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Pareto or Non-Pareto: Bi-Criterion Evolution in
Multi-Objective Optimization

Miqing Li, Shengxiang Yang, Senior Member, IEEE, and Xiaohui Liu

Abstract—It is known that Pareto dominance has its own
weaknesses as the selection criterion in evolutionary multi-
objective optimization. Algorithms based on Pareto criterion (PC)
can suffer from slow convergence to the optimal front, inferior
performance on problems with many objectives, etc. Non-Pareto
criterion (NPC), such as decomposition-based criterion and
indicator-based criterion, has already shown promising results
in this regard, but its high selection pressure may lead to the
algorithm to prefer some specific areas of the problem’s Pareto
front, especially when the front is highly irregular. In this paper,
we propose a bi-criterion evolution framework of PC and NPC,
which attempts to make use of their strengths and compensates
for each other’s weaknesses. The proposed framework consists
of two parts, PC evolution and NPC evolution. The two parts
work collaboratively, with an abundant exchange of information
to facilitate each other’s evolution. Specifically, the NPC evolution
leads the PC evolution forward and the PC evolution compensates
the possible diversity loss of the NPC evolution. The proposed
framework keeps the freedom on the implementation of the NPC
evolution part, thus making it applicable for any non-Pareto-
based algorithm. In the PC evolution, two operations, population
maintenance and individual exploration, are presented. The
former is to maintain a set of representative nondominated
individuals, and the latter is to explore some promising areas
which are undeveloped (or not well-developed) in the NPC
evolution. Experimental results have shown the effectiveness of
the proposed framework. The BCE works well on seven groups
of 42 test problems with various characteristics, including those
where Pareto-based algorithms or non-Pareto-based algorithms
struggle.

Index Terms—Evolutionary multi-objective optimization,
Pareto criterion, non-Pareto criterion, bi-criterion evolution.

I. INTRODUCTION

THE area of multi-objective optimization has developed
rapidly over the past few decades, reflecting the need of

simultaneously dealing with multiple objectives in real-world
problems. Unlike global optimization in which there is often a
single optimal solution, multi-objective optimization involves
a set of Pareto optimal solutions. Evolutionary algorithms
(EAs) have shown high practicability in solving such multi-
objective optimization problems (MOPs). Their population-
based search aims at finding a finite-size set of well-converged,
well-distributed solutions, each representing a unique trade-off
among the objectives.

In evolutionary multi-objective optimization (EMO), the
selection criterion of individuals in the population plays a key
role. Since the output of an EMO algorithm for an MOP is a set
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of Pareto non-dominated solutions, Pareto dominance naturally
becomes a viable criterion to select individuals during the
evolutionary process. Pareto dominance reflects the weakest
assumption about the preference of a decision maker; an
individual x is said to Pareto dominate an individual y if
it is as good as y in all objectives and better in at least
one objective. This criterion, however, fails to distinguish
between individuals when they have their own advantage in
different objectives of an MOP. In this case, most Pareto-
based EMO algorithms, such as the nondominated sorting
genetic algorithm II (NSGA-II) [14], introduce the density
information of individuals in the population to further rank
them, serving the purpose of evolving towards different parts
of the problem’s Pareto front.

Despite its popularity in the EMO community, the Pareto
criterion (PC) or a Pareto-based algorithm is known to suffer
from some drawbacks, such as slow convergence to the
optimal front [63], no information of quantitative difference
between two individuals [5], [71], and inferior performance
on MOPs with a complex Pareto set (PS) [44] or a high-
dimensional objective space [31], [49], [68]. Recently, some
non-Pareto selection criteria have been shown to be promising
in tackling MOPs. Typically, they convert an objective vector
into a scalar value, thus providing a totally-ordered set of
individuals in the population. Compared with the PC, such
criteria have clear advantages, e.g., providing higher selection
pressure towards the Pareto front [7], [35], [39] and being
easier to work with local search techniques stemming from
global optimization [5], [43].

The indicator-based EA (IBEA) [82] and decomposition-
based multi-objective EA (MOEA/D) [75] are two represen-
tative examples in using the non-Pareto criterion (NPC) to
deal with MOPs. IBEA adopts a performance indicator to
optimize a desired property of the evolutionary population,
and MOEA/D decomposes an MOP into a set of scalar
subproblems and handles them collaboratively with the aid
of the information from their neighbors. These two algorithms
have laid the foundation for much state-of-the-art work to date,
leading to indicator-based and decomposition-based criteria,
along with the PC, to have become three mainstream selection
criteria in the EMO area [12], [77].

However, an NPC also comes with some shortcomings. Ide-
ally, the outcome of an EMO algorithm is a set of uniformly-
distributed solutions on the whole Pareto front. These solutions
are Pareto optimal and are supposed to be incomparable
in terms of proximity (convergence). But, most non-Pareto
criteria, which typically provide higher selection pressure than
the PC, make Pareto optimal solutions comparable, completely
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[13], [82] or partly [17], [42]. In such criteria, different parts
of the Pareto front are treated differently, e.g., the knee and
border of the front being usually preferred by the hypervolume-
based criterion [3], [59]. In this way, even some Pareto optimal
solutions may be eliminated during the evolutionary process as
they are not in favor with the criterion used, which can result
in the final solutions distributed “regularly”, but not uniformly
along the Pareto front.

Note that the decomposition-based criterion seems to be ex-
empt from the above problem since it, by using a set of weight
vectors, specifies multiple search directions towards different
parts of the Pareto front. One key issue in decomposition-based
EMO techniques, however, is how to maintain the uniformity
of intersection points of the specified search directions and the
problem’s Pareto front. Uniformly-distributed weight vectors
cannot guarantee the uniformity of the intersection points. In
fact, it is very challenging for decomposition-based algorithms
to access a set of the well-distributed intersection points for
any MOP, in particular in real-world scenarios where the
information of a problem’s Pareto front is often unknown.
Although much effort has been made on this issue recently
[2], [16], [21]–[24], [37], [58], [72], it is still far from being
resolved completely, especially when facing an MOP with
a highly irregular optimal front (e.g., a discontinuous or
degenerate front).

Given the above, one question could arise: is it possible
to develop an algorithm of synthesizing the Pareto and non-
Pareto selection criteria, which makes full use of their advan-
tages as well as effectively avoiding their disadvantages? In
this paper, we make an attempt along this line and present a bi-
criterion evolution (BCE) framework for MOPs. In BCE, the
PC and NPC work collaboratively, trying to guide the popula-
tion evolving fast towards the optimal front and simultaneously
maintain individuals’ diversity during the evolutionary process.

BCE manipulates two evolutionary populations, called the
NPC population and the PC population, respectively, each of
which is associated with one criterion. The NPC population
steers the PC population searching towards the optimal front,
while the PC population compensates the possible diversity
loss of the NPC population by exploring some undeveloped (or
not well-developed), but potentially promising regions in the
objective space. The two populations communicate with each
other in a generational manner; once one population produces
good individuals, the other is able to apply them directly within
its search process.

BCE keeps it free on the design of the NPC evolution
part, thus making the framework applicable for any non-
Pareto-based EMO algorithm in the area. Effort of BCE is
primarily on the PC evolution part. In the PC evolution,
an individual exploration operation, coupled with a novel
population maintenance strategy, is proposed to adaptively
allocate resources (search effort), based on the information
contrast between the current states of the two evolution parts.

The rest of this paper is organized as follows. Section II
explains the motivation of the proposed approach. Section III
is devoted to the description of BCE, including the basic algo-
rithmic framework, the population maintenance and individual
exploration operations, and the analysis of the algorithm’s time

complexity. Section IV experimentally verifies the proposed
BCE framework, based on its implementation with three rep-
resentative non-Pareto-based algorithms. Further investigation
and discussion of BCE’s behavior are given in Section V
and Section VI, respectively. Finally, Section VII draws the
conclusions of the paper.

II. MOTIVATION AND RELATED WORK

Over the past few years, non-Pareto criteria have demon-
strated their success in dealing with many challenging MOPs,
such as an MOP with a huge number of local Pareto fronts
[17], with a complex PS [44], [74], or with a high-dimensional
objective space [32], [51], [68]. They typically provide higher
selection pressure than the Pareto criterion, by either modi-
fying the traditional Pareto dominance relation (such as the
ϵ-dominance [17], [42], [67], fuzzy-based dominance [26],
and dominance area control [60]) or introducing a quantitative
individual comparison criterion (such as the distance-based
criterion [54], [70], indicator-based criterion [8], [39], [82],
and decomposition-based criterion [55], [75]).

However, non-Pareto criteria also suffer from problems,
e.g., in terms of maintaining individuals’ diversity (especially
uniformity) in the population. In general, the ideal output
of an EMO algorithm, in the absence of any preference
information, is a set of uniformly-distributed nondominated
solutions over the whole Pareto front. This means that the
comparison between the Pareto optimal solutions should be
solely based on their density information. But, this is not the
case in non-Pareto criteria where the Pareto optimal solutions
could be ranked, depending not only on their density but also
on their position in the population as well as the shape of the
Pareto front. For example, the ϵ-dominance criterion [42] is
likely to eliminate boundary individuals of the population [27],
[51]. Some indicator-based criteria, like the hypervolume [79]
and R2 [9], prefer the knee region of the Pareto front [19],
[59]. The algorithms based on the decomposition criterion
search towards a set of points intersected by the specified
search directions and the Pareto front, but struggle to maintain
the uniformity of these intersection points when the front is
highly irregular [24], [37], [58].

Next, we give an empirical example to show the failure of a
non-Pareto-based algorithm in providing a set of representative
solutions. Fig. 1 shows the results with respect to one typical
run1 of a popular decomposition-based algorithm, MOEA/D
[75] with the Tchebycheff scalarizing function2 (denoted as
MOEA/D+TCH), on a discontinuous test problem DTLZ7
[18]. The final solutions obtained by MOEA/D+TCH are
plotted in Fig. 1(a). For contrast, Fig. 1(b) gives the final
result of the solution set maintained by the criteria of Pareto-
based algorithms (i.e., solutions being tested first by their
Pareto dominance relation and then by their density3) in this

1The parameter setting in the run is the same as in the experimental studies,
described in Section IV.

2In order to obtain more uniform solutions, in the Tchebycheff scalarizing
function, “multiplying the weight vector wi” in the original MOEA/D+TCH
[75] is replaced by “dividing wi”, as suggested and practiced in recent studies
[16], [45].

3Here individuals’ density is estimated by the method in BCE, described
in Section III-B.
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(a) (b) (c) (d)

Fig. 1. An empirical example of the failure of an NPC in both diversity maintenance and search, where the results are obtained with respect to one run of
MOEA/D+TCH on the problem DTLZ7. (a) Solution set maintained by the original criterion of MOEA/D+TCH; (b) Solution set maintained by the criteria
of Pareto dominance and density; (c) Nondominated set of all solutions produced in the run; (d) Pareto front.

run of MOEA/D+TCH. That is, an external archive set is
added in the algorithm to store well-distributed nondominated
solutions produced throughout the whole evolutionary process.
In addition, the nondominated set of all solutions produced in
this run is given in Fig. 1(c).

As can be seen from Figs. 1(a) and (c), MOEA/D+TCH
fails to select a set of diverse solutions from all the solutions
produced in the whole evolutionary process. In contrast, the
selection criteria of Pareto-based algorithms, which consider
the Pareto dominance relation and density of candidate so-
lutions, can make the algorithm’s output representative, as
shown in Fig. 1(b). On the other hand, the deficiency of
the algorithm in diversity maintenance also has a detrimental
effect on its search ability. To explain this, the Pareto front of
the problem is added in Fig. 1(d) for the comparison between
the real optimal solutions and the solutions produced during
the evolutionary process. From Figs. 1(c) and (d), it can be
observed that there exist several large pieces of unexplored
regions in MOEA/D+TCH’s search process. This occurrence
can be attributed to the fact that the selection operation in this
non-Pareto algorithm is always around some particular points
(cf. Fig. 1(a)) at each generation, thus leading individuals’
exploration to concentrate only on some specific regions of
the objective space.

The above problems of non-Pareto criteria are precisely
the underlying motivation of our study. In this paper, we
introduce a BCE framework of Pareto and non-Pareto criteria,
in order to use their strengths and compensate for each other’s
weaknesses.

It is worth pointing out that the combination of NPC and
PC is not uncommon in EMO. For example, Ishibuchi et
al. [33] combined the Pareto-based algorithm NSGA-II with
the weighted sum criterion to probabilistically pick out solu-
tions in both mating and environmental selection processes.
Al Moubayed et al. [1] used a decomposition-based criterion
to select the leaders in multi-objective particle swarm opti-
mization (PSO) and introduced the crowding distance to main-
tain the diversity of nondominated solutions in the decision and
objective spaces. Deb and Jain [16] proposed a hybrid EMO
algorithm, NSGA-III, which uses the Pareto nondominated
sorting to develop convergence and the decomposition-based
criterion to maintain diversity during the evolutionary process.

On the other hand, some studies in the literature adopted
multiple archives (or populations) to separately promote con-
vergence and diversity during the evolutionary process. Wang
et al. [69] developed a two-archive many-objective algorithm,
with one archive being driven by an indicator-based criterion
and the other being maintained by an Lp-norm-based dis-
tance criterion. Zăvoianu et al. [73] presented a hybrid co-
evolutionary algorithm with three populations, each one asso-
ciated with a classic algorithm, i.e., SPEA2 [78], differential
evolution [41], and a decomposition-based algorithm. Cai et
al. [10] proposed a hybrid EMO algorithm for combinatorial
MOPs, by using a decomposition-based strategy to guide its
internal population and a domination-based sorting technique
to maintain the external archive. In addition, the idea of
having separate archives has also been used in multi-objective
scatter search, where the reference set is split into two subsets
that promote convergence and diversity, respectively. In multi-
objective scatter search algorithms, Pareto dominance and
decomposition criteria are often used in the convergence-
promoting subset, and distance-based criteria in the diversity-
promoting subset [6], [53], [56].

An important difference between the proposed BCE and
existing hybrid EMO algorithms with multiple criteria and/or
multiple archives is that BCE takes advantage of the infor-
mation contrast between the evolutionary populations based
on distinct selection criteria, thus making the search focused
on promising regions in terms of both Pareto and non-Pareto
criteria. Another clear difference is that BCE is a general
framework rather than a specific algorithm, and it can work
with any non-Pareto EMO algorithm.

III. BI-CRITERION EVOLUTION

Fig. 2 gives the overall framework of BCE. As shown,
BCE consists of two evolution parts, NPC evolution and PC
evolution. BCE keeps the freedom on the implementation of
the NPC evolution part – any non-Pareto EMO algorithm can
be directly embedded, with all components (population setting,
individual initialization, fitness assignment, selection, varia-
tion, etc.) remaining unchanged. The only newly-introduced
operation is that the population for the next-generation evolu-
tion (the bottom box) is comprised of individuals which are
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Fig. 2. Overall framework of bi-criterion evolution.

selected from itself and newly produced individuals in the PC
evolution part (called the NPC selection).

For the PC evolution part, the manipulated population (i.e.,
the PC population) only preserves the Pareto nondominated
solutions produced in both NPC and PC evolution, thereby
having a varying size. When the size of the PC population is
larger than a predefined threshold, a population maintenance
operation will be implemented to eliminate some poorly
distributed individuals. If here the termination condition is
satisfied (e.g., reaching a preset number of evaluations), the
evolution ends with the PC population as the final output.
Otherwise, an individual exploration operation is implemented
to explore some promising individuals in the PC population,
bearing the evolutionary information from the NPC popula-
tion.

In BCE, the two populations share and exchange informa-
tion frequently, but evolve based on their own criterion. Any
new individual (wherever it is produced) will be considered in
both sides of BCE to see if it could be preserved in their own
population. In general, the PC population can be regarded as a
good complement to the NPC population. It is able to not only
preserve representative Pareto nondominated solutions which
could be eliminated in the NPC evolution, but also reflect the
current status of the NPC evolution by the information contrast
between the two populations.

Next, we describe key operations of BCE. They are the PC
and NPC selection, population maintenance, and individual
exploration.

A. PC Selection and NPC Selection

As their names suggest, the PC and NPC selections are
to select individuals (from the considered population and the
newly produced individuals) according to the PC and NPC,
respectively. The PC selection is implemented by directly
picking out the Pareto nondominated individuals from the

mixed set of the PC population and new individuals produced
in both the NPC and PC evolutions .

The NPC selection, in general, can be simply implemented
by the environmental selection operation of the embedded non-
Pareto-based algorithm. For example, in the NPC selection
of BCE-IBEA (i.e., BCE with IBEA embedded into its NPC
evolution part), the resulting NPC population is comprised of
the individuals with the highest fitness with respect to the
considered criterion (indicator) in the mixed set of the NPC
population and the new individuals from the PC evolution. But,
this is impracticable for some algorithms where the survival of
a newly produced individual is relevant to the information from
its parent(s), such as MOEA/D. This is because the candidate
individuals in the NPC selection are from different evolution
parts, without being in the parent-child relationship. For these
algorithms, the NPC selection compares each individual from
the PC evolution with all the members of the NPC population.
If an individual from the PC evolution performs better than one
or more population members with respect to the considered
criterion, then it replaces one of them (chosen at random);
otherwise, it is discarded. Algorithm 1 gives the procedure of
the NPC selection.

B. Population Maintenance

In the PC evolution part, the population preserves the Pareto
nondominated individuals produced during the whole search
process and has a varying size. When the size of the population
exceeds a predefined capacity, population maintenance will be
activated to truncate some of its individuals with poor distri-
bution. It is known that an effective population maintenance
operation can maintain a set of representative individuals,
which is independent of the properties of the problem (e.g.,
the number of objectives and the shape of the Pareto front).
In this paper, we present a niche-based approach, attempting
to preserve a set of representative individuals for any MOP.
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Algorithm 1 NPCselection(Q,T )

Require: Q (non-Pareto criterion population), T (newly produced
individual set in the Pareto criterion evolution part), label (type
of the environmental selection in the embedded non-Pareto
algorithm)

1: label← SelectionType() /∗ Return 1 if the survival of a newly
produced individual is irrelevant to its parent(s) in the selection
process of the non-Pareto algorithm; otherwise, return 0 ∗/

2: if label = 1 then
3: Q← EnvironmentalSelection(Q,T )

/∗ Select |Q| individuals with the highest fitness with
respect to the considered non-Pareto criterion from Q∪T ∗/

4: else
5: for all t ∈ T do
6: Z ← ∅
7: for all q ∈ Q do
8: if t is better than q with respect to the considered

criterion then
9: Z ← Z ∪ q

10: end if
11: end for
12: if Z ̸= ∅ then
13: z ← Random(Z)

/∗ Select one individual from Z at random ∗/
14: Q← Q \ z
15: Q← Q ∪ t
16: end if
17: end for
18: end if
19: return Q

Niching is a class of popular diversity maintenance tech-
niques in the EA field. Originating from the idea of shar-
ing resources, niching can be used to measure individuals’
crowding degree (density) in the population. Here, we estimate
the crowding degree of an individual by considering both
the number and location of the individuals in its niche.
Specifically, the crowding degree of an individual p in the
population P is defined as follows:

D(p) = 1−
∏

q∈P,q ̸=p

R(p, q) (1)

R(p, q) =

{
d(p, q)/r , if d(p, q) ≤ r
1, otherwise (2)

where d(p, q) denotes the Euclidean distance between indi-
viduals p and q, and r is the radius of the niche (its setting
will be explained later). Note that the scale of the problem’s
objectives could be highly different and this will affect the
estimation of individuals’ crowding degree here. To avoid this
kind of problem, in BCE all the objectives will be normalized
(with respect to their minimum and maximum values in
the population) when the considered operation involves the
integration of multiple objectives.

Next, we give some explanations of the proposed crowding
degree estimation method.

• The crowding degree of an individual is in the range
[0, 1], with a lower value being preferable. An individual
having the crowding degree 0 means that there is no
other individual in its niche. On the other hand, duplicate
individuals have the highest crowding degree 1, regardless
of the distribution of other individuals in their niche.

• The crowding degree of an individual is determined by
the number of its neighbors (i.e., the individuals in its
niche) and the distance between it and these neighbors.
Individuals having more neighbors or closer distance to
their neighbors are likely to obtain a higher (worse)
crowding degree.

• The crowding degree of an individual is influenced more
by its closer neighbor(s). For example, considering two
individuals p and q, let both of them have two neighbors
and the sum of the distance to their own neighbors be the
same (say 0.2 and 0.8 for p and 0.4 and 0.6 for q). Ac-
cording to the definition, p, which has a shorter distance
(0.2) to its closer neighbor, will have a higher crowding
degree than q (1−0.16/r2 = 0.84 > 1−0.24/r2 = 0.76,
assuming r = 1.0 here). Actually, even if p has only one
neighbor (closer one), its crowding degree is still higher
than that of q (1 − 0.2/r = 0.8 > 1 − 0.24/r2 = 0.76).
This means that an individual which has very close
neighbor(s) will be assigned a high crowding degree
no matter how far it is from other individuals in the
population. This is in line with the target of developing
the diversity of individuals.

One crucial issue in the proposed crowding degree estimator
is the setting of the niche radius, which determines the number
of neighbors as well as their location in the niche. Unlike some
niching techniques where it is fixed and/or set by the user,
the niche radius in the proposed estimator is determined by
the evolutionary population. We consider the average of the
distance from all the individuals to their kth nearest individual
in the population as the radius, attempting to enable most of
the individuals to have one or several neighbors in their niche.
Here, k is set to 3. The reason of this setting will be explained
in detail in the discussion section of the paper (Section VI)

Based on the crowding degree of individuals in the popu-
lation, the truncation operation can be simply implemented.
First, the individual which has the highest crowding degree
is removed; if there are several individuals with the highest
crowding degree, the tie will be split randomly. Then, the
crowding degree of the individuals who are neighbors of the
removed individual (i.e., in its niche) is renewed, and again
the current most crowded individual is found and removed.
This process is repeated until a predefined population size is
achieved. Overall, the proposed method iteratively removes
crowded individuals and thus leaves a representative popula-
tion, and this can also be observed in the example of Fig. 1
(see Figs. 1(b) and (c)).

C. Individual Exploration

In BCE, the NPC evolution generally has higher selection
pressure than the PC evolution and may prefer partial area(s)
of the Pareto front sometimes. This may cause repeating
search on some particular regions of the objective space. The
individual exploration operation in this section aims to cover
this issue. It attempts to explore some promising individuals in
the PC population which have been eliminated, are not well-
developed, or are even unvisited in the NPC evolution. This
exploration is adaptive, based on the information comparison
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Algorithm 2 Exploration(P,Q)

Require: P (Pareto criterion population), Q (non-Pareto criterion
population), S (set of the individuals to be explored), T (set of
newly produced individuals)

1: S ← ∅
2: r ← Radius() /∗ Determine the size of the niche ∗/
3: for all p ∈ P do
4: count← 0 /∗ For record-

ing the number of the NPC individuals in the niche of p ∗/
5: for all q ∈ Q do
6: if d(p, q) ≤ r then
7: count← count+1 /∗ When q is in the niche of p ∗/
8: end if
9: end for

10: if count = 0 or count = 1 then
11: S ← S ∪ p
12: end if
13: end for
14: T ← ∅
15: for all s ∈ S do
16: s′ ← V ariation(s)
17: T ← T ∪ s′

18: end for
19: return T

between the two evolutionary populations. If the NPC popu-
lation has been found to be well distributed, little exploration
will be made; otherwise, much exploration will be made
around those promising individuals.

Now, a key question may arise – what individuals are
promising and need to be explored? Since the PC population is
comprised of a set of representative nondominated individuals,
it generally performs well in both convergence and diversity.
Nevertheless, it is unnecessary to explore the whole PC
population as some of its individuals may already be well
explored in the NPC evolution. Such individuals are preferred
by the considered NPC and there may be many individuals
in the NPC population located around the regions where such
individuals reside.

In view of this, we consider two kinds of individuals out
of the whole PC population: 1) individuals whose niche has
no NPC individual4 and 2) individuals whose niche has only
one NPC individual. The first kind of individuals is clearly
not preferred by the considered NPC. Exploring them means
to probe into undeveloped regions in the NPC evolution.
The niches in which the second kind of individuals resides
correspond to low density regions of the NPC population.
Exploring them means to probe into the regions which are not
well developed in the NPC evolution, but may be potentially
promising since they still have individual(s) existing in both
the NPC and PC populations after (iterative) selection based
on the non-Pareto and Pareto criteria, respectively.

Algorithm 2 gives the main procedure of individual explo-
ration. As shown, the algorithm can primarily be divided into
two parts. One is to determine which individuals in the PC
population will be explored (Steps 3–13) and the other is to
carry out the exploration on those individuals (Steps 15–18).
In the proposed framework, the variation operation (Step 16)

4For brevity, individuals in the NPC and PC populations are denoted as
NPC and PC individuals, respectively.

is not fixed and can be freely specified by users. It can be
the same with what is in the NPC evolution (as done in our
experimental studies), be chosen from other existing variation
operators, or even be directly designed for the exploration
here. In addition, note that in different variation operators the
number of parent individuals may be different. For a variation
operator with only one parent (like mutation), the explored
individual is applied directly. For a variation operator with
two or more parents (like crossover), the explored individual is
considered as one parent (or the primary parent in the operator,
e.g., in differential evolution) and the remaining parent(s) will
be selected randomly from the PC population.

In Step 2 of Algorithm 2, the radius of the considered
niche is calculated. The niche range is an important factor
in individual exploration, which, together with the distribution
of NPC individuals, determines how many individuals will be
explored in the PC population. A small enough niche is likely
to lead all PC individuals to be explored, and a large enough
niche can cause none of them to be done. Here, we introduce
a variable niche, whose range varies with the size of the PC
population.

The PC population only preserves nondominated individu-
als, and its size can reflect the role of the Pareto dominance
criterion during the evolutionary process. A small population
size means that Pareto dominance can provide sufficient selec-
tion pressure to eliminate poorly-performed individuals. This
usually happens in the initial stage of the evolution. At this
time, the population maintenance operation is not activated,
and the PC population which stores all nondominated individu-
als produced in both the NPC and PC evolutions represents the
best individuals found so far. Therefore, it is desirable to put
more effort to explore it. With the progress of the evolution,
more and more individuals are produced and Pareto dominance
may gradually fail to provide sufficient selection pressure.
When newly produced nondominated individuals significantly
exceed the remaining slots of the population capacity, the PC
evolution will slow down. At this time, it is beneficial to
make relatively less exploration on the PC population, thus
leading to more resources possessed by the NPC evolution
which generally has high selection pressure. Given the above,
the radius of the niche is determined as follows:

r = (N ′/N)× r0 (3)

where N denotes the capacity of the PC population, N ′

denotes the actual size of the PC population before the
truncation, and r0 is the basic niche radius, calculated in the
same way as in the population maintenance operation.

In BCE, individual exploration in the PC evolution in-
evitably competes with the variation operation in the NPC
evolution for limited computational resources (i.e., function
evaluations). Given a fixed computational budget, the number
of individuals explored directly affects the evolutionary level
of the NPC population. However, it is worth noting that
individual exploration here is adaptive, depending on the
current evolutionary status of the NPC population. When the
NPC population has diversity loss (like the case in Fig. 1(a)
where the decomposition-based criterion struggles to maintain
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(a) MOEA/D+TCH (b) BCE-MOEA/D+TCH

Fig. 3. The nondominated set of all the solutions produced in one run of
MOEA/D+TCH and BCE-MOEA/D+TCH on DTLZ7, respectively.

diversity), intensive exploration will be made. When the pop-
ulation has been found to be well distributed, little or even
no exploration will be done; for instance, for the test function
DTLZ2 [18] the decomposition-based evolutionary population
can work very well and thus no individual is explored in
the PC population (this will also be empirically presented in
Section V-B).

Finally, Fig. 3 gives the comparative results of the origi-
nal MOEA/D+TCH (i.e., Fig. 1(c)) and BCE-MOEA/D+TCH
(BCE with MOEA/D+TCH embedded into its NPC evolution
part) by plotting all of their nondominated individuals pro-
duced in one run. In contrast to MOEA/D+TCH’s solutions
which are located around some specific regions, the solutions
produced by BCE-MOEA/D+TCH nearly cover the whole
optimal space. This difference can be fully attributed to the
individual exploration operation in the PC evolution part of
the algorithm, which conducts the search on some undeveloped
(or not well-developed) regions in the NPC evolution.

D. Computational Complexity of One Generation of BCE

The computational cost of BCE comes from two parts,
the NPC evolution and the PC evolution. For simplicity,
let both parts have the population size (capacity) N . For
the time complexity of the NPC evolution, there are two
possible situations, depending on the selection operation in
the embedded non-Pareto algorithm. When the survival of an
individual is determined by its fitness in the population (like in
IBEA), the NPC selection is implemented in the same way as
the individual selection in the embedded algorithm (cf. Section
III-A). In this case, the NPC evolution has the same time
complexity as the embedded algorithm (denoted as C). On
the other hand, when the survival of an individual is relevant
to the information from its parents (like in MOEA/D), the
NPC selection is implemented by comparing the individuals
produced in the PC evolution with the members of the NPC
population. This requires O(N2) comparisons at most. Hence,
the time complexity of the NPC evolution in this situation is
C or O(N2), whichever is larger.

The computational cost of the PC evolution part is de-
termined by three operations, the PC selection, population
maintenance, and individual exploration. The PC selection,
which identifies nondominated individuals from a population

with 3N members at most, requires O(mN2) comparisons
[14], where m is the number of objectives. In the population
maintenance, the Euclidean distance between each pair of
individuals in the population is first calculated, which re-
quires O(mN2) computations. Then, determining the niche
radius requires O(N2) computations, in which finding the
kth smallest distance (k = 3) for an individual needs O(N)
comparisons. Thereafter, the crowding degree estimation and
the population truncation are sequentially implemented. Both
requires O(N2) computations (or comparisons). It is worth
mentioning that in the population truncation we only need to
update the crowding degree of the neighbors of the removed
individual (i.e., the individuals which is in the same niche of
the removed individual). In general, the niche of an individual
only has a few individuals (independent of N ) due to the
setting of the radius (namely, the average distance from all
individuals in the population to their 3rd nearest individual). In
the individual exploration, the Euclidean distance between the
individuals and the radius of the niche are also calculated first,
which require O(mN2) and O(N2) computations, respec-
tively. Then, determining which individuals in the population
will be explored requires O(N2) comparisons (Steps 3–13 in
Algorithm 2). Finally, carrying out the exploration operation
on the selected individuals requires O(N) computations at
most. Therefore, the total time complexity of the PC evolution
is O(mN2).

To sum up, the overall computational complexity of one
generation of BCE is bounded by C or O(mN2), whichever
is larger, where C is the computational complexity of the
embedded non-Pareto algorithm.

IV. PERFORMANCE VERIFICATION OF BCE
The proposed framework is verified by embedding non-

Pareto EMO algorithms into its NPC evolution part and
comparing these non-Pareto algorithms with the resulting BCE
algorithms. We consider two representative non-Pareto-based
algorithms, IBEA [82] and MOEA/D [44], which lead the
evolution via the indicator-based criterion and decomposition-
based criterion, respectively. In MOEA/D, two scalarizing
functions Tchebycheff (TCH) and penalty-based boundary
intersection (PBI) are commonly used in the literature, and
both are included in our experiments in view of their good
performance for different MOPs [16], [32], [44], [48]. Note
that MOEA/D used here is sourced from [44] rather than from
its original paper [75]. This improved version can largely
enhance the diversity of the population, by allowing parent
individuals to be selected from the whole population as well
as setting a limit of the maximal number of individuals
replaced by a newly produced child individual. In addition,
in the TCH scalarizing function, we replace “multiplying the
weight vector” with “dividing it” for obtaining more uniform
individuals, as pointed out in [16], [37]. Overall, the intention
that we consider this version of MOEA/D is to verify the
effectiveness of BCE even when the considered non-Pareto
algorithms already work fairly well in terms of diversity
maintenance on most MOPs.

A comprehensive set of 42 MOPs are introduced in the
experiments. These test problems, which are widely used in
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TABLE I
SETTINGS AND PROPERTIES OF TEST PROBLEMS. m AND d DENOTE THE NUMBER OF OBJECTIVES AND DECISION VARIABLES, RESPECTIVELY

Problem m d Properties Problem m d Properties Problem m d Properties
SCH1 2 1 Convex WFG7 2 22 Concave, Biased UF2 2 30 Convex, Complex PS
SCH2 2 1 Discontinuous WFG8 2 22 Concave, Nonseparable, Biased UF3 2 30 Convex, Complex PS
KUR 2 3 Discontinuous WFG9 2 22 Concave, Nonseparable, Deceptive, Biased UF4 2 30 Concave, Complex PS
ZDT1 2 30 Convex VNT1 3 2 Convex UF5 2 30 Linear, Discrete, Complex PS
ZDT2 2 30 Concave VNT2 3 2 Mixed UF6 2 30 Linear, Discontinuous, Complex PS
ZDT3 2 30 Discontinuous VNT3 3 2 Mixed, Degenerate UF7 2 30 Linear, Complex PS
ZDT4 2 10 Convex, Multimodal DTLZ1 3 7 Linear, Multimodal UF8 3 30 Concave, Complex PS
ZDT6 2 10 Concave, Multimodal, Biased DTLZ2 3 12 Concave UF9 3 30 Linear, Discontinuous, Complex PS
WFG1 2 22 Mixed, Biased DTLZ3 3 12 Concave, Multimodal UF10 3 30 Concave, Complex PS
WFG2 2 22 Convex, Discontinuous, Nonseparable DTLZ4 3 12 Concave, Biased DTLZ2(4) 4 13 Concave
WFG3 2 22 Linear, Degenerate, Nonseparable DTLZ5 3 12 Concave, Degenerate DTLZ2(6) 6 15 Concave
WFG4 2 22 Concave, Multimodal DTLZ6 3 12 Concave, Degenerate, Biased DTLZ2(10) 10 19 Concave
WFG5 2 22 Concave, Deceptive DTLZ7 3 22 Mixed, Discontinuous, Multimodal DTLZ5(2,10) 10 19 Concave, Degenerate
WFG6 2 22 Concave, Nonseparable UF1 2 30 Convex, Complex PS DTLZ5(3,10) 10 19 Concave, Degenerate

TABLE II
POPULATION SIZE AND FUNCTION EVALUATIONS IN THE EXPERIMENTS

Test Problems Population Size Function Evaluations
2-Obj. UF 600 300 000
3-Obj. UF 1 000 300 000
General 2-Obj. MOPs 100 25 000
General 3-Obj. MOPs 105 30 000
4-Obj. MOPs 220 100 000
6-Obj. MOPs 252 100 000
10-Obj. MOPs 220 100 000

the area, have various properties, such as having a convex, con-
cave, mixed, discontinuous or degenerate Pareto front, having
a multimodal, biased or deceptive search space, and/or having
strong-linkage decision variables. They certainly include some
MOPs where non-Pareto algorithms generally work well, like
an MOP with a linear (or fairly regular) Pareto front, and also
have some where the algorithms may encounter difficulties,
like an MOP with a discontinuous (or highly irregular) Pareto
front. Table I summarizes the properties and configuration of
these MOPs. All the problems are configured as described in
their original papers [18], [28], [61], [66], [74], [80].

To compare the performance of the algorithms, two widely-
used quality indicators, the inverted generational distance
(IGD) [16], [75] and hypervolume (HV) [79], are considered
as they can provide a combined information of convergence
and diversity of a solution set. IGD measures the average
Euclidean distance from uniformly distributed points along
the whole Pareto front to their closest solution in the obtained
solution set, and a smaller value is preferable. HV calculates
the volume of the objective space between the obtained
solution set and a specified reference point, and a larger value
is preferable.

In the calculation of HV, two crucial issues are the scaling
of the search space [20] and the choice of the reference
point [3]. Since the objectives in the considered test problems
take different ranges of values, we standardize the objective
value of the obtained solutions according to the range of the
problem’s Pareto front. Following the recommendation in [34],
the reference point is set to 1.1 times the upper bound of
the Pareto front (i.e., r = 1.1m) to emphasize the balance
between proximity and diversity of the obtained solution set.
Note that solutions that do not dominate the reference point
are discarded (i.e., solutions that are worse than the reference
point in at least one objective contribute zero to HV).

All the results presented in this study are obtained by
executing 30 independent runs for each algorithm. For a fair
comparison, all the algorithms have the same size (or capacity)
of the population (for BCE, this refers to both the NPC and
PC populations) and the same number of function evaluations
on each problem. Table II lists the settings of the population
size and function evaluations for all the test problems in
the experiments. For the UF functions from the CEC2009
competition [74], the population size and function evaluations
are specified the same as in their original report [76]. For
other MOPs, we used a smaller population size and fewer
function evaluations as they are generally easier than the UF
functions. Like some existing studies [52], the number of
function evaluations is set to 25,000 and 30,000 for 2- and
3-objective MOPs, respectively. Note that in MOEA/D the
population size corresponds to the number of weight vectors
and the algorithm cannot generate uniformly distributed weight
vectors at an arbitrary number. So, we set the population size
consistent with the number of the uniformly generated weight
vectors in MOEA/D. That is 100, 105, 220, 252 and 220
for the 2-, 3-, 4-, 6- and 10-objective MOPs, respectively.
In addition, given that many-objective problems often bring
bigger challenges for EMO algorithms than MOPs with 2 or
3 objectives [57], we assign them a larger population size and
more function evaluations, following the practice in [47].

Parameters need to be set in the considered algorithms. Ac-
cording to [74], the size of the neighborhood, the probability
of parent individuals selected from the neighborhood, and the
maximum number of replaced individuals in MOEA/D were
specified as 10% of the population size, 0.9, and 1% of the
population size, respectively. As suggested in [75], [82], the
penalty parameter θ in MOEA/D+PBI was set to 5 and the
scaling factor κ in IBEA to 0.05. In BCE, the embedded non-
Pareto algorithms used the same setting of parameters as in
their original versions.

All the considered algorithms were given real-valued vari-
ables. Two widely-used crossover and mutation operators,
simulated binary crossover (SBX) and polynomial mutation
(with distribution indexes 20 [15]), were used on all the MOPs
except UF. The crossover probability was set to pc = 1.0
and mutation probability to pm = 1/d, where d denotes the
number of decision variables. For the UF problems which have
a strong linkage in variables, the use of variable-independent
SBX may not be adequate [16], [44]. Following the study in
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TABLE III
IGD RESULTS (MEAN AND SD) OF THE THREE GROUPS OF PAIRED ALGORITHMS. THE BETTER MEAN FOR EACH CASE IS HIGHLIGHTED IN BOLDFACE

Property Problem IBEA BCE-IBEA MOEA/D+TCH BCE-MOEA/D+TCH MOEA/D+PBI BCE-MOEA/D+PBI

Convex

SCH1 1.9093E–2(4.1E–4) 1.6732E–2(1.1E–4)† 4.9139E–2(1.5E–3) 1.6761E–2(1.4E–4)† 1.7765E–1(5.2E–3) 1.6729E–2(9.3E–5)†

ZDT1 4.0773E–3(6.8E–5) 3.9475E–3(5.0E–5)† 4.3626E–3(3.4E–4) 4.2756E–3(9.4E–5)† 8.2654E–3(1.7E–3) 5.9401E–3(4.3E–4)†

ZDT4 6.2464E–1(1.1E–1) 1.2270E–1(5.9E–2)† 1.0001E–2(3.4E–3) 8.2586E–3(3.2E–3)† 3.7084E–2(2.8E–2) 1.3458E–2(6.5E–3)†

VNT1 1.6688E–1(2.7E–2) 1.2731E–1(3.3E–3)† 2.2398E–1(1.3E–3) 1.2240E–1(2.7E–3)† 1.7364E–1(5.6E–4) 1.2544E–1(2.7E–3)†

Concave

ZDT2 9.1909E–3(3.7E–4) 4.0420E–3(3.3E–4)† 4.3342E–3(1.8E–4) 4.1688E–3(9.3E–5)† 1.0540E–2(1.2E–3) 7.2119E–3(7.8E–4)†

ZDT6 5.4849E–3(1.8E–4) 3.4449E–3(8.6E–5)† 1.5027E–2(1.7E–3) 1.0328E–2(1.3E–3)† 3.9299E–2(4.6E–3) 2.1787E–2(2.7E–3)†

WFG4 1.8370E–2(8.3E–4) 1.3005E–2(4.6E–4)† 2.2551E–2(1.8E–3) 1.9664E–2(1.5E–3)† 5.0721E–2(5.2E–3) 3.8183E–2(3.9E–3)†

WFG5 7.2029E–2(7.6E–4) 6.7165E–2(1.7E–4)† 6.8459E–2(5.9E–4) 6.8558E–2(6.3E–4) 8.2498E–2(2.9E–3) 7.7588E–2(1.8E–3)†

WFG6 6.5849E–2(9.4E–3) 6.1760E–2(9.2E–3)† 6.8500E–2(1.0E–2) 6.4056E–2(8.2E–3) 1.0092E–1(1.4E–2) 8.6534E–2(1.2E–2)†

WFG7 2.1525E–2(1.0E–3) 1.4264E–2(3.1E–4)† 1.6770E–2(4.7E–4) 1.5242E–2(3.3E–4)† 3.7482E–2(3.3E–3) 2.9628E–2(2.2E–3)†

WFG8 9.3529E–2(8.0E–3) 8.0848E–2(6.1E–3)† 8.7532E–2(5.6E–3) 8.5839E–2(5.6E–3) 1.1848E–1(7.9E–3) 1.0653E–1(8.1E–3)†

WFG9 7.8794E–2(5.2E–2) 7.4934E–2(5.2E–2) 3.5633E–2(2.4E–2) 5.6954E–2(4.5E–2)† 5.6432E–2(1.6E–2) 7.3108E–2(3.9E–2)†

DTLZ2 1.1894E–1(2.2E–3) 5.3051E–2(1.0E–3)† 5.1151E–2(4.2E–4) 5.1708E–2(7.7E–4)† 5.0151E–2(3.1E–6) 5.1369E–2(8.3E–4)†

DTLZ3 5.1829E–1(1.5E–1) 5.3253E–1(4.3E–1) 5.0856E–1(6.5E–1) 1.6158E+0(1.3E+0)† 1.0267E+0(9.1E–1) 1.4062E+0(1.1E+0)
DTLZ4 4.6424E–1(3.4E–1) 2.3409E–1(3.4E–1)† 1.7346E–1(2.3E–1) 5.2207E–2(9.4E–4)† 1.1261E–1(1.7E–1) 5.1944E–2(9.8E–4)†

DTLZ5 2.5627E–2(1.1E–3) 4.1949E–3(2.4E–4)† 1.8107E–2(1.5E–5) 4.4611E–3(3.2E–4)† 3.1920E–2(1.0E–4) 4.5173E–3(3.4E–4)†

DTLZ6 1.0148E–1(2.0E–2) 7.3724E–2(2.5E–2)† 2.4922E–1(3.7E–2) 3.9000E–1(3.3E–2)† 6.4541E–1(5.7E–2) 7.6720E–1(4.8E–2)†

Linear WFG3 1.5944E–2(1.2E–3) 1.5917E–2(1.8E–3) 2.5079E–2(4.3E–3) 2.3228E–2(3.3E–3)† 4.7442E–2(8.1E–3) 3.9358E–2(7.4E–3)†

DTLZ1 1.8267E–1(1.7E–2) 2.2154E–2(2.0E–3)† 1.9571E–2(1.1E–3) 2.1149E–2(1.8E–3)† 1.9130E–2(5.7E–4) 2.2134E–2(2.4E–2)†

Mixed
WFG1 7.5883E–1(6.2E–2) 7.7944E–1(6.3E–2) 1.0487E+0(7.2E–2) 9.6279E–1(5.4E–2)† 1.1983E+0(5.9E–2) 1.0490E+0(5.3E–2)†

VNT2 4.2602E–2(9.4E–3) 1.2219E–2(3.2E–4)† 4.6425E–2(2.9E–4) 1.2121E–2(2.8E–4)† 5.8432E–2(2.4E–4) 1.2436E–2(2.5E–4)†

VNT3 2.5369E+0(8.7E–2) 3.8870E–2(1.4E–3)† 2.3174E+0(1.3E–1) 3.8536E–2(1.2E–3)† 2.5622E+0(8.2E–2) 3.8244E–2(1.1E–3)†

Discontinuous

SCH2 1.2321E–1(4.0E–2) 2.0902E–2(2.3E–4)† 1.0491E–1(2.8E–4) 2.0832E–2(2.7E–4)† 5.0208E+0(5.0E–3) 2.0861E–2(2.1E–4)†

KUR 1.9336E–1(2.3E–2) 3.4693E–2(6.7E–4)† 4.1089E–2(2.3E–4) 3.4142E–2(6.2E–4)† 4.3389E–2(8.7E–4) 3.4960E–2(9.2E–4)†

ZDT3 3.0837E–2(8.0E–4) 4.6028E–3(6.5E–5)† 1.0929E–2(7.9E–5) 4.7997E–3(6.0E–5)† 1.3874E–2(5.3E–3) 5.4836E–3(1.5E–4)†

WFG2 7.0639E–2(8.6E–3) 2.5660E–2(1.1E–2)† 3.9081E–2(3.7E–3) 2.0238E–2(4.1E–3)† 1.1083E–1(1.1E–2) 3.0526E–2(6.9E–3)†

DTLZ7 4.2838E–1(2.9E–1) 2.7161E–1(2.5E–1)† 1.2946E–1(9.6E–4) 5.6166E–2(1.1E–3)† 1.2840E–1(9.3E–4) 5.8486E–2(9.7E–4)†

Complex PS

UF1 4.6600E–2(3.4E–3) 3.5263E–2(5.4E–3)† 2.1201E–2(3.3E–2) 1.6430E–3(1.6E–4)† 7.4430E–2(6.9E–2) 9.3327E–3(2.1E–2)†

UF2 4.6187E–2(1.9E–3) 2.2549E–2(2.8E–3)† 1.4578E–2(2.2E–2) 6.5645E–3(1.4E–3)† 5.2665E–2(5.2E–2) 1.1159E–2(2.7E–3)†

UF3 7.1289E–2(2.8E–2) 4.2563E–2(2.3E–2)† 1.1098E–2(1.3E–2) 9.5736E–3(1.0E–2) 3.8405E–2(3.1E–2) 1.3594E–2(1.5E–2)†

UF4 5.2290E–2(2.0E–3) 5.0860E–2(2.6E–3)† 6.4407E–2(4.0E–3) 6.6063E–2(5.7E–3) 6.7517E–2(5.7E–3) 6.6512E–2(5.9E–3)
UF5 1.1661E+0(1.2E–1) 5.1121E–1(1.4E–1)† 4.9510E–1(1.7E–1) 4.0341E–1(1.4E–1)† 4.6553E–1(1.3E–1) 4.7409E–1(1.5E–1)
UF6 3.5670E–1(2.1E–2) 2.8400E–1(1.1E–2)† 5.0766E–1(1.5E–1) 4.2500E–1(1.4E–1) 5.2782E–1(1.4E–1) 4.4913E–1(1.5E–1)†

UF7 2.3288E–2(1.9E–3) 1.5350E–2(1.1E–3)† 2.0330E–2(1.5E–2) 1.2116E–2(5.0E–3)† 4.8084E–2(1.2E–1) 1.4598E–2(3.8E–3)†

UF8 3.8577E–1(9.3E–3) 1.3722E–1(3.5E–2)† 5.4927E–2(1.5E–2) 5.6104E–2(1.1E–2) 1.1147E–1(4.6E–2) 8.9914E–2(3.3E–2)†

UF9 9.9491E–2(3.0E–3) 1.1081E–1(4.1E–2) 1.1732E–1(4.8E–2) 1.3153E–1(3.4E–2)† 1.3193E–1(3.7E–2) 1.2588E–1(4.1E–2)
UF10 2.2497E+0(2.8E–1) 2.3864E+0(1.8E–1)† 4.6931E–1(6.6E–2) 4.6496E–1(7.0E–2) 4.8214E–1(1.1E–1) 4.2631E–1(6.1E–2)†

Many Objectives

DTLZ2(4) 1.7281E–1(1.1E–3) 9.8155E–2(4.8E–3)† 8.9093E–2(7.0E–4) 9.3172E–2(3.2E–3)† 8.7399E–2(5.1E–6) 9.3679E–2(4.6E–3)†

DTLZ2(6) 3.7149E–1(2.4E–3) 2.3931E–1(2.7E–3)† 2.8757E–1(1.4E–2) 2.3766E–1(1.9E–3)† 2.5665E–1(2.4E–5) 2.4064E–1(7.6E–4)†

DTLZ2(10) 8.6901E–1(3.4E–2) 4.8722E–1(4.8E–3)† 5.6890E–1(1.9E–2) 4.6966E–1(7.4E–3)† 4.9222E–1(2.4E–5) 4.7015E–1(2.7E–3)†

DTLZ5(2,10) 7.4584E–1(0.0E+0) 2.1183E–3(3.2E–5)† 1.6977E–1(1.8E–3) 2.1620E–3(7.2E–5)† 6.4940E–2(5.3E–5) 2.1492E–3(6.8E–5)†

DTLZ5(3,10) 6.1236E–1(7.6E–2) 3.7996E–2(3.1E–3)† 2.5109E–1(3.2E–4) 3.7136E–2(1.1E–3)† 1.6867E–1(3.1E–3) 3.8918E–2(2.1E–3)†

“†” indicates that the value of the BCE algorithm is significantly different from that of its corresponding non-Pareto algorithm at a 0.05 level by the Wilcoxon’s
rank sum test.

[44], [74], we adopted the differential evolution (DE) operation
for these problems, with the two control parameters CR = 1.0
and F = 0.5.

Tables III and IV give the HV and IGD results (mean and
standard deviation), respectively, for the three groups of paired
algorithms, IBEA vs BCE-IBEA, MOEA/D+TCH vs BCE-
MOEA/D+TCH, and MOEA/D+PBI vs BCE-MOEA/D+PBI,
on all the 42 MOPs. The better mean for each problem is high-
lighted in boldface. To have statistically sound conclusions, the
Wilcoxon’s rank sum test [81] at a 0.05 significance level is
adopted to test the significance of the differences between the
results obtained by paired algorithms.

As stated before, the advantage of NPC is primarily on
addressing challenging MOPs (such as with a complex PS
or with a high-dimensional objective space), whereas the
advantage of PC lies in dealing with MOPs with an irregular
Pareto front. Here, we divide the test problems into seven
categories, to systematically investigate the effectiveness of
BCE for problems with distinct preference of NPC or PC. They
are convex, concave, linear, mixed, discontinuous, complex-
PS, and high-dimensional problem categories.

A. Test Problems with a Convex Pareto Front

In this category, we consider four problems, SCH1, ZDT1,
ZDT4, and VNT1. As can be seen from Tables III and IV, the
BCE algorithms show a clear advantage over the non-Pareto
algorithms on these problems. The three BCE algorithms
outperform their corresponding competitors for both IGD and
HV on all the four problems, and the difference in all of these
comparisons is statistically significant.

Fig. 4 plots the final solutions of the six algorithms in a
single run on SCH1. This particular run, along with others for
visual demonstration in the paper, is associated with the result
which is the closest to the mean IGD value. SCH1 has a convex
Pareto optimal curve in the range f1, f2 ∈ [0, 4]. As shown,
IBEA and MOEA/D+TCH struggle to maintain the uniformity
of the solutions, especially around the edges of the Pareto
front. MOEA/D+PBI fails to find boundary points of the Pareto
front, with their solutions concentrating in the range [0, 3].
On the other hand, the three BCE algorithms perform well.
Their performance appears similar and all of their solutions
are uniformly distributed along the whole Pareto front. This
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TABLE IV
HV RESULTS (MEAN AND SD) OF THE THREE GROUPS OF PAIRED ALGORITHMS. THE BETTER MEAN FOR EACH CASE IS HIGHLIGHTED IN BOLDFACE

Property Problem IBEA BCE-IBEA MOEA/D+TCH BCE-MOEA/D+TCH MOEA/D+PBI BCE-MOEA/D+PBI

Convex

SCH1 1.0395E+0(8.0E–5) 1.0396E+0(5.0E–5)† 1.0375E+0(1.7E–4) 1.0396E+0(5.4E–5)† 1.0275E+0(5.6E–4) 1.0396E+0(3.5E–5)†

ZDT1 8.7140E–1(1.2E–4) 8.7156E–1(1.0E–4)† 8.6969E–1(5.5E–4) 8.6998E–1(3.1E–4)† 8.6149E–1(2.6E–3) 8.6639E–1(8.4E–4)†

ZDT4 3.5648E–1(1.1E–1) 7.8067E–1(4.1E–2)† 8.5850E–1(6.1E–3) 8.6174E–1(5.8E–3)† 8.1319E–1(4.4E–2) 8.5370E–1(9.8E–3)†

VNT1 9.8473E–1(1.2E–2) 1.0134E+0(1.2E–3)† 9.7156E–1(2.5E–4) 1.0144E+0(1.3E–3)† 9.9419E–1(3.1E–4) 1.0138E+0(9.2E–4)†

Concave

ZDT2 5.3694E–1(1.1E–4) 5.3793E–3(1.0E–4)† 5.3587E–1(6.3E–4) 5.3654E–1(4.1E–4)† 5.2098E–1(2.6E–3) 5.2856E–1(1.8E–3)†

ZDT6 6.0575E–1(4.7E–4) 6.0900E–1(3.4E–4)† 5.8120E–1(3.7E–2) 5.9186E–1(2.8E–3)† 5.2924E–1(9.4E–3) 5.6742E–1(5.6E–3)†

WFG4 4.1692E–1(4.6E–4) 4.1786E–1(4.9E–4)† 4.1132E–1(1.3E–3) 4.1254E–1(9.7E–4)† 3.9106E–1(3.5E–3) 3.9880E–1(2.1E–3)†

WFG5 3.7429E–1(1.6E–3) 3.7556E–1(1.8E–3)† 3.7089E–1(3.6E–4) 3.7175E–1(6.7E–4)† 3.6200E–1(1.9E–3) 3.6589E–1(1.1E–3)†

WFG6 3.8234E–1(6.4E–3) 3.8235E–1(6.1E–3) 3.7690E–1(7.1E–3) 3.8085E–1(5.3E–3)† 3.5462E–1(8.8E–3) 3.6529E–1(7.8E–3)†

WFG7 4.1791E–1(2.4E–4) 4.1933E–1(2.4E–4)† 4.1642E–1(7.6E–4) 4.1729E–1(4.8E–4)† 3.9833E–1(3.1E–3) 4.0522E–1(1.6E–3)†

WFG8 3.5069E–1(3.5E–3) 3.5539E–1(3.3E–3)† 3.5389E–1(3.2E–3) 3.5561E–1(3.2E–3)† 3.3363E–1(4.9E–3) 3.4172E–1(5.1E–3)†

WFG9 3.6836E–1(3.4E–2) 3.6929E–1(3.4E–2) 3.9231E–1(1.5E–2) 3.8015E–1(2.8E–2)† 3.7718E–1(1.1E–2) 3.6887E–1(2.4E–2)
DTLZ2 7.4369E–1(5.5E–4) 7.4216E–1(2.0E–3)† 7.4893E–1(1.3E–4) 7.4760E–1(1.1E–3)† 7.4897E–1(7.9E–5) 7.4745E–1(1.1E–3)†

DTLZ3 2.4094E–1(8.1E–2) 2.4504E–1(1.7E–1) 3.8094E–1(2.4E–1) 9.4924E–2(1.8E–1)† 2.2132E–1(2.7E–1) 1.0137E–1(1.8E–1)
DTLZ4 5.1710E–1(2.2E–1) 6.4365E–1(2.0E–1)† 6.8054E–1(1.2E–1) 7.4702E–1(1.3E–3)† 7.0945E–1(1.0E–1) 7.4745E–1(1.3E–3)†

DTLZ5 2.6296E–1(2.5E–4) 2.6596E–1(2.7E–4)† 2.5645E–1(8.0E–6) 2.6593E–1(3.1E–4)† 2.4415E–1(7.1E–5) 2.6576E–1(1.8E–4)†

DTLZ6 1.5127E–1(3.9E–2) 1.7524E–1(3.3E–2)† 3.5183E–2(1.5E–2) 3.0630E–3(3.7E–3)† 0.0000E+0(0.0E+0) 0.0000E+0(0.0E+0)

Linear WFG3 6.9936E–1(1.3E–3) 6.9938E–1(1.5E–3) 6.9099E–1(3.1E–3) 6.9282E–1(2.5E–3)† 6.7584E–1(5.6E–3) 6.8170E–1(4.8E–3)†

DTLZ1 5.0330E–1(9.1E–2) 1.1126E+0(8.1E–3)† 1.1193E+0(4.9E–3) 1.1150E+0(8.0E–3)† 1.1194E+0(3.3E–3) 1.1025E+0(3.7E–2)†

Mixed
WFG1 3.5198E–1(4.0E–2) 3.4025E–1(4.2E–2) 2.1352E–1(3.8E–2) 2.5791E–1(3.9E–2)† 1.5041E–1(2.3E–2) 2.2037E–1(3.8E–2)†

VNT2 1.2258E+0(9.5E–3) 1.2481E+0(4.4E–4)† 1.2179E+0(1.2E–4) 1.2483E+0(3.4E–4)† 1.2053E+0(4.8E–4) 1.2479E+0(3.4E–4)†

VNT3 1.1427E+0(4.5E–3) 1.1476E+0(3.7E–4)† 1.1255E+0(9.1E–4) 1.4756E+0(3.2E–4)† 1.1296E+0(5.0E–4) 1.1476E+0(4.1E–4)†

Discontinuous

SCH2 8.0570E–1(2.4E–3) 8.1170E–1(6.4E–5)† 8.0177E–1(6.0E–5) 8.1168E–1(1.6E–4)† 6.4919E–1(3.6E–5) 8.1163E–1(4.0E–4)†

KUR 6.0476E–1(6.8E–4) 6.1110E–1(1.5E–4)† 6.0987E–1(1.8E–4) 6.1108E–1(1.9E–4)† 6.0806E–1(4.1E–4) 6.1042E–1(3.1E–4)†

ZDT3 7.2021E–1(4.9E–4) 7.2542E–1(3.1E–4)† 7.2236E–1(2.9E–4) 7.2448E–1(2.4E–4)† 7.1218E–1(4.3E–3) 7.2140E–1(4.9E–4)†

WFG2 7.3840E–1(8.1E–3) 7.3850E–1(1.4E–2) 7.4146E–1(1.2E–2) 7.4707E–1(1.2E–2)† 7.1395E–1(8.5E–3) 7.3599E–1(1.1E–2)†

DTLZ7 4.5444E–1(8.3E–2) 5.0576E–1(6.2E–2)† 5.3340E–1(4.1E–4) 5.6217E–1(1.6E–3)† 5.1590E–1(2.7E–3) 5.5925E–1(2.0E–3)†

Complex PS

UF1 8.0299E–1(4.9E–3) 8.1707E–1(9.3E–3)† 8.1707E–1(9.3E–3) 8.7067E–1(1.5E–2)† 8.1090E–1(5.4E–2) 8.6548E–1(2.0E–2)†

UF2 8.0179E–1(3.0E–3) 8.4197E–1(3.4E–3)† 8.5721E–1(2.2E–2) 8.6395E–1(1.2E–2)† 8.2907E–1(3.5E–2) 8.6149E–1(2.9E–3)†

UF3 7.6131E–1(4.2E–2) 8.0534E–1(3.6E–2)† 8.5673E–1(2.5E–2) 8.5955E–1(1.2E–2) 8.0639E–1(5.3E–2) 8.3706E–1(3.9E–2)†

UF4 4.4840E–1(4.3E–3) 4.5528E–1(5.8E–3)† 4.3154E–1(6.6E–3) 4.3115E–1(9.4E–3) 4.2700E–1(9.6E–3) 4.3010E–1(9.3E–3)
UF5 0.0000E+0(0.0E+0) 2.9497E–2(4.3E–2)† 1.9400E–1(9.7E–2) 2.5115E–1(9.8E–2)† 1.9166E–1(1.1E–1) 1.9518E–1(1.0E–1)
UF6 1.2521E–1(1.7E–2) 2.2287E–1(4.8E–2)† 2.6455E–1(7.3E–2) 2.9623E–1(6.0E–2)† 2.3798E–1(7.0E–2) 2.6663E–1(6.2E–2)†

UF7 6.7217E–1(2.9E–3) 6.8245E–1(1.9E–3)† 6.7607E–1(2.1E–2) 6.8884E–1(1.5E–2)† 6.5252E–1(9.8E–2) 6.7787E–1(1.3E–2)†

UF8 2.8638E–1(8.7E–3) 5.5758E–1(4.6E–2)† 6.8837E–1(3.2E–2) 6.7743E–1(2.8E–2) 5.6021E–1(8.9E–2) 6.0717E–1(6.3E–2)†
UF9 9.0647E–1(8.9E–3) 8.9953E–1(5.6E–2) 9.1761E–1(7.7E–2) 8.9569E–1(5.7E–2) 8.9252E–1(5.9E–2) 9.0663E–1(6.8E–2)

UF10 0.0000E+0(0.0E+0) 0.0000E+0(0.0E+0) 1.1111E–1(3.5E–2) 1.1990E–1(3.3E–2) 1.7454E–1(4.4E–2) 1.7519E–1(4.3E–2)

Many Objectives

DTLZ2(4) 1.0506E+0(6.0E–4) 1.0428E+0(2.7E–3)† 1.0585E+0(2.0E–4) 1.0538E+0(1.2E–3)† 1.0588E+0(3.2E–5) 1.0536E+0(1.2E–3)†

DTLZ2(6) 1.5551E+0(9.7E–4) 1.5324E+0(3.4E–3)† 1.5232E+0(1.1E–2) 1.5311E+0(4.0E–3)† 1.5504E+0(8.5E–4) 1.5423E+0(2.4E–3)†

DTLZ2(10) 1.9101E+0(1.3E–1) 2.5049E+0(3.8E–3)† 2.4452E+0(2.5E–2) 2.4701E+0(7.4E–3)† 2.5092E+0(3.7E–4) 2.4954E+0(3.7E–3)†

DTLZ5(2,10) 2.3597E–1(8.8E–4) 2.6133E–1(1.2E–3)† 2.3582E–1(5.9E–4) 2.6095E–1(1.4E–3)† 2.5850E–1(7.8E–4) 2.6078E–1(1.6E–3)†

DTLZ5(3,10) 4.1017E–1(9.7E–2) 8.7522E–1(5.3E–3)† 7.5172E–1(1.1E–3) 8.7512E–1(7.3E–3)† 7.5719E–1(8.9E–3) 8.7723E–1(6.6E–3)†

“†” indicates that the value of the BCE algorithm is significantly different from that of its corresponding non-Pareto algorithm at a 0.05 level by the Wilcoxon’s
rank sum test.
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Fig. 4. The final solution set of the six algorithms on SCH1.
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(a) Pareto front (b) IBEA (c) MOEA/D+TCH (d) MOEA/D+PBI (e) BCE-MOEA/D+TCH

Fig. 5. Pareto front and the final solution set on VNT1, where the solutions of the three BCE algorithms have similar distribution.

(a) IBEA (b) MOEA/D+TCH (c) MOEA/D+PBI (d) BCE-MOEA/D+TCH

Fig. 6. The final solution set on DTLZ2, where the solutions of the three BCE algorithms have similar distribution.

happens mainly due to the population maintenance operation
in BCE, which can effectively eliminate poorly distributed
solutions in the evolutionary process. In the rest of the paper,
for brevity, we only plot the solutions of one of the BCE
algorithms if they perform visually similarly.

In addition, Fig. 5 shows the final solutions on VNT1.
Clearly, for this 3-objective problem, only the BCE algorithms
have good diversity. The solutions obtained by IBEA are solely
located in the middle of the Pareto front. The solutions of
the two MOEA/D algorithms, which correspond to uniformly
distributed weight vectors, exhibit a specific structure but do
not have a good distribution over the desired front.

B. Test Problems with a Concave Pareto Front

In this category, we consider 13 problems from the ZDT,
WFG, and DTLZ problem suites. As can be seen from
Tables III and IV, the three BCE algorithms generally perform
better than their competitors. Specifically, BCE-IBEA, BCE-
MOEA/D+TCH, and BCE-MOEA/D+PBI obtain a better IGD
value in 12, 8, and 9 out of the 13 test instances, respec-
tively. For HV, BCE-IBEA, BCE-MOEA/D+TCH, and BCE-
MOEA/D+PBI outperform their corresponding non-Pareto al-
gorithms in 12, 9, and 9 out of the 13 instances, respectively.

In fact, for some MOPs (such as DTLZ2), some non-
Pareto algorithms already work quite well. In this case, the
exploration operation in the PC evolution of BCE can hardly
further improve individuals’ performance, but can lead to the
decrease of the computational resources (i.e., function evalu-
ations) occupied by the NPC evolution. Fig. 6 gives the final
solutions obtained by IBEA, MOEA/D+TCH, MOEA/D+PBI,
and BCE-MOEA/D+TCH on DTLZ2. Clearly, for this prob-
lem, IBEA is unable to maintain uniformity of the solutions but

MOEA/D+TCH and MOEA/D+PBI have a set of excellently
distributed solutions over the Pareto front. This is consistent
with the result in Table III, where IBEA performs worse than
BCE-IBEA but the two MOEA/D algorithms perform better
than their competitors.

As to the statistical results, it can be observed from the
tables that the difference between the paired algorithms is
significant for most of the test instances. Specifically, the pro-
portion of the test instances where the three BCE algorithms
BCE-IBEA, BCE-MOEA/D+TCH and BCE-MOEA/D+PBI
outperform their competitors with statistical significance is
11/13, 6/13 and 9/13 for IGD and 9/13, 9/13 and 9/13 for
HV, respectively. Conversely, the proportion of the instances
where the three non-Pareto algorithms IBEA, MOEA/D+TCH
and MOEA/D+PBI are superior with statistical significance is
0/13, 4/13 and 3/13 for IGD and 1/13, 4/13 and 1/13 for HV,
respectively.

C. Test Problems with a Linear Pareto Front
Non-Pareto EMO algorithms in general work well on this

kind of problems as their NPC is not likely to prefer specific
areas of a plane Pareto front. Despite that, the proposed
approach is still competitive, as can be seen from the results
on test problems WFG3 and DTLZ1 in Tables III and IV.
For WFG3, the three BCE algorithms all outperform their
competitors. For a visual comparison, Fig. 7 plots the final
solutions of MOEA/D+PBI and BCE-MOEA/D+PBI as well
as the problem’s Pareto front. As shown, BCE-MOEA/D+PBI
has a better performance than MOEA/D+PBI in terms of
both diversity and convergence. This observation is interesting
because it is commonly believed that the solutions guided
by an NPC have a better convergence than those by the
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Fig. 7. The final solution set obtained by MOEA/D+PBI and BCE-
MOEA/D+PBI on WFG3.
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(a) All the individuals produced (b) Population at the 1,000 evaluations

Fig. 8. Results of MOEA/D+PBI and BCE-MOEA/D+PBI during initial
1,000 function evaluations on WFG3: (a) All the individuals produced during
the 1,000 evaluations; (b) Evolutionary population at the 1,000 evaluations.

PC. One important reason for this occurrence is that the
exploration around the nondominated solutions in BCE can
effectively drive the population evolving towards the Pareto
front, especially at the initial stage of evolution.

To take a closer look, Fig. 8 gives the results of
MOEA/D+PBI and BCE-MOEA/D+PBI during the initial
1,000 function evaluations, where Fig. 8(a) plots all 1,000
individuals produced by the two algorithms and Fig. 8(b) plots
their evolutionary population at the 1,000 evaluations. As can
be seen from Fig. 8(a), there exist some individuals of BCE-
MOEA/D+PBI apparently closer to the optimal front. This is
the result of effective exploration of the nondominated indi-
viduals (i.e., the PC population) in BCE. These nondominated
individuals, whose number is smaller than the population ca-
pacity at that time, can represent the best individuals found so
far, as seen from the comparison between Figs. 8(a) and (b).

The test function DTLZ1 has a huge number of local opti-
mal fronts (115−1). For this problem, BCE-IBEA outperforms
IBEA, but BCE-MOEA/D+TCH and BCE-MOEA/D+PBI per-
form worse than the two MOEA/D algorithms. In Section V-C,
we will provide a detailed explanation for why BCE may be
outperformed by some non-Pareto algorithms on such MOPs
with a number of local optima.

D. Test Problems with a Mixed Pareto Front

The results of three of this kind of problems, WFG1,
VNT2 and VNT3, are shown in Tables III and IV, where the
BCE algorithms significantly outperform their competitors.
They are superior with statistical significance in 8 out of
all the 9 comparisons for both IGD and HV indicators.

For a visual observation, Fig. 9 plots the final solutions ob-
tained by IBEA, MOEA/D+TCH, MOEA/D+PBI, and BCE-
MOEA/D+TCH on VNT3. Clearly, only BCE-MOEA/D+TCH
has well-distributed solutions over the whole Pareto front.
The solutions obtained by the three non-Pareto algorithms
concentrate mainly in the middle segment and fail to extend
to the left part of the optimal front.

E. Test Problems with a Discontinuous Pareto Front

As can be seen from the two tables, for MOPs with a
discontinuous Pareto front, the proposed approaches have a
clear advantage over the non-Pareto algorithms. The three BCE
algorithms significantly outperform their competitors for all
the instances, and on most of these instances they even have
an order of magnitude smaller IGD values.

In fact, non-Pareto algorithms commonly struggle to main-
tain the diversity of solutions on this kind of MOPs. This
happens mainly due to the fact that the imaginary parts of
the discontinuous Pareto front largely affect the accuracy
of the fitness estimation based on an NPC. For example,
in MOEA/D, the breakpoints of the discontinuous Pareto
front may correspond to the optimal solution of multiple
scalar subproblems [58]. This is likely to cause the failure
of uniformity maintenance of solutions, further leading to
the search of the algorithm only on some specific regions
of the objective space. Fig. 10 plots the final solutions ob-
tained by IBEA, MOEA/D+TCH, MOEA/D+PBI, and BCE-
MOEA/D+TCH on SCH2. It can be observed that IBEA
and MOEA/D+TCH are unable to maintain the uniformity of
solutions, and MOEA/D+PBI fails to find the upper part of the
Pareto front. Note that there exist some dominated solutions
in the set of solutions obtained by MOEA/D+PBI. This is
because a dominated solution may have a closer distance than
a nondominated one to the corresponding reference point in
MOEA/D+PBI, as pointed out in [16].

F. Test Problems with a Complex PS

In this section, we consider the UF problem suite from
the CEC2009 competition [74]. These MOPs involve a strong
linkage in variables among the Pareto optimal solutions,
thereby posing a big challenge for EMO algorithms [44],
[76]. In spite of that, the BCE algorithms outperform their
corresponding non-Pareto algorithms on the majority of the
test instances, as shown in Tables III and IV. Specifically,
BCE-IBEA, BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI
achieve a better IGD value than their competitors in 8, 7,
and 9 out of the 10 test instances, respectively. For HV,
BCE-IBEA, BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI
outperform their competitors in 8, 7, and 10 out of the 10
instances, respectively. Also, the difference in most of these
comparisons is statistically significant, with the winning ratio
of the BCE algorithms against their competitors being 19
to 2 for IGD and 19 to 0 for HV in the 30 comparisons,
respectively. One reason for this occurrence is likely due to
the population maintenance operation in BCE, which is able
to maintain the diversity of solutions effectively.
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(a) Pareto front (b) IBEA (c) MOEA/D+TCH (d) MOEA/D+PBI (e) BCE-MOEA/D+TCH

Fig. 9. Pareto front and the final solution set on VNT3, where the solutions of the three BCE algorithms have similar distribution.
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(a) Pareto front (b) IBEA (c) MOEA/D+TCH (d) MOEA/D+PBI (e) BCE-MOEA/D+TCH

Fig. 10. Pareto front and the final solution set on SCH2, where the solutions of the three BCE algorithms have similar distribution.
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(a) MOEA/D+TCH (b) BCE-MOEA/D+TCH

Fig. 11. The final solution set obtained by MOEA/D+TCH and BCE-
MOEA/D+TCH on UF1.

Fig. 11 plots the final solutions obtained by MOEA/D+TCH
and BCE-MOEA/D+TCH on UF1. As shown, although a good
distribution of solutions is obtained in most parts of the Pareto
front by MOEA/D+TCH, there is a clear interval between the
upper bound and the other solutions. In contrast, the solutions
obtained by BCE-MOEA/D+TCH have a good distribution
uniformity along the whole front.

G. Test Problems with Many Objectives

In this section, test problems DTLZ2 [18] and DTLZ5(I,m)
[62], [64] are used to verify the performance of BCE on
many-objective problems. DTLZ2 has a spherical Pareto front
in the range f1, f2, ..., fm ∈ [0, 1], and DTLZ5(I,m) has a
degenerate Pareto front, with its dimensionality I lower than
that of the objective space m.

Tables III and IV show the results of the six algorithms on
five instances of DTLZ2 and DTLZ5(I,m). These instances
are three DTLZ2 functions with 4, 6 and 10 objectives,
and two 10-objective DTLZ5(I,m) functions with 2- and 3-
dimensional Pareto front, i.e., DTLZ5(2,10) and DTLZ5(3,10).
As can be seen from the tables, the compared algorithms
perform similarly on the 4- and 6-objective instances, where
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(a) MOEA/D+TCH (b) BCE-MOEA/D+TCH

Fig. 12. The final solution set obtained by MOEA/D+TCH and BCE-
MOEA/D+TCH on the 10-objective DTLZ2, shown by parallel coordinates.

the BCE algorithms often have a better IGD result while the
non-Pareto algorithms generally obtain a higher HV value.
For three 10-objective instances, the BCE algorithms signif-
icantly outperform their competitors. This suggests that the
advantage of the proposed approach becomes clearer when
a higher-dimensional space is involved. Fig. 12 shows the
final solutions of MOEA/D+TCH and BCE-MOEA/D+TCH
on the 10-objective DTLZ2 by parallel coordinates. As shown,
MOEA/D+TCH fails to find widely distributed solutions on
objectives f1 to f3, which is in contrast to the result of BCE-
MOEA/D+TCH, where a spread of solutions over fi ∈ [0, 1]
is obtained.

In DTLZ5(I,m), all objectives within {f1, ..., fm−I+1} are
positively correlated, while the objectives in {fm−I+1, ..., fm}
conflict with each other. Fig. 13 plots the final solu-
tions of IBEA, MOEA/D+TCH, MOEA/D+PBI, and BCE-
MOEA/D+TCH in the last three objectives (f8, f9, f10) of
DTLZ5(3,10). The Pareto optimal solutions of the problem
with respect to these objectives satisfy 2f2

8 +f2
9 +f2

10 = 1. As
shown, despite several solutions of BCE-MOEA/D+TCH not
located on the optimal front, the rest has good uniformity and
coverage over the whole front. In contrast, the three non-Pareto
algorithms struggle to maintain diversity, with their solutions



14

(a) Pareto front (b) IBEA (c) MOEA/D+TCH (d) MOEA/D+PBI (e) BCE-MOEA/D+TCH

Fig. 13. Pareto front and the final solution set in the subspace (f8, f9, f10) of DTLZ5(3,10), where the solutions of the three BCE algorithms have similar
distribution.

concentrating in some tiny parts (or even several points) of
the Pareto front.

Finally, it is worth mentioning that Pareto-based algorithms
are often seen to fail to deal with many-objective problems.
Their Pareto dominance and density-based selection criteria
even could push the population against the optimal front in
a high-dimensional space [31], [47], [68]. Interestingly, the
solution set of BCE, which is the PC population maintained
by Pareto dominance and density, performs well in many-
objective problems. This occurrence can be attributed to the
role of the NPC evolution in BCE, which leads the PC
population to evolve towards the desired direction.

H. Result Summary

To summarize, the BCE algorithms generally outperform
their corresponding non-Pareto algorithms. BCE-IBEA, BCE-
MOEA/D+TCH, and BCE-MOEA/D+PBI have a better IGD
value in 38, 32, and 35 out of all the 42 test problems. For HV,
BCE-IBEA, BCE-MOEA/D+TCH, and BCE-MOEA/D+PBI
perform better in 36, 33, and 34 out of all the 42 test
problems. Note that for a couple of test problems, some paired
algorithms obtain different comparison results with respect to
IGD and HV, although both indicators involve comprehensive
performance of convergence and diversity. For example, for
the 4- and 6-objective DTLZ2, BCE-IBEA has a better IGD,
but worse HV than the original IBEA. This contradiction
between HV and IGD happens more on the problems with a
concave Pareto front, as reported in [38]. The reason for this
occurrence may be due to the different preference of the two
indicators [50]. IGD, which is based on uniformly-distributed
points along the entire Pareto front, prefers the distribution
uniformity of the solution set, while HV, which is typically
influenced more by the boundary solutions, has a bias towards
the extensity of the solution set.

V. FURTHER INVESTIGATIONS OF BCE

Having demonstrated its competitiveness on various test
problems above, BCE is further investigated in this section
for a deeper understanding of its behavior. Due to the space
limit and similar comparative results obtained by the IGD and
HV indicators, we only present the IGD results in this and the
following sections.

A. Performance Verification of the NPC Evolution

The previous experimental results have shown the effective-
ness of the PC evolution in maintaining the individual diversity
and approaching the optimal front. Now a question may arise
– how about the NPC evolution? Does the NPC evolution
benefit from the information exchange with the PC evolution?
In other words, can non-Pareto EMO algorithms themselves
benefit when working under this BCE framework?

To answer this question, we give the IGD results between
the solution set of the original non-Pareto algorithms and
that of the embedded ones (i.e., the NPC population) on
the 42 test problems in Table V. As shown, for most of the
problems, the performance of the three non-Pareto algorithms
is improved when working under the BCE framework. The
NPC population of BCE-IBEA, BCE-MOEA/D+TCH, and
BCE-MOEA/D+TCH has a better IGD value than the solution
set of the corresponding non-Pareto algorithms in 31, 31, and
32 out of all the 42 instances, respectively.

In addition, it is worth mentioning that unlike the PC
evolution which can preserve any nondominated individual
located in a sparse region, the NPC evolution may not preserve
such individuals due to its own selection criterion. That is,
even when the PC evolution produces plenty of promising
individuals which clearly help enhance the population di-
versity, they may still not enter the NPC population if not
preferred by the considered NPC. That is why for some
MOPs in which the PC population significantly outperforms
that of the non-Pareto algorithm, the NPC population yet
performs similarly to (or even slightly worse than) the latter,
such as the results of BCE-MOEA/D+TCH on DTLZ5(2,10).
But, interestingly, there are also some exceptions that the
population of non-Pareto algorithms has a clear improvement
when working collaboratively with the PC population in BCE.
Fig. 14 gives such an example, where the solution set of the
original IBEA and the one working under the BCE framework
(i.e., the NPC population of BCE-IBEA) are plotted by parallel
coordinates. Clearly, in contrast to IBEA which fails to find
diverse solutions on objectives f1 to f6, the NPC evolution
in BCE-IBEA maintains a good diversity of population for all
the objectives of the Pareto front.

In summary, despite evolving based on their own selection
criterion, the non-Pareto algorithms generally show a perfor-
mance improvement when embedded into the NPC evolution
part of BCE. This, along with the experimental results in
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TABLE V
IGD COMPARISON BETWEEN THE ORIGINAL NON-PARETO ALGORITHMS AND THE NPC EVOLUTION IN THEIR CORRESPONDING BCE ALGORITHMS.

THE BETTER MEAN FOR EACH CASE IS HIGHLIGHTED IN BOLDFACE

Problem IBEA BCE-IBEA MOEA/D+TCH BCE-MOEA/D+TCH MOEA/D+PBI BCE-MOEA/D+PBI
SCH1 1.9093E–2(4.1E–4) 2.0162E–2(1.1E–3) 4.9139E–2(1.5E–3) 4.6963E–2(7.7E–4) 1.7765E–1(5.2E–3) 1.7910E–1(2.0E–3)
SCH2 1.2321E–1(4.0E–2) 7.5079E–2(2.0E–2) 1.0491E–1(2.8E–4) 1.0488E–1(1.1E–4) 5.0208E+0(5.0E–3) 5.0155E+0(8.7E–4)
KUR 1.9336E–1(2.3E–2) 1.6513E–1(3.0E–2) 4.1089E–2(2.3E–4) 4.1073E–2(3.3E–4) 4.3389E–2(8.7E–4) 4.2867E–2(9.1E–4)

ZDT1 4.0773E–3(6.8E–5) 4.1000E–3(6.7E–5) 4.3626E–3(3.4E–4) 4.1924E–3(1.1E–4) 8.2654E–3(1.7E–3) 6.6341E–3(5.8E–4)
ZDT2 9.1909E–3(3.7E–4) 9.0121E–1(9.8E–4) 4.3342E–3(1.8E–4) 4.1933E–3(1.2E–4) 1.0540E–2(1.2E–3) 8.2292E–3(1.0E–3)
ZDT3 3.0837E–2(8.0E–4) 3.0414E–2(1.6E–3) 1.0929E–2(7.9E–5) 1.0923E–2(1.1E–4) 1.3874E–2(5.3E–3) 1.1675E–2(4.5E–4)
ZDT4 6.2464E–1(1.1E–1) 1.3199E–1(9.5E–4) 1.0001E–2(3.4E–3) 8.9033E–3(3.3E–3) 3.7084E–2(2.8E–2) 1.4819E–2(6.7E–3)
ZDT6 5.4849E–3(1.8E–4) 5.5631E–3(1.6E–4) 1.5027E–2(1.7E–3) 1.0515E–2(1.3E–3) 3.9299E–2(4.6E–3) 2.3791E–2(2.9E–3)

WFG1 7.5883E–1(6.2E–2) 7.8579E–1(6.0E–2) 1.0487E+0(7.2E–2) 9.6474E–1(5.3E–2) 1.1983E+0(5.9E–2) 1.0520E+0(5.2E–2)
WFG2 7.0639E–2(8.6E–3) 6.9895E–2(8.5E–3) 3.9081E–2(3.7E–3) 3.8934E–2(3.8E–3) 1.1083E–1(1.1E–2) 9.3369E–2(6.8E–3)
WFG3 1.5944E–2(1.2E–3) 1.7071E–2(2.7E–3) 2.5079E–2(4.3E–3) 2.3297E–2(3.2E–3) 4.7442E–2(8.1E–3) 4.2171E–2(8.1E–3)
WFG4 1.8370E–2(8.3E–4) 1.8880E–2(1.0E–3) 2.2551E–2(1.8E–3) 2.1534E–2(1.5E–3) 5.0721E–2(5.2E–3) 4.5001E–2(4.4E–3)
WFG5 7.2029E–2(7.6E–4) 7.1733E–2(9.4E–4) 6.8459E–2(5.9E–4) 6.8496E–2(5.2E–4) 8.2498E–2(2.9E–3) 7.9373E–2(2.4E–3)
WFG6 6.5849E–2(9.4E–3) 6.5980E–2(7.9E–3) 6.8500E–2(1.0E–2) 6.3961E–2(8.1E–3) 1.0092E–1(1.4E–2) 9.0327E–2(1.2E–2)
WFG7 2.1525E–2(1.0E–3) 2.1004E–2(9.9E–4) 1.6770E–2(4.7E–4) 1.6614E–2(2.5E–4) 3.7482E–2(3.3E–3) 3.3662E–2(2.4E–3)
WFG8 9.3529E–2(8.0E–3) 3.3918E–2(2.4E–3) 8.7532E–2(5.6E–3) 8.5901E–2(5.8E–3) 1.1848E–1(7.9E–3) 1.1040E–1(8.9E–3)
WFG9 7.8794E–2(5.2E–2) 7.8164E–2(5.2E–2) 3.5633E–2(2.4E–2) 5.7653E–2(4.4E–2) 5.6432E–2(1.6E–2) 7.6906E–2(3.7E–2)
VNT1 1.6688E–1(2.7E–2) 1.3937E–1(6.9E–3) 2.2398E–1(1.3E–3) 2.2369E–1(1.1E–3) 1.7364E–1(5.6E–4) 1.7361E–1(6.4E–4)
VNT2 4.2602E–2(9.4E–3) 2.7724E–2(8.5E–3) 4.6425E–2(2.9E–4) 4.6404E–2(3.4E–4) 5.8432E–2(2.4E–4) 5.8373E–2(3.4E–4)
VNT3 2.5369E+0(8.7E–2) 2.2216E+0(4.4E–1) 2.3174E+0(1.3E–1) 2.2537E+0(1.0E–1) 2.5622E+0(8.2E–2) 2.4384E+0(5.5E–3)

DTLZ1 1.8267E–1(1.7E–2) 1.0071E–1(2.3E–2) 1.9571E–2(1.1E–3) 1.9465E–2(6.8E–4) 1.9130E–2(5.7E–4) 1.9507E–2(1.1E–3)
DTLZ2 1.1894E–1(2.2E–3) 1.1820E–1(2.5E–3) 5.1151E–2(4.2E–4) 5.1421E–2(5.1E–4) 5.0151E–2(3.1E–6) 5.0150E–2(3.4E–6)
DTLZ3 5.1829E–1(1.5E–1) 6.5375E–1(3.8E–1) 5.0856E–1(6.5E–1) 1.6290E+0(1.3E+0) 1.0267E+0(9.1E–1) 1.4211E+0(1.0E+0)
DTLZ4 4.6424E–1(3.4E–1) 2.8527E–1(3.2E–1) 1.7346E–1(2.3E–1) 5.1825E–2(1.1E–3) 1.1261E–1(1.7E–1) 5.0157E–2(1.3E–5)
DTLZ5 2.5627E–2(1.1E–3) 2.4306E–2(1.6E–3) 1.8107E–2(1.5E–5) 1.8101E–2(9.7E–6) 3.1920E–2(1.0E–4) 3.1786E–2(1.2E–4)
DTLZ6 1.0148E–1(2.0E–2) 8.2460E–2(2.4E–2) 2.4922E–1(3.7E–2) 3.3996E–1(3.2E–2) 6.4541E–1(5.7E–2) 7.7428E–1(5.1E–2)
DTLZ7 4.2838E–1(2.9E–1) 3.4369E–1(2.3E–1) 1.2946E–1(9.6E–4) 1.2907E–1(1.2E–3) 1.2840E–1(9.3E–4) 1.2773E–1(4.7E–4)

UF1 4.6600E–2(3.4E–3) 4.1616E–2(6.1E–3) 2.1201E–2(3.3E–2) 1.6545E–3(2.2E–4) 7.4430E–2(6.9E–2) 1.1961E–2(2.6E–2)
UF2 4.6187E–2(1.9E–3) 2.3027E–2(2.8E–3) 1.4578E–2(2.2E–2) 6.6129E–3(1.4E–2) 5.2665E–2(5.2E–2) 1.2393E–2(2.8E–3)
UF3 7.1289E–2(2.8E–2) 4.2602E–2(2.3E–2) 1.1098E–2(1.3E–2) 9.8210E–3(7.6E–3) 3.8405E–2(3.1E–2) 2.4841E–2(2.7E–2)
UF4 5.2290E–2(2.0E–3) 5.1971E–2(2.7E–3) 6.4407E–2(4.0E–3) 6.5795E–2(5.7E–3) 6.7517E–2(5.7E–3) 6.6706E–2(6.1E–3)
UF5 1.1661E+0(1.2E–1) 5.1095E–1(1.4E–1) 4.9510E–1(1.7E–1) 4.3255E–1(1.6E–1) 4.6553E–1(1.3E–1) 5.0649E–1(1.7E–1)
UF6 3.5670E–1(2.1E–2) 2.8411E–1(1.1E–1) 5.0766E–1(1.5E–1) 4.7432E–1(1.7E–1) 5.2782E–1(1.4E–1) 5.1456E–1(1.7E–1)
UF7 2.3288E–2(1.9E–3) 1.9814E–2(1.5E–3) 2.0330E–2(1.5E–2) 1.2150E–2(9.9E–3) 4.8084E–2(1.2E–1) 1.9857E–2(1.2E–2)
UF8 3.8577E–1(9.3E–3) 3.6610E–1(2.5E–2) 5.4927E–2(1.5E–2) 6.0981E–2(1.4E–2) 1.1147E–1(4.6E–2) 9.2471E–2(3.2E–2)
UF9 9.9491E–2(3.0E–3) 1.2012E–1(4.3E–2) 1.1732E–1(4.8E–2) 1.3119E–1(3.4E–2) 1.3193E–1(3.7E–2) 1.2819E–1(4.1E–2)

UF10 2.2497E+0(2.8E–1) 2.3864E+0(1.8E–1) 4.6931E–1(6.6E–2) 4.6540E–1(8.1E–2) 4.8214E–1(1.1E–1) 4.8285E–1(8.9E–2)
DTLZ2(4) 1.7281E–1(1.1E–3) 1.7250E–1(9.1E–4) 8.9093E–2(7.0E–4) 8.9121E–2(7.9E–4) 8.7399E–2(5.1E–6) 8.7399E–2(4.8E–6)
DTLZ2(6) 3.7149E–1(2.4E–3) 3.7347E–1(2.7E–3) 2.8757E–1(1.4E–2) 2.8751E–1(1.2E–2) 2.5665E–1(2.4E–5) 2.5665E–1(1.9E–5)

DTLZ2(10) 8.6901E–1(3.4E–2) 5.6541E–1(2.1E–3) 5.6890E–1(1.9E–2) 5.7893E–1(1.6E–2) 4.9222E–1(2.4E–5) 4.9222E–1(2.5E–5)
DTLZ5(2,10) 7.4584E–1(0.0E+0) 1.0511E–2(2.3E–3) 1.6977E–1(1.8E–3) 1.7116E–1(1.0E–3) 6.4940E–2(5.3E–5) 6.4930E–2(4.2E–5)
DTLZ5(3,10) 6.1236E–1(7.6E–2) 2.7412E–1(1.2E–1) 2.5113E–1(3.2E–4) 2.5110E–1(3.7E–4) 1.6867E–1(3.1E–3) 1.6739E–1(3.9E–3)
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(a) IBEA (b) BCE-IBEA

Fig. 14. The final solution set of IBEA and the one working under the
BCE framework (i.e., the NPC population of BCE-IBEA) on the 10-objective
DTLZ2, shown by parallel coordinates.

the previous section, indicates that both the NPC and PC
evolutions benefit from the information share and exchange
under the BCE framework.

B. Individual Exploration in the PC Evolution

In BCE, the individual exploration operation plays a key
role. It is designed to compensate for the possible diversity
loss of the NPC evolution, by exploring some promising
individuals in the PC population which are not well developed
or have already been eliminated in the NPC population. In this
section, we take a closer look at this operation, investigating

its role during the evolutionary process. That is, we record
how many individuals are produced in the operation and from
them how many individuals enter the PC and NPC populations
via the PC and NPC selection, respectively.

For a comparison observation, we consider two situa-
tions where the embedded non-Pareto algorithm performs
poorly and well, separately. They are BCE-IBEA and BCE-
MOEA/D+PBI on DTLZ2 (cf. Figs. 6(a) and (c)). Fig. 15
gives the evolutionary trajectories of the average number of
those individuals that are produced in the exploration operation
and enter the PC and NPC populations across the 30 runs.
As can be seen from Fig. 15, the exploration appears to be
adaptive, based on the performance of the embedded non-
Pareto algorithm. If the embedded algorithm performs poorly,
constant exploration is being made throughout the whole evo-
lutionary process; if the algorithm works well, the exploration
stops at certain evaluations, giving the NPC evolution more
computational resources. This adaptive operation leads to a
good balance between the NPC and PC evolutions during the
search process, and enables BCE to be always competitive no
matter whether the embedded non-Pareto algorithm performs
well or not.

Next, we consider the number of individuals that enter the
PC and NPC populations. In both situations, most of the
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(a) BCE-IBEA (b) BCE-MOEA/D+PBI

Fig. 15. Evolutionary trajectories of the average number of individuals
that are produced in individual exploration and enter the PC and NPC
populations across the 30 runs of BCE-IBEA and BCE-MOEA/D+PBI on
DTLZ2. Black square denotes the number of individuals produced in the
individual exploration operation, and red circle and blue triangle denote the
number of the individuals entering the PC and NPC populations, respectively.

individuals produced in the exploration operation are preserved
in the PC population. This shows the effectiveness of the
exploration in producing competitive individuals in terms of
the PC. On the other hand, very few individuals produced
in the exploration operation can be selected into the NPC
population after around 3,000 evaluations for BCE-IBEA.
This is because the NPC evolution of the algorithm already
performs “well” based on its own criterion. In spite of that,
there do exist a number of individuals successfully entering
the NPC population in the initial stage of the evolution for
both algorithms, especially at the first generation where all the
individuals produced in the exploration operation are preserved
in the NPC population. This indicates the effectiveness of
exploring promising nondominated individuals on accelerating
the evolution of the NPC population during the initial stage
of the search.

C. Population Maintenance in the PC Evolution

Like in Pareto-based algorithms, the population in the PC
evolution is maintained by the Pareto dominance relation and
individual density. They prefer nondominated individuals and
individuals with a lower crowding degree. Now a concern may
arise – does the PC evolution suffer from what Pareto-based
algorithms commonly suffer, such as inferior performance on
MOPs with a complex PS [44] or with a high-dimensional
objective space [68]?

In fact, the answer to the above question can be found
from the results in the previous section (Sections IV-F and
IV-G). As shown in Table III, for most of the variable-
linkage and many-objective problems, the PC population
outperforms the solution set obtained by the indicator-based
and decomposition-based algorithms. And these non-Pareto
algorithms have already been demonstrated to have a clear
advantage over Pareto-based algorithms on such MOPs [25],
[32], [44], [51], [68], [76]. This suggests a fundamental dif-
ference of performance between the PC evolution and Pareto-
based algorithms.

For a visual comparison, we give the results of BCE-
MOEA/D+TCH and a well-known Pareto-based algorithm,
NSGA-II, on the 10-objective problem DTLZ5(2,10). Fig. 16
plots the solution set obtained by the two algorithms via
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(a) NSGA-II (b) BCE-MOEA/D+TCH

Fig. 16. The final solution set obtained by NSGA-II and BCE-
MOEA/D+TCH on DTLZ5(2,10), shown by parallel coordinates.

(a) MOEA/D+TCH (b) BCE-MOEA/D+TCH

Fig. 17. The final solution set of MOEA/D+TCH and BCE-MOEA/D+TCH
on DTLZ1.

parallel coordinates. It is clear that in contrast to NSGA-
II whose solutions are far away from the optimal front (the
objective value being up to around 200), BCE-MOEA/D+TCH
performs superiorly, with its solutions fully covering the whole
Pareto front. This contrast indicates the interplay between the
NPC evolution and the PC evolution in the BCE framework.
Not only does the PC evolution maintain a set of well-
distributed individuals to compensate for possible diversity
loss of the NPC population, but the NPC evolution also
guides the PC population forward – it produces sufficient well-
converged individuals, which can “pull” the PC population
moving towards the Pareto front.

Finally, it is necessary to point out that although BCE
generally works well on the MOPs where Pareto-based al-
gorithms have struggled, its Pareto dominance and density-
based population maintenance strategy, in some cases, still
has an impact on the algorithm’s performance. This mainte-
nance strategy can cause the existence of some dominance
resistant solutions5 (DRSs) [30] in the PC population. This
has often been observed in problems with many local op-
timal fronts, such as DTLZ1 and DTLZ3. Fig. 17 shows
the final solution set obtained by MOEA/D+TCH and BCE-
MOEA/D+TCH in one typical run on DTLZ1. Clearly, in
contrast to MOEA/D+TCH whose solutions all converge into
the Pareto front, there exist two solutions far away from
the optimal front in BCE-MOEA/D+TCH. Such solutions
typically have a low crowding degree and will be preferred
since no individual in the population dominates them.

The existence of DRSs in the PC population is detrimental

5Dominance resistant solutions are the solutions with a quite poor value
in at least one of the objectives but with (near) optimal values in the others,
which Pareto-based algorithms have difficulty in getting rid of [18], [30], [36].
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not only to population maintenance but also to individual
exploration. In the individual exploration operation, DRSs
are always considered since there is no NPC individual lo-
cated in their niche. Exploring them could have very little
contribution to the algorithm’s performance in view of their
poor performance in terms of convergence. A straightforward
approach to remove DRSs is to increase the selection pressure
of Pareto dominance; however, this will lead to nondominated
individuals to be treated differently, and thus will probably
affect their distribution uniformity over the Pareto front. We
leave this for our future study.

D. Comparison with State of the Art Algorithms

The previous experimental results have demonstrated the
effectiveness of the BCE framework in improving three non-
Pareto algorithms. In this section, we further investigate the
competitiveness of the BCE framework by comparing the three
BCE algorithms with two state-of-the-art EMO algorithms,
NSGA-III [16] and SMS-EMOA [7].

NSGA-III and SMS-EMOA use both PC and NPC in
their selection mechanism. NSGA-III combines the Pareto
nondominated sorting with a decomposition-based niching
technique to balance solutions’ convergence and diversity in
the evolutionary process. NSGA-III has shown its advantage
over the two decomposition-based algorithms MOEA/D-TCH
and MOEA/D-PBI in its original paper [16] and has been
found to significantly outperform IBEA in a recent study [69].
Working with the Pareto nondominated sorting, SMS-EMOA
maximizes the hypervolume contribution of nondominated
solutions during the evolutionary process. SMS-EMOA has
also been demonstrated to generally outperform IBEA and
MOEA/D in a very recent study [39].

The intention that we introduce NSGA-III and SMS-EMOA
as peer algorithms is to 1) verify the competitiveness of
BCE in comparison with hybrid algorithms based on both PC
and NPC and 2) see how the three BCE algorithms would
perform against state-of-the-art algorithms that outperform
their original non-Pareto versions.

Note that the execution of SMS-EMOA with a large pop-
ulation size and a large number of objectives can take un-
acceptable time. Therefore, for some MOPs (i.e., UF8–UF10,
many-objective DTLZ2 and DTLZ5(I,m)), we approximately
estimate the hypervolume indicator in SMS-EMOA by the
Monte Carlo sampling method used in [4]. Following the
practice in HypE [4], 10,000 sampling points are used here.
In addition, all configurations in this experiment were kept the
same as in previous studies.

Table VI gives the experimental results of the three
BCE algorithms against NSGA-III and SMS-EMOA. As
can be seen, the three BCE algorithms generally outper-
form NSGA-III and SMS-EMOA. Specifically, BCE-IBEA,
BCE-MOEA/D+TCH and BCE-MOEA/D+PBI perform statis-
tically better than/equally to/worse than NSGA-III on 28/8/6,
27/6/9 and 21/5/16 problems, respectively. BCE-IBEA, BCE-
MOEA/D+TCH and BCE-MOEA/D+PBI perform statistically
better than/equally to/worse than SMS-EMOA on 21/6/15,
23/3/16 and 21/3/18 problems, respectively.

It is worth mentioning that actually the original versions of
the three non-Pareto algorithms (i.e., IBEA, MOEA/D+TCH,
and MOEA/D+PBI) are significantly outperformed by NSGA-
III and SMS-EMOA. From the comparison of the IGD
results, IBEA, MOEA/D+TCH and MOEA/D+PBI perform
statistically better than/equally to/worse than NSGA-III on
11/4/27, 15/3/24 and 13/4/25 problems, respectively; IBEA,
MOEA/D+TCH and MOEA/D+PBI perform statistically bet-
ter than/equally to/worse than SMS-EMOA on 5/3/34, 13/4/25
and 11/8/23 problems, respectively. This contrast clearly indi-
cates the effectiveness of the BCE framework – when working
under the BCE framework, all the three non-Pareto algorithms
have a significant performance improvement and now are very
competitive with or even generally outperform the state-of-the-
art NSGA-III and SMS-EMOA.

VI. DISCUSSIONS

One important issue in the proposed BCE framework is
the setting of the niche radius, since both the population
maintenance and individual exploration operations involve the
niche-based density estimation. BCE considers the average of
the Euclidean distance from all the individuals to their kth
nearest individual in the population as the niche radius. A
large k will result in a large radius. However, how to set k
cannot be treated as trivial.

In population maintenance, the crowding degree estimation
of an individual is affected by the number of other individuals
in its niche (called its neighbors). A large k would make
outer individuals of the population to be preferred since the
number of their neighbors is generally fewer than that of inner
ones. A too small k would make many individuals have no
neighbor residing in their niche, thereby leading to the failure
of differentiating them. In fact, the BCE algorithms can work
well in terms of diversity maintenance when k ∈ [3, 6]. Fig. 18
plots the solution sets obtained by BCE-MOEA/D+TCH with
different k values on DTLZ2. As shown, BCE-MOEA/D+TCH
with k = 3, 4, 6 performs well, while the algorithm with k = 2
struggles to maintain uniformity and more boundary solutions
are obtained when k is set to 10.

In individual exploration, the niche size affects the number
of individuals to be explored. A large niche can lead to
very few (or even none of) individuals in the PC population
to be explored. Table VII gives the experimental results of
BCE-MOEA/D+TCH with different k values on the nine
WFG problems. Similar results can also be observed on other
problems. As can be seen from the table, setting a small k
can generally lead to a better result of the algorithm. BCE-
MOEA/D+TCH with k = 2 performs best or second best in
7 out of the 9 problems, and the algorithm with k = 3 in 8
out of the 9 problems. This indicates that setting k to 2 or 3
is suitable for the individual exploration operation.

From the above observations, the BCE algorithm with k set
to 3 can work well in both the population maintenance and
individual exploration operations.

Finally, it is worth mentioning that the previous experiments
are all about the test of comprehensive performance of BCE
(i.e., combined performance of convergence and diversity).
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TABLE VI
IGD RESULTS (MEAN AND SD) OF THE THREE BCE ALGORITHMS, NSGA-III AND SMS-EMOA. THE TWO MARKS ASSOCIATED WITH EACH BCE

ALGORITHM INDICATE ITS STATISTICAL COMPARISON (ACROSS 30 RUNS) AGAINST NSGA-III AND SMS-EMOA, RESPECTIVELY. “<”, “≈” AND “>”
INDICATE THAT THE BCE ALGORITHM STATISTICALLY PERFORMS BETTER, EQUALLY AND WORSE, RESPECTIVELY, AT A 0.05 LEVEL BY THE

WILCOXON’S RANK SUM TEST.

Problem BCE-IBEA BCE-MOEA/D+TCH BCE-MOEA/D+PBI NSGA-III SMS-EMOA
SCH1 1.6732E–2(1.1E–4) < < 1.6761E–2(1.4E–4) < < 1.6729E–2(9.3E–5) < < 4.8446E–2(2.0E–4) 1.8529E–2(3.2E–4)
SCH2 2.0902E–2(2.3E–4) < > 2.0832E–2(2.7E–4) < > 2.0861E–2(2.1E–4) < > 3.0851E–2(2.4E–3) 1.9640E–2(1.3E–4)
KUR 3.4693E–2(6.7E–4) < > 3.4142E–2(6.2E–4) < > 3.4960E–2(9.2E–4) < > 4.0147E–2(6.6E–4) 3.2104E–2(3.4E–4)
ZDT1 3.9475E–3(5.0E–5) < > 4.2756E–3(9.4E–5) > > 5.9401E–3(4.3E–4) > > 4.0427E–3(5.7E–5) 3.6445E–3(1.9E–5)
ZDT2 4.0420E–3(3.3E–4) ≈ < 4.1688E–3(9.3E–5) > < 7.2119E–3(7.8E–4) > > 4.0919E–3(1.2E–4) 4.3563E–3(1.8E–4)
ZDT3 4.6028E–3(6.5E–5) < ≈ 4.7997E–3(6.0E–5) < ≈ 5.4836E–3(1.5E–4) < ≈ 5.5924E–3(1.4E–4) 1.0180E–2(1.2E–2)
ZDT4 1.2270E–1(5.9E–2) > > 8.2586E–3(3.2E–3) < < 1.3458E–2(6.5E–3) < < 4.7561E–2(4.0E–2) 2.3873E–2(3.9E–2)
ZDT6 3.4449E–3(8.6E–5) < < 1.0328E–2(1.3E–3) < > 2.1787E–2(2.7E–3) > > 1.2670E–2(1.2E–3) 3.8964E–3(1.5E–4)
WFG1 7.7944E–1(6.3E–2) < < 9.6279E–1(5.4E–2) < < 1.0490E+0(5.3E–2) < < 1.1094E+0(6.4E–2) 1.1023E+0(1.3E–1)
WFG2 2.5660E–2(1.1E–2) ≈ > 2.0238E–2(4.1E–3) < ≈ 3.0526E–2(6.9E–3) > > 2.5672E–2(3.7E–3) 1.8368E–2(3.9E–3)
WFG3 1.6083E–2(2.0E–3) < > 2.3228E–2(3.3E–3) > > 3.9358E–2(7.4E–3) > > 2.1876E–2(3.7E–3) 1.4330E–2(1.2E–3)
WFG4 1.3005E–2(4.6E–4) < > 1.9664E–2(1.5E–3) > > 3.8183E–2(3.9E–3) > > 1.6868E–2(1.1E–3) 1.1092E–2(2.7E–4)
WFG5 6.7165E–2(1.7E–4) < > 6.8558E–2(6.3E–4) ≈ > 7.7588E–2(1.8E–3) > > 6.8390E–2(5.3E–4) 6.6540E–2(6.9E–5)
WFG6 6.1760E–2(9.2E–3) < ≈ 6.4056E–2(8.2E–3) ≈ > 8.6534E–2(1.2E–2) > > 6.7004E–2(8.3E–3) 5.9407E–2(7.8E–3)
WFG7 1.4264E–2(3.1E–4) < > 1.5242E–2(3.3E–4) < > 2.9628E–2(2.2E–3) > > 1.6195E–2(2.9E–4) 1.1408E–2(7.8E–5)
WFG8 8.0848E–2(6.1E–3) < > 8.5839E–2(5.6E–3) < > 1.0653E–1(8.1E–3) > > 8.9378E–2(4.7E–3) 7.7623E–2(4.9E–3)
WFG9 7.4934E–2(5.2E–2) ≈ > 5.6954E–2(4.5E–2) ≈ > 7.3108E–2(3.9E–2) ≈ > 5.7340E–2(4.8E–2) 3.7320E–2(4.4E–2)
VNT1 1.2731E–1(3.3E–3) < > 1.2240E–1(2.7E–3) < > 1.2544E–1(2.7E–3) < > 1.9823E–1(4.0E–2) 1.0868E–1(2.2E–2)
VNT2 1.2219E–2(3.2E–4) < < 1.2121E–2(2.8E–4) < < 1.2436E–2(2.5E–4) < < 2.4536E–2(4.4E–3) 1.3633E–2(7.0E–5)
VNT3 3.8870E–2(1.4E–3) < < 3.8536E–2(1.2E–3) < < 3.8244E–2(1.1E–3) < < 2.4137E–1(1.9E–1) 2.3838E–1(3.9E–2)
DTLZ1 2.2154E–2(2.0E–3) ≈ > 2.1149E–2(1.8E–3) ≈ > 2.2134E–2(2.4E–2) ≈ > 2.2708E–2(7.1E–3) 1.9170E–2(8.2E–5)
DTLZ2 5.3051E–2(1.0E–3) > < 5.1708E–2(7.7E–4) > < 5.1369E–2(8.3E–4) > < 5.0930E–2(3.7E–4) 7.2422E–2(6.9E–4)
DTLZ3 5.3253E–1(4.3E–1) < < 1.6158E+0(1.3E+0) ≈ < 1.4062E+0(1.1E+0) ≈ < 2.1496+0(1.3E+0) 2.6143E+0(8.9E–1)
DTLZ4 2.3409E–1(3.4E–1) > < 5.2207E–2(9.4E–4) > < 5.1944E–2(9.8E–4) > < 5.0989E–2(4.4E–4) 5.5827E–1(4.8E–1)
DTLZ5 4.1949E–3(2.4E–4) < < 4.4611E–3(3.2E–4) < < 4.5173E–3(3.4E–4) < < 1.1340E–2(1.7E–3) 5.1063E–3(2.0E–4)
DTLZ6 7.3724E–2(2.5E–2) < < 3.9000E–1(3.3E–2) < > 7.6720E–1(4.8E–2) > > 5.2645E–1(4.1E–2) 9.1480E–2(9.1E–3)
DTLZ7 2.7161E–1(2.5E–1) ≈ ≈ 5.6166E–2(1.1E–3) < < 5.8486E–2(9.7E–4) < < 1.1630E–1(1.4E–2) 7.3461E–2(8.2E–4)
UF1 3.5263E–2(5.4E–3) ≈ ≈ 1.6430E–3(1.6E–4) < < 9.3327E–3(2.1E–2) < < 3.3575E–2(3.4E–3) 3.3638E–2(9.8E–4)
UF2 2.2549E–2(2.8E–3) < < 6.5645E–3(1.4E–3) < < 1.1159E–2(2.7E–3) < < 4.3056E–2(2.2E–3) 3.9715E–2(1.1E–3)
UF3 4.2563E–2(2.3E–2) < < 9.5736E–3(1.0E–2) < < 1.3594E–2(1.5E–2) < < 7.8088E–2(2.2E–2) 1.0859E–1(8.0E–3)
UF4 5.0860E–2(2.6E–3) > ≈ 6.6063E–2(5.7E–3) > > 6.6512E–2(5.9E–3) > > 4.9504E–2(2.2E–3) 5.0426E–2(1.1E–3)
UF5 5.1121E–1(1.4E–1) < < 4.0341E–1(1.4E–1) < < 4.7409E–1(1.5E–1) < < 1.1570E+0(1.2E–1) 1.1627E+0(3.9E–2)
UF6 2.8400E–1(1.1E–2) < < 4.2500E–1(1.4E–1) ≈ ≈ 4.4913E–1(1.5E–1) ≈ ≈ 3.9800E–1(1.9E–2) 3.8820E–1(9.9E–3)
UF7 1.5350E–2(1.1E–3) > > 1.2116E–2(5.0E–3) < < 1.4598E–2(3.8E–3) ≈ ≈ 1.4883E–2(9.8E–4) 1.4730E–2(2.7E–4)
UF8 1.3722E–1(3.5E–2) ≈ ≈ 5.6104E–2(1.1E–2) < < 8.9914E–2(3.3E–2) < < 1.2600E–1(3.5E–3) 1.2589E–1(5.1E–3)
UF9 1.1081E–1(4.1E–2) ≈ > 1.3153E–1(3.4E–2) > > 1.2588E–1(4.1E–2) > > 1.1108E–1(6.0E–3) 9.8454E–2(4.3E–3)
UF10 2.3864E+0(1.8E–1) < < 4.6496E–1(7.0E–2) < < 4.2631E–1(6.1E–2) < < 2.5358E+0(2.9E–1) 2.4508E+0(7.7E–2)
DTLZ2(4) 9.8155E–2(4.8E–3) > < 9.3172E–2(3.2E–3) > < 9.3679E–2(4.6E–3) > < 8.7617E–2(2.0E–4) 1.1543E–1(7.6E–4)
DTLZ2(6) 2.3931E–1(2.7E–3) < < 2.3766E–1(1.9E–3) < < 2.4064E–1(7.6E–4) < < 2.5721E–1(1.6E–4) 2.9009E–1(1.4E–3)
DTLZ2(10) 4.8722E–1(4.8E–3) < < 4.6966E–1(7.4E–3) < < 4.7015E–1(2.7E–3) < < 4.9596E–1(8.0E–4) 5.4540E–1(1.6E–3)
DTLZ5(2,10) 2.1183E–3(3.2E–5) < < 2.1620E–3(7.2E–5) < < 2.1492E–3(6.8E–5) < < 1.2713E+0(6.3E–1) 4.8257E–1(2.9E–1)
DTLZ5(3,10) 3.7996E–2(3.1E–3) < < 3.7136E–2(1.1E–3) < < 3.8918E–2(2.1E–3)< < 5.6242E–2(4.4E–3) 4.9480E–2(2.3E–3)

(a) k = 2 (b) k = 3 (c) k = 4 (d) k = 6 (e) k = 10

Fig. 18. The solution sets obtained by BCE-MOEA/D+TCH with different k values in the niche radius setting on DTLZ2.

TABLE VII
IGD RESULTS (MEAN AND SD) OF BCE-MOEA/D+TCH WITH DIFFERENT k VALUES ON THE WFG PROBLEMS. THE BEST AND SECOND BEST MEANS

FOR EACH PROBLEM ARE SHOWN WITH DARK AND LIGHT GRAY BACKGROUNDS, RESPECTIVELY

Problem k = 2 k = 3 k = 4 k = 6
WFG1 9.3814E–1(6.1E–2) 9.6279E–1(5.4E–2) 9.8176E–1(6.0E–2) 9.8774E–1(5.5E–2)
WFG2 2.1396E–2(6.5E–3) 2.0238E–2(4.1E–3) 2.0754E–2(2.5E–3) 2.3346E–2(5.6E–3)
WFG3 2.1886E–2(3.0E–3) 2.3228E–2(3.3E–3) 2.4681E–2(6.9E–3) 2.3794E–2(3.6E–3)
WFG4 1.8452E–2(1.4E–3) 1.9664E–2(1.5E–3) 2.0035E–2(1.8E–3) 2.0269E–2(1.7E–3)
WFG5 6.8565E–2(5.1E–4) 6.8558E–2(6.3E–4) 6.8577E–2(5.1E–4) 6.8871E–2(8.2E–4)
WFG6 6.4045E–2(9.1E–3) 6.4056E–2(8.2E–3) 6.4176E–2(9.7E–3) 6.3763E–2(7.0E–3)
WFG7 1.5289E–2(4.8E–4) 1.5242E–2(3.3E–4) 1.5779E–2(4.0E–4) 1.5528E–2(4.1E–4)
WFG8 8.5569E–2(4.9E–3) 8.5839E–2(5.6E–3) 8.7812E–2(6.8E–3) 8.6347E–2(4.6E–3)
WFG9 6.0298E–2(4.7E–2) 5.6954E–2(4.5E–2) 6.6903E–2(4.8E–2) 5.8558E–2(4.4E–2)
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Then, how does the BCE algorithm perform in terms of
separate convergence or diversity? In fact, BCE is designed
to use a non-Pareto algorithm (as a drive) to lead the PC
evolution forward and at the same time use the PC evolution
to compensate for the possible diversity loss during the search
process of this non-Pareto algorithm. Thus, the BCE algorithm
usually performs worse than the embedded non-Pareto algo-
rithm in terms of convergence, but better in terms of diversity.
However, if the NPC used in the embedded algorithm struggles
to steer the evolution forwards, Pareto dominance would drive
the evolution instead. In this case, the BCE algorithm has
better convergence than the embedded non-Pareto algorithm.
Fig. 7 in Section IV is precisely such a case.

VII. CONCLUSIONS

This paper has presented a bi-criterion evolution (BCE)
framework of Pareto criterion and non-Pareto criterion to deal
with MOPs. In BCE, the two criteria work collaboratively,
attempting to use their strengths to facilitate each other’s evo-
lution. In general, the NPC evolution drives the PC evolution
forward while the PC evolution compensates for the possible
diversity loss of the NPC evolution. In the proposed frame-
work, the two populations communicate constantly, with their
information being fully shared and compared in a generational
manner. Any new individual produced in one population will
be tested and applied in the other. The information comparison
of the two populations reflects the current status of the NPC
evolution, thus making the search more focused on some
undeveloped (or not well-developed) but promising regions.

Systematic experiments have been carried out by investigat-
ing three representative non-Pareto EMO algorithms on seven
categories of 42 test problems. The results have revealed the
effectiveness of the BCE approach in providing a good balance
between convergence and diversity. The three BCE algorithms
work well, whether on problems where NPC could struggle,
such as MOPs with a highly irregular or a discontinuous Pareto
front, or on problems where the PC is likely to fail, such
as MOPs with a complex Pareto set or a high-dimensional
objective space.

Moreover, the performance verification of the embedded
non-Pareto algorithms indicates that both the PC and NPC
evolutions benefit from the information share and exchange
under the BCE framework. In addition, two key operations
of BCE, individual exploration and population maintenance,
have been investigated and analyzed. The variation of the
number of explored individuals during the evolutionary pro-
cess has shown the adaptiveness of individual exploration,
depending on the performance of the embedded algorithm. As
to population maintenance, despite clear differences having
been observed from the results in comparison with Pareto-
based algorithms, the Pareto dominance and density-based
maintenance strategy could have an impact on the performance
of the BCE algorithm. Finally, a comparison with NSGA-III
and SMS-EMOA has verified the competitiveness of the three
BCE algorithms as independent algorithms to deal with MOPs.

The bi-criterion evolution of Pareto and non-Pareto criteria
is a general framework in EMO. It can be especially of

practical value in the area, given its applicability for any non-
Pareto algorithm, no requirement of parameter tuning in the
implementation, and the reliability on various problems with
distinct characteristics.

Finally, note that the study in this paper focuses on the
design of the BCE framework and the implementation of
selection operations, while the variation operation is not fixed
and it uses the same search operators from the embedded non-
Pareto algorithm. In the subsequent work, we will attempt
to introduce other search operators into BCE. This includes
integrating existing operators (such as those from MO-CMA-
ES [29], MTS [65], MTS2 [11] and SBS [46]) or designing
new operators specially for the individual exploration in the
PC evolution.
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