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Abstract. Τhe most common support structure for on-shore wind energy converters has been the cylindrical steel 

tower with the lattice tower taking the lead when constructing taller structures. The components of the lattice 

structures have to sustain loads that go far beyond what industrial steel profiles used in lattice structures can 

carry. The present paper addresses the investigation of the behavior of custom made cold-formed L-shaped profiles 

against buckling. These profile types are selected since L-shaped profiles are very easy to mount and their buckling 

behavior is ameliorated with the introduction of brace lacing. The profiles investigated are of certain slenderness 

and with the introduction of various bracing motives the profiles are of class 3 and 4. Aiming to contribute to 

better understanding of the structural behavior of the L-shaped profiles, the present research work focuses on the 

development of reliable numerical models along with the use of analytical equations in order to predict accurately 

and interpret the structural response of the cross-sections against buckling. The bracing chosen based on 

structural and geometrical criteria is the V-shaped brace and specimens with varying brace density are analyzed 

and compared. From the comparison between the analytical and the numerical results valuable conclusions can 

be taken regarding the structural behaviour of L-shaped profiles with internal bracing and their applicability on 

wind turbine tower structures. The ultimate slenderness and bracing type can be selected and its application on 

wind structures can be tested. Based on the numerical results of the specimens the present investigation is further 

elaborated by the laboratory testing of selected specimens, which will result in the introduction of such cross-

section in the construction of real wind turbine structures. 

 

1 INTRODUCTION 

Global contemporary energy needs keep rising and climate change regulations make the use of sustainable energy 

means imperative in order to limit the atmospheric pollution. These two trends lead to the installation of more 

powerful and efficient power plants using sustainable energy sources. The European Commission has established 

a Renewable energy directive accepted by all member States, which sets as a goal that the final energy consumption 

from renewables should reach or even exceed 27% of the total energy consumption by 2030 [1]. Due to the high 

efficiency over the land occupied, wind energy is proved to be one of the most promising renewable energy sources 

and its broad expansion in Europe has been reflected on the fact that the total power capacity of installed wind 

power plants has tripled from about 50GW in 2005 to over 150GW in 2016 [2]. Towards enhancing the wind 

turbines’ capacity, contemporary structures are designed taller in order to harvest the higher wind speeds that blow 

in greater distances from the earth’s surface. When designing onshore wind converters, one can identify that the 

commonest tower configuration the cylindrical steel tower. Cylindrical towers consist of modules that are 

manufactured in the factory by cold-forming steel plates and transforming them to conical or cylindrical sections. 

The modules are subsequently transported and mounted on-site by means of bolted flanges [3]. In principal, 

cylindrical steel shells have due to their geometry, the general advantage of high strength to thickness ratio, 

meaning that they can sustain great loads with relatively small shell thickness.  

As stated above, the current trends make the construction of taller turbines imperative in order to cover the 

higher contemporary needs for green energy. When designing supertall cylindrical towers though, certain 

structural problems arise that can be solved by either increasing the overall tower thickness or by introducing 

internal stiffeners while keeping the principal shell thickness constant [4] [5]. Keeping in mind that both solutions 

for enhancing the capacity of cylindrical shells are non-economic in terms of material use and adding on top that 
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when constructing on shore wind farms on mountain tops certain transportation restrictions apply, a potential swift 

from cylindrical shells to lattice structures should be carefully considered. When constructing taller towers, the 

subparts tend to get longer along with the blades, which makes it difficult to transport by conventional trucks on 

the narrow and curvy roads usually found on mountain peaks. In addition, as wind turbine towers act as simple 

cantilever structures, when they get taller, the acting moment at the base becomes greater and therefore the bottom 

shell diameter has to be increased. Again, transportation of subparts with the conventional way of Lorries imposes 

a maximum limit for shell diameters to 3-4 meters, which is usually the maximum height of a vehicle that can pass 

through highway bridges. Finally yet importantly, the erection of wind turbine towers, requires the use of large-

scale cranes which, when exceeding certain heights, are very expensive to hire and difficult to transport. 

A solution to all the issues stated in the previous paragraph is attempted to be given through Hyper Tower 

Project where it is proposed to substitute tubular towers with lattice ones that are lighter and therefore easier to 

carry while the use of large-scale cranes is minimized since these lattice towers are self-rising. The conventional 

lattice solution has already been successfully implemented on large-scale towers on telecommunication masts. 

Contrary to wind turbines, telecommunication towers have no moving parts or great masses positioned at their top, 

which makes them easier to construct with standard L shaped cross-sections but the scale of the lattice towers 

which are able to support the rotor of a wind converter leads to cross sections that are well outside the range of 

standard industrial profiles. A lattice tower that is capable of accommodating the nacelle has the form of a truncated 

cone with a polygon or square cross-section. The implementation of lattice towers on either offshore or onshore 

wind turbines has just been the research field of numerous research groups [6] [7], and the optimal tower shape in 

terms of minimum material use has also been studied by the Hyper Tower research team. The lattice tower 

investigated and optimized is a statically determinate system composed of a number of discrete structural sub-

systems; the legs, the face bracing trusses (FBT), horizontal braces and secondary bracings arranged inside the 

plane of the face bracing trusses. These discrete structural subsystems have a particular role in the load transfer 

mechanism of the lattice tower and since the tower is a statically determinate structure, the member deliver only 

axial stresses and the load that they carry can be determined by closed form expressions.  

In the tower optimization process conducted, the square shaped lattice tower has been proved to be the optimal 

with each of the four faces comprising of the legs, the horizontal braces and the V-brace supporting system. In the 

overall tower investigation and for computational reasons, hollow tubular cross-sections were used to calculate the 

members of the tower [8]. When aiming to further minimize the overall steel mass used, the circular hollow sections 

can be substituted with angular members.  

Single angular section members were the first structural shape broadly used as a traditional structural member 

due to the easiness in connection with other load carrying structural members [9]. This type of structural members 

has been extensively used in a variety of truss structures and the commonest connection detail leads to eccentric 

compressive loading. Eccentric axial compression combined with the asymmetric characteristics of the cross-

section leads to a complicated and mixed torsional and flexural behavior [10]. This complex structural response has 

intrigued researchers and engineers in the past and the investigation of the non-linear behavior of single angular 

steel members has attracted the attention of the research community for a long time. Despite the general interest 

on the explanation of their structural behavior, it has not been but recently that the angular column non-linear 

behavior has been properly understood [11]. Several research groups have conducted experimental and numerical 

analyses in order to further investigate the structural behavior of symmetric angular members, which has led to the 

configuration of the design code guidelines [12]. 

The present work investigates the stability performance of a single angular member under axial compression 

and compares it with the structural response of an identical angular member where the open face is filled with a V 

bracing system. Both the unstiffened and stiffened members are investigated with the aid of finite element models 

and experimental work is yet to follow. The boundary conditions implemented are the ones that are planned to be 

applied on the laboratory tests and the loading conditions of the two specimens are identical. 

2 NUMERICAL MODELING 

In order to assess the structural behavior of angular steel members against buckling and the influence of the 

introduced bracing, two steel members are investigated. The first steel member is a simple angular cross section 

of 61.8 cm and the second member is an identical one with V-braces positioned to cover it’s initially open face as 

it is shown in Figure 1 and Figure 2 below. The bracing and the main specimen share the same thickness which is 

set to 5mm.  

The cross-section investigated is a symmetric steel cross section of 81.36mm length for the outstand parts and the 

simple angular one belongs to class 4. According to Equation (1) of Eurocode EN 1993-1-1 [13] presented below, 

the slenderness of the angular member is 0.5. 

 

𝜆 =  √
𝐴𝑓𝑦

𝑁𝑐𝑟
      (1) 
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(a)                             (b) 

Figure 1. Numerical models for the unbraced (a) and the braced (b) specimen. 

 

 

 

Figure 2. Plan of the simulated steel section. 

 

The simulation of the angular part of the steel members was realized with shell S4R shell elements as they are 

described in Abaqus software manual [14] while the bracing was simulated with solid elements of type C3D8R. The 

members were initially analyzed using the eigenvalue analysis, where the critical buckling load was calculated and 

the first three eigenmode shapes were obtained. 

3 RESULTS 

3.1 Eigenvalue Analysis Results 

The unbraced specimen was first analysed, calculating the eigenmodes and the eigenvalues. The first three 

eigenmode shapes are presented in Figure 3 below, where the rotational buckling shape is evidently dominant. 

Torsional buckling is usually prevailing in non-symmetric steel members and especially in class 4 angular cross-

sections. The eigenvalues which are interpreted in these analyses as the critical buckling load of the steel members 
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are presented in Table 1 below. 
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Figure 3. The first three eigenshapes and eigenvalues for the unbraced specimen. 

 

 

 Unbraced member Braced member 

Eigenmode 1 (kN) 184.91 212.24 

Eigenmode (kN) 211.64 250.744 

Eigenmode 3 (kN) 261.42 325.133 

Table 1: Eigenvalues of the Braced and Unbraced members. 

The introduction of the stiffening scheme increases the critical buckling load of the member as predicted and 

changes also the buckling shape from torsional to flexural. This will be also evident later on in the static analysis.  

3.2 Static Analyses 

In order to assess the behaviour of the specimens against buckling two types of analyses have been implemented. 

First both the unbraced and the braced specimen were simulated and tested against compressive loads. The column 

is pinned at both ends with the boundary conditions and the loads acting on a reference point at the centre of gravity 

of the angular cross-section. After performing the static analysis for the unbraced and the braced specimen, the 

buckling behaviour was obtained as pictured in Figure 4 and Figure 6 respectively. The ultimate buckling load for 

the GMNA analysis for the unbraced and braced specimen is 178.52kN and 199.97kN respectively as presented 

in Table 2 below.   

 

 

 

Figure 4. GMNA for the unbraced specimen. 

 

After performing the GMNA analysis the influence of the initial imperfections has to be assessed. In order to 

take into account these specimen initial imperfections the technique implemented in the work of Speicher and Saal 
[15] is followed where the eignmodes of the specimens are initially calculated. The buckling shape of the first 

eigenmode is obtained and the appropriate amplification factor according to EN 1993-1-6 [16] is used to calculate 

the imperfection magnitude. For both cases of unbraced and braced specimen, the ultimate buckling load is lower 

when taking into account the initial imperfections as it noted in Table 2. The ultimate buckling load when 

performing Geometrical and Material non-linear imperfection analysis (GMNIA) is 173.90kN for the unbraced 

specimen and 193.03kN for the braced one. The load-displacement curves for both cases are calculated and 

presented in Figure 5 and Figure 7 below. The introduction of the bracing is not only increasing the ultimate 

buckling load of the specimen, but it is also changing the buckling shape of the specimen. While the torsional 

mode is dominant in the case of the unbraced specimen, the introduction of the bracing is converting the failure 

mode to a flexural one. This is pictured evidently in Figure 8, where the failure mode of the unbraced (a) with 
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dominant torsion is presented in comparison with the flexural failure mode of the braced one (b). 

 

Figure 5. GMNIA for the unbraced specimen.. 

 

 

Figure 6. GMNA for the braced specimen. 

 



Nafsika Stavridou, Efthymios Koltsakis, and Charalampos C. Baniotopoulos 

 

Figure 7. GMNIA for the braced specimen. 

 

 Unbraced member Braced member 

GMNA 178.52 199.97 

GMNIA 173.90 193.03 

Table 2: Ultimate buckling load in kN for the anlayzes performed. 

       
(a)                           (b) 

Figure 8. Plan of the simulated steel section. 

4 CONCLUSIONS 

The present work proposes the introduction of bracing in single angular steel sections to increase the ultimate 
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buckling load of the specimen and more importantly to change the failure mode from torsional to flexural. The use 

of angular members is rather broad due to the ease in mounting and connecting with the other load carrying 

members. For non-symmetric cross-sections like the angular members, the importance of controlling the failure 

mode is rather important. In truss structures and more specifically on wind turbine towers, the structural members 

deliver exclusively axial loads and therefore it is important to be able to accurately predict the ultimate buckling 

load and the failure mode of the sections used. As far as the braced angular members are concerned, the change in 

the failure mode is evident in both GMNA and GMNIA analyses and the increase of the buckling load is 11-12% 

depending on whether initial imperfections are taken into account or not. The increase in the material used is 

almost 7%. This particular behaviour refers to member with slenderness close to 0.5 and further research is being 

carried out in order to verify the numerical analysis results with laboratory experiments, and with specimens of 

varying slenderness.  
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