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When Seeing Is Not Believing: Comparative Study of

Various Spatial Distributions of Invasive Species

Natalia Petrovskaya a1, Wenxin Zhang a

a School of Mathematics, University of Birmingham, Birmingham, UK.

Abstract

We address the problem of pattern recognition and comparison when spatial patterns of

biological invasions are studied. A model of biological invasion is employed to simulate spatio-

temporal dynamics of invasive species and generate a variety of spatial patterns including

so called ‘no front’ patchy spatial distributions. We introduce several topological indices to

understand whether various spatial distributions of invasive species can be compared to each

other based on information about their topology. We also investigate how topological indices

used to make conclusions about the spatial pattern are related to controlling parameters in

the underlying process of biological invasion. Our analysis reveals that a small increment in

the model parameters results in a small increment in topological indices when the topology

of continuous front spatial pattern with no patches behind the front is considered. Mean-

while, no front patchy spatial distributions present a different case where a small change

in the model parameters results in random fluctuations of topological indices. The ‘random’

behaviour of patchy patterns is further studied to understand whether a patchy spatial struc-

ture can transform itself into a continuous front spatial distribution over time. In the paper

it will be argued that apart the topological quantities used to classify spatial distributions,

the transition time required to establish topological properties of the spatial pattern must be

taken into account in pattern recognition and analysis. Furthermore, it will be demonstrated

that for some parameter values it is impossible to conclude about the topological type of spa-

tial pattern, i.e. continuous front spatial distributions cannot be distinguished from ‘no front’

patchy distributions of invasive species, no matter what their topological indices are.

Keywords: biological invasion, spatial pattern, pattern recognition, patchy spread, tran-

sient regime
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1 Introduction

Understanding the properties of the spatio-temporal patterns of alien species spread during

biological invasion is a problem of considerable theoretical and practical importance as it has

implications for the management and control of invasive species [26, 60]. The seminal results

in the theory of biological invasion obtained in [9], [22] and [57] have stated the existence of a

continuous population front separating an invaded area behind the front from a non-invaded

area. Furthermore, complex spatial structures such as isolated population colonies may appear

in the wake of the invasion front [53, 54] and beyond the population front[52, 56].

However, in recent decades, an alternative hypothesis of ‘patchy’ invasion has emerged. This

‘patchy’ invasion regime implies the alien species spread occurs entirely through the formation

and dynamics of isolated patches of high population density observed everywhere in the domain

in the absence of any continuous front [32, 34, 45, 47, 50]. The mathematical theory of ‘no

front’ patchy invasion is not well developed and is still unclear how patchy spatial patterns may

differ from continuous front patterns from a topological viewpoint. Agglomeration of separate

patches located close to each other may look like a continuous front spatial distribution and

simple visual inspection of those patterns may easily result in a wrong conclusion about the

type of biological invasion (cf. spatial structures in Fig. 1a and Fig. 1b). The situation is

further exacerbated by the fact that the formation of no front patchy structures is possible for

many invasion regimes generated in simulation, yet in many cases transition from continuous

front to patchy patterns and vice versa cannot be predicted when parameters in the model

used to simulate biological invasion are varied (e.g. see [19, 43]). Thus, a question arises

about reliable criteria to allow one to compare the topology of continuous front and patchy

spatial structures. Elaboration of such criteria should, in turn, help practitioners to design

more efficient monitoring and control protocols to deal with invasive species [60].

The importance of accurate classification and quantification of ecological patterns has been

acknowledged by scientists since long ago [12, 24, 16] and developing reliable and efficient

methods for analysing spatial pattern remains an important stream of research in ecology

[3, 10, 23, 40]. Various approaches have been employed (e.g. see [5, 51] and references therein)

and there is ongoing research to combine multiple spatial pattern analysis techniques into

a single paradigm [4, 29]. The methods of pattern recognition are of great demand in the

problem of biological invasion [8, 29, 31, 58], yet a universal protocol for spatial pattern

analysis does not exist and criteria for comparison between continuous front spatial structures

and discontinuous spatial distributions remain unclear. Primary topological analysis of ‘no

front’ patchy spatial patterns in a specific model of patchy invasion has been carried out

in [43, 44]. In this paper we utilize the approach in [44] to investigate several topological

characteristics that can potentially help us to compare various spatial structures.

The simplest, yet reliable, way to distinguish between the continuous front and patchy

spatial patterns is based on counting the number of objects in the image of spatial distribution

[43]. Any continuous front is considered as a single object, while a ‘no front’ patchy structure

can be thought of as several separate objects in the spatial domain. However, given that

continuous front spatial pattern may have a complex patchy spatial structure behind the front,
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(a) (b) (c)

Figure 1: Are these spatial patterns similar or different? (a) Patchy spatial distribution of the density

of invasive species obtained as a result of numerical solution of the mathematical model of biological

invasion (see Section 2); (b) Continuous front density distribution obtained from the same model.

The spatial pattern has a patchy structure behind the front. (c) Continuous front density distribution

with quasi-regular oscillations behind the front.

a more careful analysis of topological properties may be required. Consider, for example, the

spatial patterns in Fig. 1. Is the spatial pattern in Fig. 1b similar to the spatial distribution

in Fig. 1a, as the pattern in Fig. 1b has similar patchy structure behind the front? On the

other hand, is the pattern of Fig. 1b topologically closer to a spatial distribution of Fig. 1c

because both of them are continuous fronts? The above questions cannot be answered unless

some problem-specific topological indices are introduced to decide to what extent two spatial

distributions are similar to each other.

We focus our attention on the spatial data obtained in simulations as we need to analyse

plenty of images of spatial patterns produced with high resolution. Field data related to

patchy invasion are not readily available to meet the requirements of our study. Hence we

employ a reaction-diffusion model to simulate spatio-temporal dynamics of biological invasion.

The model has previously been investigated in [47] where its capacity to generate a variety of

spatial patterns has been demonstrated. In particular, we are interested in spatial distributions

looking similar to each other while spatial pattern analysis reveals that some of them are

continuous fronts while the others are patchy spatial patterns where no continuous front

exists. We aim to investigate whether any reliable criteria can be proposed to distinguish

between those distributions. Basic topological indices of the spatial pattern (the number of

objects, the fragmentation rate, etc.) will be employed to see if the spatial pattern type can

be recognised correctly by using any of the quantities above.

Once topological indices have been selected and calculated to quantify spatial patterns

the next question we are concerned with is how these indices respond to a change in the

model parameters. This question is of considerable interest because it contributes to the

discussion on whether the process responsible for spatial pattern formation can be at least

partly understood by pattern analysis on its own [20, 31]. Consider again the spatial patterns in

Fig. 1. One approach to make conclusions about similarity of these spatial distributions would
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be to compare their topology by calculating several topological indices. Meanwhile, another

approach would be to compare the model parameters resulting in the generation of spatial

patterns in the figure and state that two patterns are similar if they are produced from the same

model with close values of parameters. Parameters of the underlying process responsible for the

formation of certain spatial patterns are often unknown when field data are analysed. However,

since we use a well-defined mathematical model to generate spatial distributions, it can be

readily verified whether spatial patterns with close values of the topological indices correspond

to close values of the model parameters. If the latter statement is true then information about

model parameters required to generate a spatial pattern with certain topological properties,

i.e. continuous front or ‘no front’ patchy spatial distribution, can be obtained from the analysis

of existing spatial patterns. Hence, it will be investigated in the paper whether the spatial

patterns produced for slightly differing model parameters have similar topological indices. Our

analysis reveals that a small increment in the model parameters results in a small increment

in topological indices when the topology of a continuous front that has no patches behind the

front is considered. The above conclusion, however, does not hold when we analyse continuous

front density distributions that have patchy patterns behind the front and, most of all, spatial

distributions consisting of separate patches. In the latter case, a small change in the model

parameters results in random fluctuations of topological indices as a spatial pattern with very

different topology may appear.

Since patchy spatial structures have different topological indices even when they are pro-

duced by the same model with close parameter values the question about ‘topological stability’

of those spatial structures arises. The ‘random’ behaviour of patchy patterns is further stud-

ied in the paper to understand whether a patchy spatial structure can transform itself into a

continuous front spatial distribution as time progresses. We argue that information about the

spatial pattern alone is not sufficient to conclude the type of spatial distribution (i.e. patchy

pattern vs. continuous front) and spatio-temporal dynamics must be taken into account when

formation and propagation of patchy structures are considered.

The paper is organized as follows. In the next section, we briefly formulate a mathematical

model of biological invasion used to generate various spatial distributions of the population

density. In Section 3, we employ several topological indices for classification of spatial pat-

terns. We show that, while those indices are reliable for the analysis of topologically simple

spatial structures, we cannot use them for the comparison of patchy spatial distributions.

We then study spatio-temporal dynamics of invasive species in Section 4 and demonstrate

that random variations in the topological indices persist as time progresses when topologically

complex patchy patterns are considered. Moreover, propagation of the invasive species can

be ‘topologically unstable’, i.e. spatial distribution can experience random switches between

continuous front spatial distributions and ‘no front’ patchy spatial distributions over the time

we are interested in. Finally, Section 5 provides discussion and concluding remarks.
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2 Model and method

The standard reaction-diffusion framework that can be employed for the simulation of biolog-

ical invasion is [2, 35, 55, 53]

∂U(X, Y, T )

∂T
= DU

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ F (U, V ), (1)

∂V (X, Y, T )

∂T
= DV

(
∂2V

∂X2
+
∂2U

∂Y 2

)
+G(U, V ). (2)

where U(X, Y, T ) and V (X, Y, T ) are the population densities of two interacting species at

time T > 0 and position (X, Y ). Depending on the problem, those species may be thought

of as prey and predator, host and parasite, herbivore and grazer [54]. Coefficients DU and

DV describe species diffusivity due to the movement of the individuals. The local dynamics

F (U, V ) and G(U, V ) are defined to accommodate the properties of particular species.

For our study, the main criterion for selection of functions F (U, V ) and G(U, V ) is that

the spatio-temporal dynamics can produce both continuous front and ‘no front’ patchy spatial

distributions. Thus we adopt the definition of local dynamics considered previously in [47]

where it has been demonstrated that their model modified after [36] to include the Allee

effect is capable of generating the wealth of spatial distributions including ‘no front’ spatial

structures. The model is formulated within the susceptible-infective framework where the

invasive species has been handled as a susceptible population whose spread is controlled by

the pathogen. The spatio-temporal dynamics of the invasive species in (1–2) is then given by

∂U(X, Y, T )

∂T
= D

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ P (U)− E(U, V ), (3)

∂V (X, Y, T )

∂T
= D

(
∂2V

∂X2
+
∂2U

∂Y 2

)
+ E(U, V )−MV. (4)

Here U and V in (3–4) are the densities of the susceptible and infected population, respec-

tively, the function E(U, V ) describes disease transmission, P (U) describes the local population

growth where infected individuals do not contribute to the growth rate (as the disease is ter-

minal) and M is the mortality rate for the infected population. We assume that the diffusivity

coefficients are DU = DV = D for the sake of simplicity. The growth rate P is selected as to

incorporate the strong Allee effect into the model (e.g. see [6, 28]):

P (U) =

(
4ν

(K − U0)2

)
U(U − U0)(K − U), (5)

where parameter K is the carrying capacity of the susceptible population, U0 is the Allee

threshold density (0 < U0 < K), ν is the maximum per capita growth rate (cf. [25]). The

transmission function E is considered in the form of the mass-action law

E(U, V ) = AUV, (6)
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where A is the rate of infection transmission. We consider the population dynamics in a

square-shaped domain Ω of size L, so that 0 < X < L and 0 < Y < L. At the domain

boundary ∂Ω the zero-flux conditions are used.

To obtain the population distributions, the system (3–4) is solved numerically by imple-

menting a finite difference method. For convenience, we first introduce dimensionless variables.

The carrying capacity K makes a convenient scale for the population density, u = U/K and

v = V/K. We also introduce parameter a = AK to make the coordinates x = X(a/D)1/2

and y = Y (a/D)1/2 and the dimensionless time is t = aT . Equations (3)–(4) then take the

following form:

∂u(x, y, t)

∂t
=

(
∂2u

∂x2
+
∂2u

∂y2

)
+ γu(u− β)(1− u)− uv , (7)

∂v(x, y, t)

∂t
=

(
∂2v

∂x2
+
∂2v

∂y2

)
+ uv −mv , (8)

where β = U0/K < 1, γ = 4ηK(A(K − U0))
2, m = M/a are dimensionless parameters.

The boundary conditions are

∂u

∂n
= 0 and

∂v

∂n
= 0,

where n is the outward unit normal vector to boundary ∂Ω.

The initial distribution we use in the problem is as follows:

u(x, y, 0) + v(x, y, 0) = 1, for |x− L/2| < lu, |y − L/2| < lu,

u(x, y, 0) + v(x, y, 0) = 0, otherwise,

(9)

i.e. the population is considered to be homogeneously distributed at its carrying capacity

within a square area of size lu , 0 < lu < L/2. We also assume that the infested population is

initially concentrated in a smaller domain

v(x, y, 0) = κ, for |x− L/2| < lv, |y − L/2| < lv,

v(x, y, 0) = 0, otherwise,

(10)

where 0 < lv ≤ lu and κ ≤ 1. We assume symmetric initial conditions, i.e. both sub-

domains of size lu and lv are placed at the center of the domain as specified in (9)-(10) (but

cf. spatial density distributions u(x, y) in Fig. 1 obtained from asymmetric initial conditions).

One reason we want to use the symmetric initial conditions is that the numerical solution

remains symmetric at any time t > 0 and the solution symmetry can then be considered as

a reliable means to control the accuracy of the numerical method. Meanwhile, it is worth

mentioning here that basic topological properties of spatial patterns are not affected by the

choice of asymmetric initial conditions although their qualitative estimates are, of course,

different; see also the discussion in [43] where the sensitivity of the results to the choice of the

initial conditions has been investigated.
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2.1 Stability of the non-spatial problem

For the rest of this paper, we are interested in spatial distributions of the density u(x, y) of

the susceptible population of invasive species obtained as a result of the numerical solution

to equations (7-8) with initial conditions (9-10). Since the topological analysis of spatial

patterns requires us to deal with a variety of spatial distributions we must have a well-informed

guess about the parametric range related to the formation of ‘no front’ patchy patterns. Our

inference based on the analysis made for other relevant models (e.g. [32, 47]) is that the patchy

invasion is likely to occur for parameters where the only attractor in the non-spatial system

is the extinction state. Hence our next step is to investigate a non-spatial counterpart of the

system (7-8) given by

du(t)

dt
= γu(u− β)(1− u)− uv, (11)

dv(t)

dt
= uv −mv. (12)

The demographic parameters m and β determine steady states of (11-12), i.e. the extinction

state s1 = (0, 0), two susceptible-only states s2 = (1, 0) and s3 = (β, 0), and the coexistence

state s4 = (m, γ(m − β)(1 − m)). While the steady states s1, s2, and s3 always exist, the

coexistence state s4 is feasible for m < 1 and β < m.

The linear stability analysis requires computation of the eigenvalues λ1 and λ2 of the lin-

earised system,

λ1,2 =
1

2

(
tr(J)∓

√
tr(J)2 − 4det(J)

)
, (13)

where tr(J) and det(J) are the trace and the determinant of the Jacobian matrix J of (11-12)

taken at the corresponding steady state si, i = 1, . . . , 4. Computation of eigenvalues (13)

reveals that λ1 and λ2 are real numbers when computed at steady states s1, s2 and s3. The

stability analysis concludes that s1 is always stable, s2 is stable for m > 1 and β < 1, and

the steady state s3 is only stable when β > m and β > 1, i.e. for the range of β where s3 is

unfeasible.

The eigenvalues λ1 and λ2 computed at the coexistence state s4 are given by (13) where

tr(J) = γm(1− 2m+ β) and det(J) = mγ(m− β)(1−m). Let us introduce function F (β) as

F (β) ≡ tr(J)2 − 4det(J) = γ2m2(β − 2m+ 1)2 − 4γm(β −m)(m− 1).

To find sub-domains in the parametric plane (m,β) where the eigenvalues λ1,2 are complex

numbers we factorise F (β) = (β − β1(m))(β − β2(m)). We have

β1,2(m) = 2m− 1 +
2(m− 1)

γm

(
1∓

√
γm+ 1

)
.

The structure of the parameter plane (m,β) is shown in Fig. 2a where the curves β1(m)

and β2(m) are shown for m > 0 and β > 0 as two dashed lines in the figure. We have

β1(m) > β2(m) for 0 < m < 1 and β1(m) < β2(m) for m > 1. Thus F (β) < 0 in sub-domains

where m < 1, β2(m) < β < β1(m) and m > 1, β1(m) < β < β2(m), respectively. The
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eigenvalues λ1,2 are complex numbers in those sub-domains and the temporal dynamics is

oscillatory. Further analysis reveals that the coexistence state s4 is unstable when tr(J) > 0

i.e. β > 2m− 1.

Note that β1(m) > 0 for m > 0 and the only positive root m∗ > 0 of function β2(m) is

given by

m∗ =
γ − 1 +

√
2γ + 1

2γ
.

Thus, the location of root m∗ and therefore the size of the domain β2(m) < β < β1(m) depends

on parameter γ where the asymptotic limits are m∗(γ) → 1 as γ → 0 and m∗(γ) → 1/2 as

γ →∞.

We now return to the spatio-temporal problem (7-8). Based on the analysis of the non-

spatial system (11-12) and the results of previous work [34, 45, 47] we may expect that for

any fixed value of γ patchy spatial patterns will arise when parameter m is chosen along the

line β = const in the ‘transitional’ zone between the extinction state (the region β > m) and

the stable coexistence state (the region β < 2m− 1). The above guess is further confirmed by

computation and topological analysis of spatial distributions. A fragment of the parametric

plane (m,β) along with the solution type obtained for every pair (m,β) at time t = 600 for

γ = 6.0 is shown in Fig. 2b. Pairs (m,β) in the parametric plane resulting in different spatial

patterns are color-coded in the figure as blue stars for the extinction, red triangles for patchy

invasion (no continuous front), green circles for continuous front spatial distributions.

Let us fix the value of β and decrease parameter m as we move along the line β = const in

0
0

=2m-1

m*

2
(m)

=1

m

=m

1
(m)

A

m=1

(a)

0.34 0.36 0.38 0.4 0.42 0.44 0.46

m

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

1
(m)Domain A

(b)

Figure 2: (a) The parametric plane (m,β) for non-spatial equations (11-12). (b) Various spatial

patterns obtained in numerical solution of the spatial system (7-8) at time t = 600. Parameters m

and β are taken in the Domain A (see Fig. 2a) of the parametric plane and are varied with a small

increment, parameter γ = 6.0. Pairs (m,β) in the parametric plane resulting in different spatial

patterns are color-coded as follows: blue stars for the extinction, red triangles for patchy invasion (no

continuous front), green circles for continuous front spatial distributions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Basic spatial patterns arising in the model (7-8) (see also Fig. 2b). Snapshots of the spatial

density distribution obtained for various values of parameter m at time t = 600. The other problem

parameters are β = 0.21 and γ = 6.0. The white colour in each panel corresponds to zero populaiton

density (not shown in the figure legend). (a) m = 0.600: continuous front with no oscillations in the

front wake; (b) m = 0.59: continuous front with regular oscillations in the front wake; (c) m = 0.57:

continuous front with irregular oscillations in the wake; (d) m = 0.53: irregular oscillations become

more distinct in the wake; (e) m = 0.38675: irregular oscillations in the wake are located in a narrow

domain close to the front; (f) m = 0.3860: continuous front with patchy pattern formation in the

wake; (g) m = 0.379: a patchy pattern in the wake of continuous front becomes more distinct as

m decreases; (h) m = 0.378: continuous front breaks down as m further decreases; (i) m = 0.366:

a patchy pattern consisting of few separate patches appears before the population becomes extinct at

smaller values of parameter m.
9



the parametric plane of Fig. 2b. Basic spatial distributions obtained in the numerical solutions

of the model (7-8) when m is varied are shown in Fig. 3. All spatial patterns in the figure

have been generated for β = 0.21 and γ = 6.0 at time t = 600. The size of the computational

domain has been varied under the requirement that the invasive species must not approach

the domain boundary at t = 600 (areas with zero population density are shown in white in

the figure). A convex continuous front in Fig. 3a obtained for m = 0.60 presents the simplest

pattern from a topological viewpoint and we should expect similar spatial distributions for

m > 0.60. Meanwhile, as we slightly decrease m to 0.59 regular oscillations appear in the

front wake; see Fig. 3b. Further decrease in m results in irregular oscillations in the wake

as shown in Fig. 3c obtained for m = 0.57. Those irregular oscillations become stronger at

smaller values of parameter m; see Fig. 3d where m = 0.53. For smaller values of m, the

topology of spatial pattern changes again as all oscillations are now located at a narrow ring-

shaped spatial domain close to the front as shown in Fig. 3e obtained for m = 0.38675; the

visual image of the spatial distribution might appear confusing yet the presence of oscillations

is indicated by the density range in the legend. The spatial distribution in the wake then

breaks down as m decreases and the formation of patches occurs behind the front as shown

in Fig. 3f with m = 0.3860. The patchy pattern in the wake of the continuous front becomes

then more distinct as m decreases; see Fig. 3g obtained for m = 0.379. If we further decrease

the value of m a continuous front breaks down and the topology of spatial pattern undergo

another significant change as spatial patterns will appear as a collection of separate patches

of the non-zero density. One example of patchy spatial distribution is shown in Fig. 3h for

m = 0.378 (cf. Fig. 2b). Further evolution of the patchy pattern as m decreases can be seen in

Fig. 3i where the spatial pattern obtained for m = 0.366 now consists of few separate patches

with no resemblance to continuous fronts in Figs. 3a–3e. Finally, the population becomes

extinct when m < 0.365; cf. the results in Fig. 2b.

In the present paper, we are mostly interested in the topological analysis of patchy spatial

patterns and we, therefore, consider the range of parameter m where patches appear either

in the wake of continuous front or as separate topological structures. That ‘patchy’ range of

m depends on parameters β and γ in the model (cf. Fig. 2b) and it can be approximately

identified as m ∈ [0.365, 0.386] for β = 0.21 and γ = 6.0 (a more accurate definition of the

‘patchy’ range will be provided in Section 4).

The wealth of spatial patterns arising in the model cannot be classified by simple visual

inspection only. Moreover, the visual comparison of Fig. 3g and Fig. 3h leads us to the con-

clusion that continuous front spatial patterns may not always be easily distinguished from

patchy patterns. Hence in the next section, we introduce several rigorous topological char-

acteristics of spatial patterns to provide an accurate comparison of continuous and patchy

spatial distributions based on their topological indices.
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3 Topological indices of spatial patterns

We follow our previous study in [43, 44] where we have analysed various spatial structures

appearing when a system of integro-difference equations is solved to simulate the propagation

of invasive species into the space under the assumption of a certain type of spatial dispersal.

Although the analysis of spatial patterns has been done in [43, 44] for a different model of

biological invasion, topological indices used there are general enough to be applied to spatial

patterns arising in the model (7–8). We also note that all the topological indices we employ

to study spatial patterns can be calculated directly from the spatial population density u(x, y)

and there is no need to use advanced statistical methods designed to evaluate topological

indices from discrete spatial data such as trap counts or individual positions (cf. [39, 48]).

Below we introduce the basic topological indices employed to study spatial patterns.

3.1 The number of objects and the density of objects

An object in the image of the spatial density distribution u(x, y) is defined as a region of the

non-zero spatial density2 with a closed external boundary. The number of objects n in the

image of spatial pattern is a key characteristic of the pattern as it defines the pattern type.

Namely, a continuous front density distribution can be classified as a single object (i.e. we have

n = 1), where any patchy density distribution in the front wake is ignored. For instance, each

of the spatial patterns in Fig. 3f and Fig. 3g presents a single object, no matter how complex

the topological structure behind the front is in those density distributions. Meanwhile, a

‘no front’ patchy spatial distributions in Fig. 3h and Fig. 3i are considered as a collection of

separate objects in a spatial domain, where every patch counts as a single object (i.e. n > 1).

The number of objects in the image of a spatial density distribution is calculated with

the help of the Image Processing Toolbox (IPT) in MATLAB [30]; see also [43] where the

computational procedure is explained in detail. Using the IPT software allows us to count

the number of objects n in any image of spatial density u(x, y), no matter how topologically

complex the spatial pattern is. We can, therefore, proceed with a more refined study of

the parametric plane in Fig. 2b and check the ‘degree of patchiness’, i.e. the number of

separate patches in every patchy distribution. That, in turn, will allow us to conclude about

the similarity of spatial patterns generated for pairs (m,β) chosen close to each other in the

parametric plane, i.e. to see whether those spatial patterns have a similar number of objects.

Let us vary the value of parameter m when we move along the line β = 0.21 in the

parametric plane of Fig. 2b. We compute the number of objects n for each spatial distribution

obtained at time t = 600 when m ∈ [0.362, 0.396] where the parametric sub-domain resulting

in patchy spatial patterns is of particular interest. The graph n(m) is shown in Fig. 4a where

we assume that n = 0 corresponds to the extinction regime (i.e. no objects in the spatial

domain). It is obvious from the graph that using topological index n readily allows for the

recognition of the ‘patchy’ sub-domain in the parametric plane as n > 1 for m ∈ [0.365, 0.379].

2In our model we consider u(x, y) = 0 in the image processing routine if we have u(x, y) < ε = 10−6 in the

numerical solution.
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(a) (b)

Figure 4: Topological indices of spatial patterns as a function of parameter m in the model (7)–(8)

with the initial conditions (9)–(10) and parameters β = 0.21, γ = 6.0. The spatial distributions have

been obtained for various m at time t = 600. (a) the number of objects, n(m); (b) the density of

objects, d(m).

It is also seen from the graph that the number of objects occasionally varies for values of m

resulting in the formation of patchy patterns as a small increment in m results in a random

up- or down-jump in n(m) in the sub-domain m ∈ [0.365, 0.379]. It has been checked in our

computation that a similar conclusion about random variation in n(m) over the interval of

m responsible for patchy patterns can be made when another line β = const is chosen in the

parametric plane of Fig. 3b, although we do not show those results for the sake of brevity.

Thus the number of objects is a reliable index when the identification of patchy patterns is

required yet the knowledge of n does not allow us to conclude about the similarity of patchy

patterns as spatial distributions obtained for close values of parameter m may have a very

different number of objects.

The number of objects is a key topological index if we want to distinguish between the

continuous front and patchy patterns. That index, however, does not take into account a fine

topological structure of the spatial pattern. This is especially true for complex patterns in the

wake of the continuous front where the number of patches behind the front can be very high

(e.g. see Fig. 3g) yet the number of objects remains n = 1. One straightforward approach to

analyse spatial structures behind the front would be to use the density of objects. The density

of objects d has been defined in [44] as

d =
ñ

A
, (14)

where ñ is now the total number of objects in the image (including all objects behind the

continuous front), and A is the total area occupied by those objects.
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Let us investigate how the density of objects depends on the parameter m and compute

d for spatial patterns generated for the range of m in Fig. 4a where the number of objects

has previously been found. The graph d(m) is shown in Fig. 4b. It is seen from the graph

that topological index d changes significantly when transition occurs from one topological

type of spatial pattern to another type. While the density of objects remains constant for

m > 0.386 (no patches behind the front), it keeps growing when m decreases from m = 0.386

to m = 0.379 (patterns with patchy structure behind the front). Meanwhile, a predictable

conclusion drawn from definition (14) along with the graph n(m) in Fig. 4b is that we cannot

compare various patchy distributions to each other based on their density of objects. The

density of objects experiences random jumps in the value of d when m ∈ [0.365, 0.379], i.e.

when m is in the parametric sub-domain corresponding to the formation of patchy patterns

and patterns with close values of m may have different density of objects d.

3.2 The Morisita index and the fragmentation rate

We now want to proceed with further classification of a fine topological structure of spatial

patterns where we aim to find topological indices that could help us to distinguish between

various patchy distributions. Among the other indices used in statistical ecology to quan-

tify spatial patterns (e.g. see [17] and references therein) the Morisita index [33] has been

widely used in various ecological studies to decide about the degree of aggregation in spatial

distribution [1, 7, 15, 18]. The Morisita index IM is defined as

IM = Q

∑Q
k=1 nk(nk − 1)

N(N − 1)
, (15)

where N is the total number of ‘population units’ whose definition depends on a particular

problem under consideration and will be explained later in the text, Q is the number of

quadrats (i.e. the number of auxiliary sub-domains used to count the ‘population units’) and

nk is the number of ‘population units’ in the kth quadrat. The Morisita index provides a

simple and convenient measure of how likely it is that two randomly selected individuals in a

given distribution are found within the same quadrat compared to that of a uniform random

distribution. It can be proved that, if the population is distributed quasi-uniformly over the

domain then IM is always less then the Morisita index calculated when the population of the

same size is aggregated in the domain [21].

Consider, for example, two hypothetical patchy spatial distributions shown in Fig. 5a and

Fig. 5b where where the black cells represent a population density of 1 and the white cells have

a population density of 0. Hence our ‘population units’ in this example are presented by black

cells and we have N = 12 in both cases. In our example, we divide the domain into Q = 4

quadrats (where each quadrat will contain 16 grid cells) and count the number of population

units (i.e. the number of black cells) in each quadrat. The Morisita index does depend on the

number Q of quadrats yet it allows one to compare topological properties of various spatial

patterns when the number of quadrats in (15) is agreed. The computation of expression (15)

for given Q = 4 reveals that Morisita index IM of the spatial patterns in Fig. 5a and Fig. 5b

13



(a) (b)

(c) (d)

Figure 5: Hypothetical spatial patterns with different topological indices. (a)-(b) The degree of spatial

aggregation in the two patterns measured by the Morisita index is different: (a) quasi-uniform density

distribution, IM = 0.73; (b) highly aggregated density distribution with the same area of the non-zero

density IM = 1.82; (c)-(d) The fragmentation rate measures a ‘fine’ topological structure of spatial

distribution. The two spatial patterns have the same area of the non-zero density, the same number

of objects, the same Morisita index, but their fragmentation rate is different: (c) The fragmentation

rate calculated according to (17) is Ifr = 0.40; (d) the fragmentation rate is Ifr = 0.53.

is different as their degree of aggregation is different. The quasi-uniform spatial distribution

in Fig. 5a has the Morisita index IM = 0.73 while the highly aggregated spatial pattern in

Fig. 5b has IM = 1.82 for the same Q value.

Let us go back to problem (7-8) and compute the Morisita index IM as a function of m for

the same parameter range as in Section 3.1. The population units are now defined as grid cells

on our computational grid used for the numerical solution of problem (7-8) and we choose the

number of quadrants Q = 18. The graph IM(m) is shown in Fig. 6a. The analysis of IM reveals

that the Morisita index allows one to distinguish between topologically different patterns: a

sharp jump in the Morisita index at m = 0.386 corresponds to topological transition from

continuous front patterns with no patches (m > 0.386) and a high degree of aggregation to

the formation of separate patches behind the front (m ≤ 0.386) that results in less spatially

aggregated patterns; cf. Fig. 3e and Fig. 3g. The Morisita index then becomes almost constant

(IM ≈ 2.1) at m ∈ [0.379, 0.386] where spatial patterns are continuous fronts with patches

behind the front. Meanwhile, IM starts increasing when the transition from continuous front to

patchy spatial distributions occurs at m = 0.379. The spatial pattern appearing at m = 0.366
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(a) (b)

Figure 6: Topological indices of spatial patterns as a function of parameter m in the model (7)–(8)

with the initial conditions (9)–(10) and parameters β = 0.21, γ = 6.0, t = 600. (a) the Morisita

index, IM (m); (b) the fragmentation rate, Ifr(m).

before the transition to the extinction sub-domain m ≤ 0.365 has the highest Morisita index

IM = 10.1 as the image consists of a small number of patches (cf. Fig. 3i) which is considered

as a high degree of aggregation according to definition (15). However, despite the Morisita

index showing a trend to grow as m decreases in the ‘patchy’ parametric sub-domain, we

notice several occasional jumps in IM when m varies in the ‘patchy’ range.

The last topological index we discuss in this section is fragmentation rate Ifr. Although

the fragmentation rate can loosely be thought of as a quantity inverse to Morisita index

IM , it cannot be entirely replaced by the latter quantity. Consider, for example, two spatial

distributions shown in Fig.5c and Fig.5d. The number of objects n = 4 is the same in both

patterns and the area occupied by each spatial distribution is the same in Fig.5c and Fig.5d

and is equal to 12 units where we consider the area of any square cell equal to one. Moreover,

the Morisita index is the same for both patterns and is equal to 0.8. The patterns, however, are

different and another, more ‘subtle’ topological index is required to recognise that difference.

We, therefore, introduce the fragmentation rate of the spatial pattern to distinguish between

collection of patches in Fig.5c and Fig.5d.

The image fragmentation is a well-studied topic and various approaches have been developed

to measure the degree of fragmentation (e.g. see [14] and references therein). In our definition

of the fragmentation rate we follow paper [11] wherein the definition was taken from the original

work [13]. Let ub(x, y) be the binary image converted from spatial density distribution u(x, y)

as follows

ub(x, y) = 1 for u(x, y) > 0, ub(x, y) = 0 for u(x, y) = 0. (16)
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Fragmentation rate Ifr(ub(x, y)) is then defined as

Ifr(ub) = 1− s(ub)

B[p(ub)]
, (17)

where p(ub) is the population density calculated for the ‘binary’ population, s(ub) is a degree

of fragmentation for a given population ub and is related to the average number of neighboring

objects in the population image, andB[p(Nb)] is the maximum possible value of the index s(Nb)

among all distributions Nb with a given abundance p(Nb); see [11] for a detailed explanation

of formula (17). The fragmentation rate calculated according to (17) is Ifr = 0.40 for the

image in Fig.5c and Ifr = 0.53 for the image in Fig.5d.

Let us investigate how the fragmentation rate of the image of the spatial pattern depends

on parameter m in problem (7-8). As in our computation of the other topological indices, we

compute the fragmentation rate Ifr for each spatial distribution obtained for β = 0.21 and

γ = 6.0 at time t = 600 when m ∈ [0.362, 0.396]. The graph Ifr(m) is shown in Fig. 6b where

we assume that Ifr = 0 corresponds to the extinction regime (i.e. no objects in the spatial

domain). It is seen from the graph that the fragmentation rate increases when we decrease

parameter m and patchy structures become more distinct. However, although the topological

index Ifr has been employed to distinguish between various fine spatial structures of patchy

patterns, it does not even define accurately the range of parameter m where patchy spatial

patterns appear. Random variations in the fragmentation rate may stem from the fact that

continuous front spatial patterns have a complex density distribution behind the front (cf.

Fig. 3g and Fig. 3h) and therefore images of continuous front patterns and patchy patterns

may have similar fragmentation rates.

To conclude this section we note that topological indices allow one to distinguish between

various continuous front topological regimes yet we cannot rely upon the topological indices

when we want to compare two patchy spatial distributions to each other. Patchy patterns

obtained for close values of parameter m (while the other problem parameters remain the

same) may have very different topological structures. Our study of graphs in Fig. 4 and Fig. 6

reveals that we cannot predict what transformation the spatial pattern will undergo when we

give a small increment to m in the parametric sub-domain corresponding to the formation of

patchy spatial distributions.

4 Spatio-temporal patterns: temporal evolution of topo-

logical characteristics

Topological properties of spatial patterns studied in the previous sections imply their ‘topo-

logical stability’, i.e. once a certain type of spatial pattern has been established as a result of

evolution of initial conditions (9-10) it is not transformed into another topological structure

(i.e. patchy pattern to continuous front pattern and vice versa). Meanwhile, the definition of

‘topologically stable’ spatial pattern requires further discussion. It is obvious that any spatial

pattern appears as a continuous front (i.e. the number of objects is n = 1) at small times as
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n = 1 for the initial condition spatial distribution and the impact of initial conditions (9-10)

is still strong at small times. Let us define the transition time t∗ as the time over which tran-

sition from the initial condition to the topologically stable spatial distribution occurs, i.e. if

a spatial pattern has a certain topological structure (continuous front or patchy distribution)

at time t∗, then the same type of topological structure will remain at a later time t > t∗. A

continuous front spatial structure at small times can evolve into a patchy spatial pattern over

the time interval t ∈ [0, t∗] and it will then remain patchy at t > t∗. However, the evolution

from continuous spatial structure to a patchy one is not monotone, as multiple switches be-

tween continuous front and patchy spatial patterns can be observed at t < t∗. Furthermore,

spatial structures that are classified as continuous fronts after the transition time show similar

behaviour with multiple transformations back and forth to patchy distributions before the end

of the transient regime.

Consider, for example, line β = 0.22 in the parametric plane of Fig. 2b. One simple

illustration of the transient spatio-temporal dynamics is shown in Table 1 where we compare

spatial patterns that appear at time t = 300 and t = 600. It is seen from the table that spatial

patterns we have at time t = 300 are not topologically stable: a patchy spatial structure

observed at time t = 300 for m = 0.399 evolves into a continuous front at t = 600, while a

continuous front at t = 300 for m = 0.398 becomes a patchy spatial distribution at t = 600.

Our numerical tests reveal that similar transient dynamics are observed for other values of m

and β in the parametric plane.

m ≤ 0.386 0.387 ≤ m ≤ 0.395 0.396 0.397 0.398 0.399 ≥ 0.400

Nt=300 e p p c c p c

Nt=600 e p c c p c c

Table 1: Comparison of spatial patterns for β = 0.22, γ = 6.0 and various m at times t = 300

and t = 600. The legend in the table is as follows: e - extinction, p - patchy spatial distribution,

c - continuous front spatial distribution; see also Fig. 2b. Spatial distributions are not topologically

stable as switches between continuous front and patchy structures are observed.

Given the volatile spatio-temporal dynamics in the table, our next goal is to evaluate the

transition time t∗ to conclude about the topological stability of a given spatial pattern. The

empirical study of time t∗ in the model (3–4) has been attempted in [19] where the transition

time has been evaluated as 100 < t∗ < 300. In the present paper, we further investigate this

issue and we use information about the number of objects n in a spatial pattern as we aim for

a more accurate evaluation of the transition time. In the computational routine, we employ

for this purpose the spatio-temporal dynamics is traced over time T , where we assume that

T � t∗, and the number of objects n is recorded at every time tk+1 = tk +∆t, k = 1, · · · , K−1

to form the dataset n(tk) (see Fig. 7). We define the simple topological index It of the spatial

distribution at given time tk, k = 1, · · · , K as It = 0 if we have extinction regime at time tk
(i.e. n(tk) = 0). We also define It = 1 for continuous front pattern (n(tk) = 1) and It = 2 for

patchy pattern (n(tk) > 1). The number of objects in the dataset n(tk) is then replaced by
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(a) (b)

Figure 7: The number of objects n as a function of time t for spatio-temporal dynamics with β = 0.21

and γ = 6.0: (a) m = 0.381: convergence to continuous front spatio-temporal dynamics, n(t) = 1 at

any time t > t∗ = 310 (b) m = 0.374: convergence to patchy spatio-temporal dynamics; n(t) > 1 at

any time t > t∗ = 280.

index It(k). The most straightforward way3 to define transition time t∗ is to find number k∗

that satisfies condition i(k) = i(K) for any k > k∗. Given k∗, transition time t∗ is evaluated

as t∗ = k∗∆t.

Consider Fig. 7 where the number of objects is shown as a function of time for spatio-

termporal dynamics defined by parameters β = 0.21, γ = 6.0 and we have m = 0.381 in

Fig. 7a and m = 0.374 in Fig. 7b. It is readily seen from the graph in Fig. 7a that spatial

patterns appear as a continuous front (n = 1) at any time t > t∗ = 310, while spatial patterns

are not topologically stable (i.e. the number of objects varies) at times t < t∗. Examples of

topologically different spatial distributions before transition time t∗ are shown in Fig. 8a and

Fig. 8b. Similarly, the analysis of Fig. 7b reveals that it is always a patchy spatial pattern for

time t > t∗ = 280 while occasional transitions to a continuous front appear at t < t∗; see also

examples of spatial distributions in Fig. 8c and Fig. 8d. We would like to emphasise here that

both continuous front and patchy spatio-temporal dynamics may experience switches between

the two regimes when time t < t∗; this is contrary to the conclusion in [19] where it was

suggested that only a continuous front regime may exhibit topological instability at t < t∗.

3We note, however, that more sophisticated filtering algorithms can be employed to find time t∗; e.g. see

[38].
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(a) (b)

(c) (d)

Figure 8: Examples of occasional switches between patchy and continuous front spatial distributions

over transition period 0 < t < t∗. The system parameters are as in Fig. 7. (a)-(b) The spatio-

temporal dynamics of Fig. 7a, the transition time to the continuous front spatial pattern is t∗ = 310.

(a) continuous front pattern at time t1 = 200 < t∗, (b) patchy pattern at time t2 = 250 where

t1 < t2 < t∗; (c)-(d) The spatio-temporal dynamics of Fig. 7b, the transition time to the patchy

spatial pattern is t∗ = 280. (c) patchy pattern at time t1 = 230 < t∗, (d) continuous front pattern at

time t2 = 270 where t1 < t2 < t∗;

4.1 Topological stability of invasion regimes

It immediately follows from the example presented in Fig. 7 that transition time t∗ depends

on the system parameters m, β and γ. Hence, following our approach in the previous section,
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Figure 9: The transient dynamics of model (7–8) with initial conditions (9–10) and parameters

β = 0.21, γ = 6.0. Transition time t∗ (solid blue curve, open and closed circles) and time tD

required for the invasive species to spread over square domain D of linear size L = 600 (dashed red

curve, red stars) are shown as functions of parameter m. Open circles on graph t∗(m) show time

t∗ required for a transition to continuous front spatio-temporal dynamics, while closed blue and red

circles correspond to spatio-temporal dynamics resulting in patchy patterns after t∗. For m < 0.365

transition to extinction happens at t∗ ≈ 50 (not shown in the figure). For m > 0.386 the initial

‘continuous front’ density distribution given by (9–10) never experiences switches to patchy spatial

pattern, i.e. t∗ = 0. Closed blue circles on graph t∗(m) show topologically stable spatio-temporal

dynamics in domain D, while closed red circles show topologically unstable dynamics in D (see further

explanation in the text).

we now investigate how time t∗ varies when we vary parameter m for β = 0.21 and γ = 6.0.

The graph t∗(m) is shown as a solid curve in Fig. 9. Every point on curve t∗(m) in the figure

presents transition time t∗ evaluated according to the procedure described in Section 4 for

spatio-temporal dynamics obtained from the evolution of initial condition (9) with a given

value of m. Open circles on the curve correspond to the transition to the spatio-temporal

dynamics of a propagating continuous front after t∗ while closed circles correspond to spatio-

temporal dynamics resulting in propagation of patchy spatial patterns after t∗. The analysis of

the graph reveals that the following classification of spatial patterns appearing in the system

whenm is varied can be made for t > t∗: the invasive population becomes extinct form < 0.365

(extinction happens at t∗ ≈ 50 for that range of parameter m and the range of m leading

to extinction is not shown in the figure for the sake of convenience), the invasive population

spreads into space as a collection of separate density patches for m ∈ [0.365, 0.379], the invasive

species propagates as a continuous front with oscillations in the wake for m ∈ [0.380, 0.386],

and the propagating continuous front has no oscillations in the wake for m > 0.386 (cf. Fig. 3).
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(a) (b)

Figure 10: (a) Example of multiple random switches between continuous front and patchy spatial

distributions. The number of objects n is shown as a function of time t ∈ [0, 1500] for m = 0.379,

β = 0.21, γ = 6.0. Parameter m = 0.379 presents the boundary between patchy and continuous front

topological zones. (b) The number of switches s between patchy and continuous front regimes over

time t = 1500 as a function of parameter m.

An essential feature of graph t∗(m) is that the range of transition times t∗ is much larger

when m is taken from ‘patchy’ topological zone m ∈ [0.365, 0.379]. While time t∗ is in good

agreement with the estimate made in [19] for spatio-temporal dynamics of continuous fronts

arising when m is selected not very close to the boundary of the ‘patchy’ range (i.e. we have

t∗ < 300 for m > 0.382), the maximum transition time we have observed in our computation

of patchy spatio-temporal dynamics is t∗ = 1750 � 300 obtained for m = 0.379. It also is

worth noticing here that for the above-mentioned ‘patchy’ range of m the number of random

switches between patchy and continuous front patterns registered at t < t∗ does not decrease

as time increases and gets closer to t∗. An example is shown in Fig. 10a where we have recorded

all switches between patchy (number of objects n > 1) and continuous front (n = 1) regimes

over time interval t ∈ [0, 1500] for m = 0.379 (we recall that t∗ = 1750). It is seen from the

figure that time t = 600 can be erroneously thought of as the transition time t∗ as there are

no switches at time t ∈ [600, 950]. However, after t = 950 random jumps between patchy and

continuous front regimes resume. The transitional dynamics is further presented in Fig. 10b

where the number of switches s over the same time interval t ∈ [0, 1500] is shown as a function

of m. It is seen from the figure that indeed the largest number of switches occurs when m

belongs to the ‘patchy’ range, m ∈ [0.365, 0.379].

One important observation about transition time t∗ is that in practical consideration it has

to be compared to time tD required for invasive species to spread over the spatial domain D

where the species is monitored. Indeed, if we want to identify the invasion regime (continuous
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vs. patchy) in some spatial domain D to make an adequate control decision on the invasion

prevention, we have to collect reliable information about spatial pattern before domain D

will be fully invaded. Hence if t∗ > tD then we cannot give any recommendation on invasion

control based on the type of spatial pattern. In other words, we will still have a transient

regime at time tD where we cannot say for sure what spatial pattern we deal with in domain

D, while the domain is already completely invaded at t = tD and it, therefore, is too late to

make a control decision.

The time tD required for invasive species in the model (7-8) to spread over square domain

D with linear size L is shown as a function of parameter m for L = 600 in Fig. 9; see a dashed

red line in the figure. In all cases presented in the figure, computation has been performed

in a larger spatial domain where the square domain D has been considered as a sub-domain

placed at the center of the computational domain. We do not show time tD in the graph for

extinction regime m < 0.365 because the extinction of the invasive species happens at t∗ ≈ 50,

i.e. well before domain D becomes fully invaded. It is seen from the figure that for continuous

front regimes with m > 0.379 the transition time is always t∗ < tD. The conclusion about the

relationship between t∗ and tD is, however, different when we consider the range of parameter

m ∈ [0.365, 0.379] resulting in patchy spatio-temporal dynamics. We have t∗ > tD for several

values of m in the figure. Moreover, transition time t∗(m) is not a monotone function over the

interval m ∈ [0.365, 0.379] and we cannot, therefore, predict what happens to the transition

time if m is slightly varied. Thus, if we take an arbitrary value of m from the above interval

likely the invasion type cannot be determined in spatial domain D where we are interested in

the control of invasive species.

Consider now an arbitrary spatial domain D and let us introduce the ratio

r(m) = t∗(m)/tD(m), (18)

where times t∗(m) and tD(m) are defined as above. For any given value of m, we will say that

a spatial pattern is topologically stable in domain D if r < 1 and the pattern is topologically

unstable in D if r ≥ 1. The rate r depends on domain size L and we have r → 0 as

L → ∞. Meanwhile, another case resulting in r = 0 is when transition time is t∗ = 0,

i.e. when the spatio-temporal dynamics does not undergo any switches between patchy and

continuous states. We will refer to the latter topological type of spatio-temporal dynamics as

unconditionally stable.

Let us apply the above classification to the spatio-temporal dynamics of Fig. 9. The range

m ∈ [0.365, 0.379] resulting in patchy spatio-temporal dynamics can be subdivided as fol-

lows: we have topologically stable patchy patterns in domain D for m ∈ [0.365, 0.376] and

topologically unstable ‘quasi-patchy’ patterns in D for m ∈ (0.376, 0.379]. Meanwhile all

continuous front patterns remain topologically stable in D, all of them being unconditionally

stable for m > 0.386. Hence, we cannot make any conclusion about the topology of spatial

pattern in domain D when spatio-temporal dynamics is induced by the demographic parame-

ter m ∈ [0.365, 0.376], while the topological classification of spatio-temporal patterns obtained

for all other values of m can be decided upon before spatial domain D is fully invaded.

The transition time t∗ has to be taken into account when the topological indices introduced
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in Section 3 are analysed. Consider, for example, the graphs of Fig. 4 and Fig. 6. We recall that

all topological indices presented in those figures have been computed for time t̃ = 600. Once

the transition time has been defined for every spatial pattern whose topological indices are

computed, we have t̃ > t∗ for continuous front distributions generated when m > 0.379. Those

spatial patterns are topologically stable (most of them are unconditionally stable) in a spatial

domain where the computation has been made. A small increment in parameter m results

in a relatively small change of topological properties, i.e. spatial distributions generated for

similar values of m will look similar. However, most spatial patterns obtained at time t̃ = 600

with m taken from the ‘patchy’ range have t̃ < t∗ and their topologies are not well defined

at t = t̃. Hence our next step is to check whether the presence of random oscillations in

topological indices is an inherent feature of patchy spatial patterns and those oscillations will

not disappear when patchy spatial patterns are analysed at time t > t∗.

Several values of the parameter m taken with a small increment from the ‘patchy’ range

are shown in Table 2. For each value of m in the table, the transition time has been defined

and we have then selected the maximum value t∗max from the range of transition times. In

our computation we had t∗max = 790 and spatial patterns have therefore been analysed at

time t = 810 > t∗max to ensure that all spatial patterns obtained at that time are already

topologically stable. The topological indices of spatial patterns generated at time t = 810 are

compared to the topological indices calculated for the same range of m at time t = 600 in the

table.

m 0.3750 0.3752 0.3754 0.3756 0.3758 0.3760

n, t = 600 37 1 89 105 89 84

n, t = 810 181 115 133 152 142 193

d× 10−4, t = 600 8.0 7.0 10.0 15.0 12.0 10.0

d× 10−4, t = 810 12.0 9.0 10.0 11.0 12.0 15.0

Ifr × 10−2, t = 600 4.97 4.83 5.08 5.62 5.52 5.18

Ifr × 10−2, t = 810 5.17 5.27 5.15 5.37 5.30 5.77

IM , t = 600 3.20 3.36 3.20 3.25 3.45 3.26

IM , t = 810 1.78 2.25 2.23 1.97 2.03 2.06

Table 2: Topological indices of spatial patterns as a function of parameter m in the model (7)–(8)

with the initial conditions (9)–(10) and parameters β = 0.21, γ = 6.0. The values of m taken with

a small increment at the interval m ∈ [0.375, 0.376] result in patchy spatio-temporal dynamics after

transition time t∗. The number of objects n, the density of objects d, the Morisita index IM , and the

fragmentation rate Ifr are compared at time t = 600 < t∗ and t = 810 > t∗.

It is seen from the table that irregular variations in the topological indices persist as spatio-

temporal dynamics of invasive species is generated by parameter m taken from the ‘patchy’

sub-domain. A small increment in m still results in random fluctuations in all topological

indices even after the topological type of spatial pattern has been established at time t > t∗.

Random oscillations in the topological indices make a comparison of patchy patterns observed

at any fixed moment of time difficult, as spatial distributions obtained for close values of
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system parameters may have very different topological indices.

5 Conclusions and discussion

In the present paper, we have discussed how to recognise and compare various spatial patterns

arising in the problem of biological invasion. The question of distinguishing between continuous

and discontinuous (patchy) spatial distributions has been of particular interest as it is closely

related to the problem of monitoring and control of invasive species. On the one hand, timely

recognition of ‘no front’ patchy invasion regimes is important as its monitoring may require

more careful resource allocation than monitoring of continuous front spatial distributions. The

grid of sampling locations used in the monitoring of discontinuous spatial patterns must be fine

enough to capture sufficient information about the population distribution (e.g. see [41, 42]).

It has been argued in [41] that patches with the nonzero population density will be partially

or completely missed if the distance between sampling locations is greater than the patch size.

On the other hand, once a discontinuous spatial pattern has been accurately identified, its

control may only require practitioners to deal with the areas occupied by separate density

patches and more targeted means of control may, therefore, be applied to prevent the spatial

spread of invasive species.

Our study of spatial patterns has been based on results of a mathematical model which is

capable of producing a variety of spatial distributions depending on the model parameters.

Basic topological characteristics of spatial pattern such as the number of objects, the density of

objects, the degree of aggregation (as given by the Morisita index), and the fragmentation rate

have been employed to analyse spatial distributions arising in the model. We have checked

whether the spatial pattern type can be recognised correctly and two spatial patterns can

be compared to each other by using the topological indices above. It has been confirmed in

the paper that topological indices allow one to distinguish between various continuous front

topological regimes. Meanwhile, our study has revealed that those indices are not reliable

when we want to compare two ‘no front’ patchy spatial distributions as patchy patterns that

look similar to each other may have very different topological indices. Hence, we have further

studied how the topological indices used to quantify spatial patterns respond to a change in

the model parameters. It has been argued in the paper that close parameter values generate

spatial distributions with similar topological indices when the simple topology of a continuous

front is considered. However, there is no clear link between the model parameters and the

topological indices when we deal with complex topological structures such as continuous front

density distributions with patches behind the front or patchy distributions that do not form a

continuous propagation front. One important observation is that transition from continuous

front spatial patterns to ‘no front’ patchy spatial distributions as model parameters vary does

not result in any distinct and predictable change in the density of objects, the Morisita index,

and the fragmentation rate, although the number of objects provides us with a correct answer

about the topological type of spatial pattern.

In our attempt to explain random fluctuations of topological indices observed when close
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values of the system parameters are considered we have investigated spatio-temporal dynamics

of the invasive species to see whether those fluctuations will disappear as time progresses. Our

study of the temporal evolution of spatial patterns resulted in the conclusion that, along

with the topological indices, transition time t∗ required for ‘topological stabilisation’ of spatial

patterns must be taken into account. If a spatial pattern is considered at time t < t∗ its

topological properties may significantly change with time, i.e. continuous front spatial pattern

may transform itself into a patchy pattern and vice versa. Thus, spatial patterns can only be

identified after transition time t∗ and it appears that the transition time can be much greater

for patchy invasion regimes than for continuous front regimes. Moreover, it has been found

in the paper that for spatio-temporal dynamics resulting in the formation of patchy patterns

the transition time can also be much greater than time tD required for the invasive species to

spread over some spatial domain D where invasive species are monitored. The latter case is

true for most patchy regimes considered in the paper and those regimes have been labelled

as ‘topologically unstable’ in domain D. By the definition of topologically unstable patterns

their topological type cannot be determined in domain D where we want to control the spread

of invasive species.

Our study reveals that propagation of patchy density distributions present the most difficult

case of the spatio-temporal dynamics of invasive species when topological properties of spatial

distribution have to be determined. It has been argued in the paper that patchy spatial

patterns obtained for close values of system parameters may have very different topological

structures even after the transition time and we, therefore, cannot rely upon the topological

indices if two patchy spatial distributions are compared to each other. We notice here that

persisting irregular variations in topological indices may indicate that we have chaotic spatio-

temporal dynamics when propagation of invasive species results in formation of patchy spatial

patterns in invaded areas. A well-informed conclusion about chaotic dynamics requires us

to study the sensitivity of model (7-8) to a perturbation of the initial conditions (e.g. see

[37, 59]) and, while the investigation of this issue is beyond the scope of the present paper, it

will consist the topic of future work.

We would like to emphasise here that, according to the results in Section 4, registration of

separate patches at any time t < t∗ cannot serve as a reliable indicator of patchy invasion as

separate patches can be transformed into a continuous front after the transition time. Thus,

another conclusion of our study is that timely recognition of patchy invasion regimes may be a

challenging issue that may require allocation of additional monitoring resource and therefore

determination of reliable ‘early signs’ of patchiness should consist another topic of future work.

The results of our study are problem-specific, yet our approach to the analysis of spatial

patterns can be readily extended to spatial distributions produced as the result of a different

model. Meanwhile, reliable identification of topological properties of patchy patterns may

require the implementation of more advanced methods of spatial analysis as well as the devel-

opment of novel techniques of pattern recognition and comparison. Those techniques should,

in turn, be based on a clear understanding of the spatio-temporal dynamics of patchy inva-

sion regimes when a certain mathematical model is employed for simulation of spatial data.

Establishing the solid link between topological quantities used for characterization of spa-
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tial pattern and controlling parameters in the model should help researchers with answering

the key question of whether the underlying process can be predicted from analysis of spatial

pattern.
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