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Abstract 27 

Purpose: There is much information on the bioavailability of (poly)phenolic compounds following 28 

acute intake of various foods. However, there are only limited data on the effects of repeated and 29 

combined exposure to specific (poly)phenol food sources and the inter-individual variability in their 30 

bioavailability. This study evaluated the combined urinary excretion of (poly)phenols from green tea 31 

and coffee following daily consumption by healthy subjects in free-living conditions. The inter-32 

individual variability in the production of phenolic metabolites was also investigated. 33 

Methods: Eleven participants consumed both tablets of green tea and green coffee bean extracts daily 34 

for 8 weeks and 24-h urine was collected on five different occasions. The urinary profile of phenolic 35 

metabolites and a set of multivariate statistical tests were used to investigate the putative existence of 36 

characteristic metabotypes in the production of flavan-3-ol microbial metabolites. 37 

Results: (Poly)phenolic compounds in the green tea and green coffee bean extracts were absorbed and 38 

excreted after simultaneous consumption, with green tea resulting in more inter-individual variability 39 

in urinary excretion of phenolic metabolites. Three metabotypes in the production of flavan-3-ol 40 

microbial metabolites were tentatively defined, characterized by the excretion of different amounts of 41 

trihydroxyphenyl-γ-valerolactones, dihydroxyphenyl-γ-valerolactones, and hydroxyphenylpropionic 42 

acids. 43 

Conclusions: The selective production of microbiota-derived metabolites from flavan-3-ols and the 44 

putative existence of characteristic metabotypes in their production represent an important 45 

development in the study of the bioavailability of plant bioactives. These observations will contribute 46 

to better understand the health effects and individual differences associated with consumption of 47 

flavan-3-ols, arguably the main class of flavonoids in the human diet.  48 

 49 

Keywords: polyphenols; green tea catechins; coffee caffeoylquinic acids; colonic microbiota; urinary 50 

phenotype; metabotypes.  51 
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Introduction 52 

Epidemiological and human intervention studies report the potentially beneficial effects of 53 

(poly)phenolic-rich plant foods against several chronic conditions, including cardiometabolic diseases, 54 

neurodegeneration, and certain kinds of cancer [1,2]. Supplementation with (poly)phenolic compounds 55 

may represent an effective means of providing potential bioactive compounds to consumers, as part of 56 

a strategy to enhance the health benefits attributed to plant-based food products [3]. To exert a 57 

systemic biological action, (poly)phenolic compounds must be bioavailable, and this may vary 58 

substantially with different plant foods and dietary supplements [4,5]. Following ingestion, most 59 

phenolics undergo modifications during passage through the gastrointestinal tract. They are 60 

extensively modified by the action of the gut microbiota, being converted to colonic catabolites that 61 

are absorbed into the blood stream where they circulate principally as conjugated phase II metabolites 62 

[1,2]. Green tea and coffee are, respectively, major sources of bioactive flavan-3-ols, and chlorogenic 63 

acids (CGAs) which occur principally as caffeoylquinic acids (CQAs). Both flavan-3-ols and CQAs 64 

are bioavailable after acute intake of green tea and coffee [6-8]. However, there is a paucity of 65 

information on their bioavailability after combined and prolonged ingestion of green tea and coffee, 66 

circumstances which reflect their normal consumption by the general public [9]. 67 

Inter-individual variability in the bioavailability of (poly)phenolic compounds may have an 68 

impact on their putative health effects [10]. Between-subject variability in gut microbial composition 69 

can lead to the selective production of specific metabolites. This has been demonstrated with equol 70 

and 8-prenylnaringenin [11,12], where metabolism by the colonic microflora potentially determines 71 

the benefits associated to the consumption of the parent compounds [13]. Moreover, phenotypical 72 

differences in the production and excretion of colonic microbial metabolites are not restricted to a 73 

single compound, as they may also involve a set of catabolites originating from the same parent 74 

compound, as in the case of urolithins, ellagitannin-derived microbial metabolites. Subjects can be 75 

classified into three urolithin phenotypes, or metabotypes, according to the qualitative and quantitative 76 

proportions of different urolithins excreted after consumption of ellagic acid or ellagitannins [14]. 77 

Interestingly, the benefits associated with the ingestion of pomegranate and walnuts, sources of 78 

ellagitannins, may be related to each specific metabotype [15,16,14]. So far, although a high inter-79 
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individual variability in the production of metabolites derived from coffee CGAs and green tea flavan-80 

3-ols has been reported [17,8,18,19], no phenotypes in their production have been identified. In this 81 

sense, 5-(phenyl)-γ-valerolactones, unique ring-fission microbial products of flavan-3-ol monomers 82 

and oligomeric proanthocyanidins, might be selectively produced on the basis of different enterotypes 83 

or microbiota profiles. 84 

The first aim of this study was to evaluate the urinary excretion of the (poly)phenolic 85 

compounds of green tea (GTE) and green coffee beans (GCE) following their daily, simultaneous 86 

consumption as tablets by subjects in free-living conditions. The inter-individual variability observed 87 

in the urinary excretion of phenolic metabolites was assessed by multivariate statistical tests to 88 

investigate the existence of metabotypes in the production of flavan-3-ol metabolites. 89 

 90 

Subjects and methods 91 

Participants 92 

Thirteen healthy participants, aged 18-45 years, with a body mass index (BMI) of 18.5  24.9 93 

kg/m2 were enrolled. Exclusion criteria included smoking; chronic/systemic illnesses and/or major 94 

surgical operations of renal, hepatic or gastrointestinal origin; significant history or presence of cancer, 95 

metabolic, cardiovascular, endocrine and/or inflammatory disease; anemia or other blood disorders; 96 

anxiety, depression, psychological problems; eating disorders. Participants were also excluded if they 97 

were pregnant, lactating or contemplating pregnancy. A total of 11 participants completed the study. 98 

The flow of participants throughout the study is presented in Online Resource Fig. 1 under 99 

“Supplementary Material” in the online issue. Sample size was estimated from previous studies on the 100 

urinary excretion of phenolic compounds from green tea and coffee (6-8). 101 

 102 

Study design and protocol 103 

This was a 12-week, longitudinal experimental study. Healthy participants completed five 24-h 104 

urine collections, at weeks 0, 2, 4, 8, and 12 (visits 1, 2, 3, 4, and 5, respectively). After the first urine 105 

collection (week 0), participants took six GTE and three GCE tablets daily for a period of 8 weeks. No 106 

tablets were taken during the last 4 weeks of the study. The study was approved by the Norfolk 107 



5 

 

 

 

Research Ethics Committee (REC) (Ref: 13/EE/0028) in April 2013. Participants gave their informed 108 

written consent before enrollment. A scheme of study protocol is presented in Online Resource Fig. 2. 109 

During the run-in period, participants were asked to maintain their usual dietary habits throughout 110 

the study and to avoid consumption of dietary supplements, except for the GTE and GCE tablets 111 

provided during the course of the study. Participants kept a daily record of tablet intake. Study visits 112 

were conducted upon completion of each 24-h urine collection. Participants returned the collected 113 

urine and were assessed for adherence to the urine collection protocol and dietary intake requirements, 114 

and adherence to the tablet intake (by using an ad hoc questionnaire and by tablet count) during the 115 

supplementation period. Blood pressure measurements were carried out at the first visit by automated 116 

sphygmomanometer. During visits 1, 3, 4 and 5, participants completed a (poly)phenol questionnaire 117 

(PPQ), developed in-house by referring to Phenol-Explorer (Release 3.0) and the United States 118 

Department of Agriculture (USDA) database for the Flavonoid Content of Selected Foods (USDA-119 

FD) (Release 3.1), to estimate their intake of flavan-3-ols and CGAs during the course of the study. 120 

Participants stopped taking the (poly)phenol tablets after week 8 and completed the last study visit on 121 

week 12. The volume of each 24-h urine collection was measured, and five 2 mL aliquots were stored 122 

at -80 °C prior to analysis.  123 

 124 

(Poly)phenol tablets and chemicals 125 

GTE tablets were purchased from Healthspan (Saint Peter Port, UK) and Verdesse® GCE tablets 126 

were purchased from Nature’s Best (Kent, UK). Other ingredients included in the GTE tablets as 127 

fillers/coating were maltodextrin, cellulose, croscarmellose sodium, stearic acid, silica, magnesium 128 

stearate, hypromellose and glycerin. GCE tablets included calcium carbonate, cellulose, silicon 129 

dioxide, stearic acid, magnesium stearate, hydroxypropyl methylcellulose, glycerine, and colors 130 

(titanium dioxide, curcumin, copper chlorophyllin, and iron oxide). Both supplements were 131 

decaffeinated and were produced to pharmaceutical standards under Good Manufacturing Practice 132 

(GMP). 133 

3-Hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3-(3-hydroxyphenyl)propionic acid, 134 

hippuric acid, 3-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, (+)-catechin, and ()epigallocatechin-135 
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3-O-gallate were purchased from Sigma-Aldrich (St. Louis, MO, USA), while procyanidin B2 was 136 

supplied by Phytolab (Vestenbergsgreuth, Germany). Ferulic acid-4-sulfate, isoferulic acid-3-O-137 

glucuronide, dihydroferulic acid-4-sulfate, caffeic acid-4-O-glucuronide, dihydroisoferulic acid-3-O-138 

glucuronide, and dihydrocaffeic acid-3-sulfate were obtained from Toronto Research Chemical 139 

(Toronto, Canada), while 4-hydroxyhippuric acid was purchased from Bachem Ltd. (St Helens, UK). 140 

5-(4-hydroxyphenyl)-γ-valerolactone, 5-(3,4-dihydroxyphenyl)-γ-valerolactone, 5-(phenyl)-γ-141 

valerolactone-3-sulfate, and 5-(phenyl)-γ-valerolactone-3-O-glucuronide were prepared in house 142 

using the strategies of Curti et al. [20] for aglycones and Brindani et al. [19] for phase II conjugates. 143 

They are catalogued on the standards sharing platform FoodComEx (www.foodcomex.org). 144 

Quercetin-3-sulfate and quercetin-3-O-glucuronide were kindly provided by Denis Barron (Nestle 145 

Research Center, Lausanne, Switzerland) and Gary Williamson (School of Food Science and 146 

Nutrition, University of Leeds, UK), while feruloylglycine was a gift from Takao Yokota (Teikyo 147 

University, Japan). All solvents and reagents were purchased from Sigma-Aldrich, unless otherwise 148 

indicated. Ultrapure water from MilliQ system (Millipore, Bedford, MA, USA) was used throughout 149 

the experiment. 150 

 151 

Tablets and urine sample preparation for UHPLC-MSn analyses 152 

GTE and GCE tablets were analyzed to determine their (poly)phenolic composition. Three 153 

randomly selected tablets of each type were weighted, pulverized and 100 mg aliquots extracted with 154 

1 mL of methanol/water/formic acid (74.5:24.5:1, v/v/v). The samples were vortexed, ultrasonicated 155 

for 90 min, and centrifuged at 5 °C for 10 min at 4000 g. The supernatants were collected and the 156 

pellets re-extracted with 0.5 mL of methanol/water/formic acid (74.5:24.5:1, v/v/v). The samples were 157 

vortexed and ultrasonicated for 25 min, and centrifuged at 5 °C for 10 min at 4000 g. The two 158 

supernatants were pooled, diluted 1:5 with 0.1% aqueous formic acid prior to ultra-high performance 159 

liquid chromatography-mass spectrometry (UHPLC-MSn) analysis for phenolic characterization and 160 

quantification. 161 

http://www.foodcomex.org/
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Urine samples were defrosted, vortexed, centrifuged at 16110 g for 10 min at 5 °C, diluted 1:2 162 

with 0.1% aqueous formic, and passed through 0.45 μm nylon filter discs prior to the analysis of 5 μL 163 

aliquots by UHPLC-MSn. 164 

 165 

Qualitative and quantitative analysis of (poly)phenols in tablets and urine samples by UHPLC-166 

MSn 167 

(Poly)phenolic compounds were analyzed using an Accela UHPLC 1250 with a LTQ XL linear 168 

ion trap-mass spectrometer fitted with a heated-electrospray ionization (ESI) probe (Thermo Scientific 169 

Inc., San Jose, CA, USA). Separation was performed with a XSELECT HSS T3 (50 × 2.1 mm), 170 

2.5 μm particle size column (Waters, Milford, MA, USA). The volume injected was 5 µL and the 171 

column oven was set to 30°C. Elution was carried out at a flow rate of 0.3 mL/min. The gradient 172 

started with 2% acetonitrile in 0.1% aqueous formic acid and, after 0.5 min, an 8.5-min linear gradient 173 

of 2% to 45% acetonitrile was applied. From 9 to 9.5 min the acidified acetonitrile increased to 80%, 174 

and after 3 min was reduced to 2% acetonitrile to re-equilibrate the column for 3 min at start 175 

conditions. The MS was operated in negative ionization mode with a capillary temperature of 275 °C 176 

and a source temperature of 250 °C. The sheath gas flow was 40 units and the auxiliary and sweep gas 177 

were set to 5 units. The source voltage was 3 kV. The capillary and tube lens voltage were -9 and -178 

53 V, respectively. Analyses were carried out using full scan, data-dependent MS3 scanning from m/z 179 

100 to 1000, with collision induced dissociation (CID) of 35 (arbitrary units). Helium gas was used for 180 

CID. After this first step, further specific MS2 and MS3 analyses were carried out to unambiguously 181 

identify and quantify the compounds revealed in the first step, by monitoring specific m/z transitions. 182 

Molecules were fragmented using pure helium (99.99%). CID settings were optimized for each 183 

compound in order to produce the highest fragment signals. Identification was performed by 184 

comparison with standards, when available, and literature. Data processing was performed using 185 

Xcalibur software (Thermo Scientific). 186 

Quantification was performed with calibration curves of pure commercial standards, when 187 

available. Caffeic acid-sulfate and phenylpropionic acid-sulfate were quantified as dihydrocaffeic 188 

acid-3'-sulfate equivalents. Epicatechin-sulfate, O-methyl-(epi)catechin-sulfate, (epi)gallocatechin-189 
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sulfate-O-glucuronide, and O-methyl-(epi)gallocatechin-sulfate-O-glucuronide were quantified as 190 

quercetin-3-sulfate equivalents. (Epi)catechin-O-glucuronide, (epi)gallocatechin-O-glucuronide, O-191 

methyl-(epi)catechin-O-glucuronide, and O-methyl-(epi)gallocatechin-O-glucuronide levels were 192 

estimated by reference to a quercetin-3-O-glucuronide standard curve. 5-(O-Methyl-hydroxyphenyl)-193 

γ-valerolactone-sulfate and 5-(hydroxyphenyl)-γ-valerolactone-sulfate were expressed as 5-(phenyl)-γ-194 

valerolactone-3-sulfate equivalents, while 5-(hydroxyphenyl)-γ-valerolactone-O-glucuronide, 5-195 

(dihydroxyphenyl)-γ-valerolactone-O-glucuronide, and 5-(phenyl)-γ-valerolactone-sulfate-O-196 

glucuronide were quantified as 5-(phenyl)-γ-valerolactone-3-O-glucuronide equivalents. 197 

 198 

Statistical analysis  199 

Results are presented as mean values ± standard deviation (SD) for (poly)phenols in GTE and 200 

GCE tablets and as mean values ± standard error of the mean (SEM) for metabolites in urine samples. 201 

Log-transformed dietary flavan-3-ol and CGA intake data are presented as geometric mean (95% 202 

confidence interval (CI)). Tests for assessing data normality and homoscedastic were performed using 203 

the Kolmogorov–Smirnov and Levene’s tests, respectively. Logarithmic transformation was used for 204 

non-normally distributed flavan-3-ol and CGA dietary intake data. For all the metabolites, one-way 205 

repeated measures analysis of variance (ANOVA) was performed to compare mean differences at the 206 

five defined time points. Post-hoc analysis was conducted using pairwise comparisons with Bonferroni 207 

correction. For the urinary excretion of each metabolite by groups of subjects, one-way ANOVA with 208 

post-hoc Dunnett’s T3 test was used since variances in groups were not equal. Differences were 209 

considered significant at p≤0.05. All statistical analyses were performed using the STATA v.12.0 210 

software package (Stata Corporation LP, College Station, TX, USA). 211 

Correlation analysis was performed to assess relationships among phenolic metabolites. “R” 212 

version 3.3.1 (https://www.r-project.org/) was used, and the visualization was achieved using the 213 

corrplot package.  214 

Multivariate principal component analysis (PCA) with varimax rotation was applied to explore 215 

the inter-individual variability observed for the urinary excretion of the phenolic metabolites, by using 216 

https://www.r-project.org/
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SPSS statistics 21.0 software (IBM, Chicago, IL). Then, to better understand the causes behind the 217 

observed inter-individual variability in the excretion of flavan-3-ol metabolites, partial least squares 218 

discriminant analysis (PLS-DA) was carried out. PLS-DA is a linear projection method, and all 219 

metabolites are assumed to be combined in a linear manner to maximize discrimination. Different 220 

explorative PLS-DA models were built to define the number of clusters and the subjects in each 221 

cluster, by using only the information for GTE flavan-3-ol metabolites. The model that maximized the 222 

validation parameters was selected. Model validation was performed by different parameters 223 

considering the variation in the metabolite data, R2(X), variation in the dependent variable (class), 224 

R2(Y) and goodness of fit of the validation (Q2) of the model [21], and by performing cross validation 225 

by random permutation. The selection of the most representative metabolites from the whole set of 226 

metabolites (variable selection) was performed by using the Variable Importance in Projection (VIP) 227 

scores, estimating the importance of each variable in the projection used in a PLS model [22]: variable 228 

with VIP scores greater than 1 were considered important in the given model, while variables with 229 

VIP scores less than 1 were less important and good candidates for exclusion from the model. PLS-230 

DA analysis was performed in SIMCA (version 14, Umetrics, Umea, Sweden). 231 

 232 

Results 233 

Participant baseline characteristics and treatment adherence 234 

Participants (9 women, 2 men) were aged 28 ± 6 years, had a healthy BMI (21.8 ± 1.6 kg/m2) and 235 

normal blood pressure (systolic blood pressure (SBP): 110 ± 6 mm Hg, diastolic blood pressure 236 

(DBP): 69 ± 6 mm Hg). On average, 99% of the polyphenol doses were consumed, indicating good 237 

adherence to the supplementation for all the participants. Participants also adhered to their usual diets 238 

and to the supplement consumption restrictions. 239 

 240 

Dietary assessment  241 

When the dietary intake of flavan-3-ols and CGAs was assessed, no significant differences in the 242 

habitual intakes of CQAs nor (+)-catechin, ()-epicatechin-3-O-gallate, ()-epigallocatechin, or ()-243 

epigallocatechin-3-O-gallate were observed during the study (Online Resource, Supplementary 244 
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material Table 1). Only ()-epicatechin intake was significantly higher at baseline than at the end of 245 

the post-washout period consumption (p≤0.001). In this sense, no major changes in the intake of 246 

phenolics through the diet during the whole intervention were noted. A high inter-individual 247 

variability in the intake of these phenolic compounds was observed among participants (Online 248 

Resource, Supplementary material, Table 1). 249 

 250 

(Poly)phenolic composition of the green coffee extract and green tea extract tablets 251 

The (poly)phenol composition of the GCE and GTE tablets is summarized in Table 1 while a 252 

detailed characterization of the phenolic profile is presented at Supplementary material Table 2. All 253 

the compounds were identified according to their retention times and characteristic MS2 and MS3 254 

spectra, reported in Supplementary material Tables 3 and 4.  255 

The analysis of GCE tablets led to the identification of 30 compounds, all of them belonging to 256 

the phenolic subclass of CGAs. Major components were caffeoylquinic acid, feruloylquinic acid, and 257 

dicaffeoylquinic acid isomers, comprising 57.9%, 22.5%, and 10.4% of the total phenolic content, 258 

respectively (Table 1). The amount of phenolic compounds per GCE tablet was 311 μmol, which 259 

provided a daily supplementation of 933 μmol of CGAs.  260 

In the case of the GTE tablets, a total of 31 polyphenols were identified (Supplementary material 261 

Table 4). The most represented class of flavonoids were flavan-3-ols, with 21 compounds, accounting 262 

for the 99.5% of the total phenolic content (Table 1). The predominant flavan-3-ols were monomers 263 

and, in particular, those presenting three hydroxyl groups in the B-ring (i.e., (epi)gallocatechin 264 

derivatives, 93.0% of the GTE phenolic content), followed by those possessing two hydroxyl groups 265 

(i.e., (epi)catechin derivatives, 5.8% of the GTE phenolic content). The major individual compounds 266 

were epigallocatechin, epigallocatechin-3-O-gallate, and gallocatechin, which made up 54.3%, 21.0%, 267 

and 17.4% of the total phenolic content, respectively. Six flavonols, representing only 0.5% of the 268 

total phenolic content of GTE tablets, were also identified (Table 1). The amount of (poly)phenols 269 

provided for each GTE tablet was 1.67 mmol, contributing with up to 10.02 mmol to the daily intake 270 

of phenolic compounds. Expressed as milligrams, the daily amounts of CGAs and flavan-3-ols 271 
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consumed by participants during the supplementation period were approximately 356 mg and 3469 272 

mg, respectively. 273 

 274 

Identification of urinary phenolic metabolites 275 

UHPLC-MSn analysis of urine samples allowed the identification and quantification of a total of 276 

32 compounds. Retention time and mass spectral data of each metabolite are reported in 277 

Supplementary material Table 5. In absence of available standards for some phase II metabolites 278 

detected in urine, the criteria of identification were based on previously reported HPLC-MS analyses 279 

[18,7]. Phase II metabolites produced by the action of UDP-glucuronosyltransferases and 280 

sulfotransferases were identified through the loss of the conjugation group (m/z 176 for glucuronides 281 

and m/z 80 for sulfates) to produce the aglycone fragment ion at MS2, as previously described [18,7]. 282 

Where necessary, further MS fragmentation of the aglycone was applied to confirm the identification 283 

of the metabolites through their characteristic MS3 fragment ions (Supplementary material Table 5). 284 

From the 32 identified compounds, three were glycine conjugates (hippuric acid [metabolite 1], 4-285 

hydroxyhippuric acid [22], and feruloylglycine [10]), two benzoic acid derivatives (3-hydroxy- and 286 

3,4-dihydroxybenzoic acid, [2 and 23, respectively]), five free and conjugated phenylpropionic acids 287 

(dihydroisoferulic acid-3-O-glucuronide [5], dihydrocaffeic acid-3-sulfate [6], dihydroferulic acid-4-288 

sulfate [8], 3-(3-hydroxyphenyl)propionic acid [9], 3-(phenyl)propionic acid-sulfate [13]), and four 289 

hydroxycinnamic acid sulfates and glucuronides (caffeic acid-4-O-glucuronide [3], isoferulic 290 

acid-3-O-glucuronide [7], ferulic acid-4-sulfate [11], and caffeic acid-sulfate [12]). However, the 291 

large majority of metabolites found in urine were methyl, sulfate, and glucuronide conjugates of 292 

(epi)catechins, and phenyl-γ-valerolactones which comprised a total of nine phenyl-γ-valerolactones 293 

(three monohydroxyphenyl-γ-valerolactones, 5-(4-hydroxyphenyl)-γ-valerolactone [32], 5-(phenyl)-γ-294 

valerolactone-3-O-glucuronide [28], and 5-(phenyl)-γ-valerolactone-3-sulfate [31]; four 295 

dihydroxyphenyl-γ-valerolactones, 5-(3,4-dihydroxyphenyl)-γ-valerolactone [29], 5-296 

(hydroxyphenyl)-γ-valerolactone-O-glucuronide [24], 5-(hydroxyphenyl)-γ-valerolactone-sulfate [30], 297 

and 5-(phenyl)-γ-valerolactone-sulfate-O-glucuronide [25]; and two trihydroxyphenyl-γ-298 
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valerolactones, 5-(dihydroxyphenyl)-γ-valerolactone-O-glucuronide [27], and O-methyl-299 

(hydroxyphenyl)-γ-valerolactone-sulfate [26]) and nine (epi)catechins (catechin [4], (epi)catechin-O-300 

glucuronide [14], (epi)catechin-sulfate [15], (epi)catechin-sulfate-O-glucuronide [16], 301 

(epi)gallocatechin-O-glucuronide [17], O-methyl-(epi)catechin-O-glucuronide [18], O-methyl-302 

(epi)gallocatechin-sulfate-O-glucuronide [19], O-methyl-(epi)catechin-sulfate [20], and O-methyl-303 

(epi)gallocatechin-O-glucuronide [21]). 304 

 305 

Effect of tablet supplementation on the urinary excretion of phenolic metabolites 306 

From the 32 metabolites detected and quantified in urine, 19 compounds showed statistically 307 

significant differences between the visit before the supplementation period (week 0) and during the 308 

supplementation (weeks 2, 4, and 8) (p<0.05 for metabolites 4, 9, 10, 13, 15, 16, 18-20 and 23-32). 309 

The urinary excretion of compounds 1-3, 5-8, 11, 12, 14, 17, 21, and 22 did not change statistically as 310 

a result of the supplementation with the GTE and GCE tablets. The main urinary metabolites and the 311 

observed treatment effects are reported in Fig. 1, while numeric data on metabolite excretion at visit 3 312 

are presented in Supplementary material Table 5. A high inter-individual variability was found for 313 

most of the metabolites of colonic origin.  314 

Up to six (epi)catechin derivatives increased significantly during the supplementation, as well as 315 

all the phenyl-γ-valerolactone derivatives. Some phenolic acids such as 316 

3-(3-hydroxyphenyl)propionic acid [9], phenylpropionic acid-sulfate [13], 3,4-dihydroxybenzoic acid 317 

[23], and feruloylglycine [10] were also excreted in significantly higher amounts after the 318 

supplementation with GTE and GCE tablets (Fig. 1). Interestingly, not all the 19 compounds increased 319 

significantly during the early part of the supplementation period (visit 2, week 2). The excreted 320 

amounts of 5-(O-methyl-hydroxyphenyl)-γ-valerolactone-sulfate [26], 5-(phenyl)-γ-valerolactone-3-321 

sulfate [31], and 3-(3-hydroxyphenyl)propionic acid [9] increased significantly after 4 weeks of 322 

treatment (visit 3), while 5-(4-hydroxyphenyl)-γ-valerolactone [32], 3-(phenyl)propionic acid-sulfate 323 

[13], and feruloylglycine [10] increased significantly only after the whole supplementation period of 8 324 
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weeks (visit 4) (Fig. 1). However, after the washout period of 4 weeks (visit 5), all the compounds 325 

decreased to the levels observed before the supplementation, at visit 1 (week 0) (Fig. 1). 326 

 327 

Lack of good correlation among some metabolites belonging to the same transformation 328 

pathway 329 

Correlation analysis showed a strong relationship among most of the phenolic metabolites 330 

belonging to the same transformation pathway (Fig. 2). For instance, all the (dihydro)caffeic acid and 331 

(dihydro)ferulic acid derivatives associated with the degradation pathways of GCE and CGA [6] were 332 

well and positively correlated (p<0.05, Fig. 2, compounds 3, 5-8, and 10-12). Similarly, most of the 333 

(epi)(gallo)catechin conjugates and 3-(hydroxyphenyl)propionic acids derived from the metabolism of 334 

GTE flavan-3-ols [18,7] were also positively correlated (Fig. 2, compounds 4, 9, 13, 15, 16, and 18-335 

20). (Phenyl)-γ-valerolactone derivatives (compounds 24-32) were positively correlated to 336 

(epi)(gallo)catechin conjugates (compounds 4, 15, 16, and 18-20) but, surprisingly, they did not show 337 

good correlations among each other (Fig. 2). Specifically, while a good correlation (r between 0.56 338 

and 0.78) was found between dihydroxyphenyl-γ-valerolactones (24, 25, 29, and 30) and 339 

trihydroxyphenyl-γ-valerolactones (26 and 27), monohydroxyphenyl-γ-valerolactones (28, 31, and 32) 340 

correlated inversely (r between -0.11 and -0.33) with trihydroxyphenyl-γ-valerolactones (26 and 27) 341 

and positively, but weakly (r between 0.11 and 0.56), with dihydroxyphenyl-γ-valerolactones (24, 25, 342 

29, and 30). It should be also mentioned that only monohydroxyphenyl-γ-valerolactones (28, 31, and 343 

32) correlated positively, but weakly, with 3-(hydroxyphenyl)propionic acids (compounds 9 and 344 

13)(Fig. 2). 345 

 346 

Unsupervised multivariate analysis highlighted inter-individual differences associated with the 347 

urinary excretion of phenyl-γ-valerolactones and phenolic acids 348 

The variability registered in the excretion of phenolic metabolites (Fig. 1) and the lack of 349 

correlation among some metabolites belonging to the same transformation pathway (Fig. 2) accounted 350 

for a high inter-individual difference in the urinary profile of certain metabolites. To better explore 351 

this inter-individual variability, and the relationships among metabolites, unsupervised PCA was 352 



14 

 

 

 

carried out. Three principal components (PCs) explained 64.0% of the total variability (Fig. 3A and 353 

3B). The first PC described the 27.9% of the observed variation and was positively loaded mainly by 354 

dihydroxy- and trihydroxy-phenyl-γ-valerolactone derivatives [24-27, 29, 30] and 355 

methy(epi)(gallo)catechin conjugates [18-20]. PC2 explained 18.7% of variability and was positively 356 

linked to conjugated dihydrocaffeic, dihydroferulic, and hydroxycinnamic acids [3, 5-8, 10-12], while 357 

it was inversely correlated to monohydroxyphenyl-γ-valerolactones [28, 31, 32]. PC3 (17.3% of total 358 

variability) had positive component loadings from hydroxyphenylpropionic acid and hydroxybenzoic 359 

acid derivatives [2, 9, 13, 23]. 360 

When the individual scores with respect to each PC were determined for each subject along the 361 

different study visits (Fig. 3C and 3D), it was possible to observe how the urinary excretion profiles 362 

exerted by GCE and GTE supplementation (visits 2, 3, and 4, positive values for PC1) differed from 363 

the profiles at the beginning of the study and after the wash-out period (visits 1 and 5, respectively, 364 

negative scores for PC1), which remained well grouped. The inter-individual variability was clear 365 

from sample scores for PC2 and PC3. For instance, subjects #11 and #13 showed positive values for 366 

PC2 during supplementation (low excretion of monohydroxyphenyl-γ-valerolactones), while subject 367 

#8 showed high negative values for this PC (related to a high excretion of monohydroxyphenyl-368 

γ-valerolactones). Similarly, subjects #6 and #15 displayed very high positive scores for PC3 (high 369 

excretion of 3-(hydroxyphenyl)propionic acid and hydroxybenzoic acid derivatives), while all the 370 

other subjects had low scores for PC3 (limited excretion of 3-(hydroxyphenyl)propionic and 371 

hydroxybenzoic acids). These two subjects (#6 and #15) also exhibited low scores for PC1, indicating 372 

a limited excretion of dihydroxy- and trihydroxy-phenyl-γ-valerolactone derivatives (Fig. 3C and 3D). 373 

Overall, phenolic metabolites associated with the degradation pathways of GTE flavan-3-ols 374 

(compounds 2, 9, 13, 18-20, and 23-32) were the main contributors to the inter-individual variability 375 

observed. 376 

 377 

Supervised multivariate analysis assisted in subject clustering according to different excretion 378 

profiles and indicated the flavan-3-ol metabolites are involved in the definition of inter-379 

individual differences  380 
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PLS-DA was applied to predict which metabolite(s) could better explain the inter-individual 381 

variation observed from the PCA results and to stratify the individuals into groups sharing a common 382 

excretion profile of phenolic metabolites during the supplementation period (visits 2, 3, and 4). By 383 

using the preliminary information provided by the PCA, only data from the GTE flavan-3-ol candidate 384 

metabolites were used for the PLS-DA.  385 

From the score plot (Fig. 4A), groups of volunteers were clearly discriminated according to 386 

excreted metabolites. The volunteers were divided into three groups having a different number of 387 

subjects (4, 5, and 2 subjects per group; group 1 included subjects #3, #5, #11 and #13; group 2, 388 

subjects #2, #4, #8, #9, and #14; and group 3, subjects #6 and #15). The model was quantified based 389 

on the variation explained by data. In this situation, R2(X)=54%, R2(Y)=76%, and Q2=71.2% were 390 

found. A Q2 value higher than 70% accounted for a good model. Additionally, 100 permutation tests 391 

(randomly permute classes) were performed to check the difference between the permuted and the 392 

original value. It demonstrated the robustness of the model and also proved that R2 and Q2 values were 393 

not by chance (Fig. 4B). 394 

To select the optimal number of metabolites that were important for this PLS-DA model, VIP 395 

scores were used. VIP scores >1 were considered as relevant and, hence, nine metabolites were 396 

selected (Supplementary material Fig. 3). Trihydroxyphenyl-γ-valerolactone [26, 27], 397 

dihydroxyphenyl-γ-valerolactone [24, 25, 29, 30], and 3-(hydroxyphenyl)propionic acid derivatives 398 

[9, 13], as well as O-methyl-(epi)catechin-O-glucuronide [18], were the phenolic metabolites 399 

facilitating the identification of three clusters characterized by a specific urinary profile of GTE 400 

derived flavan-3-ol metabolites. 401 

 402 

Putative metabotypes in the excretion of flavan-3-ol colonic metabolites 403 

The metabolites contributing to a greater extent the inter-individual variability observed in the 404 

urinary excretion of phenolic compounds, and favoring subject clustering during the supplementation 405 

period, were identified by PLS-DA. This information was the cornerstone for defining three putative 406 

metabotypes in the production of flavan-3-ol metabolites. For that, in order to focus just on 407 

metabolites of colonic origin and not on those originating from phase II metabolism of parent 408 
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compounds, O-methyl-(epi)catechin-O-glucuronide was not considered. On the other hand, 409 

monohydroxyphenyl-γ-valerolactone derivatives, although not reaching statistical significance in PLS-410 

DA results, were included for the elucidation of the metabotypes. This decision was based on their 411 

relevance at PCA level and in order to include a key scaffold in the degradation pathway of 412 

dihydroxyphenyl-γ-valerolactone into 3-(hydroxyphenyl)propionic acid. Putative metabotypes were 413 

identified by considering the sum of all the derivatives belonging to the same aglycone moiety (for 414 

instance, 5-(O-methyl-hydroxyphenyl)-γ-valerolactone-sulfate [26] and 5-(dihydroxyphenyl)-415 

γ-valerolactone-O-glucuronide [27] were joined together as trihydroxyphenyl-γ-valerolactone). This 416 

approach allowed avoiding the cofounding factor that individual differences in phase II enzymes 417 

might represent, and, at the same time focusing on microbiota-derived differences in the production 418 

and excretion of flavan-3-ol catabolites. The urinary excretion of trihydroxyphenyl-γ-valerolactones, 419 

dihydroxyphenyl-γ-valerolactones, monohydroxyphenyl-γ-valerolactones and 3-420 

(hydroxyphenyl)propionic acids by clusters of subjects are reported in Fig. 5. Except for 421 

monohydroxyphenyl-γ-valerolactone derivatives, statistically significant differences were observed in 422 

the urinary excretion of all the other flavan-3-ol colonic catabolites among individual clusters 423 

(p<0.001). Three putative metabotypes were thus identified among the 11 volunteers:  424 

 metabotype 1, characterized by the presence of high amounts of tri- and di-hydroxyphenyl-425 

γ-valerolactones while a reduced excretion of 3-(hydroxyphenyl)propionic acid  426 

 metabotype 2, associated with a medium excretion of dihydroxyphenyl-γ-valerolactone while 427 

a limited excretion of trihydroxyphenyl-γ-valerolactone and 3-(hydroxyphenyl)propionic acid 428 

 metabotype 3, limited in the production of phenyl-γ-valerolactones but producing high 429 

amounts of 3-(hydroxyphenyl)propionic acid. 430 

When the excretion of individual compounds was taken into account (Supplementary material 431 

Fig. 4), very similar results were achieved. Trihydroxyphenyl-γ-valerolactone, dihydroxyphenyl-432 

γ-valerolactone and 3-(hydroxyphenyl)propionic acid derivatives showed statistically significant 433 

differences in their urinary excretion among individual clusters (p<0.001), whereas these differences 434 

were not observed for any of the three monohydroxyphenyl-γ-valerolactone derivatives studied 435 

(p>0.05, Supplementary material Fig. 4G, 4H, and 4J). The differences observed between metabotype 436 
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1 and metabotype 2 for the total excretion of dihydroxyphenyl-γ-valerolactone derivatives were not 437 

confirmed for individual dihydroxyphenyl-γ-valerolactone derivatives (Supplementary material Fig. 438 

4C, 4D, 4E, and 4F), but this did not alter the unique urinary profile of each metabotype. 439 

 440 

Discussion 441 

Supplementation with (poly)phenolic compounds represents a potentially effective means of 442 

providing bioactive compounds to consumers, as part of a strategy to harness the health benefits 443 

attributed to plant-based foodstuffs [3]. The bioavailability of phenolic compounds after supplement 444 

consumption is attracting increasing attention, and the issue should be tackled in the context of 445 

real-life settings. The contribution of GCE tablets to the excretion of phenolic metabolites associated 446 

with the degradation pathways of coffee hydroxycinnamates (compounds 3, 5-8, and 10-12), as 447 

proposed by Stalmach et al. [6], was very limited and restricted exclusively to feruloylglycine (10) at 448 

the last visit during the supplementation period (week 12, Fig. 1). The excretion of other metabolites 449 

widely linked to coffee consumption [23] was not enhanced as a result of GCE intake. The daily 450 

amount of CQAs provided by the GCE supplements corresponded roughly to the intake of 3½ cups of 451 

espresso coffee [24]. This intake of CQAs was likely too low to significantly increase the excretion of 452 

CQA metabolites in most of the volunteers; they reported a limited consumption of CQAs, with a high 453 

inter-individual variation, in accordance with the intake of phenolic acids reported for European 454 

populations [25].  455 

The amount of flavan-3-ols provided by the GTE tablets, comparable to up to 23 cups of green 456 

tea [26] and far from being achievable in the framework of a regular diet, was enough to increase the 457 

urinary excretion of typical flavan-3-ol metabolites during the supplementation period. This effect of 458 

supplementation on the urinary profile was observed for both phase II metabolites of flavan-3-ol 459 

monomers and metabolites of colonic origin, such as phenyl-γ-valerolactones. Actually, both types of 460 

flavan-3-ol metabolites (phase II and colonic) have defined good biomarkers of consumption of foods 461 

rich in flavan-3-ols like tea, cocoa, and wine [27-29]. A significantly increased amount of phenyl-462 

γ-valerolactone conjugates has also been reported after consumption of a flavonoid-rich fruits and 463 

vegetables diet [30]. On the other hand, the higher excretion of 3-(hydroxyphenyl)propionic and 464 
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hydroxybenzoic acids during the supplementation period, although possibly related to coffee CQA 465 

metabolism [6,17], was probability also linked to the catabolism of GTE flavan-3-ols, because of the 466 

amounts excreted, their lack of correlation with the excretion of other CQA metabolites, and their 467 

good correlation with flavan-3-ol monomers (Fig. 2). Moreover, 3-(3-hydroxyphenyl)propionic and 468 

hydroxybenzoic acids, produced from the opening of the phenyl-γ-valerolactone lactone ring and from 469 

further β-oxidation of the side chain of phenylvaleric acids [31], have been reported to increase after 470 

consumption of flavan-3-ol-rich foodstuffs [32,18,7,27,29]. 471 

Inter-individual variability is a major factor affecting phenolic bioavailability and, among other 472 

factors, can be driven by the activity of gut microbiota [10]. A high inter-individual variability has 473 

been reported in the excretion of phenolic metabolites derived from coffee CQAs and green tea flavan-474 

3-ols [17,8,18,19,3], but the underlying causes are not yet fully understood. The results presented here 475 

also showed a high inter-individual variation, mainly observed for those metabolites originating from 476 

colonic degradation of GTE flavan-3-ols. So far, although individual variation in the production of 477 

phenyl-γ-valerolactones had been reported [33,34,27,35], no clear clusters of metabolites have been 478 

described. Associations of gut metabolites allowed us to tentatively define three different flavan-3-ol 479 

metabotypes among the participants in the present study. The mechanisms behind the selective 480 

production of differently-hydroxylated phenyl-γ-valerolactones and 3-(3-hydroxyphenyl)propionic 481 

acid by the gut microbiota may be linked to the capability of specific bacteria to: 1) carry out the C-482 

ring cleavage of the different catechins present in tea [36,37], 2) perform the dehydroxylation of 483 

phenyl-γ-valerolactones [38], and 3) convert phenyl-γ-valerolactones into 3-(phenyl)propionic acids, 484 

although the species catalyzing this step have yet to be identified [38]. 485 

The existence of metabotypes in the production of phenolic metabolites has been discussed 486 

almost exclusively in recent years for equol, 8-prenylnaringenin, and urolithins, compounds derived 487 

from the colonic metabolism of the isoflavone daidzein, hop prenylflavonoids, and 488 

ellagitannins/ellagic acid, respectively [11,12,14]. The importance of metabotypes relies on the effect 489 

that the selective production of microbiota-derived metabolites may have on the health effects of 490 

certain foods or specific phenolic compounds [13,16,15]. Taking into account that flavan-3-ols are the 491 

main source of flavonoids in Western diets [39,40], these results are key for the further study of the 492 
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health effects associated with the consumption of flavan-3-ol sources (i.e. cocoa, tea, wine, apple, etc.) 493 

and their main gut microbiota-derived metabolites. In this sense, clustering subjects according to their 494 

metabotypes in the production of flavan-3-ol metabolites may provide novel insights in the health 495 

benefits attributed to dietary sources of flavan-3-ols on specific groups of population, as it has been 496 

described for isoflavones (with equol production) and ellagitannins (with urolithin production) (13, 15, 497 

16). In order to simplify future research in the field, some metabolites representative of the three 498 

putative metabotypes found in the present study and excreted in high amounts could be used as 499 

biomarkers of a specific metabotype after tea consumption: 5-(dihydroxyphenyl)-γ-valerolactone-O-500 

glucuronide [27], 5-(hydroxyphenyl)-γ-valerolactone-O-glucuronide [24], and 3-(phenyl)propionic 501 

acid-sulfate [13] may be good candidates. To fully understand the metabotypes associated with flavan-502 

3-ol microbial metabolites, further studies should target the whole set of metabolites linked to the 503 

degradation pathways of different monomeric and oligomeric flavan-3-ols. Studies with larger 504 

numbers of subjects and using different sources of flavan-3-ols are needed to confirm the existence of 505 

these metabotypes and to ascertain whether there might be more metabotypes than were not apparent 506 

in the current preliminary study. The influence of age, sex, (patho)physiological status, type of diet, 507 

and dosage, among other factors affecting the bioavailability of phenolic compounds [10], should also 508 

be investigated. Microbiomics should also be taken into account to unravel the enterotypes, or 509 

bacterial species involved in the metabolic transformations yielding flavan-3-ol metabotypes. 510 

In conclusion, this study demonstrated that (poly)phenolic compounds in GTE and GCE-based 511 

dietary supplements are absorbed, metabolized, and excreted following their daily, simultaneous 512 

consumption. However, relevant increases in the urinary excretion of some phenolic metabolites may 513 

depend on the habitual intake of flavan-3-ol and CQAs. Overall, this study has evidenced the putative 514 

existence of specific metabotypes in the production of flavan-3-ol colonic metabolites, for the first 515 

time. Based on the relevance of this outcome, further research is guaranteed. 516 
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TABLES 

Table 1. (Poly)phenolic composition of tablets of green coffee bean extracts (GCE) and green tea 

(GTE)1 

Compound μmol/tablet 

GCE  

Total caffeoylquinic acids 180 ± 5 

Total coumaroylquinic acids 2.9 ± 0.1 

Total feruloylquinic acids 76 ± 2 

Total dicaffeoylquinic acids 33 ± 2 

Total caffeoylferuloylquinic acids 8.7 ± 0.1 

Total caffeoylquinic acid lactones 8.2 ± 0.7 

Total caffeoyl-dimethoxycinnamoylquinic acids 2.7 ± 0.3 

Total phenolic compounds 311 ± 8  

  

GTE  

Total monohydroxy flavan-3-ol monomers 0.5 ± 0.0 

Total dihydroxy flavan-3-ol monomers 97 ± 5  

Total trihydroxy flavan-3-ol monomers 1553 ± 203 

Total dihydroxy flavan-3-ol dimers 7.1 ± 0.2 

Total dihydroxy/trihydroxy-flavan-3-ol dimers  3.1 ± 0.1 

Total trihydroxy flavan-3-ol dimers 1.3 ± 0.1 

Total flavonols 7.5 ± 0.3 

Total phenolic compounds 1679 ± 212  

 1A detailed characterization of the phenolic composition of the GCE and GTE tablets is 

provided in Supplementary Table 2. Values presented as mean ± SD (n= 3) 
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FIGURE LEGENDS 

Fig. 1. Urinary excretion (24-h collection) of the 21 main phenolic metabolites during the 5 visits of 

the supplementation study (in weeks, weeks 0, 2, 4, 8, and 12 correspond to visits 1, 2, 3, 4, and 5 -

after washout-, respectively) including the 6 (epi)catechin and (epi)gallocatechin derivatives, 9 

phenyl-γ-valerolactone derivatives, and 4 phenolic acid derivatives that increased during the 

supplementation period. Values, in μmol, are mean ± SEM (n=11). * indicates significant differences 

(p<0.05) compared to visits 1 and 5 according to repeated-measures ANOVA with post-hoc pairwise 

comparisons.  

Fig. 2. Correlation heatmap. Although a strong relationship among most of the phenolic metabolites 

belonging to the same transformation pathway was found, (phenyl)-γ-valerolactone derivatives did not 

show good correlations among each other. A scale of correlation (p<0.05)is indicated by color. Red 

indicated positively correlated, whereas dark blue negatively correlated compounds. PV, 5-(phenyl)-γ-

valerolactone; HPV, 5-(hydroxyphenyl)-γ-valerolactone; DiHPV, 5-(dihydroxyphenyl)-γ-

valerolactone; (E)C, (epi)catechin; (E)GC, (epi)gallocatechin; HPP, 3-(3-hydroxyphenyl)propionic 

acid; PP, 3-(phenyl)propionic acid; DHFer, dihydroferulic acid; DHCaf, dihydrocaffeic acid; Isofer. 

ac., isoferulic acid; glcUA glucuronide; sulf, sulfate. The code assigned to each metabolite, indicated 

in Supplementary material Table 5, is also reported here in brackets. Taking into account the 

aglycones, compounds 28, 31, and 32 are monohydroxyphenyl-γ-valerolactones; compounds 24, 25, 

29, and 30 are dihydroxyphenyl-γ-valerolactones; and compounds 26 and 27 are trihydroxyphenyl-γ-

valerolactones. 

Fig. 3. Principal component analysis highlighting inter-individual differences associated with the 

urinary excretion of 5-(phenyl)-γ-valerolactones and phenolic acids. Loading plots of PC1 versus PC2 

(A) and PC1 versus PC3 (B); score plots of the excreted phenolic metabolites by each volunteer and 

visit obtained from PC1 and PC2 (C) and PC1 and PC3 (D). In the loading plots, MET_n indicates the 

metabolite code, as reported in Fig. 2 and Supplementary material Table 5. In the score plots, empty 

circles correspond to visits 1 and 5 (no GTE+GCE supplementation), while full circles correspond to 
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visits 2-4 (GTE + GCE supplementation); codes indicate the subject code and visit number, i.e., 

S13_V5 means “subject #13, visit 5”.  

Fig. 4. Partial least squares-discriminant analysis assisting in subject clusterisation according to 

different excretion profiles. (A) Score plot shows 3 groups (group 1 -blue-: subjects #3, #5, #11 and 

#13; group 2 -green-: subject #2, #4, #8, #9, and #14; and group 3 -red-: subjects #6 and #15) for visits 

2-4 and by using only GTE flavan-3-ol candidate metabolites with VIP>1 (Supplementary material 

Fig. 3). (B) Validation plot obtained from 100 permutation tests (randomly permute classes) for the 

PLS-DA model; R2 and Q2 mean R2 and Q2, respectively. 

Fig. 5. Urinary excretion of trihydroxyphenyl-γ-valerolactones (A), dihydroxyphenyl-γ-valerolactones 

(B), monohydroxyphenyl-γ-valerolactones (C), and 3-(3-hydroxyphenyl)propionic acid (D) by groups 

of subjects. Boxplots are built using the mean of the urinary excretion of the sum of all the derivatives 

belonging to the same aglycone moiety, for the three visits under GCE and GTE supplementation 

(visits 2-4, weeks 2-8): trihydroxyphenyl-γ-valerolactone is calculated of the sum of compounds 26 

and 27; dihydroxyphenyl-γ-valerolactone of compounds 24, 25, 29, and 30; monohydroxyphenyl-γ-

valerolactone of compounds 28, 31, and 32; and (hydroxyphenyl)propionic acid of compounds 9 and 

13. The blue group, defining metabotype 1, is formed by 4 subjects; the green group, metabotype 2, is 

formed by 5 subjects; and the red group, metabotype 3, is formed by 2 subjects. Different letters 

indicate statistically significant differences (p<0.05) among groups according to ANOVA with post-

hoc Dunnett’s T3 test. Circles and asterisks indicate outliers and extreme outliers (more than three 

times the interquartile range), respectively.  
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