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Abstract. Visualizing a high-dimensional solution set over the evolution process
is a viable way to investigate the search behavior of evolutionary multi-objective
optimization. The parallel coordinates plot which scales well to the data dimen-
sionality is frequently used to observe solution sets in multi-objective optimiza-
tion. However, the solution sets in parallel coordinates are typically presented by
the natural order of the optimized objectives, with rare information of the rela-
tion between these objectives and also the Pareto dominance relation between
solutions. In this paper, we attempt to adjust parallel coordinates to incorporate
this information. Systematic experiments have shown the effectiveness of the pro-
posed method.

1 Introduction

Multi-objective optimization problems (MOPs), which involve several (conflicting) ob-
jectives to be optimized, widely exist in real-world applications [14]. Since the mul-
tiple objectives in an MOP can be in conflict with each other, there often exist a set
of trade-off solutions, known as the Pareto optimal solutions. In order to solve such
MOPs, a variety of multi-objective evolutionary algorithms (MOEAs) have been pro-
posed, where the aim is to obtain (or approximate) the Pareto optimal solutions during
one single run [3]. To investigate the search behavior of different MOEAs, the classic
visualization technique, i.e., scatter plot, is used for the visualization of the population
throughout the evolution process [11]. Despite that the scatter plot allows us to observe
important information such as the shape and distribution of the candidate solutions and
the conflict between objectives, its applicability is only limited to MOPs with two or
three objectives.

With the aim of visualizing high-dimensional candidate solutions in evolutionary
multi-objective search, another widely adopted visualization method is known the par-
allel coordinates [7], which places the objective axes parallel to each other rather than
orthogonally such that an arbitrary number of dimensions can be displayed inside one
2D plane. Specifically, to show a solution set of an m-objective optimization problem,
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Fig. 1. Two different order of objective axes of a solution set in parallel coordinates.

parallel coordinates map them into a coordinate system with m parallel axes, typically
vertical and equally spaced. One candidate solution is represented as a polyline with m
vertices on these parallel axes, and the position on the ith axis corresponds to the value
of the solution on the ith objective. Recently, the parallel coordinates plot has been
dominantly used in high-dimensional data visualization [13], e.g., the multi-objective
optimization with more than three objectives, in spite of the emergence of various visu-
alization techniques [16, 15, 5, 6].

Despite its popularity, the parallel coordinates plot is not straightforward as the
scatter plot to show the information contained in solution sets [13]. In a parallel coor-
dinates plot, each vertical axis has at most two neighboring axes, and different order
of objective axes provide different information about the conflict between objectives.
The parallel coordinates plot only shows (m − 1) relationships of a total of C2

m rela-
tionships existing in m objectives. How to show the conflict between objectives clear
becomes critical and challenging to the parallel coordinates plot. Take Fig. 1 as an ex-
ample, which shows the parallel coordinates plots of two different order of the same
solution set. In Fig. 1(a) where the order of objectives is f1, f2, f3, and f4, the conflict
between any two adjacent objectives is mild. Conversely, in Fig. 1(b) where the order
of objectives is f1, f3, f2, f4, the conflict between f1 and f3 and the conflict between f2
and f4 are intense, and imply that f1 is negatively linear with f3, and f2 is negatively
linear with f4. Moreover, during the evolution process, the solutions are not mutually
non-dominated, and the dominance relation between solutions are not considered in
parallel coordinates plot makes the gradual improvement of the solution set invisible.
In this paper, we aim to address these two problems in the parallel coordinates plot by
adjusting parallel coordinates. The proposed parallel coordinates adjustment (APC) is
capable of clearly presenting the relation between objectives and the dominance relation
between candidate solutions.

The rest of this paper is organized as follows. Section 2 provides the background,
including a general definition of MOPs, concepts of Pareto dominance and Pareto opti-
mal set, and some related work. Section 3 is devoted to the description of the proposed
method. Section 4 provides some results of the investigation of MOEAs. Section 5 con-
cludes the paper.
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2 Background

A multi-objective optimization problem (MOP) can be generally formulated as a mini-
mization problem and defined as follows:

min F (x) = (f1(x), f2(x), . . . , fM (x))T

s.t. x ∈ Ω,
(1)

where x ∈ Rn consists of n decision variables representing the values which are to be
chosen in the optimization, Ω ⊆ Rn is the decision space, and F : Ω → RM consists
of M (conflicting) objective functions fi : Rn → R, (i = 1, . . . ,M).

For any two feasible solutions a and b of the MOP, it says that a is better than b if
the following conditions hold:

∀i fi(a) ≤ fi(b) and ∃j fj(a) < fj(b), (2)

where i, j ∈ {1, 2, . . . ,M}. In other words, a is not worse than b on all objectives and a
is better than b on at least one objective. We can also say that a dominates b, and denote
it as a ≺ b. A solution that is not dominated by any other solutions is denoted as Pareto
optimal. The set of the Pareto optimal solutions in the decision space is denoted as the
Pareto set, and the corresponding outcome in objective space is denoted as the Pareto
front. From the formulation in (1), we can see that the conflicts between objectives
prevent us from having a single optimal solution but rather a Pareto set for an MOP.

MOEAs optimize MOPs by producing a solution set at each generation and evolving
the candidate set gradually. The parallel coordinates plot is frequently used to view these
high-dimensional solutions, but it suffers from the visual clutter problem [9]. To address
this problem in parallel coordinates, Ankerst et al. proposed to reorder the axes such that
similar dimensions are positioned close to each other [1]. They modeled the reordering
of axes as a traveling salesman problem (TSP) and applied a heuristics to solve it.
In [2], Artero et al. presented a method, called similarity-based attribute arrangement
(SBAA), to select two dimensions with the largest similarity as the initial axes, and then
to search for the dimensions which will be positioned to the left and the right of them.
The SBAA method has a much lower computational complexity comparing with the
previous methods. However, it may leads to some intense conflict between objectives
being invisible. Actually, the most desirable order of the objectives should make the
most conflicting information visible that every objective at most can only be placed
adjacently with two other objectives.

3 Method

3.1 Reordering of objectives

In this section, we present an algorithm to arrange the order of objectives such that
the most significant conflict (harmony) between objectives can be visualized. Since the
conflict between objectives is local rather than global on the population from different
generations, we need to re-evaluate the conflict between objectives during the evolution
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process. In this paper, we assess the conflict/harmony between two objectives according
to the Spearman’s rank correlation between the objectives of all candidate solutions.
The Spearman’s rank correlation coefficient is a nonparametric technique for evaluating
the degree of rank correlation between two variables. It equals the Pearson correlation
between the rank values of the two variables. Technically, the variables A and B are
converted to rank variables rA and rB , respectively, according to the ranks of their
observations. The Spearman’s rank correlation coefficient is defined as

ρ(A,B) =
cov(rA, rB)

σrAσrB
, (3)

where σrA and σrB are the standard deviation of rA and rB , respectively, and cov(rA, rB)
is the covariance of rA and rB . Intuitively, the Spearman’s correlation between two vari-
ables will be high when observations have a similar rank between the two variables and
low when observations have a dissimilar rank between the two variables. As it oper-
ates on the ranks of the data, the Spearman’s correlation coefficient is appropriate for
both continuous and discrete variables and is insensitive to the operations of transla-
tion/scaling on the data.

In the evolution process, the most conflicting/harmonious information between ob-
jectives is desirable for the users. For a solution set, we calculate the Spearman’s rank
correlation between objectives, and then we use the absolute values of the correlation
to represent the harmony/conflict between two objectives. To arrange the order of these
objectives in a parallel coordinates plot, we use a greedy strategy and propose an algo-
rithm listed in Algorithm 1.

From the algorithm, we see that it consists of three stages: calculation of the Spear-
man’s rank correlation, correlation sorting, and the arrangement of the order of objec-
tives according to the sorted result. The third stage (Step 4 to Step 22) is the essential
part of the proposed method. It handles a pair of two objectives at each iteration. It
differs from the SBAA method, which iteratively adds one objective in one iteration.
In our method, the two objectives may be both added in the system at one iteration as
shown at Step 7. It may also add one objective at a time, as Step 11 and Step 14, if only
one of the objectives at one side of a group and another objective is not joined in any
group, as the conditions at Step 10 and Step 13. If both of the objectives are at the side
of two different groups, the algorithm will merge these two groups by placing these
two objectives adjacent. However, if both of these two objectives are at the side of the
same group or one of the objectives has already connected to two other objectives, the
algorithm will do nothing and go to the next step. Overall, after rearranging the order
of objectives with Algorithm 1, the objective would be adjacent to the two objectives
which have clearest (conflicting/harmonous) relation with except that these objectives
have stronger relation with other objectives.

3.2 Involving dominance relation

Since the optimal solution of an MOP is a set of Pareto optimal vectors, the Pareto dom-
inance relation between candidate solutions naturally becomes a criterion to distinguish
different solutions. In the evolution process, the candidate solutions can be sorted into
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Algorithm 1 The proposed procedure of arranging the order of objectives in parallel
coordinates
Require: The objective vectors of the solution sets yi = fi(x1,x2, . . . ,xN ) ∈ RN , i ∈
{1, . . . ,M}.

Ensure: The rearranged order of objectives.
1: t ← 1, p(i) ← 0, i ∈ {1, . . . ,M}; // t denotes the index of the current iteration, and p(i)

denotes the number of the connected adjacent objectives for the i-th objective.
2: Calculate the Spearman’s rank correlation Rij ← ρ(yi,yj) via (3), for all i > j ∈
{1, . . . ,M};

3: list← the sorting result on the absolute value of the correlation in descending order;
4: while exist one objective is not arranged do
5: Denote two objectives whose correlation corresponding to the list(t) as a and b;
6: if p(a) = 0 and p(b) = 0 then
7: Create a new group which includes a and b;
8: p(a)← p(a) + 1;
9: p(b)← p(b) + 1;

10: else if p(a) = 1 and p(b) = 0 then
11: Insert objective b to the same group with a;
12: p(b)← p(b) + 1;
13: else if p(a) = 0 and p(b) = 1 then
14: Insert objective a to the same group with b;
15: p(a)← p(a) + 1;
16: else if p(a) = 1 and p(b) = 1 and a is not in the same group with b then
17: Merge these two groups;
18: p(a)← p(a) + 1;
19: p(b)← p(b) + 1;
20: end if
21: t← t+ 1;
22: end while
23: return the order of the objectives in the group.

different levels according to the non-dominance relation by using the non-dominated
sorting approaches, such as the efficient non-dominated sorting method in [17]. We
represent the candidate solutions with different colors according to their non-dominated
levels such that the dominance relation can be easily observed. Fig. 2 shows an exam-
ple of six solutions in a 3D objective space with parallel coordinates. From Fig. 2(a),
it can be hard to observe the solutions which belong to the first non-dominated front,
but we can easily do from Fig. 2(b) where the solutions with blue color lie in the first
non-dominated front and the solutions with red color are located at the second non-
dominated front.

With this simple color annotating method, we can obtain more information of the
population, such as the number of individuals in different non-dominated front, how
these candidates evolve, and the solutions at the boundaries. They are helpful for inves-
tigating the behavior of the MOEAs.
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Fig. 2. Six solutions in 3D objective space with parallel coordinates plot. (a) presents the results
without special colors about the dominance relation; (b) is the results with special colors accord-
ing to the non-dominated levels of the solutions.

4 Results

In order to demonstrate the main properties of the proposed method and illustrate
how to use it to show solution sets and to investigate the search process of multi-
objective optimization, a series of experiments are conducted on the test problems of
DTLZ5(I,M) [4], multi-line distance minimization problem (ML-DMP) [13], and multi-
point minimization problem (MP-DMP) [10, 8]. Specifically, the experiments to be con-
ducted consist of two parts. In the first part, we demonstrate the result of the proposed
method on rearranging the order of objectives for the solution sets of the DTLZ5(I,M)
and ML-DMP via a many-objective optimizer, i.e., the strength Pareto evolutionary
algorithm (SPEA2) [18] with the shift-based density estimation (SDE) [12] strategy
(SPEA2+SDE)4. In the second part, we apply the proposed method to investigate the
behavior of the SPEA2+SDE on the MP-DMP. The experimental setting is as follows:
for the SPEA2+SDE, the maximum number of evaluation is used as the termination
condition, which is set to 50000, 50000 and 100000 for the DTLZ5(I, M), MP-DMP,
and ML-DMP, respectively, and the corresponding population sizes are 100, 100, and
200.

4.1 Visualization of solution sets

To analyze the conflict/harmony between objectives of a solution set, we conduct the ex-
periment on the output of the SPEA2+SDE on DTLZ5(3, 5) problem, 5-objective ML-
DMP, and 10-objective ML-DMP. From the definition of DTLZ5(I, M), we have that
the first three objectives of DTLZ5(3, 5) are linear dependent. To evaluate the proposed
method, we exchange the order of the objectives in DTLZ5(3, 5) to f1, f4, f3, f5, f2.
The solution set of the SPEA2+SDE on this problem is shown in Fig. 3(a), from which
we can see that the conflict/harmony information between objectives is not easily visi-
ble. Fig. 4 shows two solution sets in decision space obtained by SPEA2+SDE on these
two problems, respectively. The DL-DMP minimizes the distance of 2D points to a set

4 SPEA2+SDE has shown its good performance on this problem [11].
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of multiple straight lines, each of which passes through one edge of the given regular
polygon. One feature of this problem is that these solutions are located in a regular
polygon and their objective images are similar in the sense of Euclidean geometry. This
allows us to observe the distribution of the solutions in the objective space via viewing
them in the 2D decision space. We will use this feature of ML-DMP to analyze the
results of the reordering of the objectives in parallel coordinates.
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Fig. 3. The solutions of the SPEA2+SDE for DTLZ5(3,5) with different order of objectives. The
results before and after the rearranging of the order of objectives are shown at left and right,
respectively.
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Fig. 4. The solutions of the SPEA2+SDE in the decision space for 5-objective ML-DMP and
10-objective ML-DMP at left and right, respectively.

Results on the DTLZ5(3, 5) problem From the definition of the DTLZ5(I, M) prob-
lem, we have that the first three objectives of DTLZ5(3, 5), i.e., f1, f2, and f3, are
linear dependent. The result after rearranging the order of objectives with the proposed
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method is shown in Fig. 3(b). We can see that the first three objectives are arranged in
the adjacent positions, and it is consistent with our goal that placing the most conflict-
ing/harmonious objectives in adjacent positions. Comparing with the result in Fig. 3(a),
the result given by the proposed method provides important information between ob-
jectives that the first three objectives are harmonious, and the objectives f3 and f4 are
conflicting, as well as f4 and f5.

Results on the 5-objective ML-DMP In Fig. 5(a) where the order of objectives is f1,
f2, f3, f4, f5, the conflict between any two adjacent objectives is rather mild. On the
other hand, in Fig. 5(b) where the order of objectives is f3, f1, f4, f2, f5, the conflicts
between any two adjacent objectives are intense. Inspecting the result in Fig. 4(a), we
find that the adjacent objectives automatically be rearranged by the proposed method
are the most conflicting objectives, i.e, most of the points which are closer to L1 would
be far away from L3 and L4, and most of the points which are closer to L2 would
be far away from L4 and L5. This is caused by the fact that f1 and f3 are not com-
pletely conflicted. Similar situations hold for f1 and f4, f4 and f2, and f2 and f5. From
Fig. 4(a) and Fig. 5(b), we obtain that the proposed method detects the most desir-
able information between objectives. This can bring some insights to the solution sets
and the investigated MOEAs, which can be helpful to algorithm designers and decision
makers.
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Fig. 5. The solution set of SPEA2+SDE on the 5-objective ML-DMP with different order of
objective axes in parallel coordinates.

Results on the 10-objective ML-DMP In Fig. 6(a) where the order of objectives is
f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, the conflict between any two adjacent objectives
is mild. In some area, the adjacent objectives are even harmonious, but they are not
harmonious in the whole optimal region. In contrast, in Fig. 6(b) where the order of
objectives is f1, f6, f5, f10, f9, f4, f3, f8, f2, f7, some pair of adjacent objectives
are completely conflicting. From Fig. 4(b), we find that f1 is negatively linear with f6,
i.e., any point which moves more closely to L1 would have a longer distance to L6
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because these two lines are parallel and placed at two sides of optimal solutions. The
objectives f5 and f10, f9 and f4, f3 and f8, f2 and f7 have similar relation. These
five pairs of objectives are completely conflicting, respectively. It leads to the result in
Fig. 6(b) that the lines of the solutions are intersected at one point between axes of
Objective No. 1 and Objective No. 6, Objective No. 5 and Objective No. 10, Objective
No.9 and Objective No. 4, Objective No. 3 and Objective No. 8, and Objective No. 2
and Objective No. 7, respectively. Moreover, three pairs of harmonious objectives, f6
and f5, f10 and f9, f4 and f3, are then connected. These three pairs of objectives are
the minimization distances to three pairs of adjacent lines as shown in Fig. 4(b). Finally,
two conflicting objectives f8 and f2 are placed adjacent by the proposed method. The
connected order of the objectives can be all shown with the value of the Spearman’s
rank correlation by the proposed algorithm, even through these conflicting/harmonious
information between objectives are not easily observed by the user. Comparing with
the result in Fig. 6(a), the result obtained by the proposed method is much clear for the
algorithm designers and decision makers.
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Fig. 6. The solution set of SPEA2+SDE on the 10-objective ML-DMP with different order of
objective axes in parallel coordinates.

4.2 Investigation of search behavior

In this subsection, we demonstrate how to investigate the search behaviors of MOEAs
using the proposed adjusted parallel coordinates method. To exemplify, we apply the
SPEA2+SDE to solve a six-objective MP-DMP whose goal is to minimize the distance
to the six vertexes of a polygon. The results are shown in Fig. 7, from which we have the
following observations: 1) for the initial population, the individuals are fairly uniformly
distributed in the whole objective space and they are sorted to many non-dominated
fronts; 2) for the population in the 5th generation, the number of non-dominated fronts
are fewer than that of the initial population; 3) in the 15th generation, the individuals
are sorted into few non-dominated fronts and the conflict between f3 and f6, and the
conflict between f1 and f4 are fairly intense; 4) in the 30th generation, the individuals
are located in one non-dominated front, i.e., all of they are mutually non-dominated, and
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(g) The 30th generation
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Fig. 7. The populations of the SPEA2+SDE method on the 6-objective MP-DMP during the evo-
lution process. The subplots at the left column are the results by using the original parallel coor-
dinates, and the subplots at the right side are the results obtained by the proposed method.
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the conflicts between f1 and f4, f2 and f5, f3 and f6 are more intense than those in the
15th generation; 5) in the 50th generation, the conflicts between f1 and f4, f2 and f5,
f3 and f6 are very clear in the result obtained by the proposed method. In addition, the
conflict/harmony between objectives changes which leads to the order of the objectives
different during the evolution process (as shown in the right column of Fig. 7).

5 Conclusion

This paper focuses on adjusting parallel coordinates to investigate the search process
of multi-objective optimization. It considers two aspects: 1) rearranging the order of
objectives to make the relationships between objectives as clear as possible; 2) present-
ing the dominance relation between solutions to help us to know the evolution pro-
cess. To demonstrate the effectiveness of the proposed method, a series of experiments
have conducted on the solution sets or the population of the MOEAs on several bench-
marks. It firstly illustrated how to use the proposed algorithm to reorder the objectives
of mutually non-dominated solution sets. Then, the proposed method with objectives
reordering and dominance relation denoting program is further used to investigate the
search behavior of MOEAs. The experiments have shown that the proposed method can
be helpful in investigating evolutionary multi-objective search. In the future, we would
like to investigate how to extract more useful information from the solution sets or the
population during the evolution process and then present this information in the parallel
coordinates.
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