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Abstract—The rapidly increasing traffic volumes using local
road networks allied to the implications of climate change
drive the demand for cost-effective, reliable and accurate road
condition assessment. A particular concern for local road asset
managers is the loss of material from the road surface known
as fretting which unchecked can lead to potholes. In order to
assess the road condition quantitatively and affordably, a system
should be designed with low complexity, be capable of operating
in a variety of weather conditions and operate at normal traffic-
speeds. Many different techniques have been developed for road
condition assessment such as ground penetrating radar, visual
sensors and mobile scanning lasers. In this work, the use of the
point laser technique for scanning the road surface is investigated.
It has the advantages of being sufficiently accurate, is relatively
unaffected by levels of illumination and it produces relatively low
volumes of data. In this work, road fretting/surface disintegration
was determined using a novel signal processing approach which
considers a number of features of reflected laser signals. The
proposed methodology was demonstrated using data collected
from the UKs local road network. The experimental results
indicate that the proposed system can assess road fretting to
an accuracy which is comparable to a visual inspection, and
at Information Quality Level (IQL) 3 which is sufficient for
tactical road asset management whereby road sections requiring
treatment are selected and appropriate treatments identified.

Index Terms—Road Condition Assessment, Point Laser, Signal
Processing, Peak Detection

I. INTRODUCTION

There is a strong relationship between road condition and
road user costs (i.e. travel time, fuel consumption, vehicle
maintenance and safety) [1]. However, the condition of a road
deteriorates over time due to the combined effects of the traffic
and environmental impacts. Timely and appropriate preventa-
tive road maintenance is therefore required to ensure road user
costs are kept within acceptable limits. This necessitates the
periodic assessment of road condition. Surfaced urban and ru-
ral roads (i.e. local roads), which typically constitute over 90%
of a countrys road network, are a major challenge. The extent
of the local road network lends itself to automated condition
assessment which is much faster, more accurate and cost-
effective than manual approaches. Together with intelligent
signal processing, a fast computing unit and a digital storage
device, automated assessment has the potential to deliver a
quantitative analysis of road condition at traffic speeds in real-
time [2]. For the assessment of surfaced local roads, automated
systems need to be capable of assessing the predominant
deterioration types of local roads, namely cracking and fretting

(road surface disintegration which leads to the formation of
potholes). Their early detection is vital to enable appropriate
preventative maintenance. However, because of the variety of
surface types used to construct local roads and the difficulty in
assessing cracking and fretting using automated means, their
evaluation is usually carried out by trained inspectors walking
along the road or by using windshield surveys [3]. The latter
involves an observer sitting inside a moving vehicle.

Vehicle-based systems have been used widely to capture
road surface information as they are fast, accurate and cost
effective [4] when compared to other approaches such as air-
borne and satellite systems. The development of vehicle-based
systems has been driven by advances in direct geo-referencing,
sensor technologies and computer processing algorithms. This
work focus on the measurement of road fretting. Fretting
is caused by the loss of aggregate particles in the road
surface due to the aging of the binder and the subsequent
loss of adhesion between the binder and aggregates. Fretting
unchecked, leads to the development of potholes, a major issue
for the safety of road traffic [5], and the deterioration of the
road structure.

The Highways Agency Road Research Information System
2 (HARRIS2) data collection vehicle has been developed to
assess the condition of the UKs strategic road network and
has a number of downward facing point lasers as part of its
scanning system [6]. In this paper, a robust signal processing
approach is presented that identifies areas of road surface
fretting from the data obtained from the HARRIS2 point laser
system. This data can be regarded as being a combination
of information concerning the road texture and road fretting
and unwanted noise associated with the sensor and dynamic
motion of the vehicle. The first steps in the signal processing
approach are to remove the sensor noise and the effects of
the dynamic motion of the vehicle. Then the road texture
and fretting components of the data are treated as a peak
detection problem which is addressed using an automatic
estimation process. Afterwards, outputs from each point laser
are combined using an empirical approach. The experimental
results show that, with the proposed concepts, a point laser
system that scans the road surface in the longitudinal direction
is comparable to visual inspection.

Compared to previous work presented in the literature
[6]–[10], the proposed point laser approach contributes the
following:



• A system which can assess road fretting in real time
using a low complexity signal processing algorithm which
requires relatively low volumes of data.

• A novel peak detection algorithm to estimate road texture.
• A system which is verified using survey data collected

at normal traffic speeds from a real environment. The
results indicate that the proposed approach can provide
comparable results to a visual survey.

The paper is organized as follows: Section II briefly reviews
the literature; Section III describes the system and the datasets
used in this paper; Section IV presents the signal processing
algorithms; Section V provides the detection performance and
analysis; conclusions are in Section VI.

II. RELATED WORK

A. Road Surface Sensors

A variety of sensor technologies and associated processing
techniques have been proposed for road surface condition
assessment, however efficient solutions remain in the early
stage of development. These technologies can be categorized
as: 1) mechanical wave, 2) electromagnetic wave (EM) and 3)
image based techniques.

In the first category, ultrasound [11], [12] and acoustic [13],
[14] based approaches have been used for the assessment of
buried infrastructure. These approaches have been shown to
be capable of accurately measuring the thickness of buried
objects and the associated hardware is relatively inexpensive
and can be mounted on a moving vehicle or a trailer [13].
However, they are unable to detect fine cracks and small
areas of fretting and water on the road surface can also
significantly reduce their detection performance [11], [14].
These limitations therefore restrict the application potential of
ultrasound systems for the assessment of local road conditions.

Electromagnetic (EM) wave techniques, including Ground
Penetrating Radar (GPR) and laser-based systems, are also
used to assess road condition. GPR systems have shown
some promise when successfully used to detect highly cracked
areas of road surface, assess airfield pavement condition and
determine the integrity of buried infrastructure among other
things [15], [16]. Limitations of GPR systems for road sur-
face condition inspection concern their inability to operate
accurately when there is water on the road surface and their
resolution which is not sufficient to detect minor cracks and
small areas of fretting on the road surface. Laser systems are
a well-developed technology, and are becoming increasingly
popular for many commercial applications as they lack many
of the disadvantages of GPR, ultrasonic and visual systems
[4], [17], [18]. Their advantages include the ability to operate
in most environmental conditions and a high resolution and
frequency of data capture. An early approach described by [7]
presents the use of mobile scanning lasers to measure road
surface cracking automatically. The system records the road
surface in three dimensions and extracts longitudinal profile
data to evaluate possible defects. Work by [19] demonstrates
the use of a Mobile Laser Scanning (MLS) system for road

marking classification. A more advanced MLS system is pre-
sented in [4] that can extract road surface features, including
road markings and certain types of road surface cracks. The
systems described by [4], [7], [19] all generate a large amount
of data and require complex algorithms to process the data.
Consequently, these systems are unable to process data in
real-time and as a result they need offline processing which
necessitates significant digital storage, increasing the hardware
costs of data collection and processing. Moreover, the large
amount of energy emitted by the MLS system poses a danger
to nearby flora and fauna.

Visual systems can provide sufficient resolution to recognize
theoretically even the smallest cracks and are used commer-
cially for road condition inspection [20]–[22]. Work by [21]
proposes a percolation model to identify road cracks from
images of the road surface with high level of noise. A Deep
Convolutional Neural Network (DCNN) was developed by
[20] to extract road surface cracks from photographs taken by
a smart phone. Images of the road surface can also be obtained
using Light Detection and Ranging (LiDAR) techniques and
these could potentially be analysed to assess road condition.
For example, research by [23] presents the use of LiDAR to
detect the edges of a road to assist autonomous vehicle naviga-
tion. The angle of the sun during data collection however has
been shown to affect significantly the performance of LiDAR
systems [24].

B. Studies on Point Laser Systems

Unlike the MLS system, the point laser system does not scan
the entire road surface but only the longitudinal profile. This
significantly reduces both the volume of data to be processed
and the computational complexity of the associated signal
processing. A disadvantage of a single point laser is that it
cannot provide transverse information and therefore an array
of point lasers is required to obtain transverse information.
A study by [8] developed a system consisting of a point
laser and an algorithm which scrutinizes histograms of the
relative distance of the road surface from a datum to identify
areas of fretting on the road surface. Work by [6] further
expanded this approach and proposed an algorithm to identify
fretting based on the Root Mean Square (RMS) value of the
measured changes in road surface height with respect to a
given datum. A similar study has also been presented in [10]
which measured road surface texture depth. i.e. the depth
between physically repeating features on the road surface
due to aggregate particles present within the road surface.
However, the work by [6], [8], [10] are constrained in that
the systems described are only suitable for road surfaces
with similar texture, whereas in practice the road texture
encountered during a survey varies considerably due to the
different road construction types apparent within a typical
local road network. As a result, the above approaches require
information concerning the road type to be specified manually.
This reduces their degree of automation and potentially their
accuracy since it is not straightforward for the operator of a
data collection vehicle to visually distinguish between road



Point Laser

Fig. 1: The point laser system mounted on the HARRIS2

surface types when driving at traffic speeds. Besides, the
dynamic motions from the vehicle can reduce significantly the
performance of texture based methods. Such vehicle motions
can result in up to 100 mm of vertical displacement which
are much larger than the depth of fretting which is usually
between 0.5 mm and 2 mm [10].

C. Studies on Time-Series Data

Point laser data captured from a moving vehicle is analo-
gous to time-series data since the frequency at which the laser
system takes a measurement of the road surface is a function
of the vehicles speed and the frequency of the laser-based
measurement system. For analysing time series data, the peak
detection method has been shown to be a powerful approach in
the fields of electrocardiography (ECG) [25], human activity
classification and location detection [26] and accelerometer
based transportation mode recognition [27]. Similarly, the
Change Point Detection (CPD) technique has been applied
successfully to a broad range of real-world applications. For
example, monitoring the change in behaviour in a smart house
[28], predicting changes in climate [29], the analysis of human
activity [30] and speech recognition [31]. Time-series data
can also be analysed by supervised and unsupervised learning
approaches [28]. For supervised learning, the division between
two data points can be used as an indicator of possible change
points [32], or classifiers (such as decision trees) can be
used to generate interpretable rules [33]. For unsupervised
learning, the distance between data points can be used as a
divergence measure [28], Bayesian approaches have been used
to estimate changes in probability distributions [31] and the
Kernel-based method has been used to map data points into
higher-dimensional space [34]. The choice of an appropriate
algorithm depends on the structure of the data point, the
inherent noise and the purpose of the application.

Point 
Laser

Longitudinal 
Direction

Ideal Road 
Surface

Fretting

Fig. 2: A schematic of idealised fretting detection using a point
laser

III. SYSTEM AND DATASET

A. HARRIS2 System

The HARRIS2 system used in this study has been designed
for the automated assessment of the UKs strategic road net-
work [7]. The equipment installed on the vehicle includes: 1)
a central system with an Inertial Measurement Unit (IMU), a
GPS unit and a Distance Measurement Unit (DMU); 2) five
ProfiCura 2D point lasers [35] for longitudinal road scanning;
3) a MLS system [36] for three-dimensional road scanning
and; 4) other sensors including LiDAR and a forward facing
video camera. All the above components are integrated on a
van (Ford TDCi). Fig 1 shows the five point lasers mounted
in the front of the vehicle. Each laser is aligned at 90 degrees
to the road surface and the lasers are distributed horizontally
at an equal spacing. The lasers scan the longitudinal profile of
the road surface. Data from each point laser are synchronized
and processed by the central system.

B. Working Principles of a Point Laser

A schematic of an idealized point laser system detecting an
area of fretting is shown in Fig 2. The figure illustrates a point
laser traversing the longitudinal direction of the road with an
area of fretting in the middle of the idealised section of road.
The point laser transmits a laser beam towards the ground
and measures the Time-of-Flight (ToF) of the reflected beam
at a particular frequency. In HARRIS2, the frequency of the
laser beam transmission is controlled by the vehicles speed
so that a constant longitudinal resolution is maintained, i.e.
same amount of data is collected over a 20 m section of road
irrespective of the vehicle speed. An ideal smooth intact road
surface should reflect the light from the laser homogeneously
to the laser sensor as indicated in Fig 2. In contrast, in an area
of fretting, the light has a number of reflection paths back to
the point lasers sensor. Consequently, a number of irregular
measurements are recorded compared to the measurement of
the intact road surface. In practice, the measurement of fretting
is further complicated as the road surface is not smooth, but
is textured due to the presence of aggregate particles. The
approach proposed in this research to measuring fretting under
these circumstances is explained further in Section IV C.

Three parameters are crucial to the performance of laser
based systems in detecting fretting. These are the longitudinal
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Fig. 3: An example of (a) a road fretting, (b) sensor noise, (c) vehicle dynamic motions (d) road texture and (e) the raw data
from single point laser

resolution RL (i.e. the distance along the road between suc-
cessive laser measurements), the transverse resolution RT (i.e.
the horizontal spacing of the lasers) and the vertical resolution
RV (i.e. the minimum size of object that can be measured in
the vertical direction). The parameters are defined as follows:

RL [m] = SV [m/s] /Ss [1/s] (1)
RT [m] = DW [m] /(NL − 1) (2)
RV [m] = 0.25 mm (3)

where SV is the vehicle speed, Ss is the scanning rate, DW

is the scanning width (transverse direction) of the system (4.2
metre in this work), NL is the total number of point lasers (five
in the case of HARRIS2), and RV is 0.25 mm for the point
lasers fitted on HARRIS2 [35]. From Equation 1, it can be seen
that RL is proportional to SV and is inversely proportional to
Ss. Ss is controlled by the central unit thus taking into account
the vehicle’s speed SV to ensure that RL is constant during
a road survey. For the roads assessed in this work the speed
limit was 80 km/h (i.e. SV = 80 km/h) and RL was fixed at
0.803 mm to achieve a sufficient resolution for micro-texture
measurement. Since the number of point lasers is five, using
this value in Equation 2, it can be seen that RT = 1.05 m
which apparently is too coarse for the detection of fretting.
As a result, the transverse information has not been used in
this work.

Three main types of interference may affect the measure-
ment of fretting and they therefore need to be considered by
the signal processing algorithms. These are:

• Point laser errors: The main source of laser related
errors involve the internal clock in the sensor giving an
incorrect measurement of the ToF between the outward
and inward laser pulses, the angular resolution of the laser

angle encoder and the uncertainty of the beam divergence.
• Vehicle dynamic errors: The vehicle when moving

is subject to dynamic vertical motions which can be
far larger in magnitude than the depth of road surface
fretting. Since the point laser sensor measures the dis-
tance from the vehicle to the road surface, the change
in distance caused by the occurrence of fretting may
be difficult to distinguish from the larger in magnitude
change caused by the dynamic motion of the vehicle. This
can be regarded as a baseline time series data problem and
can be rectified by using an appropriate filter as suggested
by [37].

• Texture type: All roads have a textured surface resulting
from the materials used in their construction. Surface
texture helps to increase road safety by increasing skid
resistance and facilitating the removal of water from
the road surface. The presence of road surface texture
however complicates the measurement of fretting since
it introduces variations in the height of the road surface.
This issue is further exacerbated as local road networks
are constructed with a variety of surface materials de-
pending on a number of factors. These include the speed
and volume and type of vehicular traffic using the road,
the available finance to build and maintain the road
and environmental considerations such as noise reduction
[38]. This means that during a survey, the distance to the
road surface measured by a laser varies along the surface
of a road built from a single type of material and also as
a result of different types of road surfaces, irrespective of
the presence of fretting.

An example of raw data from a single point laser is provided
in Fig 3(e). The data clearly shows the variation in the height
of the road surface. Randomly distributed spikes and troughs
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Fig. 4: Survey routine

TABLE I: Summarize of dataset

Road Description Length (km) Direction
One Wokingham Rd to Pinewood Ave 0.711 East
Two Duke’s ride to Ellis Rd 0.480 North
Three Byron Dr to Church St 0.421 North
Four Hanworth Rd to Ringmead Rd 1.337 East
Five Cricket Hill Lane to Dungells In 0.831 West

are also apparent. This data can be regarded as a combination
of four components: (1) fretting (shown in Fig 3(a)); (2) sensor
errors (shown Fig 3(b)); (3) vehicle dynamic motions (shown
in Fig 3(c)), and (4) road texture (shown in Fig 3(d)). The
magnitude of data point y(t) at time t from a single point
laser can be modelled as a superposition of these components
as follows:

y(t) = yF (t) + yS(t) + yV (t) + yT (t) + n(t) (4)
where yF (t) is the fretting component at time t, yS(t) is the
sensor noise, yV (t) is the component due to the instantaneous
vehicle dynamic motions, yT (t) is the component due to
texture, and n(t) is the noise from other sources. To determine
the amount of fretting, components other than yS(t) need to
be removed. The corresponding signal processing to achieve
this is presented in Section IV.

C. Dataset

The survey data was collected on local roads near
Crowthorne, United Kingdom (longitude 0°47'31.88''E, lati-
tude 51°22'12.97''N) using the HARRIS2 vehicle on February
2 2018 (dry surface). Five roads of three different classification
were surveyed. These included an A Road (the highest class
of classified road in the UK), a B Road (second tier in the
UKs classified local road system) and Secondary Road (roads
that are unnumbered roads or unclassified roads) (see Fig 4
and Table I). The roads serve local communities (e.g. town
high streets, residential areas) and tourists, and act as through
routes for freight traffic. Excessive vehicle loading, changeable
weather and a lack of maintenance has resulted in a number
of areas of fretting along several of the surveyed roads.

Raw Data from  Laser 
Sensor

Sensor Noise Detection 
and Removal

Baseline Correction

Extract Peaks as 
Fretting Measurement

Preprocessing

Fretting 
Estimation

Estimate Texture 
Threshold

Result

Combine Result from 
Five Point Laser

Fig. 5: Signal processing of the proposed point laser system

During the road survey, HARRIS2 travelled at speeds rang-
ing between 0 and 80 km/h, depending on the amount of
traffic and the status of traffic signals. The survey started
when the driver pressed a start button in the central unit
and stopped automatically according to a predefined location.
The collected data were then stored and time-stamped. To
evaluate the overall detection performance of the proposed
methodology visual data were also collected by experienced
operators using a windshield survey.

IV. SIGNAL PROCESSING FOR POINT LASER

This section outlines the signal processing approach de-
veloped to assess the amount of fretting. An overview of
the proposed methodology of signal processing is shown in
Fig 5. The methodology consists of two main tasks, namely
pre-processing and fretting estimation. First, a thresholding
method was used to identify and replace the spikes in the data
that are due to errors associated with the point laser. Thereafter,
the Moving Average of Minima (MAM) [39] method was
applied to remove the component of the signal due to the
dynamic motions of the HARRIS2 vehicle. Thirdly, the road
texture and road fretting were analysed using a peak detection
approach.

A. Sensor Noise Removal

As described in Section III, systematic errors from the laser
sensor are one of the major noise sources. By analysing the
entire dataset, the average error in terms of the number of mis-
classified data points was approximately 0.5%. Considering
that the point laser has a longitudinal resolution of 0.803 mm
this means approximately six errors per metre. If not removed,
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Fig. 6: An demonstration of (a) original data points from one
point laser, (b) corresponding cleaned data points and (C) with
baseline correction

these erroneous data points could significantly impact the
accuracy of fretting detection. An example of the original data
points over a 50m section of a road is presented in Fig 6(a).
A large number of saturated measurements are evident over
the whole of the 50 m section. These measurements mask the
areas of fretting. It can also be observed that the amplitude of
the sensor errors varies unpredictably.

A potential solution is to apply a smoothing filter to suppress
the erroneous data points, for example using the commonly
used Savitzky Golay (SG) filter. This type of filter replaces a
data point by a linear extrapolation of the nearby data points
[40]. However, in this data set the data points associated with
sensor errors are much higher in value compared to other
data points. This is unlike the typical additive white Gaussian
noise. Therefore, although it is easy to apply a smoothing
filter, the smoothing process would result in a loss of data
related to areas of fretting. Another possible solution is to
remove the data points that exceed a given threshold value.
However, this would cause an imbalance of the data points as
the spikes are not distributed evenly across the data set. From
the system aspect, the imbalance of data would further increase
the complexity of the implementation process and affect the
time-series based signal processing.

Due to the above reasons, a two-step algorithm was de-
veloped to deal with the erroneous data points whilst not
affecting the other authentic data points. Firstly, a threshold
is generated to identify the outlying data points. A single
threshold value would not be appropriate as the varying effect
of the vehicle dynamic motions could result in authentic
data points exceeding the threshold. Consequently, the moving
averaging method was used to produce an adaptive threshold.

The adaptive thresholding T (t) is calculated as:

T (t) =

1
2 ls∑

i=− 1
2 ls

ciy(t+ i) + w (5)

where ls is the window length (one metre in this work), ci =
1/(ls + 1) is a weighting factor, and w is a constant. For
the 50 m long example dataset, the threshold calculated using
Equation 5 is shown in Fig 6(a) (the thick line). All data points
above this threshold are considered to be erroneous.

The second step is to replace the erroneous data with
estimated values. For each erroneous data point ySi is replaced
by the mean value of its adjacent data points. The mean value
is defined as: ySi = 1

2n (yi−n + ... + yi+n), where all data
points from yi−n to yi+n are authentic measurements. For the
50 m long example dataset, the resulting cleaned data points
are shown in Fig 6(b). As can be seen, all the erroneous data
have been correctly detected and replaced without any loss in
the number of data points.

B. Baseline Correction

As mentioned above, the dynamic motions of the vehicle
can have a significant impact on the measurement of road sur-
face defects. These motions can result in changes in magnitude
of the value of an authentic data point of more than 40 mm
as shown in Fig 6(b). In addition, the duration and frequency
of the vehicle dynamic motions are not constant but vary as a
function of the number of factors including the vehicle speed
and the road surface condition.

In this research, the vehicle’s dynamic motion is considered
as a baseline correction problem since its effect on the overall
signal is to introduce components which have significantly
greater fluctuations in magnitude and longer wavelengths
compared to those associated with both road texture and
fretting. There are many approaches to baseline correction, for
example, linear interpolation, monotone minimum, Continues
Wavelet Transformation (CWT) and MAM [25]. In this work,
MAM was chosen for baseline correction due to its low
complexity and relatively small required computational effort.
It has also been shown to perform well in dealing with
longer wavelength components [25]. Furthermore, the MAM
algorithm is similar to the sensor noise removal described
in Section IV-A. The first step of the MAM algorithm is
to estimate the baseline ẏV (t) by using a moving-average
window of the form given by in Equation 5, but without the w
constant. A value of 5 m for the filter length was chosen as it
was found to provide a balance between minimizing the effects
of vehicle dynamics and not removing too much information.
Accordingly the resulting corrected signal, ŷ(t), is calculated
by Equation 6:

ŷ(t) = y(t)− ẏV (t) (6)
The corresponding result of applying the above processes to

the 50 m example dataset is shown in Fig 6(c). As can be seen,
most of the variation due to the dynamic motion of the vehicle
has been successfully removed and clearly identifiable area of
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Fig. 7: An example of two types of texture measurement, road
texture and detected peaks (circles)

fretting can be observed at a distance of 10 m and 38 m. The
dynamic motion of a data collection vehicle varies depending
on its velocity, mass, suspension system and tyre pressure
amongst other things. These motions are of much greater
magnitude and wavelength compared to the road texture and
fretting even for a low speed or under braking.

C. Fretting Detection

Following the removal of the sensor noise and baseline
correction, the remaining data points can be considered to be
a superposition of road texture yT (t) and road fretting yF (t).
As mentioned above road surface texture can vary between
roads of different construction. For traffic speed surveys it
is impractical for the operator to specify changes in road
texture type. Furthermore, the surface texture can vary along a
road of the same construction type due to a variety of factors
as mentioned above. Therefore, an algorithm which assesses
fretting needs to account automatically for variations in road
surface type. Consider the example of the laser signal from two
roads with different textures in Fig 7, neither road contains
fretting. As can be seen, the depth of texture in Fig 7(a) is
much greater in magnitude when compared to that in Fig
7(b). The measurements in Fig 7(a) do not represent an area
of fretting but might be considered so if they are occurred
within the data shown in Fig 7(b) as the texture depth is of
greater magnitude. Consequently, it is not possible to identify
accurately fretting using a single threshold value based on
the expected depth of fretting. Note that, since the fretting is
below the road surface, all data points are processed UPSIDE-
DOWN.

To aid the detection of fretting, a feature vector is proposed
consisting of the peak height, peak width, peak distance
(between two adjacent peaks) and peak prominence of pertur-
bations in the road surface as shown schematically in Fig 8.
Peak height Ph measures the distance between the top (crest)
of a peak to its trough. Intuitively one might expect a large
value of peak height with respect to the rest of the road surface
to indicate the presence of fretting. Peak width Pw is the
width between two reference lines of a peak. Peak distance
Pd is the distance between two adjacent peaks. It might be
expected that the different texture of two roads constructed
of different materials will be indicated by dissimilar average

Fig. 8: Feature selection for peak representative

TABLE II: Feature vectors for two types of road texture

texture (a) (mm) (b) (mm)
Peak height (Ph) 2.43 1.87
Peak width (Pw) 3.27 2.33
Peak distance (Pd) 5.08 4.61
Peak prominence (Pp) 0.64 0.61

peak distances. Peak prominence Pp is a measure of the
difference between the peak height and its location relative
to other peaks. Pp is used to distinguish a peak with high
value in Ph but is a member of a group of other large peaks.
For convenience, a peak can be written as a feature vector
in the form of λ = (Ph, Pw, Pd, Pp) and group of peaks as
λ = [λ1, λ2, ...λk], where λ includes the peaks due to both
texture yT and fretting yF . Thus, the focus in next step is to
automatically identify the λi that belongs to yF .

By calculating the feature vector λT for road texture yT ,
it is possible to estimate the type of road texture and to use
this to derive a classification which can be used to distinguish
between fretting and texture. For example, consider Table
II which shows the calculated average feature values of the
circled peaks shown in Fig 8. As can be seen, the feature
vector resulting from texture (a) is very different compared
to that from texture (b). By inspection, the feature vector of
texture (a) has significantly higher values of peak height, width
and distance. These differences could potentially therefore be
used to classify road texture.

Identifying areas of fretting can, from the above, be con-
sidered as a process of identifying those peaks which contain
irregular λ values when compared to λT . Based on the UK
standard for identifying fretting [3], four rules were developed
to help fretting detection as follows:

1) Texture depth is the distance between the top of an
aggregate and the binding material in which it sits. The
texture depth should therefore be less than the maximum
height of the binding material. Since fretting is defined
as the loss of aggregate [3], conservatively a peak with
a height which is at least double the height of a texture
peak is considered to be fretting.

2) For similar reasons to the above, a broad peak is more



likely to indicate road fretting. Therefore, a peak with at
least double the width of the texture peak is considered
to be fretting.

3) The minimum peak distance is used to prevent the over
counting of the peaks in a short distance. It is set as the
twice of the average peak distance.

4) Peak prominence is also used to ensure that a small peak
is not mislabelled as fretting by judging the prominence
value. It is also set as twice the average peak prominence.

The fretting detection algorithm proceeds by applying the
above four rules for each peak λi. Only a peak which meets all
of the above rules is considered as fretting. The output from
this process is the detected number of peaks from one point
laser. In this work, the zero-crossing algorithm as described
in [41] for peak detection was adopted due to its ability to
process time-series data quickly and its comparatively low
computational power requirement. The effectiveness of the
proposed fretting detection is demonstrated in Section V.

D. Use of Multiple Point Laser

The HARRIS2 system has an array of five point lasers
(see Fig 1), and this section describes how the proposed
methodology combines the results, obtained using the above
algorithm, from all five lasers. An approach could be to use
the sensor fusion technique described in [42]. However, the
fusion process at the data and feature level is highly complex
due to the significant number of data points produced by the
HARRIS2 system. For this reason, an empirical method has
been developed which is based on the location of detected
fretting by each point laser.

The location of each detected road fretting peak yF (t) is
provided by the GPS system fitted on HARRIS2. Fretting is
unlikely to extend completely across the road surface in the
transverse direction, nor equally in the longitudinal direction.
Thus, the shape of fretting can be considered to be irregular
with respect to the road surface. Therefore, it is highly possible
that an area of fretting maybe detected by more than one
point laser. The method compares the location of the fretting
associated peaks recorded by each of the five point lasers and
the peaks which are within a given distance of each other are
considered to belong to the same area of fretting.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the performance of the above fretting detec-
tion methodology is demonstrated using the data set described
in Section III C. The feasibility of the proposed concepts is
verified by comparing the results with those obtained from a
visual survey.

A. Comparison with Vision Data

The visual condition of the five surveyed roads was assessed
using the Detailed Visual Inspection (DVI) method for fretting
[3]. The DVI measures the fretting area (in square metres) for
each 20 m length of a surveyed road (both the longitudinal
and transverse directions are taken into account). Note that
the algorithm described here for the measurement of fretting

TABLE III: Detection performance by using each single
feature

MSE R
Peak height 0.93 -0.19
Peak width 1.99 -0.19
Peak distance 15.02 -0.38
Peak prominence 1.38 -0.19
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Fig. 9: Fretting detection result with different number of peak
feature, MSE (solid line) and R (dashed line)

determines the fretting number (which is the number of
detected peak as processed in Section IV), and is slightly
different to the DVI measured fretting area. In order to allow
for the comparison of the results between point laser and
DVI data, the results from the point laser system have been
evaluated every 20 m. Accordingly, to allow for comparison
with the DVI methodology, peaks identified by the current
system within 20 metres of each other are considered to belong
to the same area of fretting.

B. Feasibility of the Proposed Peak Detection Method

Firstly, the effectiveness of using each peak feature (Fig 8)
alone within the algorithm for fretting detection was investi-
gated. Two measures were used to justify the performance of
each individual peak feature, namely the Mean-Square-Error
(MSE) and the correlation-coefficient (R).

The MSE value measures the error between the two datasets
and is calculated as MSE = 1

n

∑n
i=1 |DV Ii − Pi|, and the

R value indicates the similarity between two datasets and
is calculated as R =

∑n
i=1DV IiPi

nσDV Ii
σPi

. Where DV Ii is the
normalised DVI reading for the ith 20m length of road and
Pi represents the point laser data for the corresponding road
segment. The results, considering all five roads together, are
presented in Table III. As can be seen, among all features,
peak height alone gives the most accurate result with an MSE
of 0.93 and an R value of -0.19. In contrast, the peak distance
showed the lowest accuracy as it has a very high MSE value
of 15.02 and the lowest R value of -0.38. This is unsurprising
since both peak height and peak width are used to identify the
peaks, whereas peak distance and peak prominence are used to
prevent over counting. The high values in MSE and negative
values in R indicate that a single peak feature cannot be used
alone to detect fretting.

The performance of the system, when all of the features are
used in combination, is calculated by adding each feature, one
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Fig. 10: An example of road fretting by proposed methodol-
ogy, (a) all detected peaks and (b) extracted peaks based on
the peak feature

at a time, in the sequence of peak height, prominence, width
and distance. The contribution of each feature to increasing
the accuracy of fretting detection is shown in Fig 9. As
expected, the most accurate results are obtained when all four
features are included, resulting in a smaller MSE value and a
positive R value. Both peak width and prominence provide a
large improvement in the accuracy. For the last feature, peak
distance, the improvement is minimal when compared to the
first three features and therefore a satisfactory performance
could be achieved using only three features.

In order to demonstrate the feasibility of using the peak
detection process for automated fretting detection, the example
data shown in 6(c) has been used. The results are shown in
Fig 10 with detected peaks in (a) and identified fretting in (b).
As can be seen, the road surface is generally smooth, with a
number of medium sized troughs of approximately 0.5 mm-
2 mm in depth and some more pronounced troughs in the
vicinity of 15-30 m and 45 m. Troughs of more than 5 mm
in depth can also be seen, such as those near 10 and 40 m
respectively. All these areas are successfully detected by using
the proposed methodology as can be seen by comparing Fig
10(a) and (b). In comparison, small peaks due to varying road
texture are removed by applying the feature vector λT . This
indicates that the proposed automated detection can effectively
remove the effect of road texture. It was noticed from a visual
comparison of the data that some of the peaks identified by
the automated system do not represent road fretting but are
associated with other factors, for example manhole covers
and speedbumps. This interference will undoubtedly affect the
accuracy of detecting fretting, although it would only have a
small impact on the system performance, since the road surface
occupies a much greater area than such features.
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Fig. 11: Fretting detection of road one
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Fig. 12: Fretting detection of road two
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Fig. 13: Fretting detection of road three
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Fig. 14: Fretting detection of road four
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Fig. 15: Fretting detection of road five

C. Results from each Road

The applicability of the proposed concepts was further
explored by comparing the automated and DVI survey results
for all five roads separately. The data from each point laser
was segmented and fixed to a window length for the baseline
correction of 20 metres to meet the corresponding standard of
DVI measurement. Each road was processed individually.
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Fig. 16: Average detected fretting number and inspected
fretting area of each road survey

The results from the point laser and DVI survey approaches
are plotted in Figs 11-15 respectively. As the figures show,
despite there being some differences between the two systems,
the detection of fretting is similar for the two systems. For
example, both the automated and visual detection systems
show greater amounts of fretting on roads one, four and five
compared to roads two and three. Also, the automated system
shows that road four has low amounts of fretting between
700-900 m and comparably high fretting numbers in other
sections of the road. These results are similar to the visual
data but with some differences. The reason for this is because
the visually collected DVI data is in terms of the fretting area,
whereas the point laser gives fretting numbers (or fretting
intensity). For example, a small fretting area may contain a
higher fretting number than a larger fretting area. Moreover,
the detected fretting numbers in Figs 12, 13 are much less than
compared to those in Figs 11, 14 and 15. This indicates that
the proposed methodology can easily distinguish the difference
between a flat and an uneven surface. However, it can be seen
that in a few instances there is a mismatch between the fretting
computed by the automated system and that identified visually.
This is particularly the case for road one. For example, at
approximately 300m, the automated system computes a large
amount of fretting and the visual survey suggests that the
fretting is low. On investigation, it appears that the cause of
this mismatch is due to a sudden change in the road texture
which interrupts the calculation of the feature vector λT used
to identify the road texture. This results in an error in the
peak detection process and a corresponding misclassification
of fretting. A potential solution could be to utilise an adaptive
feature vector that adapts according to the change in road
texture not just to distance along the road, for example training
a classifier to recognise the difference between good and
damaged road surface.

To further present the detection performance of the point
laser system, the average fretting number per metre and the
average inspected fretting area based on the whole road are
shown in Fig 16. The results from the proposed system
show a high similarity to those provided by visual inspection.
Road three is in better condition than road two despite both
being considered to be in a good road condition. There are

TABLE IV: Paired Difference Test between Point Laser and
DVI Data

Road n (fa − fn)/n
Standard
Deviation

Standard
Error t t0.05

one 35 0.17 0.92 0.16 1.10 ±2.048
two 24 -0.04 0.20 0.42 -1 ±2.064
three 21 0 4.48 0.98 0 ±2.086
four 65 0.11 0.98 0.12 0.88 ±2.002
five 41 0.15 0.69 0.11 0.136 ±2.056

also some differences among the roads with higher amounts
of fretting. Road four shows the highest average fretting
compared to roads one and five and follows the same result as
the vision data. These results indicate that the overall detection
performance of the point laser system improves as the distance
or road assessed increases.

For road maintenance management purposes road surface
condition assessment, where is carried out, is usually cat-
egorised into levels of condition to facilitate maintenance
decision making [38]. Data to such a level of detail is classified
as Information Quality Level 3 (IQL 3) according to the
World Banks system for classifying data. Data at IQL 3
is suitable to support planning road management activities
(i.e. long-term, strategic estimates of maintenance expenditure
under budgetary scenarios) and programming management
activities (i.e. the identification of sections of the local road
network requiring treatment and the selection of the required
treatments). Accordingly, the fretting data of each road were
categorized into fretting levels of very low, low, moderate, high
and very high amounts of road fretting as suggested by [38].

Further, the 20 m long sections once categorised, were
compared on a road by road basis statistically using a Paired
Difference Test [43]. The results of the statistical analysis are
given in Table IV, where n is the number of measurement,
fa is the fretting area from the DVI data and fn is the
fretting number from the newly proposed methodology. As
can be seen, all standard deviation and standard error are
generally small apart from road three which is due to the zero
values in the DVI data. It may be seen that statistically, at
the 95% confidence level, there is no difference between the
new methodology presented here and the manual approach in
terms of categorising sections of all five roads according to the
levels of fretting present. The proposed system can therefore
be regarded as being suitable to collect road condition data to
IQL 3 and may therefore be used for strategic planning and
programming road management activities [38].

VI. CONCLUSIONS

A robust, automated approach using a multi-point laser
system for the rapid assessment of a measure of road condition
known as fretting has been presented. The new low-complexity
signal processing approach can accurately identify areas of
fretting on the road surface from data obtained from a real
road condition survey. A filtering process was outlined which
removes noise associated with the sensor and the dynamic
motions of the survey vehicle. Areas of fretting were success-



fully identified by removing parts of the signal due to the
road texture using a peak feature vector. The experimental
results indicated that the point laser system together with
the associated proposed signal processing could provide suffi-
cient performance for fretting detection. A statistical analysis
demonstrated that the developed system is capable of classi-
fying the amount of fretting occurring in short road sections
as accurately as a detailed visual inspection. Accordingly, the
proposed system can provide data to IQL 3 which is sufficient
for the purposes of rapidly screening an entire road network to
identify road sections requiring preventative maintenance and
to determine the required treatments. Data collected to IQL
3 is also suitable for planning purposes, namely preparing
strategic estimates of expenditure for road development and
preservation under budgetary scenarios. However, further re-
search would be necessary to the system for condition surveys
to be carried out to IQL 1 and 2. This would allow the system
to undertake a very detailed assessment for research purposes,
advanced design and detailed diagnosis of short sections of
road (typically < 5 m). Such improvements to the system
could be made by using the inertial information from the
inertial measurement unit to allow for the vehicle’s dynamic
motion and thus negate the need for the filtering approach
suggested here. Furthermore, an adaptive feature vector that
can be modified according to the change in road texture,
could be developed to allow for improved accuracy where
there are abrupt changes in road texture. Whilst the research
has focused on the assessment of fretting it is recognised
that the measurement of other parameters such as cracking,
roughness and skid resistance are required for a comprehensive
assessment of the functional performance of rural roads.
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