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Abstract—Rapid development of evolutionary algorithms in
handling many-objective optimization problems requires viable
methods of visualizing a high-dimensional solution set. The
parallel coordinates plot which scales well to high-dimensional
data is such a method, and has been frequently used in
evolutionary many-objective optimization. However, the parallel
coordinates plot is not as straightforward as the classic scatter
plot to present the information contained in a solution set.
In this paper, we make some observations of the parallel
coordinates plot, in terms of comparing the quality of solution
sets, understanding the shape and distribution of a solution
set, and reflecting the relation between objectives. We hope
that these observations could provide some guidelines as to
the proper use of the parallel coordinates plot in evolutionary
many-objective optimization.

I. INTRODUCTION

The classic scatter plot is a basic tool in viewing solu-
tion vectors in multi-objective optimization. It allows us to
observe/perceive the quality of a solution set, the shape and
distribution of a solution set, the relation between objectives
(e.g., the extent of their conflict), etc. Unfortunately, the
scatter plot may only be drawn readily in a 2D or 3D
Cartesian coordinate space. It could be difficult for people to
comprehend the scatter plot in a higher-dimensional space.

An alternative to view data with four or more dimen-
sions is using parallel coordinates [1], [2], [3] (aka value
paths [4]). Parallel coordinates display multi-dimensional
data (a set of vectors) in a two-dimensional graph, with
each dimension of the original data being translated onto
a vertical axis in the graph. A vector is represented as
a polyline with vertices on the axes. As a visualization
tool, parallel coordinates have received modest attention in
the early stage of evolutionary multiobjective optimization
(EMO) [5], [6]. As many-objective optimization (i.e., an
optimization problem with more than three objectives [7],
[8]) becomes a new research topic in the EMO area, there
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has been increasing interest in presenting solution vectors in
the high-dimensional space. Parallel coordinates which are
scalable to objective dimensionality naturally become a good
alternative to do so [9]. Now the parallel coordinates plot
has been dominantly used in many-objective optimization
despite the emergence of various visualization techniques [4],
[10], [11], [12]. This includes it being used to investigate
the search behavior of algorithms [13], [14], [15], to ex-
amine preference-based search [16], [17], [18], to compare
different solution sets [19], [20], [21], to verify performance
metrics [22], [23], [24], and furthermore to help design new
many-objective optimizers [25], [26].

Despite the popularity, the parallel coordinates plot is
not as straightforward as the scatter plot in presenting the
information contained in a solution set. Due to mapping
multi-dimensional data onto a lower 2D space, the loss of
information is inevitable. This could naturally lead to sev-
eral questions; specifically, in the context of multi-objective
optimization, one may ask

• Can the parallel coordinates plot indicate the quality
of a solution set, e.g., its convergence, uniformity and
coverage?

• Can the parallel coordinates plot give insights into the
shape and distribution of a solution set? In other words,
what can we see from the pattern of solution lines in
parallel coordinates?

• How much information can the parallel coordinates
plot tell in terms of the relation among objectives? To
be specific, does the order of objectives displayed in
parallel coordinates matter?

In this paper, we make some observations on the above
questions, attempting to provide some guidelines as to the use
of parallel coordinates in evolutionary multi-objective opti-
mization. The rest of the paper is organized as follows. Sec-
tion II briefly introduces parallel coordinates. Sections III–V
are devoted to answering those three questions, respectively.



Fig. 1. The parallel coordinates plot of three four-dimensional points
a (15, 31, 20, 50), b (10, 18, 2, 30) and c (20, 5, 32, 20).

Section VI describes how to draw a parallel coordinates plot.
Section VII concludes the paper and presents some possible
future research lines.

II. PARALLEL COORDINATES

To show a set of points in an m-dimensional space, parallel
coordinates map them onto a 2D graph, with m parallel
axes being plotted, typically vertical and equally spaced. A
point in an m-dimensional space is represented as a polyline
with vertices on these parallel axes, and the position of the
vertex on the i-th axis corresponds to the value of the point
on the i-th dimension. Parallel coordinates are simple to
construct and scale well with the dimensionality of data.
Adding more dimensions only involves adding more axes.
Figure 1 presents an example of the parallel coordinates
plot, where three 4D points are mapped to three polylines,
respectively.

Parallel coordinates have been frequently used in visualiz-
ing many-objective solution sets. However, there have been
some misinterpretations when parallel coordinates were used
to claim the quality of solution sets. For example, a solution
set has been claimed to have good convergence when it was
seen within the range of the Pareto front in the parallel coor-
dinates plot [27], [28], [29]. A solution set has been claimed
to have good distribution when it was seen spreading over the
whole range of the parallel coordinates plot [19], [28], [29],
[30]. A solution set has been claimed to have poor diversity
when it was seen concentrating in several polylines in the
parallel coordinates plot [31]. A solution set has been claimed
to have “noisy” distribution when it was seen cluttered in the
parallel coordinates plot [20]. In next section, we will present
what kind of quality aspects parallel coordinates can tell and
what it cannot, along with examples to show the above claims
misinterpreted (Figures 3, 9, 13(a) and 15(b), respectively).

III. QUALITY MEASUREMENT

Given dimensionality reduction in the mapping of parallel
coordinates, some loss of information is expected. In this
section, we will see what and how much information parallel

coordinates can preserve and reflect in terms of the quality
of a solution set in multi-objective optimization.

Often, the quality of a solution set in multi-objective
optimization can be reflected via four measures: convergence,
coverage, uniformity, and extensity. Convergence of a solu-
tion set measures the closeness of the set to the Pareto front;
coverage considers the region of the set covering in com-
parison with the whole Pareto front; uniformity quantifies
the distance between neighboring points in the set in the
objective space; and extensity refers to the range of the set
in the objective space. In general, there is no clear conceptual
difference of these quality measures between many-objective
optimization and multi-objective optimization with two or
three objectives. However, many-objective optimization typ-
ically poses bigger challenge for evolutionary algorithms to
achieve a good balance among these aspects.

A straightforward feature that parallel coordinates can tell
is the range of a solution set. This feature can make it easy
to interpret the extensity of a solution set, in comparison
with the extensity metrics, e.g., maximum spread [32]. In the
following, we will discuss if parallel coordinates can reflect
other aspects of a solution set’s quality, i.e., convergence,
coverage and uniformity.

A. Convergence

In multi-objective optimization, Pareto dominance is a
fundamental criterion to compare solutions in terms of con-
vergence. Parallel coordinates can clearly reflect the Pareto
dominance relation between two solutions (such as polyline
a being dominated by polyline b in Figure 1, assuming a
minimization problem scenario) if the solution polylines are
not overcrowded. It is worth mentioning that one can remove
dominated solutions in parallel coordinates if they are only
interested in non-dominated ones. This may make the plot
clearer when comparing the quality of solution sets.

In addition to reflecting the Pareto dominance relation,
parallel coordinates can largely imply the convergence of so-
lution sets by their range. Figure 2 is such an example, where
the parallel coordinates representation of two solution sets
obtained by one run1 of two EMO algorithms, NSGA-II [33]
and GrEA [34], on the 10-objective DTLZ2 problem [35] is
shown. As can be seen, NSGA-II has an inferior convergence,
with its solution set ranging from 0 to around 3.5 in contrast
to the problem’s Pareto front ranging from 0 to 1. GrEA
has a good convergence on this problem and its solution set
has the same range as the Pareto front. These observations
can be confirmed by the results of the convergence metric
GD+ [36] shown in the figure. GD+ is a modified version of
the original GD [37], which makes it compatible with Pareto
dominance.

However, we may not be able to accurately know the
convergence of solution sets by their range shown in parallel

1The setting of the population size and maximum evaluations was 100
and 30,000, respectively. This setting was used in all conducted experiments
in this paper, unless explicitly mentioned otherwise. In addition, the grid
division in GrEA was set to 8.
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(a) NSGA-II (GD+= 2.26E-1)
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(b) GrEA (GD+= 1.20E-2)

Fig. 2. The solution sets obtained by NSGA-II and GrEA on the 10-objective DTLZ2, and their evaluation results on the convergence measure GD+ (the
smaller the better).
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(a) NSGA-II (GD+= 3.63E-1)
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(b) GrEA (GD+= 6.32E-2)

Fig. 3. The solution sets obtained by NSGA-II and GrEA on the 10-objective WFG7, and their evaluation results on the convergence metric GD+ (the
smaller the better).
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Fig. 4. The solution sets obtained by AR and IBEA on the 10-objective DTLZ2.



coordinates. That is, even if two solution sets are located in
the same range, they can perform considerably differently
in terms of convergence. Figure 3 gives such an example,
where solution sets obtained by one run of NSGA-II and
GrEA on the 10-objective WFG7 problem [38] are shown.
As seen, both algorithms virtually reach the range of the
Pareto front (from 0 to 2i where i is the objective index of
the problem), but they have different GD+ results. NSGA-II
is returned a significantly higher (worse) GD+ value than
GrEA. This occurence can be from two possibilities. One is
that the solution set of NSGA-II is not actually close to the
Pareto front. The other is that most of solutions in the set
converge already while a small portion of the set is far away
(but still in the range of the Pareto front).

In addition, it is worth mentioning that even if the “height”
of two solution sets in the parallel coordinate plot is different,
we may also not be able to tell the convergence difference
between them if the range of a problem’s Pareto front
is unknown. This is because different solution sets may
converge into different parts of the Pareto front, especially
in the situation where the Pareto front is highly convex.

B. Coverage

In parallel coordinates, it is straightforward to see which
region a solution set does not reach on any objective2.
For example, in Figure 4 the solution set obtained by the
AR method [39] concentrates in one tiny area and the
set by IBEA [40] fails to cover the first six objectives
on the 10-objective DTLZ2. Moreover, we can conjecture
some distribution features of solution sets from their parallel
coordinates representation. Take the solution sets in Figure 5
as an example; their parallel coordinates representation is
shown in Figure 6. From Figure 6, we can know that the
solution sets of IBEA and SMS-EMOA [41] fail to cover
the region between 0.0 and 0.2 on all three objectives. Also,
most of the solutions obtained by IBEA are located in the
boundary of the Pareto front as there are very few lines
distributed around the middle section on all three objectives
in the figure.

However, there do exist some cases that different solution
sets have the same parallel coordinates plots. We can easily
construct such an example. In Figure 7, solution set B has
a better coverage than set A (the four solutions in set A
being duplicate), but the two sets have the same pattern
in parallel coordinates (Figure 8). Note that if we change
the order of some objectives (e.g., f1 and f2), the parallel
coordinates plots of the two solution sets in this example
would be different.

One important fact that we would like to note is that as
parallel coordinates map an m-dimensional graph onto a 2D
graph they cannot fully reflect the coverage of solution sets.
A set of solutions (represented by polylines) may have a
good coverage over the range of the Pareto front in the
2D graph, but they may only cover part of the Pareto

2Note that for real-world problems whose Pareto front is unknown, we
cannot tell if a solution set reaches the optimal region of objectives or not.

front in the original m-dimensional space. An interesting
example is shown in Figure 9. In that figure, NSGA-II
appears to have a better coverage than GrEA according to
the parallel coordinates plots, but GrEA has a better coverage
evaluation result, measured by the coverage metric Diversity
Comparison Indicator (DCI) [42].

C. Uniformity

In parallel coordinates, it is not easy to see how evenly
a set of solutions are distributed. However, a set of
uniformly-distributed polylines in parallel coordinates often
imply a uniformly-distributed solution set. As shown in
Figures 10 and 11, MOEA/D [43] has a perfectly-distributed
solution set and its corresponding polylines in parallel coor-
dinates are distributed uniformly and regularly. This is in
contrast to the solution set of NSGA-II which is distributed
rather irregularly in both Cartesian and parallel coordinates
plots. Note that a set of irregularly-distributed polylines may
not represent a badly-distributed solution set, as uniformly-
distributed solutions can have distinct values on different
objectives. To show this, we select two EMO algorithms,
MOEA/D [43] and BCE-MOEA/D [44], both of which are
able to obtain a uniformly-distributed solution set on DTLZ2
(see Figure 12). In MOEA/D, the population distribution is
maintained by a set of systematically-generated, uniformly-
distributed weight vectors (within a simplex), and thus ideally
its solutions only take several equivalent values on all the
objectives. In contrast, in BCE-MOEA/D the population
distribution is maintained by a niching-based criterion, and
thus its solutions can spread over the whole range for each
objective. Figure 13 gives the solution sets obtained by
MOEA/D and BCE-MOEA/D on the 10-objective DTLZ23.
As seen, on the uniformity metric Spacing (SP)4[45], BCE-
MOEA/D even performs better than MOEA/D, but we can-
not see this from their parallel coordinates representation
in the figure. This phenomenon may happen frequently
when comparing decomposition-based algorithms having
a set of systematically-generated weight vectors (such as
MOEA/D and NSGA-III [46]) with algorithms that do not
use such decomposition techniques (such as SPEA2 [47] and
Two arch2 [48]). So care needs to be taken when making a
conclusion about the distribution uniformity of solution sets
from parallel coordinates.

Finally, it is worth mentioning that parallel coordinates
plots can be easily cluttered with multiple lines overlaid. This
may completely prevent solution sets’ distribution from being
observed. Figures 14 and 15 show such an example, with
two solution sets obtained by NSGA-II and SPEA2 on the
10-objective ML-DMP problem [49], [50]. The m-objective

3Here the number of DTLZ2’s decision variables is set to m−1 (m is the
number of objectives) to ensure that all solutions produced by algorithms
are Pareto optimal; thus the uniformity measure cannot be affected by the
difference of solution sets’ convergence.

4In this paper, the SP metric has been slightly modified to make it com-
patible with Pareto dominance. That is, if two solution sets are comparable
in terms of Pareto dominance, then the SP value of the dominating set is 0
and the SP value of the dominated set is 1.



(a) IBEA (b) SMS-EMOA (c) MOEA/D

Fig. 5. The solution sets obtained by IBEA, SMS-EMOA and MOEA/D on the 3-objective DTLZ2, shown in Cartesian coordinates.
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(b) SMS-EMOA
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Fig. 6. The corresponding parallel coordinates of the solution sets in Figure 5.

(a) Solution set A (b) Solution set B

Fig. 7. An artificial example of two solution sets (A and B) having the same parallel coordinates plots shown in Figure 8.
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Fig. 8. The parallel coordinates plots of the solution sets in Figure 7.
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(a) NSGA-II (DCI = 7.17E-1)
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(b) GrEA (DCI = 7.75E-1)

Fig. 9. The solution sets obtained by NSGA-II and GrEA on the 10-objective WFG7, and their evaluation results on the coverage metric DCI (the bigger
the better).

(a) NSGA-II (b) MOEA/D

Fig. 10. The solution sets obtained by NSGA-II and MOEA/D on the 3-objective DTLZ1, shown in Cartesian coordinates.
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Fig. 11. The corresponding parallel coordinates plots of the solution sets in Figure 10.

(a) MOEA/D (b) BCE-MOEA/D

Fig. 12. The solution sets obtained by MOEA/D and BCE-MOEA/D on the 3-objective DTLZ2, shown in Cartesian coordinates.
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(a) MOEA/D (SP = 1.05E-1)
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(b) BCE-MOEA/D (SP = 7.74E-2)

Fig. 13. The solution sets obtained by MOEA/D and BCE-MOEA/D on the 10-objective DTLZ2, and their evaluation results on the uniformity metric SP
(the smaller the better).
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(b) SPEA2

Fig. 14. The solution sets (in the decision space) obtained by NSGA-II and SPEA2 on the 10-objective ML-DMP where the search space is precisely the
optimal polygon.
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(b) SPEA2

Fig. 15. The parallel coordinates plots of the solution sets (in the objective space) in Figure 14.

ML-DMP minimizes the distance of two-dimensional points
to a set of m straight lines, each of which passes through
one edge of a given regular polygon with m vertices. One
interesting characteristic of ML-DMP is that the points in
the regular polygon and their objective images are similar in
the sense of Euclidean geometry. In other words, the ratio
of the distance between any two points in the polygon to
the distance between their corresponding objective vectors
is a constant. This allows a straightforward understanding
of the distribution of the objective vector set via observing
the solution set in the 2D decision space. As can be seen
in Figure 14, SPEA2 has a far better distribution uniformity
than NSGA-II, but we cannot see the difference between their
parallel coordinates representation in Figure 15.

IV. SOLUTION SET DISTRIBUTIONS

In parallel coordinates, it is straightforward to know the
conflict between objectives. The number of intersection lines
between adjacent objectives reflects their conflicting degree.
If there is no intersection of any pair of lines between
adjacent objectives, then these two objectives are completely
non-conflicting (i.e., harmonious [51]), such as objectives
f1 versus f2 and objectives f2 versus f3 in Figure 16. If
there are many lines intersecting, then the two objectives

are heavily conflicting, such as objectives f3 versus f4 and
objectives f4 versus f5 in Figure 16. If any pair of lines
intersects, then the two objectives are completely conflicting
to each other.

An interesting phenomenon in the parallel coordinates
plot is that if all lines between two adjacent objectives
intersect at one point, then these two objectives are neg-
atively linearly dependent. Figure 17 is such an example.
The four-objective ML-DMP problem minimizes the distance
of points to four lines passing through the four edges of
the given rectangle. From this definition, we can see that
the two pairs of objectives, f1 versus f3 and f2 versus f4,
are negatively linearly dependent for the solutions in the
rectangle (f1 + f3 =

√
2, f2 + f4 =

√
2). Therefore, each

of the objective pairs intersects at one point, as shown in
Figure 17(b).

This property is the known duality between the parallel
coordinates representation and the Cartesian coordinate rep-
resentation of data [1], [2]: points in Cartesian coordinates
map into lines in parallel coordinates, while lines in Cartesian
coordinates map into points in parallel coordinates. Take
an example in [1], where a line ` : f2 = kf1 + b in the
Cartesian coordinate plane and two points lying on this line,
say (x, kx + b) and (y, ky + b), were considered (shown in
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Fig. 16. The solution set obtained by SPEA2+SDE [52] on the 5-objective
DTLZ5(I,M ) [53], where I = 3.

Figure 18(a)). Figure 18(b) shows the corresponding parallel
coordinates representation of the two points. For simplicity,
let the distance between the vertical axes f1 and f2 be 1;
then it is easy to know that the two lines intersect at a point
given by ρ : ((1− k)−1, b(1− k)−1) in parallel coordinates.
This point depends only on k and b, the parameters of the
original line in the Cartesian plane. This indicates that the
parallel coordinates representation of any point on ` passes
through the point ρ.

From the coordinates of the point ρ, we can see the relation
between the position of ρ and the slope k of the line `.
If k < 0, the intersection occurs between the two parallel
coordinates axes. Especially, when k = −1 the intersection
is precisely midway, as in the example of Figure 17(b). If
1 < k or 0 < k < 1, then the intersection point is on the left
side or right side of the two coordinate axes, respectively.
When k = ±∞ or k = 0, the intersection point is on the left
axis or right axis, respectively. Finally, when k = 1, the lines
are parallel between the two axes in parallel coordinates. The
above properties can help us understand the relation between
objectives. For example, from the parallel coordinates plot in
Figure 16 we know that f1 = f2 and f2 = kf3 + b, where
k > 1 and b = 0.

Finally, note that since the horizontal position of the
intersection point in parallel coordinates depends only on the
slope k, when we can see many lines between two objectives
in the parallel coordinates plot intersecting at the same
horizontal position (but at different vertical positions), this
means that many lines connecting two points in the Cartesian
coordinate space have the same slope with respect to these
two objectives. This occurs often when points in Cartesian
coordinates are absolutely uniformly-distributed on the plane
of these two objectives. The solution set in Figure 19 has
such a pattern (see the midway of two adjacent objectives in
Figure 19(b)). More interesting correspondence between the
patterns of lines in parallel coordinates and the relation of
objectives in the solution set can be found in [3].

V. OBJECTIVE ORDER IN PARALLEL COORDINATES

In parallel coordinates, each axis has at most two neigh-
boring axes (one on the left and one on the right). Different
order of objective axes presents different information with
respect to the relation between objectives. Take Figure 20 as
an example. In Figure 20(a) where the order of objectives is
f1, f2, f3, f4, f5, the conflict between any two adjacent ob-
jectives is rather weak. In contrast, in Figure 20(b) where the
order of objectives is f1, f3, f5, f2, f4, the conflict between
any two adjacent objectives is quite intense.

In a solution set with m objectives, its parallel coordinates
representation can only show m− 1 relationships at a time.
This can be a very small portion compared to the total(
m
2

)
relationships existing in m objectives. Therefore, a

good objective axis arrangement providing the user as much
(clear) information as possible is of importance. As shown in
Figures 21 and 22, after swapping some objectives, we can
see interesting patterns (linearly dependent) between some
pairs of objectives. Similar observations have been reported
by Freitas et al. [54]. In [54], the authors also proposed
an objective axis-rearranging method by placing the most
harmonious objectives in a row in many-objective optimiza-
tion. However, this rearrangement may not be able to present
the information of objectives being severely in conflict (e.g.,
negatively linearly dependent). In fact, determining a good
order of the axes in the parallel coordinates plot (to reflect as
much as useful information) is nontrivial. There exist some
work in the data visualization field, e.g., methods to reduce
clutter in the parallel coordinates plot [55], [56].

VI. HOW TO DRAW A PARALLEL COORDINATE PLOT

In this section, we give procedures of how to plot a
solution set in parallel coordinates by several commonly-used
graphing tools: MS Excel, MATLAB, LaTeX, and Origin.
Tables I–IV provide the steps/codes by MS Excel, MATLAB,
LaTeX, and Origin, respectively. Here, we use the example
in Figure 1. Figure 23 also presents the graphs drawn by
the four tools to that example. Finally, we would like to note
that in this paper all of the parallel coordinates graphs of data
examples were drawn by Origin, and these data examples are
available at http://www.cs.bham.ac.uk/%7Elimx.

VII. CONCLUSIONS

The Parallel coordinates plot has drawn increasing atten-
tion in many-objective optimization, but mapping a many-
objective solution set onto a 2D parallel coordinates plane
may not be straightforward to reveal the information con-
tained in the set. This paper has made some observations on
the use of the parallel coordinates plot to present a solution
set in many-objective optimization. In particular,

• The parallel coordinates representation of a solution
set can partly reflect its convergence, coverage and
uniformity. This suggests that the parallel coordinates
plot can be an assistant tool (but not entirely replacing
quality metrics) in assessing a many-objective solution
set.
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Fig. 17. The solution set of SPEA2+SDE on the 4-objective ML-DMP.
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Fig. 18. An example of a line ` : f2 = kf1 + b in the Cartesian coordinate plane corresponding to a point ρ : ((1− k)−1, b(1− k)−1) in the parallel
coordinates plane.
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(b) Parallel coordinates

Fig. 19. The solution set obtained by MOEA/D on the 3-objective DTLZ1.
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Fig. 20. The solution set of SPEA2+SDE on the 5-objective ML-DMP, shown by different order of objectives in parallel coordinates.
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Fig. 21. The solution set of SPEA2+SDE on the 5-objective DTLZ5(I,M) where I = 3, shown by different order of objectives in parallel coordinates.
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Fig. 22. The solution set of SPEA2+SDE on the 4-objective ML-DMP, shown by different order of objectives in parallel coordinates.



TABLE I
STEPS OF CREATING A PARALLEL COORDINATES PLOT IN MS EXCEL.

(1) Input the data as a table with each row as a solution
and select them.
(2) Click Insert -> Recommended Charts.
(3) On the Recommended Charts tab, scroll through the
list of charts that Excel recommends for your data, click
Line chart -> OK.
(4) Use the Chart Elements, Chart Styles, and Chart
Filters buttons next to the upper-right corner of the chart
to add chart elements like axis titles or data labels,
customize the look of your chart, or change the data
shown in the chart.

TABLE II
CODES OF CREATING A PARALLEL COORDINATES PLOT IN MATLAB.

X = [15 31 20 50; 10 18 2 30; 20 5 32 20];
groups = {’a’, ’b’, ’c’};
parallelcoords(X,’group’,groups);
xlabel(’Objective No.’);
ylabel(’Objective Value’);

TABLE III
INSTRUCTIONS FOR PLOTTING PARALLEL COORDINATES IN LATEX

USING THE PGFPLOTS PACKAGE.

(1) Include the pgfplots package by adding the following
line to your preamble:
\usepackage{pgfplots}
(2) Plot with the following commands:
\begin{tikzpicture}
\begin{axis}[xlabel={Objective No.},
ylabel={Objective Value}, xtick=data,
symbolic x coords={1, 2, 3, 4}]
\addplot+[mark=none,draw=black,sharp plot]
plot coordinates {(1,15) (2,31) (3,20) (4,50)};
\addplot+[mark=none,draw=red,sharp plot]
plot coordinates {(1,10) (2,18) (3,2) (4,30)};
\addplot+[mark=none,draw=blue,sharp plot]
plot coordinates {(1,20) (2,5) (3,32) (4,20)};
\end{axis}
\end{tikzpicture}

TABLE IV
STEPS OF CREATING A PARALLEL COORDINATES PLOT IN ORIGIN.

(1) Create a table consisting of the first column being X
axis from 1 to m (where m is the number of objectives)
and the remaining columns being Y axis with each
column for a solution.
(2) Select the table and click the Line button at the
lower-left corner of the panel.
(3) Double click the Axis Labels and the polylines of
parallel coordinates to customize the look of the chart.

• Although the clarity can be affected by overlapping
polygonal lines, parallel coordinates transform certain
geometrical features of a many-objective solution set
into easily seen 2D patterns.

• The order of objective axes matters in parallel co-
ordinates. To better present the relationship between
objectives, it may need to be rearranged according to
features of the solution set at hand.

Our subsequent study is towards overcoming/alleviating
the difficulties of interpreting the parallel coordinates plot
presented in this paper. Particularly, how to arrange the order
of objectives will be the focus of our future work as it
had presented its usefulness in the paper. In this regard,
a straightforward thought is to place the most conflicting
objectives or the most harmonious objectives together so that
people could see some meaningful patterns (such as the ex-
amples in Figures 21 and 22). Another thought is to consider
the coverage of the lines between objectives in a parallel
coordinates plot; people may acquire more information from
less coverage of the lines, for example, after exchanging the
order of objectives f1 and f2 in Figure 8.

ACKNOWLEDGEMENT

The authors would like to thank the Associate Editor
and the three reviewers for their thoughtful suggestions
and constructive comments. This work was supported in
part by the Engineering and Physical Sciences Research
Council (EPSRC) of U.K. under Grants EP/K001523/1 and
EP/J017515/1, and National Natural Science Foundation of
China (NSFC) under Grants 61329302 and 61403326. X. Yao
was also supported by a Royal Society Wolfson Research
Merit Award.

REFERENCES

[1] A. Inselberg, “The plane with parallel coordinates,” The Visual Com-
puter, vol. 1, no. 2, pp. 69–91, August 1985.

[2] E. J. Wegman, “Hyperdimensional data analysis using parallel coor-
dinates,” Journal of the American Statistical Association, vol. 85, no.
411, pp. 664–675, September 1990.

[3] A. Inselberg, Parallel coordinates. Boston, MA: Springer US, 2009,
pp. 2018–2024.

[4] K. Miettinen, “Survey of methods to visualize alternatives in multiple
criteria decision making problems,” OR Spectrum, vol. 36, no. 1, pp.
3–37, January 2014.



(a) MS Excel

1 2 3 4

Objective No.

0

10

20

30

40

50

O
b

je
c
ti

v
e
 V

a
lu

e

a b c

(b) MATLAB

1 2 3 4
0

10

20

30

40

50

Objective No.

O
bj

ec
tiv

e
V

al
ue

(c) LaTex

1 2 3 4

0

10

20

30

40

50

O
b
je
c
ti
v
e
V
a
lu
e

Objective No.

(d) Origin

Fig. 23. Examples of the parallel coordinates plot in MS Excel, MATLAB, LaTeX, and Origin.

[5] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and
multiple constraint handling with evolutionary algorithms. I. A unified
formulation,” IEEE Trans. on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 28, no. 1, pp. 26–37, January 1998.

[6] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York, NY, USA: John Wiley & Sons, Inc., 2001.

[7] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in Proc. of 2008 IEEE
Congress on Evolutionary Computation, Hong Kong, China, June
2008, pp. 2419–2426.

[8] R. C. Purshouse and P. J. Fleming, “Evolutionary many-objective op-
timisation: An exploratory analysis,” in Proc. of 2003 IEEE Congress
on Evolutionary Computation, vol. 3, Canberra, ACT, Australia, De-
cember 2003, pp. 2066–2073.

[9] P. Fleming, R. Purshouse, and R. Lygoe, “Many-objective optimiza-
tion: An engineering design perspective,” in Proc. of 3rd International
Conference on Evolutionary Multi-Criterion Optimization, Guanaju-
ato, Mexico, March 2005, pp. 14–32.

[10] D. J. Walker, R. Everson, and J. E. Fieldsend, “Visualizing mutually
nondominating solution sets in many-objective optimization,” IEEE
Trans. on Evolutionary Computation, vol. 17, no. 2, pp. 165–184, April
2013.

[11] T. Tuar and B. Filipi, “Visualization of Pareto front approximations
in evolutionary multiobjective optimization: A critical review and
the prosection method,” IEEE Trans. on Evolutionary Computation,
vol. 19, no. 2, pp. 225–245, April 2015.

[12] Z. He and G. G. Yen, “Visualization and performance metric in many-
objective optimization,” IEEE Trans. on Evolutionary Computation,
vol. 20, no. 3, pp. 386–402, June 2016.

[13] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and
indicator-based methods in many-objective optimization,” in Proc. of
4th International Conference on Evolutionary Multi-Criterion Opti-
mization, Matsushima, Japan, March 2007, pp. 742–756.

[14] H. K. Singh, A. Isaacs, and T. Ray, “A Pareto corner search evo-
lutionary algorithm and dimensionality reduction in many-objective

optimization problems,” IEEE Trans. on Evolutionary Computation,
vol. 15, no. 4, pp. 539–556, August 2011.

[15] M. Li, S. Yang, X. Liu, and R. Shen, “A comparative study on
evolutionary algorithms for many-objective optimization,” in Proc. of
7th International Conference on Evolutionary Multi-Criterion Opti-
mization, Sheffield, UK, March 2013, pp. 261–275.

[16] U. K. Wickramasinghe and X. Li, “Using a distance metric to guide
PSO algorithms for many-objective optimization,” in Proc. of 2009
Conference on Genetic and Evolutionary Computation, Montreal,
Qubec, Canada, July 2009, pp. 667–674.

[17] R. J. Lygoe, M. Cary, and P. J. Fleming, “A many-objective optimi-
sation decision-making process applied to automotive diesel engine
calibration,” in Proc. of 8th International Conference on Simulated
Evolution and Learning, Kanpur, India, December 2010, pp. 638–646.

[18] R. Wang, R. C. Purshouse, and P. J. Fleming, ““Whatever Works
Best for You” - A new method for a priori and progressive multi-
objective optimisation,” in Proc. of 7th International Conference
on Evolutionary Multi-Criterion Optimization, Sheffield, UK, March
2013, pp. 337–351.

[19] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-
based evolutionary algorithm for many-objective optimization,” IEEE
Trans. on Evolutionary Computation, vol. 20, no. 1, pp. 16–37,
February 2016.

[20] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE
Trans. on Evolutionary Computation, vol. 20, no. 5, pp. 773–791,
October 2016.

[21] Y. Xiang, Y. Zhou, M. Li, and Z. Chen, “A vector angle-based evo-
lutionary algorithm for unconstrained many-objective optimization,”
IEEE Trans. on Evolutionary Computation, vol. 21, no. 1, pp. 131–
152, Feburary 2017.

[22] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Difficulties
in specifying reference points to calculate the inverted generational
distance for many-objective optimization problems,” in Proc. of 2014
IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making, Orlando, FL, USA, December 2014, pp. 170–177.



[23] M. Li, S. Yang, and X. Liu, “A performance comparison indicator
for Pareto front approximations in many-objective optimization,” in
Proc. of 2015 Conference on Genetic and Evolutionary Computation,
Madrid, Spain, July 2015, pp. 703–710.

[24] H. Wang, Y. Jin, and X. Yao, “Diversity assessment in many-objective
optimization,” IEEE Trans. on Cybernetics, vol. 47, no. 6, pp. 1510–
1522, June 2017.

[25] W. Hu and G. G. Yen, “Adaptive multiobjective particle swarm
optimization based on parallel cell coordinate system,” IEEE Trans. on
Evolutionary Computation, vol. 19, no. 1, pp. 1–18, February 2015.
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