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Abstract

Staphylococcus aureus uses quorum sensing (QS) to enhance its pathogenicity. An intriguing aspect of

this is that different strains are capable of inactivating the QS systems of opposing strains. In Part 1 of this

study we presented a model of this phenomenon in a well-mixed environment; here we incorporate spatial

structure. Two competitive strains occupying adjacent habitats with freely diffusing QS signal molecules

(QSSMs) are considered. We investigate the effect of the QSSM diffusion coefficient and the relative size

of the two populations on the ability of one population to dominate the other. Regarding population size,

a larger population is generally at an advantage (initial conditions permitting), while the implications of

different diffusivities are more complex and depend upon the sizes of the populations.

Keywords: gene regulation networks, mathematical modelling, quorum sensing, reaction-diffusion equations,

Staphylococcus aureus.
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1 Introduction

Quorum sensing (QS) is a cell-cell communication mechanism used by many species of bacteria enabling a

bacterial cell to coordinate its behaviour in conjunction with its population size or density; for reviews of this

mechanism see, for example, [1, 2] or [3]. In brief, each cell within a population exports a quorum sensing

signal molecule (QSSM) across its membrane(s). Extracellular QSSMs can then be detected, either by binding

to receptors located on the cell membrane (usually the case for Gram-positive bacteria), or to intracellular

receptors (Gram-negative bacteria). QSSMs need not necessarily be produced by the same cell which detects

them, and thus a means of cell-cell communication emerges. The traditional view of QS is that the more cells

that are present, the more QSSMs in the extracellular environment, such that each cell can effectively titrate

its population size. More recently, the alternative view of ‘diffusion sensing’ (DS) [4] has been put forward,

whereby it is suggested that QS allows a cell to recognise its environment rather than its population size, i.e.

the environment will affect the QSSM diffusion coefficient: the denser the environment the more QSSMs will

be retained in the surroundings of the cell. Thus the cell can alter its behaviour according to its environment.

The names ‘efficiency’ [5] and ‘positional’ [6] sensing capture the possibility that QSSMs can monitor both

population size and environmental conditions, depending upon the situation.

QS systems can be manipulated for a wide range of purposes and a variety of QS systems exist in different

bacteria, indeed some species use multiple systems in parallel. Staphylococcus aureus is a Gram-positive bacteria

which uses the agr QS system to collectively co-ordinate virulence [7], both in terms of the classical view of

QS and the less conventional DS. While its population size is small, S. aureus produces surface proteins which

facilitate adherence to host tissues and aid immune evasion through uptake into host epithelial and endothelial

cells. As the population grows, a switch to the production of secreted virulence factors occurs, leading to the

damage and degradation of the surrounding host cells and tissues, thus actively attacking the host. Since tissue

damage will alert host defence systems, such a delayed ‘deployment tactic’ may allow the infecting bacteria

time to reach a sufficient population size to be able to overwhelm the host [8]. However, the agr system is also

used for DS. For instance, a single S. aureus cell can become internalised within the endosome of a host cell.

Its QSSM, termed an auto-inducing peptide (AIP), builds up inside the host cell triggering activation of the

agr genes. This results in production of the appropriate virulence factors (notably alpha-toxin) which facilitate
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endosome escape (for a mathematical model of this process see [9]). Thus here, the system is being used to

sense the cell’s environment, its population size being irrelevant.

Despite the variety of QS systems which have been discovered, many bacteria are able to interact with

systems from other species or strains. For example, Pseudomonas aeruginosa is a Gram-negative bacterium

using a QS system unrelated to that of S. aureus but one of its QSSMs, namely 3-oxo-C12-HSL, interferes

with the production of certain agr -regulated virulence factors in S. aureus [10]. A particularly interesting

phenomenon in S. aureus is that all the strains of S. aureus can be divided into four distinct agr groups (I-

IV), and in general we see cross-activation of agr systems of strains within a group and cross-inhibition with

strains from other groups [11]. The sequencing of large numbers of bacterial genomes has revealed that agr -type

QS systems are conserved in many more Gram-positive bacterial species, including the pathogens Clostridium

botulinum [12], Clostridium perfringens [13], Enterococcus faecelis [14] and Listeria monocytogenes [15]. Thus,

while the implications of this study are discussed principally in relation to S. aureus, the results are more widely

relevant, with cross-species agr signalling being likely to occur.

The emergence of antibiotic-resistant strains of S. aureus has made the development of new therapies to

combat staphylococcal infections increasingly urgent. Given its use in pathogenicity, it is clear that understand-

ing the QS system in S. aureus could provide insight into such therapies. For example, it should be possible to

produce a non-pathogenic strain which could be used to downregulate the agr system of an infecting strain, thus

attenuating it and leaving the immune system capable of dealing with the infection. Indeed, in mice, S. aureus

skin abscess infections caused by a strain producing AIP-1 can be prevented by coadministering an AIP-2 [16].

Since the therapy would not directly kill the bacteria, the chance of resistance developing is greatly reduced

(though not eradicated) in comparison with antibiotic treatment where cells develop resistance to survive [17].

In Part 1 of this study [18] we examined cross-strain QS inhibition by two populations of S. aureus that are

assumed to be in a well-mixed environment and therefore spatially homogeneous. While this is a reasonable

assumption under certain circumstances, for example in a chemostat, it is desirable to extend the model to

account for circumstances where spatial effects are important and the populations are non-uniform. To our

knowledge, although spatially-structured models of QS by Gram-negative bacteria exist, see for example [6, 19],

no spatially heterogeneous models of Gram-positive QS have so far been published. In this study we focus
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on the scenario of two distinct strains of S. aureus (from opposing groups) being positioned adjacent on a

horizontal surface, this representing a simple situation in which to start to analyse the implications of spatial

variations. Each produces (competitive) diffusible QSSMs that mediate communication within and between the

two populations.

The model we present here is a simplified version of our existing cross-strain model incorporating a classical

two component system (TCS), i.e. Model I from [18], but with spatial dependence now included. Details of

the simplification are outlined in the appendix, and stem from the asymptotic analyses of the steady states

presented in [20], where we examined the response of a single strain to virulence inhibition by synthetic AIP. By

altering the relative population size of two competing strains in the present study, we are able to demonstrate

the ability of one strain to downregulate the agr system of the other. With a view to examining the capabilities

of a recombinant non-pathogenic strain of S. aureus to inactivate the virulence of an infecting strain, we examine

the effect of altering the diffusion coefficient of the AIPs.

2 A spatially structured model

2.1 Model formulation

The agr operon (see, for example, [7]) consists of two transcription units (agrBDCA and RNAIII respectively)

that are driven by regulatory proteins which bind to promoters termed P2 and P3, permitting RNA polymerase

to transcribe the DNA into mRNA, prior to translation of this agr mRNA into proteins. The P2 transcript

consists of four genes which are transcribed and translated to give four proteins (AgrB, AgrD, AgrC and AgrA),

see Figure 1. AgrB is a transmembrane protein and is involved in the post-translational conversion of the AgrD

pro-peptide into the AIP (the QSSM of the system). The AIP is secreted into the external environment where

it is detected by a receptor protein (AgrC) present on the bacterial cell surface. AIP binding to AgrC induces

a phosphorylation/dephosphorylation cascade which results in the activation of AgrA, a DNA-binding protein

which interacts with both the P2 and P3 promoters. AgrA and AgrC are, respectively, the response regulator

and sensor kinase of a TCS. For the purposes of this model we assume that this is a classical TCS, i.e. the

phosphorylation cascade occurs as follows: upon binding to AIP, AgrC autophosphorylates before transferring
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Figure 1: A schematic of the agr feedback loop. The arrows with a filled head illustrate the positive feedback

loop. In Figure 2 we illustrate the simplified version of this network which we use to create the spatially

structured model.

the phosphate to AgrA. Phosphorylated AgrA binds to the DNA, causing upregulation of both the P2 and

P3 promoters. This corresponds to Model I of [18]. Upregulation of the P3 promoter results in increased

secreted virulence factor production, while upregulation of the P2 promoter induces higher transcription of the

agr mRNA, thus completing the positive feedback loop which forms this QS system, i.e. AIP generation drives

the synthesis of further AIPs.

In Part 1 of this study [18] we presented a spatially homogeneous model of cross-strain inhibition between

two strains of S. aureus. We now simplify this model through an asymptotic analysis of its steady states and

extend it to incorporate spatial variations. In the interests of brevity, details of the nondimensionalisation can

be found in [18] while those of the simplification are relegated to the appendix; we summarise both here (and

further details can be obtained from [21]).

The nondimensionalisation arises from scaling of the relevant variables by their down-regulated steady state

values. Nondimensionalisations of the remaining variables (i.e. those which have a zero down-regulated steady

state) are chosen to set as many parameters as possible to be unity (specifically, the coefficients of basal mRNA

transcription, AIP-receptor binding, AgrA activation and phosphorylated AgrA binding to the promoter site in

certain equations). Since insufficient data are available for full parametrisation of the model, we set ourselves
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up to exploit asymptotic techniques: parameters are scaled according to the small parameter ǫ which represents

the ratio of basal mRNA transcription to QS-induced transcription of mRNA (the smallness of which is implicit

in the concept of QS itself). All parameter values follow directly from [18]. Simplification of the model is

based upon the systematic asymptotic analysis (see Appendix A) of the possible steady states (giving both

populations as up-regulated or either population downregulating the other). If the component of the steady

state for a particular variable is the same for all steady states, that variable is set to be at quasi-steady state.

If a particular term does not appear at leading order in any steady state, it is neglected from the model. Thus,

at steady state, with our parameter choice, all results should reproduce those of the full model (for sufficiently

small ǫ). Simplification of the model can be summarised as follows:

• binding and activation reactions are relatively fast, so that AIP-bound receptors and phosphorylated AgrA

are taken to be at quasi-steady state;

• housekeeping dephosphorylation of AgrA can be disregarded as it is negligible in relation to either natural

depletion or phosphorylation of AgrA;

• AIP binding to, and separation from, AgrC is negligible in relation to production and degradation of this

QSSM;

• degradation of transmembrane AgrC can be neglected in favour of its binding reactions.

The resulting simplified network is outlined in Figure 2 (contrast with Figure 1). The required variables and

parameters (along with the default parameter choice) are displayed in Tables 1 and 2 respectively.

We assume uniform layers of cells of each population are placed side by side on the interval 0 ≤ x ≤ W ,

so that Population 1 occupies 0 ≤ x ≤ W/2 and Population 2 lies in W/2 ≤ x ≤ W , see Figure 3. We

suppose that the AIP molecules are free to diffuse among the two populations (with diffusion coefficients D1

and D2 for the respective AIPs) while the bacterial populations remain approximately stationary; thus only the

differential equations representing the signal molecules require spatial derivatives. Note that if we assume both

populations reside across the entire interval 0 ≤ x ≤ W we get results analogous to the well-mixed model of

[18]. Nondimensionalisations follow from [18] and are detailed in the appendix with the addition of

x′ =
x

W
, D1

′ =
D1

δMW 2
, D2

′ =
D2

δMW 2
,
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Figure 2: A schematic of the simplified version of the agr feedback loop used to build the spatial model. In

Figure 1 we illustrate the full network.

Nondimensional variable Interpretation

Mj mRNA in population j

Aj cytoplasmic AgrA in population j

Rj transmembrane AgrC in population j

Sj anchored AgrD in population j

aj free AIP in population j

Pj proportion of cells that is up-regulated in population j

Table 1: Definitions of the variables, j = 1, 2.PSfrag replaements
0 W/2 W

Population 1 Population 2
Figure 3: Schematic of the competing populations of S. aureus, positioned side by side. For definiteness we take

each to be of the same extent, W/2.
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Nondimensional parameter Interpretation Default Value

kS AgrD loss through AIP production 10−1

η Receptor loss through AIP binding 10−1

λ natural protein degradation 1

λa natural AIP degradation 1

γjl AIP from Population j separating from Population l receptor 1

φ activation of AgrA 1

u unbinding of active AgrA from the DNA binding site 1

βA ratio of cognate AIP binding in Population 2 to Population 1 1

βI ratio of AIP from Population 1 binding to Population 2 receptors, 1

to AIP from Population 2 binding to Population 1 receptors

v ratio of activated agr transcription to basal transcription 10

βjl binding of AIP from Population j to receptors of Population l 10

ka AIP production 102

N ratio of the size of Population 1 to Population 2 -

Dj diffusion coefficient of AIP from Population j (j = 1, 2) -

ǫ ratio of basal to QS-induced transcription 10−1

Table 2: Interpretation of the dimensionless parameters and their default values with j = 1, 2 and l = 3 − j. Notice that we have not specified the

values of N,D1 or D2 as in this paper we focus on the effects of varying these three parameters.
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so that x is scaled with the interval width. One significant parameter is the ratio of the two population sizes:

N =
N1

N2

; (1)

we shall investigate the influence of this parameter upon the results of the model. The nondimensional variables

are defined on 0 ≤ x′ ≤ 1 and, dropping primes, we have

∂M1

∂τ
=

1

ǫ
v̂P1 −M1 + 1, 0 ≤ x ≤ 1/2, (2)

∂A1

∂τ
= λ(M1 −A1)−

φA1R1a1
(λ+ γ1)

, (3)

∂S1

∂τ
= λ(M1 − S1)− ǫk̂SM1S1, (4)

∂a1
∂τ

=
1

ǫ2
k̂aM1S1 − λaa1 +D1

∂2a1
∂x2

, (5)

∂R1

∂τ
= λM1 − ǫ

η̂λ

(λ+ γ11)
R1a1

− ǫ
Nβ̂21η̂λ

β̂11βA(λ+ γ21)
R1a2, (6)

∂P1

∂τ
=

A1R1a1
λ(λ+ γ11)

(1− P1)− uP1, (7)

∂M2

∂τ
=

1

ǫ
v̂P2 −M2 + 1, 1/2 ≤ x ≤ 1, (8)

∂A2

∂τ
= λ(M2 −A2)−

φ

(λ+ γ2)
A2R2a2, (9)

∂S2

∂τ
= λ(M2 − S2)− ǫ

k̂S
N

M2S2, (10)

∂a2
∂τ

=
1

ǫ2
k̂aβ̂A

N3
M2S2 − λaa2 +D2

∂2a2
∂x2

, (11)

∂R2

∂τ
= λM2 − ǫ

Nη̂λ

(λ+ γ22)
R2a2

− ǫ
βI β̂21η̂λ

β̂11(λ+ γ12)
R2a1, (12)

∂P2

∂τ
=

A2R2a2
λ(λ+ γ22)

(1− P2)− uP2, (13)

(the hatted parameters are those that have been scaled with ǫ).

We assume AIP to be confined within 0 ≤ x ≤ 1, so the boundary conditions are

∂a1
∂x

= 0,
∂a2
∂x

= 0, at x = 0, 1; (14)

these are appropriate to some laboratory (at least) conditions. An alternative is that the boundaries are perfect

sinks (a1 = a2 = 0 at x = 0, 1) so that AIP is lost to the surroundings: this could arise at an infection site,

for example, thus necessitating the production of extra AIPs to reach an active state, leaving a strain more

susceptible to inhibition. We shall not, however, investigate this scenario here.

Note that M1 and M2 are each defined on half of the domain only. We take other variables to have zero

initial data in the range of x in which the corresponding population is absent. Given previous studies which

illustrate multistable behaviour by the agr operon [20, 22, 23], the initial conditions of the system are likely

to be crucial in determining the ability of one population to overcome the other. For example, a population

beginning with a higher level of agr activity than the other would, all else being equal, be expected to be at an

advantage. There are therefore numerous initial conditions which we could examine. As a basis for the current
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investigation, we use the following four sets of initial conditions (remembering that here ‘down-regulated’ refers

to a naturally inactive state which would be the result of a sufficiently small population or sufficiently large

AIP diffusion coefficient, not a suppressed one).

I.C. I Population 1 begins up-regulated and Population 2 down-regulated.

I.C. II Both Populations begin down-regulated.

I.C. III Population 1 begins down-regulated and Population 2 up-regulated.

I.C. IV Both Populations begin up-regulated.

When a population is required to begin in a naturally down-regulated state we adapt the initial conditions from

[18, 22]. So, for example for I.C. II we have

For X = A,S,R, X1(x, 0) =















1, 0 ≤ x < 1/2,

0, 1/2 < x ≤ 1,

X2(x, 0) =















0, 0 ≤ x < 1/2,

1, 1/2 < x ≤ 1,

a1(x, 0) = a2(x, 0) = P1(x, 0) = P2(x, 0) = 0, 0 ≤ x ≤ 1,

M1(x, 0) = 1, 0 ≤ x < 1/2, M2(x, 0) = 1, 1/2 < x ≤ 1.

(15)

When a population is specified to begin in an up-regulated state, we use the steady-state values which result

when the opposing population is absent under the particular parameter choice in question.

We retain parameter scalings from Part 1 [18], but we now have two new parameters: the diffusion coefficients

of the two strains’ AIPs. For the most part, we assume that they are equal (D1 = D2 = D, say) since

the bacteria are in the same medium and produce structurally similar signal molecules (Table 3 provides the

molecular weights of the different AIP) and examine how this value affects the outcome (Figure 4, for example,

illustrates how the distribution of signal molecules is affected by the diffusion constant when N = 1). Our

numerical investigations indicate two parameter regimes in D, which give distinct phenotypes. To illustrate

both of these we select D = 0.5 from the regime of larger D and D = 0.1 from that of the smaller. In §5.2-5.3

we demonstrate the effect of a wider range of D upon the steady states of the system and, finally, in §5.4, we

investigate the consequences of differing diffusivities between the two populations.
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Molecular weight

AIP I 961.11 g/mol

AIP II 878.99 g/mol

AIP III 818.9797 g/mol

AIP IV 1009.1982 g/mol

Table 3: Molecular weights of each of the four different AIP molecules [24].
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Figure 4: Numerical solutions for a1(x, τ) when N = 1 for various values of D using initial conditions II and

the default parameter set as given by Table 2. Since their population sizes, diffusion coefficients and initial

conditions are equal, the corresponding solutions for Population 2 are the same but reflected spatially. As the

diffusion constant increases, the AIP profile becomes more uniform as they are able to reach further into the

opposition territory, with fewer AIP molecules remaining in the region occupied by the strain producing that

AIP. An implication is that, while it is desirable for the bacteria to spread their AIP to the opposition bacteria

in order to gain a competitive advantage, they must also retain a sufficient amount to remain up-regulated.
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Following Part 1, where it was shown that the key determinant in the ability of one population to downreg-

ulate another was their relative population size, N , we describe the effect of varying N for two dimensionless

diffusivities that give qualitatively different behaviour. For the numerical solutions, spatial centred discretisa-

tion is used to reduce the model into a compartmental one where each compartment is described by a system

of ordinary differential equations (ODEs) linked by the centred discretisation of the diffusion terms. The ODEs

are then solved in MATLAB v.7.1 (The MathWorks, Inc.) to generate time-dependent solutions or XPPAUT

5.91 to calculate steady-state solution curves.

3 Time-dependent numerical solutions

3.1 Larger diffusion, D = 0.5

We begin by considering the time-dependent solutions for each of the four initial conditions when D = 0.5, see

Figure 5. In each case we see how, for sufficiently large N , i.e. Population 1 is larger than Population 2, the

former is able to establish its dominance and the critical value of N at which this is achieved is dependent upon

the initial conditions of the system (we shall see in §4 that a bifurcation occurs with varying N which produces

this dramatic change in response).

Initial conditions I and II have Population 2 beginning in a down-regulated state. The value of N required

to ensure that it remains in this state is distinctly less than that required to push Population 2 into an inactive

state when Population 2 begins up-regulated: contrast the results of Figure 5(a)-(b) with the solutions resulting

from initial conditions III and IV in (c)-(d). Additionally, for initial conditions I and II, Population 1 gains a

clear advantage by already being in an up-regulated state (the critical value for initial condition I is less than

that for initial condition II). This scenario could be viewed as the cells delaying the release of their QSSMs to

the wider environment until they have already reached an active state (in [18] we illustrated the need for the

cells to achieve their own upregulation before attempting to inactivate their competitors). On the other hand,

the same critical value of N is required for Population 1 to downregulate Population 2 whether the system

begins with initial conditions III or IV (when Population 2 is initially active). This is reflective of the bistable

behaviour of the system which we will see in §4: if Population 2 is initially active, the value of N required to

12



Figure 5: Numerical solutions illustrating the critical values of N needed to enable Population 1 to force

Population 2 into an inactive state when D1 = D2 = 0.5, using the initial conditions (a) I (b) II (c) III and (d)

IV. In the left-hand column, Population 1 fails to inactivate Population 2 with the given values of N . In the

right-hand column, N is increased sufficiently for Population 1 to succeed in downregulating Population 2.
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downregulate this population corresponds to the location of the fold bifurcation on the upper section of the two

bifurcation curves (we refer the reader forward to Figure 8), regardless of the initial conditions of Population 1.

We also see from Figure 5(c)-(d) that, for these initial conditions (whereby Population 2 begins in an up-

regulated state), there exists a range of N where, while Population 2 cannot be deemed to be in an inactive

state, its proportion of up-regulated cells is markedly smaller than that of Population 1: although Population

1 can be said to be having a clear effect on its opponent, it is not sufficient to establish absolute control. The

spatial inhomogeneity of the individual populations is clearly evident here, as the Population 2 bacteria nearest

the centre of the interval (x = 0.5) have a lower regulation level than those at the extremity (x = 1), the

Population 2 bacteria at x = 0.5 experiencing the highest levels of Population 1 AIP.

3.2 Smaller diffusion, D = 0.1

As would be anticipated, if the AIP have smaller diffusion coefficients, a larger value of N is required in each

case to ensure Population 2 does not finish up-regulated, see Figure 6, since AIP transport is more limited.

For the most part, the bacteria behave in the same way as for when D = 0.5, except the transformation

from up-regulated to down-regulated is a slightly slower process and inhomogeneities in Population 2 are more

evident. The principal difference is that there is now a range of N in which Population 2 can finish partially

down-regulated and partially up-regulated, those nearest to the opposition bacteria being the inactive bacteria;

in other words, for slow enough diffusion, and depending on the initial conditions and on the value of N , the

lack of penetration of signal molecules into Population 2 can leave it in effect split into two subpopulations.

In a continuum framework, in between the two subpopulations there must always be a transition layer with

intermediate activation levels; the cells in this layer could be viewed as being ready to switch either way with

a slight alteration in the conditions of the system.
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Figure 6: These figures demonstrate, for D1 = D2 = 0.1, the critical values of N above which, with initial

conditions (a) I (b) II (c) III and (d) IV, Population 2 will finish in a down-regulated state. In (a) and (b),

as in Figure 5, we infer that Population 1 will gain an advantage by initially already being active. In (c) and

(d) we see that taking this smaller diffusion constant results in an extra aspect in the dynamics of the system

for initial conditions III and IV: there is now an intermediate range of N in which the Population 2 cells are

spatially highly inhomogeneous, with those closest to the opposition cells being forced into a down-regulated

state and those furthest away maintaining their active state (in Figure 7 we illustrate this solution for initial

condition III with a larger number of grid points in order to demonstrate that this behaviour is not a result of

the relatively low number used here).
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Figure 7: Numerical solution for P (x, τ) using D1 = D2 = 0.1, N = 8 and initial conditions III (cf. Figure

6(c)), with 801 grid points, i.e. we have divided the populations into many more compartments in order to

demonstrate that the ability of the cells to decouple into two subpopulations is not as a result of the relatively

low number of compartments used in Figure 6.

4 Steady-state studies

4.1 Preliminaries

The simulations above were performed with a rather crude spatial discretisation, whereby in Figures 5 and 6 we

had sixteen compartments or mesh points (this value was chosen to match the number of compartments with the

maximum number of equations which can be treated by XPPAUT 5.91 in the subsequent bifurcation analyses).

Figure 7 is included to confirm that this relatively low number of spatial compartments does not significantly

influence the qualitative properties. Rather than looking at the continuum limit of the discretisation, we now

focus explicitly on the compartmentalised version of the model in order to clarify (in the context of this finite-

dimensional dynamical system) the bifurcation properties that are implicit in the discussion of §3, i.e. we

illustrate various steady state curves at each mesh point (representing a compartment of the population). In

all bifurcation diagrams solid lines represent stable steady states and dotted lines unstable ones.

4.2 Larger diffusion, D = 0.5

Figure 8 illustrates the solution curves for the equations representing the regulation of Population 2 in each

compartment, for varying N , constructed using XPPAUT 5.91. The number of troughs on the unstable curves

corresponds to the number of compartments. Due to the limitations of our XPPAUT-based approach, we are
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Figure 8: (a) Bifurcation curves for P̄2 with D1 = D2 = 0.5 for each of the eight compartments in 0.5 ≤ x ≤ 1.

In (b), for clarity, only the compartments at the extremeties are shown. Each compartment exhibits two fold

bifurcations, with the main differences being in where the unstable branch lies: for the compartments close to

the opposition cells the unstable branch is much lower than those which are further away in these projections

of the bifurcation curve. Solution curves are given only for N ≥ 1, so that Population 1 is equal or larger in

size than Population 2; for N < 1 the roles of Populations 1 and 2 are reversed.

unable to investigate what occurs for much larger numbers of compartments and it is therefore unclear whether

the troughs are real or an artifact of the low number of mesh points in our discretisation. Given that the

troughs affect only the unstable steady states, however, they are unlikely to be amenable to useful physical

interpretation; though they can be linked to the ability of the population to subdivide for sufficiently small

diffusion constants and this will be addressed in §4.3.

Varying N produces a hysteresis similar to that seen in the well-mixed ODE model [18]. A range of N exists

in which there are two stable solutions, the ‘borderline’ between which is given by an unstable one: here the

ultimate regulation of Population 2 is dependent upon the initial conditions of the system, confirming what

we have seen so far in both the time-dependent solutions in this paper and also in the spatially homogeneous

model of Part 1 [18]. Much of what has been discussed for the well-mixed model, therefore, also applies to this

spatially structured one. A notable addition, however, is that, while there is only a small difference between the

stable solutions of each compartment (those nearest to the Population 1 cells having a slightly lower regulation

level than those further away) the unstable curves are significantly different, thus emphasising the importance
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of the initial conditions, given the borderline role of the unstable solutions. This remark requires clarification,

however, given this spatially structured context, the three solutions cannot be ordered in a simple way within

every compartment for every variable: the unstable branch does not always lie between the two stable ones, see

Figure 16 in the appendix. Additionally, distances between states in Figure 8 are not necessarily truly reflective

of the distances in the full state-space. Nevertheless, the unstable branches do provide a rough guide to the

domains of attraction of the system. In order to see this, we begin all variables, except P2, on the unstable

branch, and determine which values of P2(x, 0) will bias the variables towards either the active or inactive

state (assuming, for simplicity, that P2(x, 0) is constant over 0.5 ≤ x ≤ 1). Since, in the bistable region, the

down-regulated stable branch has a smaller area between it and the unstable branch for most compartments,

we expect the range of P2(x, 0) which produces the down-regulated state to be smaller than the range which

has the opposite effect. Figure 9(a) illustrates a numerical solution to the system when the initial conditions

of all the variables (including P2) are taken from the unstable steady state with N = 5.00465 – see Figure 8

(meaning that the initial values of all variables vary across the intervals [0 1/2] and [1/2 1]). We note that the

slightly odd choice of N for these simulations stems from the available data generated from our program in

XPPAUT 5.91. If these unstable steady states are used, Population 2 is inactivated. Figure 9(b) demonstrates

that changing P2(x, 0) to

P2(x, 0) =















0, 0 ≤ x ≤ 1/2,

0.302, 1/2 ≤ x ≤ 1,

(16)

results in the suppression of Population 2 into an inactive state. Increasing P2(x, 0), however, to

P2(x, 0) =















0, 0 ≤ x ≤ 1/2,

0.303, 1/2 ≤ x ≤ 1,

(17)

(see Figure 9(c)) gives Population 2 enough strength to induce itself into an up-regulated state in spite of the

Population 1 AIP. Thus, if all the other variables begin at their unstable steady state, we can assume that for

0 ≤ P2(x, 0) . 0.303 (for 0.5 ≤ x ≤ 1) the population will be drawn towards the down-regulated state, whereas

0.303 . P2(x, 0) ≤ 1 (again for 0.5 ≤ x ≤ 1) will lead to the up-regulated state. For reference, the above

simulations for all variables are provided in the appendix.
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Figure 9: The numerical solution to (2)-(13), using N = 5.00465 and taking the initial condition of the system

to be the corresponding unstable steady state (a) for all variables, (b) for all the variables except P2, for which

we use (16), (c) for all the variables except P2, for which we use (17). In (a) the variables remain at the

unstable state for a time, before Population 1 (the larger population) is able to push Population 2 into its

down-regulated steady state. In (b) the system moves from its unstable steady state to its stable counterpart

which has Population 2 down-regulated, while in (c) the initial condition of P2 is large enough to push its

population into an active state alongside Population 1. Comparison between (b) and (c) allows us to infer that

any starting value of P2 less than 0.302 will also result in Population 2 reaching its inactive steady state if all

other variables begin at their unstable steady state. The change in Population 1 is not visible on these graphs

as the difference between its unstable and stable states is very slight.
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4.3 Smaller diffusion, D = 0.1

The bifurcation diagram in Figure 10 allows us to see clearly the division into two subpopulations, as introduced

in §3.2. Within a specific range of N there are three potential (stable) outcomes: either both populations will

finish in an up-regulated state, Population 1 in an up-regulated state and Population 2 down-regulated, or

Population 1 in an up-regulated state and Population 2 divided into one active and one inactive subpopulation.

Which of these occurs is dependent upon the initial conditions of the system. On the sections of the solution

curve which cover the latter steady state, we no longer have the troughs which were discussed in §3.1. Instead

these are replaced by two fold (saddle-node) bifurcations. Each of these corresponds to one more compartment

of Population 2 having a down-regulated stable steady-state within the subpopulation, so that the troughs are

in effect replaced by the cells being able to divide into two subpopulations (possibly explaining why the number

of troughs is equal to the number of compartments). On the basis of the numerical results, it seems that there

is a limit, however, on the number of compartments that can form the subpopulations. In this example, if an

active subpopulation exists, it must consist of a minimum of half of the compartments: a smaller subpopulation

will be necessarily down-regulated by the invading AIP (this is another illustration of the natural importance

of population size in QS).

We should consider the possible effects of pinning on the solutions of our partial differential equation system.

Pinning can occur when the step size used for the spatial discretisation of the system is not sufficiently small,

effectively creating additional stable solutions that cannot occur in the continuum limit (for further information

about pinning see, for example, [25–29]). Thus, while we have shown in Figure 7 that Population 2 can be

split into two subpopulations for a much smaller step size than used in Figure 10, it is possible that at steady

state, there is in the continuum version of the problem only one possibility for the number of cells in each

subpopulation as opposed to the multiple ones illustrated in Figure 10.

As we saw for D = 0.5, there is again a wide gap between the unstable branches for each component which

again suggests a broader domain of attraction to the up-regulated stable state for Population 2, in the bistable

region, than to the down-regulated one.

20



2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1PSfrag replaements
NN

P̄
2

P̄
2

P̄2

˛

˛

x=1
P̄2

˛

˛

x=1

P̄2

˛

˛

x=0.5
P̄2

˛

˛

x=0.5

(a) (b)

Figure 10: As in Figure 8 we provide the solution curves of P̄2 with varying N for each compartment, now

with D1 = D2 = 0.1. Figure 10(b) shows only the behaviour of P̄2 at the extremities. This smaller diffusion

coefficient results in a range of N where the Population 2 cells have an additional aspect to their behaviour,

not seen for larger diffusion. They are now capable of essentially being decoupled into two subpopulations. The

subpopulation adjacent to the Population 1 cells comes into contact with too much AIP from these opposition

cells and not enough from its own cells to become active. At the same time, not enough of the Population 1

AIP is able to reach the subpopulation which is further away (towards x = 1) and as such this set of cells is

able to use its own AIP to upregulate itself.
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5 The significance of the diffusion coefficient

5.1 Preliminaries

Following our investigations in §3 and §4, we see that the diffusion coefficient plays an important role in the

dynamics of the system. For the larger coefficient, D = 0.5, there are only two real possibilities for the outcome

of the Population 2 cells, they will either all be up-regulated or all forced into a down-regulated state by the

Population 1 cells. However, for smaller diffusion, D = 0.1, the Population 2 cells could be divided into two

subpopulations, one being down-regulated and one up-regulated. Our numerical analyses indicate that the

influence of the diffusion coefficient varies with N and two different scenarios exist: (i) when the populations

are of equal sizes and (ii) when Population 1 is significantly larger than Population 2 (if Population 1 is not

significantly larger, the results are the same as for (i)). For the most part, we continue our assumption that

the diffusion coefficient is the same for both strains, i.e. D1 = D2 = D, but in §5.4 the possibility that the two

coefficients differ is also explored.

5.2 Equal population sizes

From the results discussed earlier, it would be reasonable to expect that a larger diffusion coefficient would be

beneficial to the bacteria. One might anticipate that the ability to spread signal molecules out further (but

remaining in the immediate surroundings) would be an advantage. However, it is evident from Figure 11 that

this is not always the case (this also allows us to see what happens for values of D larger than 0.5). When the

population sizes are equal, increasing the diffusion coefficient (D1 = D2 = D) actually has a slightly detrimental

effect on both populations. This occurs because, if both populations are going to inevitably reach an active

state, it is inefficient to lose any AIP to the other strain.

5.3 Population 1 is significantly larger than Population 2

The role of the diffusion constant changes as Population 1 is made to be larger than Population 2, but it must be

substantially larger, otherwise the effect of altering D is much the same as when the population sizes are equal.

Figure 12 demonstrates the solution curve for each compartment of P2 as we vary D, for N = 8. For sufficiently

small D, both strains will be up-regulated. If D is increased slightly, the Population 2 compartments closest to
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efficient for the cells to have AIP molecules which diffuse as little as possible as it is wasteful to lose any

when both populations, being equally large, will ultimately upregulate theirselves regardless. Since N = 1, the

solution curves for both populations are equivalent.

the opposition cells can be downregulated, while those further away can be either active or inactive depending

on the initial conditions. As D increases further, more compartments can become inactive, until eventually the

only option is that all of Population 2 is forced into a down-regulated state.

The above illustrates that a competing strain may only be able to use a higher diffusion constant in its

favour if it is already at an advantage by being the larger population (in which case retaining their own AIP

for upregulation is less urgent), assuming that all other factors are equal for the two populations. A smaller

diffusion coefficient will be advantageous to the smaller strain as, if sufficiently small, it may enable the bacteria

to either gain an active state regardless of its population size, or at least decouple itself so that some of the

population can become up-regulated, leaving it in a better position to continue the struggle between the two

strains. This is because if the two types of AIP both have a small diffusion constant then Population 2 will not

only preserve more of its own AIP for upregulation, but will also come into contact with fewer of the opposition

AIP.
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2
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filtering through the population. Initially only the first cells are affected but when D is sufficiently large all the

cells are pushed into a down-regulated state.
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Figure 13: The numerical solution using N = 1, D2 = 0.5, various values of D1 (as stated above each graph)

and all the remaining parameters taken from Table 2. When both populations are of equal size they will reach

an active state. Hence Population 1 gains no advantage through having a larger AIP diffusion coefficient than

Population 2.

5.4 Unequal diffusion coefficients

We have so far only examined the possibility that the two different types of AIP have equal diffusion coefficients.

This is a reasonable assumption given their structural similarities. However, we now briefly examine how the

cells’ behaviour would be affected if the AIPs have different diffusion coefficients, both because evolutionary

pressure could drive an alteration in AIP size if this would allow a strain to compete more efficiently with other

strains and because it may be possible to specify (at least to an extent) the diffusivity of the AIP of a ‘designer’

strain.

We begin by examining what happens if the population sizes are equal (N = 1) but the Population 1 AIP

has a larger diffusion coefficient than the Population 2 AIP, see Figure 13. The results are very similar to

those seen in §5.2: both populations ultimately reach an up-regulated state regardless of the value of D1, and,

if anything, it is slightly detrimental for Population 1 to have too large a diffusion coefficient (although this

difference is not visible on the graphs) as it is wasteful to lose any AIP to the opposition bacteria.

Secondly, we look at what happens when Population 1 is larger than Population 2 and D1 > D2. In this case

it is beneficial for the Population 1 AIP to have a larger diffusion coefficient, contrast Figure 14 with Figure

5: the critical value of N required for Population 1 to inactivate Population 2 is smaller than that required if

D1 = D2. Thus, if Population 1 already has the advantage through being the larger population then it can use
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Figure 14: Numerical solutions illustrating the critical value of N required for Population 1 to inactivate

Population 2 with D1 = 1, D2 = 0.5, all remaining parameters taken from Table 2 and the initial conditions

for the two populations both being the down-regulated state given by (15). If we contrast these results with

Figure 5 we see that Population 1 is able to downregulate Population 2 with lower values of N if it has a larger

AIP diffusion coefficient than Population 2.

a larger diffusion constant in its favour. Hence, these results for D1 6= D2 are analogous to those derived in §5.2

and §5.3, i.e. when D1 = D2 = D.

Lastly, we examine the situation when Population 1 is larger than Population 2, but has a smaller AIP

diffusion coefficient. Comparing Figure 15 with Figures 5 and 14 we see that, with a smaller diffusion coefficient

it is harder for the larger population to inhibit the opposition cells because it needs a larger number of cells to

produce enough AIP in order for the equivalent amount to be diffused into the opposition territory.

6 Discussion

The diffusion constant plays a crucial role in QS and can be instrumental in establishing the context of the QS.

While QS is best understood as a mechanism by which bacteria can sense their population size, it can also be

manipulated to recognise their surroundings [4]. The relevance of the diffusion constant (and also the actual

size of the bacterial cell) in this context of quorum versus diffusion sensing is discussed by Müller et al. [30] in

the context of their mathematical model of QS. We recall that the diffusion constant is determined not only by

the signal molecule size and structure, but also by the medium in which the bacteria reside, meaning that QS
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Figure 15: Numerical solutions illustrating the critical value of N required for Population 1 to inactivate

Population 2 with D1 = 0.1, D2 = 0.5 and all remaining parameters taken from Table 2. If we contrast these

results with Figure 5 we see that higher values of N are required for Population 1 to downregulate Population

2 than when their AIP-diffusion coefficients were equal.

should allow bacteria to sense their environment (for example in endosome escape by S. aureus).

In this paper we have illustrated the importance of the diffusion coefficient in terms of the cross-strain QS

inhibition in S. aureus. From the point of view of the strain present in larger numbers, and thus the dominant

strain, it is desirable to be in an environment where the diffusion coefficient is large. From the opposing

side, i.e. the strain which is attempting to defend itself from agr -suppression, it is preferable for its AIP to

have a small diffusion coefficient, hence at least providing the smaller strain with the opportunity to divide

into two subpopulations, leaving one inactive and the other active. This is in agreement with the idea that

genetic feedback regulation gives a population of cells the ability to behave in a multi-stable fashion [31]: the

subpopulation most suited to a particular environmental challenge will survive. The bacteria can afford to lose

relatively large amounts of their own AIP to the opposition bacteria (as a result of a large diffusion coefficient)

only if they are already the strain more likely to attain agr up-regulation, i.e. by being the larger population.

In all cases, however (and following results of Part 1 of this study [18]), the most important factor is N , the

relative population size. If one population is sufficiently larger than its counterpart, the latter will always be

suppressed. This occurs regardless of initial conditions or diffusion constants. In a more general context, both

the time-dependent and steady-state investigations shed light upon the variety of spatial patterns which can

arise in two competing nonlinear systems of this type.
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The mathematical model presented in this study is naturally much more simple than what occurs in reality

but it provides an important early step from which to build further analyses of spatially-structured competitive

Gram-positive QS systems. The effect of boundary conditions upon the model results is evidently something to

be considered in future work. We have assumed that the AIPs are contained within the immediate environment

of the bacteria but the results could alter if they were allowed to diffuse away from the bacteria, thus making it

harder for a population of bacteria to both upregulate itself and possibly downregulate an opposition population.

It is likely that a more pronounced difference in population size would be required in this scenario to guarantee

that one population dominates. In addition, more complex spatial configurations should be investigated to

better reflect an infection site including inhomogeneous population density distribution (in this situation the

diffusion coefficient of the QSSMs may be even more influential).

If a non-pathogenic staphylococcal strain is to be engineered to be used as an anti-staphylococcal therapy,

it is important to understand fully the mechanisms by which the bacteria become active in terms of virulence.

The results presented in this study shed light upon how the diffusion coefficient of the QSSMs and the relative

population size can affect the ability of one population to inactivate the agr system of an opposition bacteria. In

terms of designing a strain for therapeutic purposes it is important to consider the environment into which this

strain is to be administered, the diffusivity of its QSSM (which to a limited extent can be controlled through the

strain design) and the maximum possible dosage. Results such as those presented in both parts of this study

could provide insight into those choices that would be most likely to ensure that the therapy is successful.

Acknowledgements

SJ gratefully acknowledges support from BBSRC (in the form of a studentship and subsequent funding under

the SysMO and SysMO2 initiatives) and fromMRC (Biomedical Informatics Fellowship). The remaining authors

thank MRC/EPSRC for support. JRK also thanks the Royal Society and Wolfson Foundation for funding.

References

[1] Henke J.M., Bassler B.L. (2004) Bacterial social engagements. Trends Cell Biol., 14, 648–656.

28



[2] Reading N.C., Sperandio V. (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol.

Lett., 254, 1–11.

[3] Waters C.M., Bassler B.L. (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell.

Dev. Biol., 21, 319–346.

[4] Redfield R.J. (2002) Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol., 10, 365–370.

[5] Hense B.A., Kuttler C., Müller J., Rothballer M., Hartmann A., Kreft J. (2007) Does efficiency sensing

unify diffusion and quorum sensing?. Nature Rev. Mirobiol., 5, 230–239.

[6] Alberghini S., Polone E., Corich V., Carlot M., Seno F., Trovato A., Squartini A. (2009) Consequences of

relative cellular positioning on quorum sensing and bacterial cell-to-cell communication. FEMS Microbiol.

Lett., 292, 149–161.

[7] Novick R.P. (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence.

Mol. Microbiol., 48, 1429–1449.

[8] Salmond G.P.C., Bycroft B.W., Stewart G.S.A.B., Williams P. (1995) The bacterial ‘enigma’: cracking the

code of cell-cell communication. Mol. Microbiol., 16, 615–624.

[9] Koerber A.J., King J.R., Williams P. (2005) Deterministic and stochastic modelling of endosome escape

by Staphylococcus aureus : ‘quorum’ sensing by a single bacterium. J. Math. Biol., 50, 440–488.

[10] Qazi S., Middleton B., Muharram S.H., Cockayne A., Hill P., O’Shea P., Chhabra S.R., Cámara M.,
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A Simplifying the spatially homogeneous model of [18]

With a view to simplifying our cross-inhibition model, we extend the asymptotic approximations derived in

[20] to cover this two-population model. Certain variables are not defined in the main text as they are either

eliminated from or taken to be at quasi-steady state in the simplified model. For Population j = 1, 2 (with

l = 3−j), these are Bj (cytoplasmic AgrB), Cj (cytoplasmic AgrC),Dj (cytoplasmic AgrD), Tj (transmembrane

AgrB), RP
aj

j (transmembrane AgrC bound to cognate AIP), Ral

j (transmembrane AgrC bound to opposition

AIP) and AP j (phosphorylated AgrA). Firstly, we note that in the steady state Mj ≡ Bj ≡ Cj ≡ Dj ≡ Tj

(j = 1, 2), so that we can immediately eliminate Bj , Cj , Dj and Tj in favour of Mj . We have three principal

steady-state situations which we wish to examine.

S.S. I Both populations are up-regulated.
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S.S. II Population 1 is up-regulated and Population 2 down-regulated.

S.S. III Population 1 is down-regulated and Population 2 up-regulated.

Assuming that both populations are sufficiently large, we do not consider the possibility that neither population

becomes up-regulated. As the latter two are effectively mirror images of each other we only need to look at

one of these two to see which terms are required in such a scenario. We therefore only provide the asymptotic

approximations to the steady states of the first two cases. We retain the parameter scalings given in [18, 20].

A.1 Steady State I: Both populations are up-regulated

The corresponding variables from each population are scaled in the same manner. Thus, for j = 1, 2 and

l = 3− j respectively,

Rj = ǫ2Rj
′, Aj = ǫAj

′, Mj =
1

ǫ
Mj

′, Sj =
1

ǫ
Sj

′,

AP j =
1

ǫ
AP j

′, RP
aj

j =
1

ǫ2
RP

aj

j

′

, Ral

j =
1

ǫ2
Ral

j
′

, aj =
1

ǫ4
aj

′,

the steady-state equations (dropping any ′’s) follow:

0 = v̂Pj −Mj + ǫ, (18)

0 = λMj − ǫ2λAj − φAjRP
aj

j + ǫµ̂φAP j , (19)

0 = λ(B1 − S1)− k̂SB1S1, (20)

0 = λ(B2 − S2)−
k̂S
N

B2S2, (21)

0 = k̂aB1S1 − ǫβ̂11R1a1 + ǫβ̂11γ11RP
a1

1
− ǫ

β̂I β̂21

N
R2a1 + ǫ

β̂I β̂21γ12
N

Ra1

2
− λaa1, (22)

0 =
k̂aβ̂A

N3
B2S2 − ǫ

β̂11β̂A

N
R2a2 + ǫ

β̂11β̂Aγ22
N

RP
a2

2
− ǫβ̂21R1a2 + ǫβ̂21γ21R

a2

1
− λaa2, (23)

0 = λB1 − ǫ3λR1 − η̂R1a1 + η̂γ1RP
a1

1
−

Nβ̂21η̂

β̂11β̂A

R1a2 +
Nβ̂21η̂γ21

β̂11β̂A

Ra2

1
, (24)

0 = λB2 − ǫλR2 −Nη̂R2a2 +Nη̂γ22RP
a2

2
−

βI β̂21η̂

β̂11

R2a1 +
βI β̂21η̂γ12

β̂11

Ra1

2
, (25)

0 = Rjaj − (λ+ γjj)RP
aj

j , (26)

0 = Rjal − (λ+ γlj)R
al

j , (27)

0 = AjRP
aj

j − (λ+ ǫµ̂)AP j , (28)

32



0 = AP j(1− Pj)− ǫuPj . (29)

A.2 Steady State II: Population 1 is up-regulated and Population 2 is down-

regulated

We now manipulate the up-regulated scalings for Population 1 and the down-regulated ones for Population 2

from [20].

R1 = ǫ2R1
′, A1 = ǫA1

′, M1 =
1

ǫ
M1

′, S1 =
1

ǫ
S1

′,

AP 1 =
1

ǫ
AP 1

′, RP
a1

1
=

1

ǫ2
RP

a1

1

′, a1 =
1

ǫ4
a1

′,

R2 = ǫ3R2
′, P2 = ǫP2

′, AP 2 = ǫAP 2

′, RP
a2

2
= ǫRP

a2

2

′, Ra1

2
=

1

ǫ
Ra1

2

′, a2 =
1

ǫ2
a2

′.

For the first population, (18)-(20) and (26)-(29) hold (j = 1, l = 2), with the only equations which change in

this situation being,

0 = k̂aB1S1 − ǫβ̂11R1a1 + ǫβ̂11γ11RP
a1

1
− ǫ2

β̂I β̂21

N
R2a1 + ǫ2

βI β̂21γ12
N

Ra1

2
− λaa1, (30)

0 = λB1 − ǫ3λR1 − η̂R1a1 + η̂γ11RP
a1

1
− ǫ2

Nβ̂21η̂

β̂11β̂A

R1a2 + ǫ2
Nβ̂21η̂γ21

β̂11β̂A

Ra2

1
. (31)

On the other hand, all but five equations change for Population 2, so that we have (26)-(29) (j = 2, l = 1) and,

0 = v̂P2 −M2 + 1, (32)

0 = λ(M2 −A2)− ǫφA2RP
a2

2
+ ǫ2µ̂φAP 2, (33)

0 = λ(B2 − S2)− ǫ
k̂S
N

B2S2, (34)

0 =
k̂aβ̂A

N3
B2S2 − ǫ2

β̂11β̂A

N
R2a2 + ǫ2

β̂11β̂Aγ22
N

RP
a2

2
− ǫβ̂21R1a2 + ǫβ̂21γ21R

a2

1
− λaa2, (35)

0 = λB2 − ǫ3λR2 − ǫ2Nη̂R2a2 + ǫ2Nη̂γ22RP
a2

2
−

β̂I β̂21η̂

β̂11

R2a1 +
βI β̂21η̂γ12

β̂11

Ra1

2
, (36)

0 = AP 2(1− ǫP2)− uP2. (37)
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A.3 Resulting simplifications

The equations representing RP
aj

j , Ral

j and AP j are the same regardless of the regulation level. We thus

manipulate equations (26)-(28) to eliminate these variables, i.e. we keep them in quasi-steady state and have

RP
aj

j =
Rjaj

(λ+ γjj)
, Ral

j =
Rjal

(λ+ γlj)
, AP j =

AjRP
aj

j

(λ+ ǫµ̂)
. (38)

This is equivalent to the assumption that binding and activating reactions are relatively fast. We neglect the

housekeeping terms in (19), (28), (33) and (38) (those represented by µ) because this reaction is negligible

in relation to either natural depletion or activation of AgrA (which of these latter two reactions dominates is

dependent upon the state of the cell). Additionally we neglect the binding and separation reactions in (22),

(23), (30) and (35) because production and degradation of AIP dominates, and finally also the degradation

terms (−λR) in (24), (25), (31) and (36). This last simplification corresponds to the assumption that the sink

term controlling receptor levels is given by binding reactions as opposed to degradation. The resulting simplified

model is described in the main text.

B Additional numerical solutions

B.1 Steady-state studies

B.1.1 Larger diffusion, D = 0.5

We here provide some additional numerical simulations to complement those of §4.2. In Figure 16, we illustrate

the complexity of the bifurcation diagrams in multi-variable state space through the projections of these curves

for D = 0.5 and varying N for A2. The unstable steady states and lower stable branches are qualitatively very

similar to those of P2 (see Figure 8). The steady states of A corresponding to the inactive stable branch are

given by Ā ∼ v̂P̄ + 1 in the asymptotic limit ǫ → 0 (see Appendix A for all the asymptotic approximations

discussed here), so it is clear that the inactive branches of Ā and P̄ should be qualitatively equivalent; the

fact that the unstable branches also are suggests that the above approximation applies here as well. On the

active stable branch, however, AgrA levels, in the limit ǫ → 0, are determined by a balance between mRNA

and AIP-bound receptor concentrations, so that these branches follow a trend quite different to those we have
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previously depicted.

B.1.2 Smaller diffusion, D = 0.1

The full numerical solutions relating to Figure 9 are depicted in Figures 17-19.
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Figure 16: Steady-state solution curves for A2 (AgrA levels of Population 2), Ā2, for each compartment with

varying N , demonstrating the complexity of the nonlinear behaviour. The curve-shape alters part way through

the interval when the unstable branch flips over from between the two stable branches (where, remembering

previous solution curves, we would probably expect it to lie) to above both branches (the point at which the

branches cross in this projection of the A2 component of the steady state does not correspond to a bifurcation).

This behaviour illustrates how complicated the domains of attraction in such a system are likely to be.
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Figure 17: The numerical solution to (2)-(13), using N = 5.00465 and the corresponding unstable steady state

as the initial condition of the system. The variables remain in this state for a time, before Population 1 (the

larger population) is able to push Population 2 into its down-regulated steady state. We note that A1(x, t) is

close to, but not equal to, zero (the same applies to Figures 18 and 19).
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Figure 18: The numerical solution to (2)-(13), using N = 5.00465 and the corresponding unstable steady states

as the initial conditions for all the variables except P2, for which we use (16). We see the system moving from

the unstable steady state to its down-regulated stable counterpart. Comparison between this solution and that

of Figure 19 allows us to infer that any starting value of P2 less than 0.302 will also result in Population 2

reaching its inactive steady state if all other variables begin at their unstable steady state.
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Figure 19: The numerical solution to (2)-(13), using N = 5.00465 and the corresponding unstable steady

states as the initial conditions for all the variables except P2, for which we use (17). This extra advantage

that Population 2 has from its initial conditions in relation to its cells in Figure 18 allows Population 2 to

upregulate itself, and gain an equivalent position to its opponent. The interval of P2(x, 0) which will therefore

allow Population 2 to activate itself is greater than the interval which will cause its cells to be down-regulated

(when all other variables begin at their unstable steady state).
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