γi)λλiγiv̂

3k̂aP̄
†3

(λ+ γ)(λ+ k̂S v̂P̄ †)λak
†
i

, R̄i† ∼ γiv̂P̄
†,

Ā† ∼
(λ+ γi)λλiγiφk̂av̂

4P̄ †4

(λ+ γ)(λ+ k̂S v̂P̄ †)λaψ̂Ak
†
i

, Ā†
P ∼

v̂P̄ †

φ
,

(12)

where the possible leading-orderP̄ † are given by the physically-meaningful roots of

(λ+ γi)λλiγik̂av̂
4(P̄ †4

− P̄ †3
) + (λ+ γ)λauψ̂Ak̂S v̂k̂iP̄

† + (λ+ γ)λλauψ̂Ak
†
i = 0. (13)

Only the approximations for̄A†, Ā†
P andP̄ † differ from Model I: here AgrA levels are governed by constitutive phospho-

rylation and activation, rather than translation and degradation as in ModelI. The two positive real roots of (13) represent

the upper stable branch and the unstable branch of the solution curve, meeting at the fold bifurcation which joins these
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Figure 17: The positive real roots of equations (a) (13) and (b) (16). These approximate (a) the active stable branch,

unstable branch and upper fold bifurcation, and (b) the inactive stable branch and lower fold bifurcation of the solution

curve for Model II given in Figure 9(b). In (c) we plot the asymptotic approximations with the full numerical solutions.

two branches, see Figures 9(b) and 17(a), which, at leading order,occurs at

k†iU =
(λ+ γi)λλiγik̂av̂

4(P̄ †3
U − P̄ †4

U )

(λ+ γ)λauψ̂A(v̂k̂SP̄
†
U + λ)

, P̄ †
U =

1

3

(

1−
2λ

v̂k̂S
−

√

(

1−
2λ

v̂k̂S

)2

+
9λ

v̂k̂S

)

;

this, again, is very similar to Model I: the parameter groupings are the same with the exception of a dependence uponψ̂A,

the rate of constitutive phosphorylation of AgrA, in Model II. The level of inhibitor required to ensure downregulation

of the agr operon (regardless of initial conditions) decreases with increasingψ̂A. It would, therefore, be tempting to

speculate that a Model II TCS would be stronger ifψ̂A were smaller, but the result of this would be that increased levels

of active AgrA would be present constitutively and not as a consequence of an activeagr operon, thus defeating the

purpose of the signal transduction system.

4.2.2 Inactive branch

The asymptotic approximations for the inactive stable branch of Model IIare

M̄‡ ∼ S̄‡ ∼ v̂P̄ ‡ + 1, Ā‡ ∼
φk̂a(v̂P̄

‡ + 1)3R̄‡

ψ̂A(β̂λR̄‡ + (λ+ γ)λa)
, ā‡ ∼

(λ+ γ)k̂a(v̂P̄
‡ + 1)2

(β̂λR̄‡ + (λ+ γ)λa)
,

Ā‡
P ∼

1

φ
(v̂P̄ ‡ + 1), R̄∗‡

P ∼
k̂a(v̂P̄

‡ + 1)2R̄‡

(β̂λR̄‡ + (λ+ γ)λa)
, ī‡ ∼

(λ+ γi)k
‡
i

(β̂iλR̄‡ + (λ+ γi)λi)
,

R̄i‡ ∼
k‡i R̄

‡

(β̂iλR̄‡ + (λ+ γi)λi)
,

(14)

whereP̄ ‡ andR̄‡ are given at leading order by

λR̄‡2[
β̂2β̂iλγi(v̂P̄

‡ + 1)− β̂iγiη̂k̂a(v̂P̄
‡ + 1)2 − β̂2k‡i

]

+ R̄‡
[

(v̂P̄ ‡ + 1)((λ+ γi)β̂
2λλiγi + (λ+ γ)β̂β̂iλλaγi)− (λ+ γi)λiγiη̂k̂a(v̂P̄

‡ + 1)2 − (λ+ γ)β̂λak
‡
i

]

+ (λ+ γ)(λ+ γi)β̂λaλiγi(v̂P̄
‡ + 1) = 0, (15)

P̄ ‡ =
k̂a(v̂P̄

‡ + 1)3R̄‡

ψ̂Au(β̂λR̄‡ + (λ+ γ)λa)
; (16)
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eliminatingR̄‡ gives a 7th order polynomial in̄P ‡. Solving (15) and (16) produces only two meaningful roots, which

join at the lower fold bifurcation; one of these provides an approximation tothe inactive stable branch, see Figures 9(b)

and 17(b). It is possible to derive an expression for the location of the lower fold bifurcation as the solution to a 5th order

polynomial, omitted for brevity.

As mentioned in§4.1, we now see some unexpected results in terms of the leading-order binding reactions. In

the active state, only the inhibitory binding reactions played a part in the dominant behaviour of the system (see the

dependence onγi in (12) and (13). However, in the suppressed state, the activating binding reactions also appear at

leading order (β, βi, γ andγi all play a role in (14)-(16)), whereas one might anticipate that, if they were going to arise,

we would see the activating binding reactions in the active state (i.e. in (12) and (13)). This can be understood if we

bear in mind that the active and inactive systems capture the behaviour ofthe cells in the region of the fold bifurcations.

The upper fold bifurcation (on the active branch) represents the threshold level of inhibitor above which the inhibitor

will certainly suppress theagr operon. The lower fold bifurcation (on the inactive branch) represents the threshold level

of inhibitor below which theagr operon cannot be suppressed, i.e. where AIP dominates over inhibitor. Though non-

intuitive at first, it is actually therefore reasonable that the activating binding reactions should appear at leading order on

the lower branch, alongside the inhibitory ones. This behaviour is not seen in Models I or III because inhibitor levels are

much larger in comparison to Model II, preventing the AIP-binding reactions from being dominant at leading order.

4.3 Model III

4.3.1 Active stable branch and unstable branch

We recall that this model requires additional variables to model the various phosphorylation states in which transmem-

brane AgrC can lie. Despite the extra variables, the leading-order reactions are very similar to Model I. Of those which are

directly comparable, the only noteworthy difference is the appearance at leading-order of the loss of AIP-bound receptor

through activation (in this model) rather than degradation (as happens in Model I). This difference makes the asymptotic

approximations for certain variables in Model III appear quite different to the previous two models:

M̄† ∼ Ā† ∼ R̄† ∼ v̂P̄ †, S̄† ∼
λv̂P̄ †

λ+ k̂S v̂P̄ †
, ā† ∼

k̂aλv̂
2P̄ †2

(λ+ k̂S v̂P̄ †)λa

,

ī† ∼
k†i
λi

, R̄i†
P ∼ γiv̂P̄

†, R̄†
P ∼

λiγiv̂(λ+ γi)P̄
†

k†i
, R̄∗†

P ∼
(λ+ γi)ηζλλiv̂

2k̂aP̄
†2

β̂λa(λ+ k̂S v̂P̄ †)
,

R̄∗† ∼
ηζλλi(λ+ γi)k̂av̂

3P̄ †3

β̂λa(λ+ k̂S v̂P̄ †)(λ+ γ)
, Ā†

P ∼
ηζλiγi(λ+ γi)k̂av̂

3P̄ †3

β̂k†iλa(λ+ k̂S v̂P̄ †)
,

(17)
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Figure 18: The roots of equations (a) (18) and (b) (20) which are both positive and real, i.e. the physically meaningful

roots. These approximate (a) the active stable branch, unstable branch and upper fold bifurcation, and (b) the inactive

stable branch and lower fold bifurcation of the solution curve for Model III given in Figure 9(c). In (c) we plot the

asymptotic approximations with the full numerical solutions.

where at leading order̄P † is given by the roots of the cubic

(λ+ γi)ηζλiγik̂av̂
3(P̄ †3

− P̄ †2) + λauβ̂k
†
i (λ+ k̂S v̂P̄

†) = 0 (18)

which has two real positive solutions approximating the active branch andthe unstable branch: see Figures 9(c) and 18(a).

The upper fold bifurcation occurs at leading order at

k†iU =
(λ+ γi)λiγiηζk̂av̂

3(P̄ †2
U − P̄ †3

U )

λauβ̂(k̂S v̂P̄
†
U + λ)

, P̄ †
U =

1

4

(

1−
3λ

k̂S v̂
+

√

(

1−
3λ

k̂S v̂

)2

+
16λ

k̂S v̂

)

.

Thus the key parameters determining the threshold level of inhibitor abovewhich inhibitor therapy will always suppress

the agr operon are similar to those of Model I but, in addition, the combination of parameters representing the rate of

AgrA activation (̂β/ηζ) in Model III will also affect this threshold level; the same applies to the approximation to the

lower fold bifurcation, (21), given below in§5.

4.3.2 Inactive branch

The following asymptotic expressions approximate the inactive branch for Model III:

M̄‡ ∼ Ā‡ ∼ R̄ ∼ S̄ ∼ v̂P̄ ‡ + 1, ā‡ ∼
k̂a(v̂P̄

‡ + 1)
2

λa

, ī‡ ∼
k‡i
λi

,

R̄‡
P ∼

λiγi(λ+ γi)(v̂P̄
‡ + 1)

k‡i
, R̄i‡

P ∼
λiγi(λ+ γi)(v̂P̄

‡ + 1)

k‡i
,

R̄∗‡
P ∼

ηζλiγik̂a(λ+ γi)(v̂P̄
‡ + 1)

2

β̂λak
‡
i

, R̄∗‡ ∼
ηζλiγik̂a(λ+ γi)(v̂P̄

‡ + 1)
3

β̂λak
‡
i (λ+ γ)

,

Ā‡
P ∼

ηζλiγik̂a(λ+ γi)(v̂P̄
‡ + 1)

3

β̂λλak
‡
i

,

(19)

where at leading order̄P ‡ is given by the roots of the cubic

(λ+ γi)ηζλiγik̂a(v̂P̄
‡ + 1)

3

− λλauβ̂k
‡
i P̄

‡ = 0, (20)
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which has two positive real solutions. These two roots meet at the lower fold bifurcation and one follows the unstable

branch, see Figures 9(c) and 18(b). This lower fold bifurcation at leading order occurs at

k‡iL =
27(λ+ γi)ηζλiγik̂av̂

4λλauβ̂
, P ‡

L =
1

2v̂
. (21)

The differences between the active and inactive leading-order reactions for Model III are equivalent to those discussed

for Model I, namely the absence of basal transcription in the active cellsand the loss of transmembrane AgrD through

AIP production in the inactive cells. Additionally, as for Model I, the inhibitorconcentration has the same asymptotic

approximation for both the stable branches, thus providing a means by which to simplify the model.

We have been able to derive analytical expressions for the steady statesof each of the models both when theagr

operon reaches an active state and when inhibitor therapy is successful in forcing the operon into an inactive state. These

expressions can be used for further study of the operon and, since the analysis reveals which parameters govern the

threshold levels of inhibitor therapy, in the design of synthetic inhibitor molecules.

5 Discussion

We have examined the impact of a novel approach for combatting bacterial infection by developing models of three

potential TCS cascades of theagr operon (the primary operon involved in the regulation of virulence factors inS. aureus

and prevalent in many other pathogens), demonstrating the ease of testing biological hypotheses with mathematical

models. In each case we saw bistable behaviour by the cells in response tothe inhibitor therapy, making its success

dependent on not only the rate,ki, at which inhibitor was introduced into the bacteria, but also the initial conditions of the

system. The implication of this is that, unlesski can be increased sufficiently, this type of staphylococcal QS inhibition

may only be useful as a therapy if it can be implemented in the early stages of infection, otherwise the autoinductive

nature of the QS circuit is so efficient that theagr operon and thus the population of bacteria will still reach (or remain

in) an active and virulent state regardless of inhibitor molecule concentration. This would clearly be a major drawback

if QS inhibition were to be used as a therapy against bacterial infections andthis complements the experimental results

of [33] which demonstrate the importance of suppressing theagr operon in the initial stages of infection to prevent

staphylococcal abscess formation in a mouse. Although downregulationcould be guaranteed for large enough values of

ki (so that the models lose their bistability), it is important to bear in mind that (aside from cost-effectiveness) there would

presumably be a maximum amount of these inhibitor molecules that could beintroduced to an infection site before they

have adverse consequences upon the host.

Using numerical solutions we have shown that the dosage required for inhibitor therapy to be successful is heavily

30



dependent upon the phosphorylation cascade of the TCS and have identified which of the three cascades is likely to be the

most susceptible to inhibitor therapy and which is likely to be the most robust: the classical cascade, of the three, is the

best equipped to evade inhibitor therapy and the Model II cascade (where AgrA is constitutively phosphorylated) is the

weakest in this respect. It is clear that the Model II cascade is the least efficient of the three, since AgrA must be converted

from its active form to an inactive state and then back to its active form, whereas AgrA in the other models simply goes

from inactive to active. This would explain why Model II takes the longestto reach an active state, thus rendering it

the most susceptible to inhibition. The Model III cascade also requires additional steps but these concern the transition

between different phosphorylation states of the receptor, as opposedto the activator, hence making it more vulnerable

to inhibition than Model I because its phosphorylation cascade is less efficient, but stronger than Model II because its

inefficiency only indirectly affects activator levels (whereas that of Model II lies in the actual activator dynamics).

Given the large differences between the models, if the appropriate (even only semi-quantitative) experimental data

were available, these investigations into the effect of inhibitor therapy on thedifferent types of TCS cascade would provide

an insight into which cascade is in operation in a particular strain ofS. aureusor alternative species. Furthermore, if the

TCS cascade mechanism of the strain of interest is already known, numerical investigations should help estimate the

amount of inhibitor therapy required to suppress an infection successfully. Additionally, our asymptotic analysis in§4

indicates which parameters are primarily responsible for determining the efficacy of inhibitor therapy. Of these, only the

rate of separation of inhibitor and receptor could be influenced through the design of the inhibitor. Interestingly, however,

the rate of binding between inhibitor and receptor affects the leading-order behaviour of the cells at steady state only in

one scenario (Model II when the cells were suppressed); accordingto our analysis, targetting the rate of separation should

be much more effective in enhancing the potency of inhibitor therapy.

It is becoming increasingly clear thatagr-like QS systems are employed by many Gram-positive bacteria, including

a number of important pathogens. Although the focus of this study has been onS. aureus, the discovery ofagr systems

in the clostridial species has comparable significance:C. difficile has, in recent years, parallelledS. aureusin terms of

nosocomial infections. Although the contribution ofagr to virulence gene regulation inC. difficile and hence infection

are not yet known,agr systems regulate virulence factors in enterococci [34],Listeria [8] andC. perfringens[6]. Hence

the importance of understanding theagr operon extends far beyond its significance inS. aureusalone, not only for its

medical implications but for fundamental questions of intra- and inter-species bacterial signalling. Similarly, TCSs are

prevalent throughout the bacterial kingdom, and while we have chosento study TCSs in the context of theagr operon, the

results (for instance in comparing the robustness of the three TCS cascades) are likely to be transferable across different

systems.
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Appendix A: Nondimensionalisation and initial conditions

For Models I and II we employ the same nondimensionalisations in order to make easier comparisons. Due to the extra

variables in Model III we need to adapt the nondimensionalisation so that itis as consistent as possible with the first two.

We start by describing the totally down-regulated steady states of the three models. This is what would arise if no

AIP were produced (k = 0) and no inhibitor molecules are present (ki = 0), so that QS has absolutely no effects. For

Model I these are given by

M̃ =
Nm

δM
, Ã =

Nκm

δMδA
, ã, R̃∗

P , ÃP , P̃ , ĩ, R̃i = 0,

B̃ =
Nκm

δM (αT + δB)
, C̃ =

Nκm

δM (αR + δC)
, D̃ =

Nκm

δM (αS + δD)
, (22)

T̃ =
NαTκm

δMδT (αT + δB)
, R̃ =

NαRκm

δMδR(αR + δC)
, S̃ =

NαSκm

δMδS(αS + δD)
,

whereX̃ denotes the completely down-regulated steady state of variableX, i.e. where protein levels are directed only by

basal mRNA transcription and not byagr-induced transcription. It is important to remember that these are not thesteady

states of a system where inhibitor molecules have suppressed theagr operon.

Those which change for Model II are

Ã =
Nκm(µ+ δAP

)

δM ((ψA + δA)(µ+ δAP
)− ψAµ)

, ÃP =
NψAκm

δM ((ψA + δA)(µ+ δAP
)− ψAµ)

,

P̃ =
bκm(µ+ δAP

)

bκm(µ+ δAP
) + uδM ((ψA + δA)(µ+ δAP

)− ψAµ)
.

(23)

Those which differ from (22) for Model III are

R̃ =
NαRκm

δM (αR + δC)(ψR + δR)
, R̃P =

NψRαRκm

δMδRP
(αR + δC)(ψR + δR)

, R̃∗, R̃i
P = 0. (24)

Models I and II

We now use (22) to nondimensionalise the relevant variables (namely mRNA and all unphosphorylated proteins, with the

exception of phosphorylated AgrA in Model II, since these are the only species present in a totally down-regulated cell).

Hence we set

M ′ =
δM
Nm

M, A′ =
δMδA
Nκm

A, X ′ =
δM (αY + δX)

Nκm
X, Y ′ =

δMδY (αY ) + δX
NαY κm

Y, (25)

for X = B,C,D andY = T,R, S respectively. The remaining nondimensionalisations are chosen to simplify the

corresponding equations as much as possible, namely to set the coefficients of basal mRNA transcription, AIP-receptor

binding, AgrA activation and phosphorylated AgrA binding to the promotersite in certain equations to unity. They are
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given by

a′ =
βφbNαRκ

2m2

δM
5δAδR(αR + δC)

a, R∗
P

′ =
φbκm

δM
3δA

R∗
P , AP

′ =
b

NδM
AP ,

i′ =
βiγi

δM
2
i, Ri′ =

γiδR(αR + δC)

NαRκm
Ri, τ = δM t,

(26)

P already being dimensionless. Time is thus scaled withδM , the rate of mRNA degradation. Dimensionless parameters

are introduced according to

λ′
X =

δX
δM

for X = A, T,R, S,R∗
P , AP , i, R

i, (27)

α′
X,Y =

αY + δX
δM

for (X,Y ) = (B, T ), (C,R) or (D,S), (28)

and

λa =
λa

δM
, v′ =

v

m
, β′ =

βR̃

δM
, βi

′ =
βiR̃

δM
, η =

NβδM

φbÃ
, γ′ =

γ

δM
, γi

′ =
γi
δM

,

kS =
kT̃

δM
, u′ =

u

δM
, µ′ =

µ

δM
, φ′ =

NδM

bÃ
, ki

′ =
βiγiki

δM
3
, ka =

kβφbÃT̃ R̃S̃

NδM
4

, ψA
′ =

ψA

δM
,

(29)

whereX̃ is the initial condition ofX given by (22), forX = A, T,R, S.

We assume that protein degradation rates are negligible in comparison to thedilution rate so, sinceδX = λX + r we

set all the parameters in (27) to be equal. By additionally assuming that AgrB and AgrC are taken into the membrane at

the same rate and that AgrD is anchored at this same rate, we can do the same in (28). Thus we take

λ′
X = λ for X = A, T,R, S,R∗

P , AP ,

α′
X,Y = α for (X,Y ) = (B, T ), (C,R) or (D,S).

(30)

Dropping′’s we get the nondimensional models represented by Figures 6 and 7. The initial conditions are given by the

dimensionless natural down-regulated steady state which for Model I is simply

M(0) = A(0) = B(0) = C(0) = D(0) = S(0) = T (0) = R(0) = 1,

a(0) = R∗(0) = AP (0) = P (0) = 0.

(31)

Those which change for Model II are

A(0) =
µ+ λ

µ+ λ+ ψA

, AP (0) =
ψA

(µ+ λ+ ψA)φ
, P (0) =

φ

φ+ ubλ(µ+ λ)((ψA + λ)(µ+ λ)− ψAµ)
, (32)

and differ because constitutive AgrA phosphorylation means bothA andAP will be present in a down-regulated cell

and some induction of the operon will occur (makingP non-zero also in a down-regulated state) in response to the

(presumably low) levels of AgrA. These are used as initial conditions in thenumerical simulations illustrated by Figures

12(a) and 13(a).
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Model III

We nondimensionalise the relevant variables using the down-regulated steady states of this model (rather than those of

Model I) and choose the remaining nondimensionalisations to ensure the equivalent terms have coefficient unity as in the

previous two models.

The nondimensional variables which alter from (25) and (26) are

R′ =
δM (αR + δC)(ψR + δR)

NαRκm
R, RP

′ =
δMδRP

(αR + δC)(ψR + δR)

NψRαRκm
RP , R∗′ =

b

NδM
R∗,

a′ =
βφbNαRκ

2m2

δM
5δA(αR + δC)(ψR + δR)

a, Ri
P

′
=
γiδRP

(αR + δC)(ψR + δR)

NψRαRκm
Ri

P .

(33)

The nondimensional parameters which differ from (27)-(30) are

λX
′ =

δX
δM

= λ for X = A, T,R, S,RP , R
∗
P , R

∗, Ri
P , AP , a, i,

ψR
′ =

ψR

δM
, ka =

kβφbÃT̃ R̃P S̃

NδM
4

, β′ =
βR̃P

δM
, βi

′ =
βiR̃P

δM
, ζ =

bR̃P

NδM
.

(34)

Dropping′’s the resulting nondimensional model is illustrated by Figure 8. The initial conditions (again, the nondimen-

sional natural down-regulated steady states) which change from (31)(i.e. Model I) are

RP (0) = 1 and R∗(0), Ri
P (0) = 0. (35)

These are used as initial conditions in Figure 14(a).

Appendix B: Derivation of the asymptotic approximations

We here describe the derivation of our asymptotic approximations (introduced in§3 and given explicitly in§4) to the

steady-state curves of Figure 9. In each case, the appropriate scalings of ki are chosen in order to capture the requisite

information from the asymptotic analysis in order to represent each section of the curve. These (distinguished-limit)

scalings reflect how sensitive each TCS cascade is to inhibitor therapy and are provided in Table 4. We recall that our

small parameterǫ represents the ratio of the rate of basal mRNA transcription to that of QS-controlled transcription.

Notice that considerably larger scalings ofki are required in Model I due to the fact that it is the least susceptible to

inhibition of the three models.

For each model we obtain two sets of scalings which cover the full solution curve: one represents both the active stable

branch and the unstable branch, while the other incorporates the inactivestable branch and the lower fold bifurcation; in

each case there is, in the usual way, an intermediate regime in which the two approximations overlap (i.e. furnish the

same solutions at leading order) and we also derive these regimes here. The scalings ofki and each variable needed to

37



Model I scaling Model II scaling Model III scaling

Active Inactive Active Inactive Active Inactive

ki
1

ǫ6
k†
i

1

ǫ3
k‡
i

1

ǫ4
k†
i

1

ǫ
k‡
i

1

ǫ4
k†
i

1

ǫ2
k‡
i

P P̂ † ǫP ‡ P̂ † ǫP ‡ P̂ † ǫP ‡

M
1

ǫ
M† M‡ 1

ǫ
M† M‡ 1

ǫ
M† M‡

R∗
P

ǫR∗
P

† ǫR∗
P

‡ 1

ǫ
R∗

P

† 1

ǫ
R∗

P

‡ ǫR∗
P

† ǫR∗
P

‡

AP A†
P

ǫA‡
P

1

ǫ
A†

P
A‡

P
A†

P
ǫA‡

P

A
1

ǫ
A† A‡ A† ǫA‡ 1

ǫ
A† A‡

R ǫ5R† ǫ3R‡ ǫ3R† ǫR‡ 1

ǫ
R† R‡

a
1

ǫ4
a†

1

ǫ2
a‡

1

ǫ4
a†

1

ǫ2
a‡

1

ǫ4
a†

1

ǫ2
a‡

i
1

ǫ6
i†

1

ǫ3
i‡

1

ǫ4
i†

1

ǫ
i‡

1

ǫ4
i†

1

ǫ2
i‡

RP - - - - ǫ3R̂†
P

ǫ2R‡
P

R∗ - - - - R∗† ǫR∗‡

Table 4: The distinguished scalings required for the asymptotic approximation to the active and inactive sections of

the solution curves illustrated in Figure 9 (the former alsoincorporate the unstable branch). The scalings required for

B(τ), C(τ), D(τ), S(τ), T (τ), Ri(τ) andRi
P
(τ) are the same as those given forM(τ). The variablesRP andR∗ appear

in Model III only.
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produce the asymptotic approximation to the active and unstable branchesare denoted byX†; when they are scaled to

approximate the inactive branch we useX‡. The steady state approximations for each variableX are denotedX̄† and

X̄‡. Since, in the steady state,̄M ≡ B̄ ≡ C̄ ≡ D̄ ≡ T̄ (mRNA concentration and natural degradation, which we

have assumed to occur at the same rate for all proteins, are the only reactions influencing the levels of these proteins), we

eliminateB,C,D andT in favour ofM in the remainder of this appendix.

Model I

Active stable branch and unstable branch

Substituting the scalings from Table 4 into Model I (given in Figure 6) we obtain the following steady-state equations:

0 = A†
P (1− P †)− uP †, (36)

0 = v̂P †
−M† + ǫ, (37)

0 = λ(M†
− S†)− k̂SM

†S†, (38)

0 = λ(M†
−A†)− ǫφA†R∗

P
†
+ ǫ2µ̂φA†

P , (39)

0 = A†R∗
P

†
− (λ+ ǫµ̂)A†

P , (40)

0 = k̂aM
†S†

− ǫ4β̂R†a† + ǫ4β̂γR∗
P

†
− λaa

†, (41)

0 = k†i − ǫ4β̂iR
†i† + ǫ4β̂iγiR

i†
− λii

†, (42)

0 = R†a† − (λ+ γ)R∗
P

†
, (43)

0 = R†i† − (λ+ γi)R
i†, (44)

0 = λM†
− ǫ6λR†

− ǫ3
η

β̂
R†a† + ǫ3

ηγ

β̂
R∗

P
†
−

1

γi
R†i† +Ri†. (45)

The leading-order balances of (36)-(45) (i.e. those in which all termsinvolving ǫ are neglected) can be solved to obtain

(8) and (9).

Inactive branch

Using the scalings from Table 4 we derive the steady-state equations to represent the stable branch which represents

inactive cells. Equations (39),(40),(43) and (44) also hold for this branch; the equations which change are

0 = A‡
P (1− ǫP ‡)− uP ‡, (46)

0 = v̂P ‡
−M‡ + 1, (47)

0 = λ(M‡
− S‡)− ǫk̂SM

‡S‡, (48)

0 = k̂aM
‡S‡

− ǫ2β̂R‡a‡ + ǫ2β̂γR∗
P

‡
− λaa

‡, (49)

0 = k‡i − ǫ2β̂iR
‡i‡ + ǫ2β̂iγiR

i‡
− λii

‡, (50)

0 = λM‡
− ǫ3λR‡

− ǫ2
η

β̂
R‡a‡ + ǫ2

η

β̂
γR∗

P
‡
−

1

γi
R‡i‡ +Ri‡. (51)

Solving the leading-order terms of (39),(40),(43),(44) and (46)-(51) gives us the asymptotic approximations on the inac-

tive stable branch, i.e. (10) and (11). We note that the ‘near-field’ limit(k†i → 0) of (9) and the ‘far-field’ one (k‡i → ∞)
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of (11) are

P̄ †
∼ P̄ ‡

∼

(

(λ+ γ)λλau

(λ+ γi)λiγiv̂4k̂a

) 1

3

k†i
1

3 ,

(wherek†i = k‡i ), i.e. this describes the intermediate region in which the two approximations each hold.

Model II

Active stable branch and unstable branch

Using the scalings provided in Table 4, we find that equations (37),(38),(43) and (44) also apply to Model II. Those

equations that differ are,

0 =
1

φ
A†(1− P †)− uP †, (52)

0 =
ψ̂A

φ
A†

− φA†
PR

∗
P

†
− (λ+ ǫµ̂)A†

P , (53)

0 = k̂aM
†S†

− ǫ2β̂R†a† + ǫ2β̂γR∗
P

†
− λaa

†, (54)

0 = k†i − ǫ2β̂iR
†i† + ǫ2β̂iγiR

i†
− λii

†, (55)

0 = ǫλM†
− ǫ2λA†

− ψ̂AA
† + φ2A†

PR
∗
P

†
+ ǫ2µ̂φA†

P , (56)

0 = λM†
− ǫ4λR†

− ǫ
η

β̂
R†a† + ǫ

ηγ

β̂
R∗

P
†
−

1

γi
R†i† +Ri†. (57)

We manipulate the leading-order terms to obtain the approximations to the active and unstable branches of the solution

curves, i.e. (12) and (13).

Inactive branch

For the inactive branch we again find that some of the steady state equations do not alter from Model I, namely (43), (44),

(47), and (48). The remaining equations are given by

0 =
1

φ
A‡(1− ǫP ‡)− uP ‡, (58)

0 = ǫ
ψ̂A

φ
A‡

− φA‡
PR

∗
P

‡
− (λ+ ǫµ̂)A‡

P , (59)

0 = k̂aM
‡S‡

− β̂R‡a‡ + β̂γR∗
P

‡
− λaa

‡, (60)

0 = k‡i − β̂iR
‡i‡ + β̂iγiR

i‡
− λii

‡, (61)

0 = ǫλM‡
− ǫ2λA‡

− ψ̂AA
‡ + φ2A‡

PR
∗
P

‡
+ ǫ2µ̂φA‡

P , (62)

0 = λM‡
− ǫλR‡

−
η

β̂
R‡a‡ +

ηγ

β̂
R∗

P
‡
−

1

γi
R‡i‡ +Ri‡. (63)

The leading-order terms of these equations allow us to calculate the approximations to the inactive stable branch, i.e.

(14)-(16). The region where both (13) and this approximation to the inactive branch hold, i.e.k†i → 0 andk‡i → ∞, is

given by

P̄ †
∼ P̄ ‡

∼

(

(λ+ γ)λauψ̂A

(λ+ γi)λiγik̂av̂4

) 1

3

k†i
1

3 .
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Model III

Active stable branch and unstable branch

We have that (36) and (38)-(40) all also hold for Model III. In addition we have

0 = (λ+ ψR)(M
†
−R†) + ǫ

γψR

λζ
R∗†, (64)

0 = R†
P a

†
−

β̂

ηζ
A†R∗

P
†
− ǫ2(λ+ γ)R∗

P
†
, (65)

0 = A†R∗
P

†
− (λ+ γ)R∗†, (66)

0 = R†
P i

†
− (λ+ γi)R

i
P

†
, (67)

0 = k†i − ǫ2β̂iR
†
P i

† + ǫ2β̂iγiR
i
P

†
− λii

†, (68)

0 = λR†
− ǫ4λR†

P − ǫ
η

β̂
R†

P a
† + ǫ3

ηγ

β̂
R∗

P
†
−

1

γi
R†

P i
† +Ri

P

†
, (69)

0 = k̂aM
†S†

− ǫ2β̂R†
P a

† + ǫ4β̂γR∗
P

†
+ ǫ2

β̂2γ

ηζ
R∗†

− λaa
†. (70)

The dominant terms give (17) and (18), i.e. the asymptotic approximations to the active stable and unstable branches for

Model III.

Inactive branch

Equations (39), (40) and (46)-(48) all also apply for this model. Those which differ are

0 = (λ+ ψR)(M
‡
−R‡) + ǫ

γψR

λζ
R∗‡, (71)

0 = R‡
P a

‡
−

β̂

ηζ
A‡R∗

P
‡
− ǫ(λ+ γ)R∗

P
‡
, (72)

0 = A‡R∗
P

‡
− (λ+ γ)R∗‡, (73)

0 = R‡
P i

‡
− (λ+ γi)R

i
P

‡
, (74)

0 = k‡i − ǫβ̂iR
‡
P i

‡ + ǫβ̂iγiR
i
P

‡
− λii

‡, (75)

0 = λR‡
− ǫ2λR‡

P − ǫ
η

β̂
R‡

P a
‡ + ǫ2

ηγ

β̂
R∗

P
‡
−

1

γi
R‡

P i
‡ +Ri

P

‡
, (76)

0 = k̂aM
‡S‡

− ǫβ̂R‡
P a

‡ + ǫ2β̂γR∗
P + ǫ

β̂2γ

ηζ
R∗‡

− λaa
‡. (77)

As before, the leading-order terms can be rearranged to give (19) and (20). The intermediate region in which (18) and

(20) each hold, i.e.k†i → 0 andk‡i → ∞, is given by

P̄ †
∼ P̄ ‡

∼

(

λλauβ̂

(λ+ γi)λiγiηζk̂av̂3

) 1

2

k†i
1

2 .
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