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Abstract

Staphylococcus aureus uses the agr quorum sensing (QS) system to regulate reciprocally colonisation and

virulence factor production. S. aureus strains can be divided into four agr groups: those within a specific

agr group activate the QS systems of strains belonging to the same group, while inhibiting agr expression in

strains of other groups. Furthermore, agr homologues exist in many more species of Gram-positive bacteria,

raising the likelihood of cross-species interference. In principle, a non-pathogenic strain of S. aureus or other

species of bacteria employing agr could be engineered to inhibit the QS systems of pathogenic strains using

agr, thus down-regulating their production of virulence factors. We present three models of the agr operon

belonging to strains competing for dominance, each comprising one of the three possible phosphorylation

cascades governing the two component system (TCS) of the agr system. Bifurcation analyses clarify the

aspects of QS most crucial in determining the efficacy of using a non-pathogenic strain for therapeutic

purposes if the target TCS cascade is known and illustrate the qualitative and quantitative differences which

occur as a result of mechanistic differences between the models. We highlight those results that, in concert
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with appropriate experimental data, would be most useful in ascertaining whether or not a classical TCS is

in operation in a particular strain if this information is unknown.

Keywords: bifurcation analysis, gene regulation networks, mathematical modelling, quorum sensing, Staphy-

lococcus aureus.

1 Introduction

Quorum sensing (QS) is a mechanism for cell-to-cell communication enabling bacterial cells to co-ordinate their

behaviour according to their population density. Each bacterial cell produces quorum sensing signal molecules

(QSSMs) which accumulate in their local environment. The concentration of these QSSMs can therefore be

viewed as a measure of the cells’ population density. The bacterial cells sense the QSSMs in their immediate

environment and respond to their accumulation by altering the expression of specific genes so facilitating a

change in phenotype. Thus unicellular bacteria are able to act collectively as a community rather than simply

as individuals. In general, QSSM production is induced by the presence of QSSMs and this positive feedback

allows for rapid switching behaviour between two phenotypes.

The specific phenotypes controlled by QS depend upon the species of bacteria. QS was first discovered in

the marine bacterium Vibrio fischeri which becomes luminescent at high cell population densities [1]. Since

then, QS has been found to control many other phenotypes including antibiotic production, motility, biofilm

maturation, genetic competence and virulence [2, 3].

Staphylococcus aureus uses QS to regulate reciprocally colonisation and virulence. While its population size

is small, S. aureus produces surface proteins that facilitate adherence to host tissues and uptake to host cells

which aids immune evasion [2]. As the population grows, a switch to the production of secreted virulence factors

occurs, leading to the damage and degradation of the surrounding host cells and tissues, thus actively attacking

the host. Since tissue damage will alert host defence systems, such a delayed ‘deployment tactic’ may allow the

infecting bacteria time to reach a sufficient population size to be able to overwhelm the host [4].

QS does not mediate communication solely within a population of one species of bacteria, however; it is

also manifested as cross-species or cross-strain communication. For example, it has been demonstrated that
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Burkholderia cepacia can sense Pseudomonas aeruginosa QSSMs in a biofilm [5]. Similarly, there is evidence

that the P. aeruginosa QSSMs interfere with the QS system of S. aureus [6], while strains of S. aureus can

communicate with one another. Each strain of S. aureus is placed into one of four distinct agr (accessory gene

regulator) categories, groups I-IV. The QSSMs from the strains in each group activate the QS systems of other

members of the same group, but inhibit the agr systems in the strains from the remaining three agr groups [7].

It has also been demonstrated that Staphylococcus epidermidis can inhibit S. aureus groups I-III, while group

IV S. aureus strains are the only ones capable of interfering with the QS system of S. epidermidis [8, 9].

Such cross-strain or cross-species competition presumably enables the bacteria that invade first to establish

their dominance over strains making further attempts at colonisation and infection. Such competition could

potentially be used for therapeutic purposes: a non-pathogenic strain could be genetically engineered with

a cross group inhibitory QSSM analogue such as that described by McDowell et al. [10] so preventing the

expression of exotoxin virulence factors. Given the autoregulatory nature of the QS system, the construction

of a strain producing an inhibitory QSSM is likely to be more efficient than simply adding the relevant QSSM.

Down-regulation of virulence within the pathogen population would allow the host’s immune system an increased

chance of eliminating the organism. The emergence of multi-antibiotic resistant S. aureus (including methicillin-

and vancomycin-resistant S. aureus, MRSA and VRSA respectively) means that understanding the virulence

mechanisms employed by this pathogen to cause disease should aid the development of novel therapies, such as

that mentioned above, to combat infection through attenuation of virulence.

The agr operon was first discovered in S. aureus [11] but has since been identified in many other Gram-

positive bacteria, including the pathogens Clostridium botulinum [12], Clostridium perfringens [13], Enterococcus

faecaelis [14] and Listeria monocytogenes [15]. In S. aureus, the operon consists of two divergent promoters

termed P2 and P3. The P3 transcript encodes a regulatory mRNA, RNAIII. Increased levels of RNAIII result

in increased translation of secreted virulence factors and repression of surface protein production [16]. RNAIII

is essentially the effector of the agr operon, a regulatory molecule that induces the desired agr phenotype. The

P2 promoter controls the QS loop that regulates the activity of both promoters (see Figure 1), producing the

proteins AgrA, AgrB, AgrC and AgrD. AgrB and AgrC are transmembrane proteins, i.e. after translation,

these proteins move into the membrane of the S. aureus cell, while AgrD is anchored to the membrane. AgrB
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Figure 1: A schematic of the agr positive feedback loop (arrows with a filled head) and its downstream effects.

The trigger of the loop is the accumulation of AIP in the environment of the cell.

is a membrane associated enzyme which processes the linear AgrD pro-peptide to generate and export out of

the cell the active QSSM (i.e., AgrB facilitates the conversion of intracellular AgrD into extracellular QSSM),

a cyclic peptide termed the ‘autoinducing peptide’ (AIP) [17, 18]. The AgrA and AgrC proteins form a signal

transduction system called a two-component system (TCS). A TCS consists of a membrane associated receptor

protein (here AgrC) and a response regulatory DNA-binding protein inside the cell (AgrA). The receptor

detects the QSSM signal (i.e. the AIP binds to AgrC) and communicates this to the response regulator, which

then influences the transcription of the target genes (here activated AgrA upregulates the transcription of the

agrBDCA operon as well as RNAIII-dependent and RNAIII-independent genes [19]).

The structural identity of the AIP molecules of the strains within a given group of S. aureus enables a

particular strain to activate the QS systems of all others within its group. The structural differences between

groups, on the other hand, provide a natural inhibition process: the AIP molecules are sufficiently similar

that they will bind to the AgrC receptor proteins of any strain, but if they bind to an AgrC receptor from an

opposition group they will not confer the ability to activate the AgrA protein inside the cell, thus effectively

blocking the QS loop and potentially forcing the cells into, or maintaining them in, a down-regulated state

where the exotoxins are not produced.

AgrA is activated by AgrC via a phosphorylation cascade. In a classical TCS, the receptor autophospho-
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rylates on detection of the signal and transfers this phosphate to the regulator. The phosphorylated regulator

usually has a higher affinity for the relevant DNA binding site(s) (here, P2 and P3). While much work has been

done on defining the agr system, a question mark remains over the mechanisms governing this phosphorylation

cascade in all strains and species that use agr. It has been shown in laboratory derivatives of S. aureus that

AgrC does indeed autophosphorylate [20], implying that in this case it functions as a classical TCS. However,

given the variety of TCSs in existence in the bacterial kingdom [21], suggestions that both AgrA and AgrC

could be phosphorylated constitutively in [11] and experimental evidence that AgrA can bind the relevant DNA

binding site in either its phosphorylated or its unphosphorylated form (though it has a higher affinity in the

former case) in [22] open up the possibility that the phosphorylation cascade may vary within and between

strains (the variations in agr systems and their functions between species is discussed in [23]).

Though models of interacting QS systems exist for Gram-negative bacteria (see, for example, [24] or [25]),

equivalent models of Gram-positive systems are lacking. Given the importance of fully understanding the agr

operon before it can be exploited for therapeutic gain, we here focus on cross-strain competitive QS with

a view to (i) identifying aspects of the agr system which are most influential in inactivating an opposition

strain; and (ii) identifying potential experiments and/or behaviour which could be used to determine the

AgrC-AgrA phosphorylation cascade in operation in a particular strain of S. aureus (or, likewise, in any other

bacteria employing an agr operon). In consideration of these points, we present three models of cross-strain agr

competition, each representing one of the three possible phosphorylation cascades in the TCS. These models

have been analysed in the single-strain case in [26], wherein the TCSs are subject to artificial inhibitor AIP

molecules. Descriptions of the three models are given below.

• Model I: the classical TCS.

The receptor (transmembrane AgrC) autophosphorylates on detection of the signal (i.e. on binding

to an AIP molecule), followed by a phosphotransfer to the response regulator (AgrA). The phospho-

rylated response regulator has a higher affinity for the promoter sites than its non-phosphorylated

counterpart.

• Model II: the response regulator is constitutively phosphorylated by kinases.
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Figure 2: A schematic of the three different possibilities for the phosphorylation cascade of the TCS of the agr

operon (the small square represents a phosphate and the activated form of AgrA is in each case shown shaded).

Model I follows the classical TCS. In Model II AgrA is constitutively phosphorylated and consequently it is

dephosphorylated AgrA which takes on the role of activator. In Model III transmembrane AgrC is phosphory-

lated in the absence of AIP; upon binding to an AIP molecule it transfers this phosphate to the AgrA protein,

leaving phosphorylated AgrA as the activator.

In this case detection of the signal results in a phosphotransfer from the response regulator to the

receptor. The dephosphorylated response regulator thus serves as the activator in this model.

• Model III: the receptor is constitutively phosphorylated by kinases.

On detection of the signal, the receptor transfers this phosphate to the response regulator. As with

Model I, it is then the phosphorylated response regulator that is the activator.

Figure 2 illustrates graphically each of these putative phosphorylation cascades. Unfortunately, a specific

cascade has yet to be identified definitively in any agr operon, though experimental evidence that AgrC au-

tophosphorylates [20] and that phosphorylated AgrA has a high binding affinity with the P2 promoter region

lends weight to the classical TCS (Model I) in the strains which have been studied. Given the relative ease of
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testing hypotheses theoretically and the possible variation between strains and species, all three of these models

should be examined (moreover, since there must be phosphotransfer between AgrC and AgrA, these three are

the only possibilities).

Analysis of the mathematical models in [26] illustrated that the sensitivity of these three different TCSs

to inhibition (i.e., the level of treatment required to inactivate the agr operon) via the addition of synthetic

inhibitor molecules was highly dependent upon the phosphorylation cascade: Model I was the most robust

and Model II the most sensitive. In addition, each model displayed bistable behaviour in response to inhibitor

molecule dosage, suggesting that such an approach to inactivate the agr operon may only be successful if the

infection is caught sufficiently early, otherwise potentially impractical levels of inhibitor molecules are required.

A natural extension of this is therefore to consider a competing strain (rather than competing molecules). We

focus here on three nondimensional parameters that we believe to be of substantial importance in determining

the outcome of the competition between two strains, rather than between a strain and inhibitor molecules; these

parameters are the relative population sizes and the relative rates of self-activation binding and of inhibitory

binding between receptors and AIPs, principally because these are the parameters most easily specified in reality,

either through the treatment dosage or through the design of the therapeutic strain. We explore the responses

of the models to variations in these three parameters with the aim of finding parameter sets where one strain

can be reliably down-regulated. We demonstrate that the system behaviour in response to alteration in the

binding rates can be counter-intuitive and that the most reliable parameter to modulate in order to achieve

downregulation of an opposition population is the relative population size.

2 Formulation

2.1 Variables and Parameters

In [27], the agr operon was modelled in the absence of any competition (i.e. neither an opposing strain

nor synthetic inhibitor molecules) and a time-dependent asymptotic analysis was performed to highlight the

mechanisms involved in each stage of activation of the operon and to derive simpler models which could be

used to analyse further various processes. In this study, we formulate a model of two competitive strains of S.
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Models I,II and III

Mj mRNA in Population j

Aj , ..., Dj cytoplasmic AgrA, ..., AgrD in Population j

Tj , Rj transmembrane AgrB, AgrC in Population j

Sj anchored AgrD in Population j

aj free AIP from Population j

AP j phosphorylated AgrA in Population j

Pj proportion of cells that is up-regulated in Population j

Models I and II

RP
aj

j (Phosphorylated) receptor bound to cognate AIP in Population j

Ral

j (Non-phosphorylated) receptor in Population j bound to opposition AIP from Population l

Model III

RP
aj

j (Phosphorylated) receptor bound to cognate AIP in Population j

RP
al

j (Phosphorylated) receptor in Population j bound to opposition AIP from Population l

R
aj

j De-phosphorylated receptor bound to cognate AIP in Population j

Table 1: Definitions of the variables, with j = 1, 2 and l = 3− j.

aureus termed Population 1 and Population 2 and in the absence of one of the populations the models reduce

to those of [27]. Thus, we focus the description here on the cross-species interaction terms and the reader may

refer to [27] for additional model assumptions and derivations. We require variables to represent the amount of

mRNA, proteins etc. in two separate populations. We therefore let X1(t) and X2(t) represent the amount of

X in Population 1 and Population 2 respectively. The resulting variables are displayed in Table 1.

The models necessarily contain a large number of parameters and as a matter of expedience we assume the

parameters governing corresponding reactions in the two populations are equal, i.e. the two populations perform

all reactions at equal rates. The only exceptions are the parameters representing population sizes and the rates

of association and dissociation. It is the AIP structure which determines group specificity and the latter two

rates are accordingly the most likely to differ between groups. Definitions of the parameters are given in Table
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Figure 3: A schematic of two bacteria from opposing staphylococcal groups (Population 1 and Population 2)

with their respective AIP (a1 and a2), illustrating the parameters in the model that represent the different

binding and unbinding reactions between the AIP and receptors of each population. β11 and β22 are self-

activating rates, while β12 and β21 are cross-inhibiting binding rates. γ11 and γ22 are the rates of dissociation

of AIP from its cognate receptor and γ12 and γ21 from its opposition receptor.

2. Figure 3 illustrates which AIP binding rates and which dissociation rates correspond to either self-activation

or cross-inhibition.

We assume that the two populations are in a (well-mixed) spatially homogeneous environment (a spatially

structured extension of this model is discussed in Part 2 of this study [28]).
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Parameter Rate constant for Unit

m basal production of mRNA molecules cells−1 s−1

v QS-induced mRNA transcription molecules cells−1 s−1

κ protein translation s−1

αT,R AgrB and C taken up into cell membrane s−1

αS AgrD anchors to cell membrane s−1

λX natural degradation of variable X(t) s−1

r dilution through cell division s−1

δX λX + r s−1

k AIP production from AgrD, mediated by AgrB molecules−1 cm3 s−1

φ activation of AgrA by AIP-bound receptor molecules−1 cm3 s−1

µ dephosphorylation of AgrA by phosphatases s−1

b binding of the promoter site molecules−1 cells s−1

u unbinding of the promoter site s−1

ψA AgrA phosphorylation on production (Model II only) s−1

ψR AIP-independent phosphorylation of transmembrane AgrC (Model III only) s−1

βjl AIP from Population j binding to Population l receptors molecules−1cm3s−1

γjl AIP from Population j disassociating from Population l receptors s−1

Nj total number of bacteria per unit volume from Population j cells cm−3

Table 2: Definitions of the parameters, with j = 1, 2 and l = 3− j. All parameters except Nj are rate constants.
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2.2 Model I - the classical TCS

2.2.1 Dimensional model

The dimensional model reads, with j = 1, 2 and l = 3− j,

dMj

dt
= Njm+NjvPj − δMMj , (1)

dAj

dt
= κMj − φAjRP

aj

j + µAP j − δAAj , (2)

dBj

dt
= κMj − (αT + δB)Bj , (3)

dCj

dt
= κMj − (αR + δC)Cj , (4)

dDj

dt
= κMj − (αS + δD)Dj , (5)

dSj

dt
= αSDj − δSSj − kTjSj , (6)

dTj
dt

= αTBj − δTTj , (7)

daj
dt

= kTjSj − βjjRjaj + γjjRP
aj

j − βjlRlaj + γjlR
aj

l − λaaj , (8)

dRj

dt
= αRCj − βjjRjaj + γjjRP

aj

j − βljRjal + γljR
al

j − δRRj , (9)

dRP
aj

j

dt
= βjjRjaj − (γjj + δRa)RP

aj

j , (10)

dRal

j

dt
= βljRjal − (γlj + δRa)Ral

j , (11)

dAP j

dt
= φAjRP

aj

j − (µ+ δAP
)AP j , (12)

dPj

dt
=

b

Nj

AP j(1− Pj)− uPj . (13)

As for the single-species model in [26, 27], we take the default initial conditions to be the naturally down-

regulated steady states, i.e. the steady-state solutions to (1)-(13) with k = 0 or, equivalently, as λa → ∞ (these
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are not the same as the down-regulated steady states caused by suppression from opposition bacteria). Thus,

aj(0) = RP
aj

j (0) = Ral

j (0) = AP j(0) = Pj(0) = 0,

Mj(0) =
Njm

δM
, Aj(0) =

Njκm

δMδA
, Bj(0) =

Njκm

δM (αT + δB)
,

Cj(0) =
Njκm

δM (αR + δC)
, Dj(0) =

Njκm

δM (αS + δD)
, Rj(0) =

NjαRκm

δMδR(αR + δC)
,

Sj(0) =
NjαSκm

δMδS(αS + δD)
, Tj(0) =

NjαTκm

δMδT (αT + δB)
.

(14)

2.2.2 Nondimensional model

The variables are nondimensionalised using the same principles used for the single population model in [26].

The nondimensionalisation of opposition-bound receptors (the only variable to not have a direct match in the

single population model) is chosen to simplify the corresponding equation. The nondimensional variables are

thus:

M
′

j =
δM
Njm

Mj , A
′

j =
δMδA
Njκm

Aj ,

a
′

j =
βjjφbNjαRκ

2m2

δM
5δAδR(αR + δC)

aj , RP
aj

j

′

=
φbκm

δM
3δA

RP
aj

j ,

Ral

j

′

=
βllφbNlκm

βljNjδM
3δA

Ral

j , AP j

′

=
b

NjδM
AP j , τ = δM t,

(15)

and

X
′

j =
δM (αY + δX)

Njκm
Xj

Y
′

j =
δM (αY + δX)δY

NjαY κm
Yj



































for (X,Y ) = (B, T ), (C,R) or (D,S). (16)

We define the nondimensional parameters

N =
N1

N2
, βA =

β22
β11

, βI =
β12
β21

. (17)

We refer to these as the ratio of population sizes, self-activation rates and cross-inhibition rates, respectively.
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In order to incorporate these ratios into the model, we define the following nondimensional parameters:

λ
′

a =
λa
δM

, v
′

=
v

m
, β

′

11 =
β11R̃1

δM
, β

′

21 =
β21R̃1

δM
, η =

N1β11δM

φbÃ1

,

u
′

=
u

δM
, µ

′

=
µ

δM
, φ

′

=
N1δM

bÃ1

, kS =
kT̃1
δM

, γ
′

[11,22,12,21] =
γ[11,22,12,21]

δM
,

ka =
kβ11φbÃ1T̃1R̃1S̃1

N1δ4M
,

(18)

(these also follow directly from [26]) where X̃ is the initial condition of X given by (14) for X = A1, T1, R1, S1;

finally we set

λ
′

X =
δX
δM

for X = Aj , Tj , Rj , Sj , AP j , RP
aj

j , R
aj

j ,

α
′

X,Y =
δX + αY

δM
for (X,Y ) = (Bj , Tj), (Cj , Rj) or (Dj , Sj).

(19)

Assuming that protein degradation rates, λX in (19), are negligible relative to r (and since δX = λX + r), we

set all the parameters in (19) to be equal. Thus

λ
′

X = λ for X = Aj , Tj , Rj , Sj , AP j , RP
aj

j , R
aj

j ,

α
′

X,Y = α for (X,Y ) = (Bj , Tj), (Cj , Rj) or (Dj , Sj),

(20)

(j = 1, 2 and l = 3− j respectively).

Default parameter values are those adopted in [26] (with the new cross-strain binding and dissociation rates

taken to be of the same order as the equivalent cognate rates), namely

kS = ǫk̂S , µ
′

= ǫµ̂, v
′

=
1

ǫ
v̂, β

′

11 =
1

ǫ
β̂11, β

′

21 =
1

ǫ
β̂21, ka =

1

ǫ2
k̂a, ψ

′

A =
1

ǫ2
ψ̂A, (21)

where ǫ = m/v, i.e. the ratio of basal transcription to QS-induced transcription; hatted parameters are all

O(1) and will be set to unity in the simulations. Detailed explanations of this parameter choice are provided in

[26, 27], alongside a discussion of the consequences of alternative parameter choices. We summarise briefly our

reasoning here.

• It is vital that ǫ be small in order that the cells can induce rapidly the QS-associated switch between down-

and up-regulated states which is known to arise. Similarly (for Model II only), constitutive phosphorylation

of AgrA must be sufficiently fast for this to be achieved.

• Signal transduction reactions should occur at a fast rate relative to general reactions such as transcription

and translation (examination of the nondimensional definition of ka in (18) shows why this this assumption

also results in ka being large).
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(a) Nondimensional parameter Default value

ǫ 0.1

kS , µ 0.1

α, λ, λa, η, γ11, γ22, γ12, γ21, φ, ψR, ζ, u 1

v, β11, β21 10

ka, ψA 100

(b) Nondimensional parameter Default value

ǫ 0.05

kS , η, µ 0.05

α, λ, λa, η, γ11, γ22, γ12, γ21, φ, ψR, ζ, u 1

v, β11, β21 20

ka, ψA 200

Table 3: The default parameter set for the non-hatted parameters for two values of ǫ (all hatted parameters

are unity). In this paper we focus on the effect of varying N, βA and βI . In general we use (a) ǫ = 0.1 and thus

the top parameter set. However, we have also used (b) ǫ = 0.05 in Figures 4-6 to demonstrate the results for

smaller ǫ, in which case the parameters follow from (b).

• Housekeeping dephosphorylation of AgrA is relatively slow as an efficient cell should be well-equipped to

manage with little of this process.

We remark that kS = O(1) was employed in [27] in order to simplify the asymptotic analysis; however, we

here return to the biologically-motivated scaling employed in [26, 29] (kS = O(ǫ)). Notice that ψA appears in

Model II only and so the definition of ψ
′

A is given in §2.3.1, though its size is given above in (21). All hatted

parameters and the remaining nondimensional parameters which are not listed in (21) are taken to be O(1),

and in all simulations we set them to unity: the default parameter values are given in Table 3.
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Dropping ′s, the nondimensional equations for Model I are:

dMj

dτ
=

1

ǫ
v̂Pj −Mj + 1, (22)

dAj

dτ
= λ(Mj −Aj)− φAjRP

aj

j + ǫµ̂φAP j , (23)

dBj

dτ
= α(Mj −Bj), (24)

dCj

dτ
= α(Mj − Cj), (25)

dDj

dτ
= α(Mj −Dj), (26)

dS1

dτ
= λ(D1 − S1)− ǫk̂ST1S1, (27)

dS2

dτ
= λ(D2 − S2)− ǫ

k̂S
N
T2S2, (28)

dTj
dτ

= λ(Bj − Tj), (29)

da1
dτ

=
1

ǫ2
k̂aT1S1 −

1

ǫ
β̂11R1a1 +

1

ǫ
β̂11γ11R

a1

1 −
1

ǫ

βI β̂21
N

R2a1 +
1

ǫ

βI β̂21γ12
N

Ra1

2 − λaa1, (30)

da2
dτ

=
1

ǫ2
βAk̂a
N3

T2S2 −
1

ǫ

βAβ̂11
N

R2a2 +
1

ǫ

βAβ̂11γ22
N

Ra2

2 −
1

ǫ
β̂21R1a2 +

1

ǫ
β̂21γ21R

a2

1 − λaa2, (31)

dR1

dτ
= λ(C1 −R1)− ǫ

η

β̂11
R1a1 + ǫ

ηγ11

β̂11
RP

a1

1 − ǫ
Nβ̂21η

βAβ̂2
11

R1a2 + ǫ
Nβ̂21ηγ21

βAβ̂2
11

Ra2

1 , (32)

dR2

dτ
= λ(C2 −R2)− ǫN

η

β̂11
R2a2 + ǫ

Nηγ22

β̂11
RP

a2

2 − ǫ
βI β̂21η

β̂2
11

R2a1 + ǫ
βI β̂21ηγ12

β̂2
11

Ra1

2 , (33)

dRP
aj

j

dτ
= Rjaj − (λ+ γjj)RP

aj

j , (34)

dRal

j

dτ
= Rjal − (λ+ γlj)R

al

j , (35)

dAP j

dτ
= AjRP

aj

j − (λ+ ǫµ̂)AP j , (36)

dPj

dτ
= AP j(1− Pj)− uPj , (37)

with the initial conditions:

Mj(0) = Aj(0) = Bj(0) = Cj(0) = Dj(0) = Sj(0) = Tj(0) = Rj(0) = 1,

aj(0) = RP
aj

j (0) = Ral

j (0) = AP j(0) = Pj(0) = 0.

(38)

Notice that the equations representing the two populations are not symmetric in terms of the dimensionless

parameters because, to incorporate (17) into the system, the nondimensional parameters in (18) are chosen to be

dependent upon the dimensional N1, β11 and β21, but not upon N2, β22 or β12. For this reason, the bifurcation

diagrams will not be symmetric about the points where the two populations are equivalent (i.e. N = 1, βA = 1

and βI = 1).
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2.3 Model II - AgrA is constitutively phosphorylated

2.3.1 Nondimensional model

In the interest of space, the dimensional Models II and III and the details of their nondimensionalisations (which

are largely the same as that of Model I) are relegated to the appendix. We present here the nondimensional

models only. The nondimensional Model II (dropping ′’s) is given by (22), (24)-(35) and

dAj

dt
= λ(Mj −Aj)− ψ̂AAj + φ2AP jRP

aj

j + µ̂φAP j , (39)

dAP j

dt
=

ψ̂A

φ
Aj − φAP jRP

aj

j − (λ+ µ̂)AP j , (40)

dPj

dt
=

1

φ
Aj(1− Pj)− uPj . (41)

The initial conditions which differ from (38) are

Aj(0) =
µ̂+ λ

µ̂+ λ+ ψ̂A

, AP j(0) =
ψ̂A

φ(µ̂+ λ+ ψ̂A)
, Pj(0) =

µ̂+ λ

µ̂+ λ+ φu(µ̂+ λ+ ψ̂A)
. (42)

The hatted parameters are scaled according to (21).
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2.4 Model III - AgrC is constitutively phosphorylated

2.4.1 Nondimensional model

The nondimensional Model III is given by (22)-(29), (36), (37) and

da1
dτ

=
1

ǫ2
k̂aT1S1 −

1

ǫ
β̂11RP 1a1 +

1

ǫ2
β̂2
11γ11
ηζ

Ra1

1 +
1

ǫ
β̂11γ11RP

a1

1 −
1

ǫ

βI β̂21
N

RP 2a1

+
1

ǫ

βI β̂21γ12
N

RP
a1

2 − λaa1, (43)

da2
dτ

=
1

ǫ2
βAk̂a
N3

T2S2 −
1

ǫ

βAβ̂11
N

RP 2a2 +
1

ǫ2
βAβ̂

2
11γ22

N2ηζ
Ra2

2 +
1

ǫ

βAβ̂11γ22
N

RP
a2

2 −
1

ǫ
β̂21RP 1a2

+
1

ǫ
β̂21γ21RP

a2

1 − λaa2, (44)

dRj

dτ
= (ψR + λ)(Cj −Rj) +

γjjψR

λζ
R

aj

j , (45)

dRP 1

dτ
= λ(R1 −RP 1)− ǫ

η

β̂11
RP 1a1 + ǫ

ηγ1

β̂11
RP

a1

1 − ǫ
Nβ̂21η

βAβ̂2
11

RP 1a2 + ǫ
Nβ̂21ηγ21

βAβ̂2
11

RP
a2

1 , (46)

dRP 2

dτ
= λ(R2 −RP 2)− ǫ

Nη

β̂11
RP 2a2 + ǫ

Nηγ22

β̂11
RP

a2

2 − ǫ
βI β̂21η

β̂2
11

RP 2a1 + ǫ
βI β̂21ηγ12

β̂2
11

RP
a1

2 , (47)

dRP
a1

1

dτ
= RP 1a1 −

1

ǫ

β̂11
ηζ

A1RP
a1

1 − (λ+ γ11)RP
a1

1 , (48)

dRP
a2

2

dτ
= RP 2a2 −

1

ǫ

β̂11
Nηζ

A2RP
a2

2 − (λ+ γ22)RP
a2

2 , (49)

dRP
al

j

dτ
= RP jal − (λ+ γlj)RP

al

j , (50)

dR
aj

j

dτ
= AjRP

aj

j − (λ+ γjj)R
aj

j . (51)

The nondimensional initial conditions which differ from (38) are

RP j(0) = 1, RP
al

j (0) = 0, R
aj

j (0) = 0. (52)

The hatted parameters are scaled according to (21) (note that primes have been dropped from the derivation

details provided in the appendix).

3 Numerical investigations

3.1 Preliminaries

When N = βA = βI = 1 the two populations of cells behave identically, i.e. they result in matching levels

of regulation and of all corresponding proteins. We look at how altering these three parameters can affect the
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solutions of the models with a view to identifying properties of the system which should enable one population

to downregulate the other. We track the solution curves in response to varying N , βA and βI , focusing primarily

on N , βI > 1 and βA < 1, with the expectation that in these regimes Population 1 should be ‘stronger’ than

Population 2, by which we mean in a better position to inactivate Population 2. Mathematically speaking,

Population 1 inactivating or downregulating Population 2 would be given by P̄1 ∼ 1 and P̄2 << 1 since P̄1 is

the steady state proportion of up-regulated cells in Population 1 and P̄2 that of Population 2. Our investigations

indicate, however, that these values can in fact vary significantly from 1 or 0, so we take the rather informal

description that Population 1 has inactivated or down-regulated Population 2 if P̄2 < 0.5 and P̄1 > 0.5 is

significantly larger than P̄2 (on [0 1]).

We will see that five cases emerge from our analyses, each representing a different situation regarding the

potential ability of one population to downregulate the other. Given the number of possibilities, to make the

qualitative conclusions clearer to the reader, we summarise these in Table 4 rather than introducing each case

as it arises. Two cases are monostable: either both populations are necessarily active (Case V) or Population

1 necessarily inactivates Population 2 (Case W). Two are bistable and the outcome is dependent on initial

conditions: in Case X either both become active or Population 1 inactivates Population 2, while in Case Y

each population can downregulate the other. Finally, Case Z has tristable behaviour and all of the outcomes

mentioned above are possible. Thus when Cases Y and Z arise, the model is displaying what could be deemed

to be unexpected behaviour because Population 2 is able to downregulate Population 1 (given suitable initial

conditions) despite being ‘weaker’ in terms of either N, βA or βI (remember these are chosen to give Population

1 the advantage in these studies).

In all the bifurcation diagrams below solid lines indicate stable steady states and dashed lines unstable ones.

In a number of figures, it is impossible to distinguish between two or more branches visually; when this happens

we illustrate the fact that there are multiple branches present using a dot-dash line. In the time-dependent

solutions, solid lines illustrate the solution for Population 1 and dashed lines the corresponding solution for

Population 2, unless otherwise stated.

Although for completeness we have prescribed initial conditions for the three models in (38), (42) and (52),

we often vary these when deriving time-dependent solutions in order to examine any multistable behaviour
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Outcome(s)

Case Stability Population 1 Population 2

V Mono active active

W Mono active inactive

X Bi active active

active inactive

Y Bi active inactive

inactive active

Z Tri active active

active inactive

inactive active

Table 4: The five phenotypes that arise from our analysis in §3.2-§3.4 as a result of varying N , βI (> 1) or βA

(< 1). The expectation might a priori be that, in these regimes, Population 1 should be the stronger of the

two populations, i.e. the steady-state solutions will give 0 ≤ P̄2 < 0.5 < P̄1 ≤ 1. However, in Cases Y and

Z, Population 2 is able to downregulate Population 1 (0 ≤ P̄1 < 0.5 < P̄2 ≤ 1) if subject to suitable initial

conditions.

19



which arises. When we do depart from (38), (42) or (52), the initial conditions adopted will be described in

the caption of the relevant figure. Time dependent numerical solutions are calculated using the ode15s solver

in MATLAB v7.1 (The MathWorks, Inc.) and steady-state solutions are computed in XPPAUT 5.91; all plots

were created in MATLAB v7.1.

3.2 Relative population size, N

3.2.1 Model I

N = 1 implies that the populations are of equal size (and large by assumption) and the populations behave

identically (both quickly achieve an up-regulated state, see Figure 4). Increasing N = N1/N2 is equivalent to

making Population 1 larger than Population 2 (more specifically, since N1 appears in the definition of other

nondimensional parameters that remain fixed, increasing N corresponds to decreasing the size of Population

2). We expect that for N sufficiently large, Population 2 will be forced into a down-regulated state (P̄2 < 0.5)

as a result of competitive QS, allowing Population 1 to dominate (P̄1 is close to 1), i.e. Case W. Figures 4(a)

(time-dependent dynamics) and (b) (bifurcation diagram) show that this does indeed occur. For N = 1, both

groups reach an up-regulated state (Case V) since both groups are equal and large in size, but as we increase N ,

the first population begins to dominate, and two fold bifurcations emerge giving Case X (this structure being

familiar from the single strain models [26, 27, 30]). For N & 2.5, the second population can either become

active or be suppressed into an inactive state. When N is large enough, the second population is necessarily

inactivated (Case W). Throughout the range N > 1, Population 1 remains in an active state. Thus, for N > 1

either both populations will finish in an active state or Population 1 will downregulate Population 2. For N < 1,

we have the equivalent behaviour in reverse, i.e. for sufficiently small N , Population 2 inactivates Population

1 (data not shown). The unstable steady state separating the two stable steady states can be viewed as a

border line between them: we can expect that initial conditions lying between the unstable steady state and

the up-regulated stable state will allow Population 2 (within the bistable region of N > 1) to become active

(i.e. P̄2 > 0.5).
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Figure 4: (a) Dynamics of P2 in Model I for various N with ǫ = 0.1 (remember that τ represents nondimensional

time, see (15)). The dramatic decrease in Population 2’s regulation level suggests a bifurcation, and bifurcations

in fact occur at both N ≈ 2.47 and N ≈ 5.82 (see (b)). The corresponding curves for P1 all reach an up-regulated

state and are not easily distinguishable from that shown here for N = 1. (b) Steady-state solutions for P2 (i.e.,

P̄2) in Model I with bifurcation parameter N . Smaller ǫ implies that the difference between basal transcription

and QS-induced transcription is more pronounced, i.e. the switch between down- and up-regulated states should

occur faster and be more rigid. In (c) we plot the projection of the bifurcation curve onto the P̄1 − P̄2 plane

when ǫ = 0.1.

3.2.2 Model II

Model II results in slightly different behaviour around N = 1; Figure 5 shows the bifurcation diagrams for P̄1

and P̄2 (these being the P1 and P2 components of the steady state respectively) as we vary N . For this model

there exists an interval around N = 1 in which three stable steady states exist (Case Z): either both populations

are up-regulated, or either population can downregulate the other; separating each of these is an unstable steady

state. The unstable steady states thus delineate a population’s ability to fend off the opposition AIP. If N is

increased outside of the tristable interval, the system becomes bistable and, if increased further, monostable.

In the bistable region, either population can inactivate the other (Case Y) and in the monostable region,

Population 1 necessarily downregulates Population 2 giving Case W (the equivalent but opposite behaviours

occur for decreasing N). The behaviour differs from Model I, which has two bistable regimes (one in N < 1

and the other in N > 1). In Model II these regimes essentially merge, overlapping around N = 1 and forming

a tristable region. We saw in [26] that the Model II TCS is the most sensitive of the three TCSs to inhibition

and this is further evidence that this is the case for our parameter choice: if Population 2 begins in a more
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Figure 5: Bifurcation diagrams for (a) P̄1 and (b) P̄2 in Model II for ǫ = 0.1 and ǫ = 0.05. In (c) we plot

the projection of the bifurcation curve onto the P̄1 − P̄2 plane when ǫ = 0.1. This model displays noteworthy

behaviour for N close to unity, where a tristable region exists (Case Z). Outside of the tristable region the

system becomes bistable and then monostable where in the latter case, for N > 1 Population 1 necessarily

inactivates Population 2 and vice versa for N < 1.

agr -active state than Population 1 (i.e. P2(0) > P1(0)) then it may be of no consequence that Population 1 is

the larger population (within the multistable region only), and Population 2 can overcome Population 1 (i.e.

1 ≥ P̄2 > 0.5 > P̄1 ≥ 0) simply by having more cells active initially. Thus the sensitivity of this particular

TCS to inhibition here results in the initial conditions of the system being potentially more influential than

the relative population sizes (again, within the multistable region only) because the Population 1 cells can be

inhibited quickly by the already active Population 2 cells.

3.2.3 Model III

Qualitatively, Model III behaves in much the same way as Model I: see Figure 6. As with Model I, we have Cases

V, W and X (the last of these representing the bistable regime); thus over the whole range N > 1, either both

populations achieve an up-regulated state (for sufficiently small N > 1) or Population 1 inactivates Population

2 (for sufficiently large N > 1). For N < 1, a similar bistable regime occurs which gives the converse behaviour.

Note that with ǫ = 0.1, Population 1 only needs to be around 2.2 times the size of its counterpart to guarantee

success, compared with approximately 5.82 times in Model I and 2.04 times for Model II; this is consistent with

the relative efficiency of the three TCS cascades to withstand inhibitor therapy demonstrated in [26], i.e. Model

I is the most robust to inhibition and Model II the most sensitive.
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Figure 6: Solution curves for (a) P̄1 and (b) P̄2 in Model III for ǫ = 0.1 and ǫ = 0.05. These numerical results

match the behaviour which would be anticipated biologically: the larger population is able to downregulate its

counterpart. Each curve contains four fold bifurcations: two for N < 1 (clearest on the P̄1 curves) and two for

N > 1 (clearest on the P̄2 curves). In (c) we plot the projection of the bifurcation curve onto the P̄1 − P̄2 plane

when ǫ = 0.1.

It is evident that decreasing ǫ increases the range of N over which multi-stability exists for each model;

numerical investigations indicate that this is the case also for the remaining analyses performed in this study.

Henceforth, we display only the ǫ = 0.1 solutions.

3.3 Relative self-activating binding rate, βA

3.3.1 Model I

We examine how altering the potency of the different AIPs affects the regulation of their respective populations.

Figure 7 shows the solution curve of P2 of Model I with bifurcation parameter βA. Since we fix β11 (the rate

of self-activating binding in Population 1), increasing 1/βA (the ratio of the rate of self-activating binding

in Population 1 to that of Population 2) is equivalent to increasing the difference between the self-activating

potencies of the two populations’ AIPs, so that 1/βA > 1 means Population 1 has a faster self-activating binding

rate than Population 2. We see that increasing 1/βA yields cases V, W and X once again as the first population

is able to push the second into downregulation, as would be expected.

3.3.2 Model II

As in §3.2, Model II produces different behaviour to Model I, this time for varying βA - see Figure 8. We now
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Figure 7: Bifurcation diagram for P̄2 against 1/βA for Model I. Increasing 1/βA is equivalent to Population 1

AIP binding to its cognate receptors faster than Population 2 AIP can bind to its own.
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Figure 8: Bifurcation diagrams for (a) P̄1 and (b) P̄2 with the nondimensional parameter βA, in Model II. In

(c) and (d) the diagrams are focused on the lower range of 1/βA to be able to see clearly the behaviour of the

system here. In addition to the hysteretic curve seen in previous diagrams, an additional solution curve exists

yielding unexpected behaviour from the system (Cases Y and Z): there exists a regime where either population

can downregulate the other. Though it is not clear from (d), the two solution curves for P̄2 (i.e. the lower

two-fold curve and the higher single-fold curve) do not meet.
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have two solution curves: the usual pair of fold bifurcations and an extra curve which behaves in a more unusual

fashion. For sufficiently large 1/βA (roughly 1/βA > 164 for ǫ = 0.1), Case W arises whereby Population 1

necessarily inactivates Population 2. For 1 < 1/βA < 163 (with ǫ = 0.1), Cases Y and Z occur, meaning

that, depending upon the initial conditions, either population could downregulate the other. Given that in this

interval Population 1 has a higher self-activation rate than Population 2, the possibility that Population 2 could

inactivate Population 1 could be deemed to be somewhat surprising (we would ordinarily anticipate that this

would occur for 1/βA < 1).

In Figure 9, we present a time-dependent solution illustrating how Population 2 could achieve domination

when βA = 1/20 (i.e. from the bistable Case Y and when Population 1 has the faster rate of self-activation).

Population 2’s initial level of activity (P2(0)) is taken to be higher than that of Population 1 (P1(0)). The

first population initially binds to its AIP so quickly that not enough of its AIP reaches the second population,

resulting in a higher concentration of free receptors in the second population (see Rj). Because this population

begins in a more active state, it can manipulate this situation to build up a bigger AIP supply (see aj) with which

it can not only activate itself but also inhibit the opposition (see Pj). We note that our numerical investigations

suggest that it is a requirement that Population 2 begin in a more active state (or at least not significantly

lower) than Population 1 (P2(0) > P1(0)) for it to dominate (P̄2 > P̄1) in this parameter regime, implying that

having a faster self-activation rate resulting in AIP being wasted on cognate cells (leaving insufficient amount

to downregulate the opposition cells) is not the sole reason for Population 2 dominating: fewer Population 1

cells must also be active initially.

3.3.3 Model III

Figure 10 illustrates the solution curves for varying βA in Model III. As for Model II, there is an additional branch

of solutions which enables the ‘weaker’ population (that with the slower rate of self-activation) to dominate,

giving Cases V, W, X and Y. Notice that here both of the ‘usual’ fold bifurcations occur for 1/βA > 1 (meaning

that Case V also arises for Model III), while for Model II they lie either side of βA = 1. This again illustrates the

higher sensitivity of Model II to inhibition compared to Models I and III for our parameter choice: for Model

II the difference between the two populations needs to be less pronounced than for either Model I or Model III

in order to ensure that one population is dominant.
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Figure 9: Time-dependent numerical solution to Model II (equations (22), (24)-(35) and (39)-(41)) for a selection

of variables with 1/βA = 20, all other parameters from Table 3(a) and the only altered initial condition from

(38) and (42) being P2(0) = 0.6 and P1(0) = 0. The solid lines represent Population 1 variables (j = 1, l = 2)

and dashed lines those of Population 2 (j = 2, l = 1). Population 2 manipulates the advantage it has through a

higher initial level of activity than Population 1 to inactivate the latter. In the final graph we depict the ratio of

self-bound receptors to opposition-bound receptors for each population, i.e. the solid line describes RP
a1

1 /R1
a2

and the dashed line RP
a2

2 /R2
a1 (the dotted line simply corresponds to a ratio of one), concisely demonstrating

the switch in control of the two populations.
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Figure 10: Steady-state curves for (a) P̄1 and (b) P̄2 of Model III as 1/βA varies. Cases V, W, X and Y are all

possible.

Figure 11 provides an example of the time-dependent dynamics in Case Y (where either population can

inactivate the other) though, in contrast to Figure 9, we illustrate a solution where Population 1 uses the

advantage of a faster rate of self-activation to overcome the disadvantage of having ‘weaker’ initial conditions

(P1(0) < P2(0)).

3.4 Relative cross-inhibition binding rate, βI

3.4.1 Model I

So far, all results for Model I have been in accordance with intuition. However, altering βI (the ratio of the

rate of inhibitory binding in Population 1 to that of Population 2) produces a more surprising result. Not

only do we see the hysteretic curve familiar from §3.2.1 and §3.3.1 as we increase βI (equivalent to making

the first population’s inhibiting ability more potent relative to the second’s), but we also see the emergence

of two new steady states, one stable and one unstable; see Figure 12. Consequently Cases V, X, Y and Z

arise for Model I when βI is the bifurcation parameter. Although each of these cases means Population 1 can

(with suitable initial conditions) downregulate Population 2, it can never be guaranteed and the last two allow

for the possibility that Population 1 will be inactivated by Population 2 despite having a greater inhibitory

binding rate. In order to gain some insight into why this is possible, some numerical solutions are provided

in the appendix with βI = 180 (which gives Case Y: either population can inactivate the other); see Figures
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Figure 11: Time-dependent numerical solution for a selection of variables of Model III (solid lines: Population

1, dashed lines: Population 2) with 1/βA = 10 (the bistable Case Y where either population can downregulate

the other), all other parameters from Table 3(a) and initial conditions (38) and (52) for all variables except P2,

for which P2(0) = 1. The solutions tend initially toward Population 2 achieving upregulation; the advantage

held by Population 1 by having a faster self-activating binding rate enables Population 1 to ultimately become

active despite Population 2 beginning with the maximum value of P2(0), downregulating Population 2 in the

process.
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Figure 12: Bifurcation diagrams for (a) P̄1 and (b) P̄2 with bifurcation parameter βI for Model I. Cases V, X,

Y and Z are all possible. The three branches of the hysteretic curve in (a) are indistinguishable on this scale

and so are illustrated with the dot-dash line; the same applies to the two branches of the single-fold curve in

(b). In order to be able to see the shape of this single-fold curve, it is plotted for both P̄1 and P̄2 in (c).

20-22 and the accompanying discussion. In each figure we use different initial conditions in order to allow the

model to evolve to either of the possible stable steady states depicted in the bifurcation diagram of Figure 12

for βI = 180.

The extra single-fold solution curve (which makes Cases Y and Z possible) suggests that the cells could in

some sense be too efficient for their own good at fighting off other species: producing an AIP which is too potent

can be detrimental to their own efforts at becoming the dominant species.

Whilst mathematically interesting, we must bear in mind whether a realistic parameter choice would allow

Cases Y and Z to exist. Since we have taken β11 = β21 = O(1/ǫ) in Figure 12 (where ǫ = 0.1), the majority

of the parameter range illustrated by these bifurcation diagrams has the dimensional β12 far greater than the

dimensional β11, meaning that an AIP’s ability to bind to opposing strains is greater than its ability to bind

to its own strain which would seem somewhat unlikely. In the more biologically realistic regime where this is

not the case, both populations simply reach an active state, rendering much of the previous discussion in this

section relevant only if engineering a strain for therapeutic purposes, in which case the signal molecule structure

could be specified, and therefore, to a certain extent, its binding ability also.

A more biologically realistic investigation into what happens for varying βI , perhaps, is to set the self-

activating binding rate to be larger than the inhibiting binding rates. Such an investigation (performed numer-
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Figure 13: Bifurcation diagrams for (a) P̄1 and (b) P̄2 of Model I with varying βI when β11 = 100 (all

other parameters are taken from Table 3(a)). The dot-dash lines again represent multiple branches which are

indistinguishable from each other. In (a) the dot-dash line is the single-fold branch and in (b) it encompasses

the bistable hysteretic curve.

ically, but results not shown) shows that qualitatively the same bifurcation curves are produced for any value

of β11 with 10 ≤ β11 ≤ 50 (when ǫ = 0.1). However, for β11 > 50 there is a switch in the behaviour of the two

populations: the bifurcation diagram for P1 now resembles that of P2 for 10 ≤ β11 ≤ 50 and P2 that of P1, i.e

Cases V, X, Y and Z all still exist but the roles of the two populations are reversed in all of these, see Figure 13.

However, this is, again, likely to be irrelevant in practice: the area of the graph where Population 1’s inhibiting

rate is slower or equal to its activating rate corresponds to βI ≤ 10 where both populations are up-regulated,

i.e. if the self-activating abilities are sufficiently high then altering the inhibiting ability has little effect: both

populations will still be in a position to upregulate themselves. This switch in roles also occurs for Model III

and we discuss this further in §3.4.3.

Interestingly, if N > 1 Case Z is no longer possible with varying βI and Case Y occurs only in an unrealistic

domain of βI (once N > 8, Case Y exists only for βI >> 104), while the more intuitive Cases V, X and W

(these cover both populations achieving upregulation or Population 1 inactivating Population 2) exist for much

more plausible values of βI , see Figure 14. If N is sufficiently large, the dimensional β12 does not even need to

be larger than the dimensional β21 to guarantee that the first population will downregulate the second (Case

W), i.e. population size is more influential in determining the outcome than the relative binding abilities.
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Figure 14: Bifurcation diagrams for P̄2 when (a) N = 2 and (b) N = 10 in Model I with varying βI (and all

other parameters taken from Table 3(a)). In (a) the dot-dash line comprises the stable and unstable branches

of the single-fold curve. In (c) we depict the dependence on N of the minimum value of βI at which Case Y

(either population can downregulate the other) arises. For values of βI lower than those tracked here, either

both populations reach an active state or Population 1 inactivates Population 2. In (b) the minimum value at

which Case Y can arise (i.e., the turning point of the single-fold curve) occurs at βI > 5 × 104, see (c); we do

not illustrate this solution curve here.

3.4.2 Model II

We obtain similar bifurcation curves, see Figure 15, as for Model I in §3.4.1. The main difference is that

only the tristable Case Z and bistable Case Y exist for Model II, i.e. given suitable initial conditions, either

population can downregulate the other regardless of βI . Consequently, this behaviour exists in a potentially

realistic parameter range (where inhibiting binding rates do not differ greatly from self-activation rates) for

Model II.

3.4.3 Model III

Model III is qualitatively similar to Models I and II for varying βI , see Figure 16. Quantitatively the corre-

sponding fold bifurcations lie at values of βI between those of the previous two models (meaning the possible

cases are different for Model III), again reflecting the results of [26] which demonstrated that the Model III

TCS would be middle of the three in terms of sensitivity to inhibitor therapy.

As for Model I, Case Y (where Population 2 can downregulate Population 1 despite having a lower inhibiting

binding ability) occurs only in a range of βI that is unlikely to be biologically relevant (where the inhibitory
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taken from Table 3(a). This behaviour is qualitatively similar to that of Model I but, for Model II, all of the

fold bifurcations occur at much lower values of βI (compare with Figure 12).
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Figure 16: The steady-state curves for (a) P̄1 and (b) P̄2 of Model III as functions of βI , with all other

parameters taken from Table 3(a). As for Model II in Figure 15, the behaviour of Model III with respect to

βI is qualitatively similar to that of Model I, but the fold bifurcations occur at lower values of βI (though at

higher values than Model II).
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we here demonstrate these locations. The dot-dash curve illustrates the location of the fold on the single-fold

curve (the minimum value of βI at which Case Y arises), the dashed curve that of the lower fold (by this we

mean lower in terms of the value of βI at which it occurs, rather than the value of P̄1 or P̄2) of the hysteretic

curve (the minimum value at which Case X can occur) and, finally, the solid curve its upper fold (similarly, the

upper fold corresponds to the fold on the hysteretic curve which occurs at the larger value of βI), the minimum

value of βI giving Case W. Where the dot-dash and dashed curves meet, the roles of the two populations in

Cases W, X and Y are reversed.
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Figure 18: Bifurcation diagrams for (a) P1 and (b) P2 for Model III as functions of βI for β11 = 100, with

all other parameters taken from Table 3(a). The larger value of β11 employed here (rather than in Figure 16)

switches the roles of the two populations from Figure 16 in each of the Cases V, W, X and Y.
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binding rate is greater than the activating rate), meaning that only Cases V, W and X (where either both

populations are active or Population 1 downregulates Population 2) are potentially realistic; in Figure 17 the

boundaries of each case are illustrated. Similarly to Model I, increasing β11 (the self-activating binding rate) by

a sufficient amount produces a switch in the behaviour of the two populations: taking β11 large enough results

in the roles of each population in each case (Cases V, W, X, Y) being reversed from their roles for smaller β11

(Figure 18 illustrates this when β11 = 100). If both populations have a sufficiently large self-activating binding

rate (i.e. large β11), then providing Population 1 with quicker inhibitory binding than Population 2 is beneficial

only to the latter, i.e. if the cells can bind to their own AIP sufficiently quickly then they are better off with

slower inhibitory binding, else they risk being suppressed by the opposition cells. In terms of our model, by

losing some AIP to the opposition cells, Population 1 is at a disadvantage since Population 2 will upregulate

itself regardless (given the fact that it has a large self-activating binding rate). While Population 1 also has

this fast rate, it will lose enough AIP to the opposition bacteria to make itself the weaker population. In other

words, in this scenario it is important to reach an active state before attempting to downregulate the opposition

bacteria - see Figure 19.

4 Discussion

The agr system is employed by many Gram-positive bacteria, including a number of important pathogens. It

has been demonstrated that S. aureus uses the agr operon as a means of communication, with strains able to

activate the agr operon of strains from within the same group and inhibit that of other groups. This cross-strain

antagonism has therapeutic implications: a non-pathogenic, inhibitory AIP producing strain of S. aureus could

be designed to be administered at the site of a staphylococcal infection in order to inhibit the agr system of the

infecting strain, inactivating the production of certain virulence factors and allowing the host’s immune system

an increased chance of eliminating the pathogen.

We have investigated the effect of altering certain aspects of the cells in this process by analysing their steady-

state behaviour. The stable steady states determine the ultimate outcome of the systems, while the unstable

ones are influential in determining the basins of attraction of the stable states. For example, when there are

two stable steady states for a given parameter set, where one has Population 1 suppressing Population 2, and
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Figure 19: Time-dependent numerical solution to Model III using the default initial conditions, β11 = 100,

βI = 22 (i.e. in the regime where either both populations will become active or Population 2 will suppress

Population 1) and all other parameters from Table 3(a) (j = 1, 2 and l = 3− j). Although Population 1 (solid

line) has a higher inhibiting binding rate than Population 2 (dashed line), as both populations have a high

self-activating binding rate (i.e. because β11 = 100), the second population will activate itself quicker since the

first will lose more of its own AIP through its attempt at inactivating the opposition cells than vice versa; the

second population is consequently in a better position to suppress the QS systems of the first. This demonstrates

the importance of reaching an active state as quickly as possible: the second population has already begun the

process of upregulation before the first population’s AIP has made any real progress in binding to the opposition

cells.
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the other vice versa, the unstable steady state lying between them can be seen to represent both populations

attempting to inactivate each other, but the initial conditions of the system will ultimately determine to which

stable state the model is drawn. We considered the effects of varying three factors of the two populations,

namely their relative sizes, self-activation potencies and inhibitory potencies. If one population is larger or has

faster self-activating or inhibiting rates than the other then there exists the possibility that it will downregulate

the second strain; however, this could not always be guaranteed. In many situations, the opposite behaviour to

what might be anticipated was also possible (Cases Y and Z) and sometimes even when the initial conditions

of the populations were identical. We modelled the three different possible cascades of the TCS and in the case

of the classical TCS (Model I) we showed that Cases Y and Z arose only in a potentially unrealistic parameter

range. In Models II and III (representing alternative TCS cascades), on the other hand, such behaviour could

appear in a realistic parameter range.

The mechanistic details of the agr system can lead to significant differences in the behaviour of competing

strains and the differences between the models provide plausible approaches to assessing which cascade is in

operation in the TCS of the agr operon of a given strain (either of S. aureus or other Gram-positive bacteria).

For instance, if the unexpected behaviour as outlined by Cases Y and Z is impossible to reproduce experimentally

then this is an indication that a classical TCS governs the agr operon.

The results for Model II are less clear cut than for the other two systems: for each parameter variation,

there was a tristable region around the parameter value which corresponded to the populations having equal

‘strength’ where either both populations were up-regulated or one dominated over the other; the parameters

had to be increased or decreased sufficiently away from 1 to lose this tristable behaviour. Thus the Model II

TCS (where AgrA is constitutively phosphorylated) is weaker than the remaining two TCSs in terms of fending

off inhibition, with the Model I TCS (the classical TCS) being the most robust. This is also a reflection of the

TCS in isolation and not simply as part of the overall signalling system and these results, therefore, are likely to

transfer to other operons beyond the agr system and to bacteria employing similar signal transduction systems.

Furthermore, if a TCS cascade has been fully characterised for a specific strain or species, these investigations

provide pointers regarding the use of QS for therapeutic purposes which could be investigated experimentally

in animal infection models after engineering a specific cross-group inhibitory AIP into a non-pathogenic strain.
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For instance, the analyses provide indications on the features and quantities required of a therapeutic strain

to ensure that the infecting strain will be down-regulated. The only parameter that guarantees for all three

models that the behaviour is as might naively be expected if made sufficiently large or small is N , the ratio

of the population sizes, confirming the intuition that this is the key to ensuring therapeutic success through

interference with the QS system. On the other hand, the relative rate of inhibitory binding was the least robust

of the three parameters studied in terms of outcome and therefore likely to prove a much more precarious

target for a ‘designer’ strain. Concentrating solely on the relative population sizes, however, may not always

be wise: administering a sufficiently large population of bacteria (albeit non-pathogenic) to an infection site

would not always be practical. In such circumstances, the analyses presented in this work can be drawn upon

to guide the design of a strain which is effective with a more feasible population size, for example by carefully

specifying the self-activating rate of the new strain. This analysis, therefore, provides early guidance in the

development of such a therapy; many more factors (such as the effect of cell growth rate upon the dynamics of

the system or the potential persistence of an agr down-regulated infecting strain due to increased colonisation

factor production) must also be considered. Furthermore, it will be necessary to consider the consequences of

two competing strains utilising different phosphorelays in their TCSs (in this study we have concentrated solely

upon the scenario where competing strains employ identical phosphorelays).

QS is not restricted to pathogenesis in bacteria. It is an important cell communication system which is

already known to serve a variety of purposes in an increasing number of bacteria and the likelihood is that, as

the study of QS systems continues, numerous other functions will be discovered. Many of these will be of interest

due to the benefits which they can bestow, rather than because of the harm which they can cause. For instance,

the discovery of the agr operon in the clostridial species [12, 13, 31] may yield a link between QS and the

production of biofuels by bacteria such as Clostridium acetobutylicum which can be exploited for environmental

and economic gain. Analyses such as those presented here (though focusing on mutually activating systems

which could cause the premature upregulation of a particular strain rather than its inactivation) should therefore

assist in the acceleration of such processes.
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A Model formulations

A.1 Model II - AgrA is constitutively phosphorylated

A.1.1 Dimensional model

The dimensional equations which change from (1)-(13) in Model II are (2), (12) and (13). Instead, Model II has

dAj

dt
= κMj + φAP jRP

aj

j + µAP j − (ψA + δA)Aj , (53)

dAP j

dt
= ψAAj − φAP jRP

aj

j − (µ+ δAP
)AP j , (54)

dPj

dt
=

b

Nj

Aj(1− Pj)− uPj , (55)

with the initial conditions:

Aj(0) =
Njκm(µ+ δAP

)

δM ((ψA + δA)(µ+ δAP
)− ψAµ)

,

AP j(0) =
ψANjκm

δM (ψA + δA)(µ+ δAP
)− ψAµ)

, (56)

Pj(0) =
bκm(µ+ δAP

)

bκm(µ+ δAP
) + uδM ((ψA + δA)(µ+ δAP

)− ψAµ)
.

A.1.2 Nondimensionalisation

We employ the same nondimensionalisation as for Model I, i.e. (15)-(20), and define the additional parameter:

ψA
′ =

ψA

δM
.
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A.2 Model III - AgrC is constitutively phosphorylated

A.2.1 Dimensional model

The dimensional equations which vary from (1)-(13) for Model III are

daj
dt

= kTjSj − βjjRP jaj + γjj(R
aj

j +RP
aj

j )− βjlRP laj + γjlRP
aj

l − λaaj , (57)

dRj

dt
= αRCj − ψRRj + γjjR

aj

j − δRRj , (58)

dRP j

dt
= ψRRj − βjjRP jaj + γjjRP

aj

j − βljRP jal + γljRP
al

j − δRP
RP j , (59)

dRP
aj

j

dt
= βjjRP jaj − φAjRP

aj

j − (γjj + δRa
P
)RP

aj

j , (60)

dRP
al

j

dt
= βljRP jal − (γlj + δRa

P
)RP

al

j , (61)

dR
aj

j

dt
= φAjRP

aj

j − (γjj + δRa)R
aj

j , (62)

additional variables being required for this version of the agr model (see Table 1 for definitions of the various

AIP-bound receptors and [26, 29] for more details).

The initial conditions which differ from (14) are

Rj(0) =
NjαRκm

δM (αR + δC)(ψR + δR)
, RP j(0) =

NjψRαRκm

δMδRP
(αR + δC)(ψR + δR)

, R
aj

j (0) = 0, RP
al

j (0) = 0. (63)

A.2.2 Nondimensionalisations

For Model III, as a result of the additional variables, we cannot simply adopt all the same nondimensionalisations

as previously. The variable nondimensionalisations which change from (15) and (16) are thus

a′j =
β[11,22]φbNjαRκ

2m2ψR

δ5MδA(αR + δC)(ψR + δR)δRP

aj , R′

j =
δM (αR + δC)(ψR + δR)

NjαRκm
Rj ,

RP
′

j =
δMδRP

(αR + δC)(ψR + δR)

NjψRαRκm
RP j , R

aj

j

′

=
b

NjδM
R

aj

j ,

RP
al

j
′

=
β[22,11]φbNlκm

β[21,12]δ
3
MδANj

RP
al

j .

(64)

The nondimensional parameters which change from (17)-(20) for Model III are

λ′X =
δX
δM

= λ for X = Aj , Tj , Rj , Sj , RP j , RP
aj

j , RP
al

j , AP j ,

ψ′

R =
ψR

δM
, ka =

kβ11φbÃ1T̃1R̃P1S̃1

N1δM
4 , β

′

11 =
β11R̃P1

δM
, β

′

21 =
β21R̃P1

δM
, ζ =

bR̃P1

N1δM
,

(65)

42



where X̃ is the initial condition of X given by (14) and (63) for X = A1, T1, RP1, S1.

B Numerical investigations

B.1 Relative cross-inhibition binding rate, βI

B.1.1 Model I

We here present some time-dependent solutions illustrating the various possible behaviours when βI = 180 for

Model I. Remember that this parameter choice enables either population to inactivate the other (Case Y from

Table 4).

In Figure 20 we take the default initial conditions given by (38) for the first population and those for the

second to be zero for all variables. We see how this initial advantage allows the first population to maintain the

second in a down-regulated state, whilst upregulating itself. A slightly surprising result here is that the number

of opposition-bound receptor in the first population is in fact higher than that of the second despite the fact that

the first population is the active one (see Ral

j ); this is because the number of unbound transmembrane AgrC is

also much higher in the first population, so there is more available to attach to either AIP. A better comparison

than between R1
a2 and R2

a1 is to compare the ratios RP
a1

1 /R1
a2 and RP

a2

2 /R2
a1 , i.e. self-bound receptor to

opposition-bound receptor. The final graph of Figure 20 shows that this is indeed higher for Population 1.

Figure 21 represents the solutions when we take the standard initial conditions, given by (38), for both

populations. We see that despite the fact that they start in equivalent states with the exception that Population

1 has the advantage that the dimensional β12 > β21 (so it has a faster rate of cross-species binding), the second

population succeeds in forcing the first into an inactive state, achieving upregulation (P̄2 is much larger than

P̄1 and P̄2 is close to unity). A possible interpretation of this is that β12 is so large that initially any available

AIP from the first population binds to receptors of the second, resulting in more free AIP from the second

population in the initial stages, allowing Population 2 to maximise its advantage and become up-regulated.

Finally, in Figure 22 we have taken the standard initial conditions for all variables except P1(0) which we

have increased to P1(0) = 0.1. This time, the solutions initially tend towards an inactive Population 1 and active

Population 2. However, the slight extra strength of the first population gained through increasing its initial
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Figure 20: Time-dependent numerical solution to equations (22)-(37), i.e. Model I, for selected variables using

the standard initial conditions, (38), for the first population (solid lines) and zero initial conditions for the

second (dashed lines). βI = 180 and all other parameters are taken from Table 3(a), meaning that the first

population’s inhibitory binding rate is faster than that of the second. The final graph illustrates the ratios of

self-bound receptors to opposition-bound receptors for the two populations (the ratio for Population 2 is small,

but positive, on this scale). Population 1 attains upregulation while maintaining Population 2 in an inactive

state.
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Figure 21: Time-dependent numerical solution to equations (22)-(37), i.e. Model I, for selected variables using

the standard initial conditions given by (38) for both populations with βI = 180 and all other parameters taken

from Table 3(a). In spite of the fact that Population 1 (solid lines) has a higher inhibitory binding rate than

Population 2 (and in all other respects the populations are equal), Population 2 suppresses Population 1.
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Figure 22: Time-dependent numerical solution to equations (22)-(37), i.e. Model I, for a selection of variables

using all standard initial conditions, (38), except P1(0) = 0.1. As for Figures 20 and 21, βI = 180 and all other

parameters are taken from Table 3(a). The higher level of initial activity in Population 1 (solid lines) enables

it to achieve upregulation, simultaneously suppressing Population 2 (dashed lines).

46



level of activity enables it to produce enough AIP eventually to win the battle between the two populations and

achieve a much higher level of up-regulation: P̄1 >> P̄2 (on [0 1]).
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