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NOTES

RcesB Is Required for Inducible Acid Resistance in Escherichia coli and
Acts at gadE-Dependent and -Independent Promoters’

Matthew D. Johnson,'f Neil A. Burton,"* Bernardo Gutiérrez,'
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ResB interacts with GadE to mediate acid resistance in stationary-phase Escherichia coli K-12. We show here
that ResB is also required for inducible acid resistance in exponential phase and that it acts on promoters that
are not GadE regulated. It is also required for acid resistance in E. coli O157:H7.

The glutamate-dependent acid resistance system AR2 of
Escherichia coli is regulated by a regulatory network that re-
sponds to general stress, via the alternative sigma factor RpoS,
and to low pH (8, 13, 17, 18, 20, 22, 25). AR2 requires several
regulators, including the central regulator GadE, to integrate
signals from the EvgAS and PhoPQ two-component systems
(3, 10-13, 17). ResB, a regulator with a wide range of roles in
many enteric bacteria (5), is essential for survival during ex-
treme acid challenge (pH 2.5 or below) during stationary phase
and regulates transcription of some AR2 genes by forming a
heterodimer with GadE (2, 4, 15, 16). RcsB also forms het-
erodimers with RcsA, TviA, and BglJ to regulate colanic acid
synthesis, antigen VI expression, and sugar transport, respec-
tively (26-28). Here we show that the inducible acid resistance
of exponential-phase E. coli is also completely dependent on
RcsB and that this resistance correlates with dependence of
activation of the AR2 network on ResB. We show that several
AR?2 genes that are not GadE regulated require ResB and that
RcsB must interact downstream of the sensor kinase EvgS but
upstream of the first regulator, YdeO. These results suggest an
additional role for ResB in the activation of acid resistance and
show that there is cross talk between the Rcs and EvgAS
systems. We show that the role of RcsB extends to the patho-
genic strain E. coli O157:H7 (Sakai).

Induced acid resistance is rcsB dependent. A ArcsB deriva-
tive of E. coli K-12 MG1655 was constructed as previously
described (7). We determined the survival of this strain and the
wild-type parent to extreme acid challenge in exponential
phase, with and without induction by mild acidification (pH
5.7). Both strains grew at the same rate. Cells were grown,
from overnight cultures diluted at least 500-fold, to an op-
tical density at 600 nm (ODyg,) of 0.2 in M9 with glucose
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(22.2 mM) and Casamino Acids (0.2% [wt/vol]), buffered
with morpholinepropanesulfonic acid (MOPS) and morpho-
lineethanesulfonic acid (MES) as described previously
(M9supp) (1), and then incubated at pH 5.7 or pH 7 for 70
min before acid challenge at pH 2.4 for 2 h. We determined
that under these conditions there are no detectable carry-
over effects from stationary phase on gene expression or cell
survival. Cultures were always checked to ensure that the
adjusted pH values remained constant for the entire exper-
iment (data not shown). Survival was measured as previously
described (1). Induction at pH 5.7 caused a significant in-
crease in resistance in the wild-type strain (Fig. 1a). Survival
of the ArcsB strain was below the level of detection in both
induced and uninduced cultures (Fig. 1a). To complement
the resB deletion, we constructed plasmid presB by cloning
resB under the control of its own promoter (—1144 to +674,
relative to the RcsB translation start site) into the low-copy-
number plasmid pZC230 (15, 24). Introduction of presB into
the ArcsB strain restored survival to wild-type levels, while
the presence of the vector alone had no effect (Fig. 1a).
These results show that RcsB is essential for inducible acid
resistance in exponential-phase cells.

ResB is required for the activation of GadE-dependent and
-independent promoters. Several inducible acid resistance
genes are under the control of the GadE-RcsB heterodimer (2,
4, 15, 16). However, genes outside the GadE regulon also
contribute to resistance to extreme acid shock and are induced
by mild pH shock (16, 19-21). Using a luciferase reporter
system as previously described (1), we compared the induction
kinetics of the evgA, gadA, gadB, gadE, gadW, gadX, gady,
hdeA, hdeD, mgtA, safA, and ydeP promoters in wild-type and
resB knockout backgrounds. Table 1 shows the ratios of ex-
pression levels for all these promoters with and without acid
induction. Note that the saf4 promoter drives expression of
both safA (also called b1500) and ydeO (20); SafA activates the
PhoPQ system in response to acid, and YdeO directly activates
GadE expression as well as the expression of several other acid
resistance genes (9-11, 13). mgtA was included as an example
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FIG. 1. Acid-inducible resistance is dependent on rcsB. Survival
was calculated as the number of colonies after 2 h at pH 2.4 in M9supp
as a percentage of total colonies at time zero. (a) Wild-type E. coli
MG1655 and ArcsB strains after induction by acid shift (striped bars)
or not induced by acid shift (white bars). (b) Uninduced MG1655
containing a plasmid expressing a constitutive EvgS (pevgS©) compared
to an uninduced ArcsB mutant containing the same plasmid. The
broken line represents the limit of detectable survival, determined to
be 0.04%. Here and in other figures, error bars represent the standard
deviations of at least three independent replicates.

of a promoter that is directly regulated by PhoPQ and is hence
also activated by acid (1). We have previously determined the
GadE dependence of these promoters (1). The inducible ac-
tivities of the GadE-dependent promoters gadA, gadB, hdeD,
and hdeA were reduced at least 20-fold in the ArcsB strain
(Table 1). The activity of the gadE promoter, which is partially
dependent on itself for full activity (1, 23), was reduced nearly
100-fold in the ArcsB strain (Table 1). Thus, the effect of loss
of ResB on the regulation of GadE-dependent promoters may
be due simply to loss of GadE expression, distinct from the
reported situation in stationary phase (4). In addition, the
GadE-independent promoters for safA, slp, gadW, gadY, mgtA,
and ydeP showed significant reductions in acid-inducible activ-
ity in the ArcsB strain (Table 1). The gadX promoter, which is
not activated by GadE or (unlike all the above promoters) by
induction via EvgA but does require RpoS for induction by low
pH (1), also showed significantly reduced acid-induced expres-
sion in the ArcsB strain (Table 1). The evgAS promoter, which
is not acid regulated (1), was not affected in the ArcsB strain
(Table 1), nor were two other non-acid-regulated promoters,
the csrA and acpP promoters (data not shown). We confirmed
that the induction kinetics of the gadA, gadE, safA, and mgtA
promoters were restored to close to wild-type behavior in the
presence of plasmid presB (Fig. 2). Together, these results
show that ResB has additional GadE-independent roles in the
regulation of both EvgAS-dependent and EvgAS-independent
promoters.

ResB regulates GadE-dependent and -independent promot-
ers in stationary phase. We confirmed that the ArcsB strain
grown to stationary phase in M9supp was sensitive to low pH
and that this sensitivity could be complemented with plasmid
presB (Fig. 3a). No increase in acid resistance could be ob-
tained in the stationary-phase ArcsB mutant by acid induction
(data not shown). We again used the luciferase reporter system
to measure promoter activity in stationary-phase cultures.
Cells were grown for 18 h with shaking in M9supp at 37°C, then
diluted 10-fold, and incubated for 10 min at 37°C with shaking
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to briefly aerate the cultures (required for optimal luciferase
activity). The expression of the GadE-RcsB-regulated gene
gadA was significantly reduced in the ArcsB background, as was
expression from the GadE-dependent promoters of ideA and
hdeB (Table 1), consistent with earlier reports. Expression
from the GadE-independent gadX and gadW promoters, and
the partially GadE-dependent gadE promoter, was reduced in
the ArcsB background in stationary phase (Table 1), although
the effect on gadW activity was only 2-fold. The activities of the
safA and ydeP promoters, which show RcsB- and EvgAS-de-
pendent activation by low pH (1, 17), were below the limit of
detection in both wild-type and ArcsB backgrounds. Consistent
with this finding, no significant effect was seen on expression of
the mgtA promoter, which is indirectly activated by SafA via
PhoPQ (1). The loss of expression of the gadE, gadA, and gadX
promoters in the ArcsB background was fully complemented by
the presB plasmid (Fig. 3b). Our results confirm that RcsB is
required for acid resistance and activates GadE-regulated pro-
moters in stationary phase and show that some GadE-indepen-
dent promoters also require ResB under these conditions. The
results for gadE and gadX are different from those reported
earlier (4), which may relate to different growth conditions or
the effects of different strain backgrounds. Intriguingly, the
gadY promoter, which requires rcsB in exponential phase, was
independent of rcsB in stationary phase.

ResB acts downstream of EvgS. Most of the promoters stud-
ied here are regulated by the EvgAS two-component system in
response to low pH (1, 6, 13, 17, 19, 20), the expression of
which is not affected by loss of RcsB (Table 1 and data not
shown). Thus, the effects of ResB on these promoters could be
explained by it being required for the function of EvgA or
EvgS. If so, the ArcsB phenotype would not be suppressed by
constitutive mutations in EvgS, which causes increased acid
resistance in exponential phase without induction by acidifica-

TABLE 1. Ratios of expression levels for promoters with and
without acid induction

Promoter . .
Promoter dependency” Relative activity”

GadE EvgA Exp® Stat?
gadA d d 0.050" 0.005"
gadB d d 0.014™" —
hdeA d d 0.002"" 0.027"
hdeD d d 0.100" 0.160"
gadE pd d 0.013™" 0.086"
gadW i d 0.208" 0.534
gadY i d 0.034" 0.950™
slp i d 0.039"" —
safA i d 0.030" ND
mgtA i d 0.166"" 0.915™
ydeP i d 0.002"" ND
evgA i i 0.900™ —
gadX i i 0.283" 0.256"

“ Promoter dependency was determined as described in reference 1 and is
indicated as follows: d, dependent; i, independent; pd, partially dependent.

b P values of >0.95, >0.99, and >0.999 are indicated by one, two, or three
asterisks, respectively; ns, not significant. ND, not determined as expression
levels were too low to be accurately measured; —, not done.

¢ Promoter activity in the ArcsB strain relative to the wild type after 40 min of
induction at pH 5.7 at an ODy, of 0.2.

4 Promoter activity in the ArcsB strain relative to the wild type in stationary
phase.
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FIG. 2. Promoter activity after induction by acid shift to pH 5.7 during exponential phase in M9supp. The activity of each promoter in wild-type
MG1655 (triangles) and the ArcsB mutant without (squares) and with (diamonds) the complementing plasmid presB is shown. Time (in minutes)
is shown on the y axis. Time zero represents the point of acidification to pH 5.7 (indicated by a vertical broken line). Lux, luciferase activity.

tion (13, 14). We therefore assayed the survival of wild-type
and ArcsB cells containing the pevgS® plasmid, which expresses
a constitutive mutant of EvgS from the EvgA native promoter
(M. D. Johnson, N. A. Burton, and P. A. Lund, unpublished
data). Wild-type cells expressing the evgS mutant survived ex-
posure to pH 2.4 without induction as well as the pH 5.7-
induced wild-type strain. However, no survival of the ArcsB
pevgSe strain could be detected after 2 h at pH 2.4 (Fig. 1b),
showing that RcsB must act downstream of EvgS. Expression
of the first major regulator immediately downstream of EvgA,
YdeO, is itself completely dependent on ResB, making a direct
effect of ResB on EvgS or EvgA more likely. We hypothesize
that ResB is required either for the EvgS-dependent phosphor-
ylation of EvgA or for the regulatory activity of EvgA itself.
These possibilities are under investigation.
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FIG. 3. Effect of deletion of rcsB in stationary phase. (a) Survival of
cells in stationary phase without acid induction in M9supp. The hori-
zontal broken line represents the limit of detection at 0.04%. (b)
Stationary-phase promoter activity of the specified promoters, without
acid induction, in E. coli MG1655, ArcsB mutant, and ArcsB mutant
complemented with presB plasmid.

Promoter activity ( Lux/OD,, )

gadAp

ResB is required for acid resistance in E. coli O157:H7. To
investigate whether the role in acid resistance of rcsB extends
beyond E. coli K-12, an rcsB mutant was constructed in E. coli
O157:H7 (Sakai). The survival of wild-type and mutated
O157:H7 (Sakai) at pH 2.4 was assayed as described above.
Wild-type E. coli O157:H7 (Sakai) survives much better during
exponential phase than strain MG1655 does. However, this
resistance was reduced to lower than the limit of detection in
the absence of resB (Fig. 4a), and this sensitivity was also seen
in stationary-phase cells (Fig. 4b). The resistant phenotype in
both phases was restored by the presence of the prcsB com-
plementation plasmid.

Our results show that activation of the AR2 network in
response to mild acid shock in exponential and stationary
phases is completely dependent on ResB and that this effect

a
100 = T
10 = _I_
] =
0.1 =
0.01 T T T 1
Sakai ArcsB  ArcsB ArcsB
+pZC320 +presB
b
100 7 = ——
10
] =
0.1+

Sakai AresB  ArcsB  ArcsB
+pZC320 +presB

FIG. 4. Effect of deletion of rcsB on exponential- and stationary-
phase survival of E. coli O157:H7 (Sakai). Survival was measured as
described in the legend to Fig. 1 during exponential phase (a) and
stationary phase (b). Percent survival is shown on the y axes.
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is not suppressed by an EvgS constitutive mutant. Reporter
analysis of the promoters involved in the AR2 network re-
vealed that these promoters are completely dependent on
RcsB whether or not they are regulated by GadE, so the
GadE-RcsB heterodimer model does not explain all the
effects of RcsB on acid resistance. We speculate that ResB
is required either for the phosphorylation of EvgA by EvgS
or for the binding of EvgA to promoter elements. Given the
fact that RcsB often forms active heterodimers, it is tempt-
ing to speculate that it may do so with phosphorylated EvgA.

We gratefully acknowledge the award of Biotechnology and Biolog-
ical Sciences Research Council studentships to M.D.J. and N.A.B.
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