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Abstract. In this research, an intelligent system for managing risks is developed with a 

framework to aid in managing the risks in the railway stations. A method to advance risk 

management in the railway stations is needed in order to minimize risk through an automated 

process taking into consideration all the factors in the system and how they work together to 

provide an acceptable level of safety and security. Thus, the Adaptive Nero Fuzzy Inference 

System (ANFIS) is proposed to improve risk management as an intelligently selected model 

which is powerful in dealing with uncertainties in risk variables. The methods of artificial neural 

network (ANN) and Fuzzy interface system (FIS) have been proven as tools for measuring risks 

in many fields. In this case study, the railway is selected as a place for managing the risks of 

overcrowding in the railway stations taking two parameters as input for risk value output using 

a hybrid model, which has the potency to deal with risk uncertainties and to learn by ANN 

training processes. The results show that the ANFIS method is more promising in the 

management of station risks. The framework can be applied for other risks in the station and 

more for a wide range of other systems. Also, ANFIS has the ability to learn from past risk 

records for future prediction. Clearly, the risk indexes are essential to reflect the actual condition 

of the station and they can indicate a high level of risks at the early stage, such as with 

overcrowding. The dynamic model of risk management can define risk levels and aid the 

decision makers by convenient and reliable results based on recorded data. Finally, the model 

can be generalised for other risks. 

1.  Introduction 

In recent years, there has been an increase in demand and usage of railway transportation and therefore 

the utilisation of railway stations, and this is expected to continue to increase worldwide [1]. 

The vital mass of traveller flows through stations has become important in terms of both of passenger 

satisfaction and passenger safety and thus have become major concerns for railway station operators. 

Managing such passenger flows and overcrowding risks is not an easy task and that is due to the 

complexity of some station designs and unexpected passenger behaviours.  

The effect of this high demand and intensive usage on the old systems will raise the risks of the 

railway and keep business under pressure from the society and government. Stations are an essential 

part of the railway system as a point where the passenger starts and ends their journey [2].  
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Moreover, uncertainty will have an impact on the risk management process. Risk management has 

many applications in different areas such as financial management, project engineering, military and 

many business systems, and an operator on the railway stations has to monitor, scan, manage and 

investigate the factors and to update their plans based on the level of expected hazard to select 

appropriate plans and strategies for reducing the risks to achieve accepted levels [3].  

 In this paper, a study of predicting the risk level is performed using China’s station data from the 

literature [4].The suggested prediction model uses (ANFIS) as the method of risk prediction for 

overcrowding, which affects the quality of the service, perceptions of the risk to personal safety and 

security for the travellers and might extend to damaging the business image in the worst case scenario. 

This may subsequently interrupt operation continuity because of the growth of the dwell time [5-9]. 

2.  The ANFIS Model and the framework  

Owing to the effective learning and reasoning capabilities of the ANFIS model, it has become more and 

more attractive and interest of scholars in engineering fields and in numerous scientific fields has been 

increasing. This model is combined with the power of ANN and explicit knowledge representation of 

FIS. The ANFIS is able to construct a network realization of IF / THEN rules and one of the earliest 

projects in ANN in the identification risk literature was carried out by McKim (1993) [10-13]. This was 

a multilayer feed-forward network that employs an ANN and fuzzy logic system FLS to map inputs into 

an output (see Figure 1). The model is a FLS integrated into the structure of adaptive ANN [10]. The 

output is predicted through an adaptive network which is fed forward multi-layers of ANN with adaptive 

nodes, and learning rules specify the parameters of the adaptive node and the adjustment of the 

parameter due to error value [14-17]. 

Figure 1. Proposed Fuzzy logic inference system for risk management in railway stations. 

3.  Data of Overcrowding and Risk Management Methodology 

The suggested intelligent prediction model is designed based on on-hand data from digital sources which 

can gather the data in real time. The selected actual data from the literature has been collected from 

GuoMao station of Beijing metro in China during the peak hours. It proposed a risk scale which has 

been used in stating the level of probability of risks in the form of a 4-choice scale of (very unlikely, 

unlikely, likely, very likely). The case of risk selected is congestion in the station and that will be 

evaluated utilizing the indexes. It is suggested here that the risk of congestion be divided into many 

different levels, that will fluctuate between levels of the index effect. If the number of the warning levels 

is not clearly high or low, each group may cover a wide range, leading to an unreliable level of managing 

risks and an inaccurate response for the real conditions. Due to its importance, the level of risk should 

be classified into four levels with diverse colours for an active mention, assuming that the probability 
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of risks is in the form of a 4-choice scale of (very unlikely, unlikely, likely, very likely). As well as data 

related to ratios (stranded) and transfers of efficiency in the station, the feature dimensions of the inputs 

need to be converted to be based on the probability of risks level in the form that been suggested. The 

correlation matrix and the patterns and colours of the risk level are noted in Table 1 and 2. Some scale 

has been done to keep the same range of values for each of the inputs to the model. 

Table 1. The scale of the level of risk probability. 

Result 
Description (Retention rate of the 

platform) 

Description  

(Transfer efficiency) 

Risk Levels 

Indexes 

very unlikely 
Full capacity and have chance to ride 

without being stranded 
Passengers can move easily 

D 

Unlikely 
A few stand and wait for the next 

train 

A few lines before the lift 

and stairs 

C 

likely Some are waiting for the next train 
Some lines before the lift 

and stairs 

B 

very likely Highly crowded and no chance to ride Very slow movement A 

 

 

Table 2. The risk matrix for two indexes. 

 

 

 

 

 

 

The data has been extracted from Beijing’s GuoMao metro station which has a limited amount of 

data but selected two input parameters [4], namely retention rate index, transfer efficiency index η_T as 

input for predicting overcrowding risk levels in the station (see Table 3). 

To use the ANIFS for managing the risk in the station, existing data from the China metro relating 

to the risk of overcrowding are used for training the model which sets the parameters of the system. A 

section of these data for training the system will be used and the remaining will be used for testing the 

model. The retention rate index η_R aims at capturing the number of passengers who are stranded on 

the platform for the next train because they did not have space on the arriving train. The transfer 

efficiency index in the station is essential to the index to present the station statistics, and this index 

depends on time and distance transfer. It can be concluded from the literature that computing the index 

in the station channel location is affected by the amount of equipment in the channel, such as stairs and 

escalators, walking velocity between the equipment and the distance between different equipment. The 

area size of platforms leads to computing the number of passengers who are able to wait and then sets 

up the level of risk. Some factors such as human factors, standards and passenger belongings are factors 

that must also be considered [18-22]. 

 Index 1 Index 2 

A B C D A B C D 

Index 1 A      

B     

C     

D     

Index 2 A      

B     

C     

D     
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Table 3. The data from the station with the risk value. 

Stranded  

ratio % 

η_R 

Risk 

level 

1 

Transfer 

efficiency 

η_T   

Transfer 

efficiency 

 % 

Risk 

level 

2 

Overall 

risk  

MAX 

(Risk) 

  % 

Risk value 

% 

11 C 1.45 36 C CC 36 22.96 

13 C 1.28 32 C CC 32 24.47 

7 C 1.28 32 C CC 32 13.89 

0 D 1.28 32 C DC 32 0.00 

19 B 1.55 39 C BC 39 44.39 

7 C 1.55 39 C CC 39 16.64 

12 C 1.55 39 C CC 39 27.21 

10 C 1.67 42 B CB 42 25.81 

14 C 1.67 42 B CB 42 34.62 

20 B 1.67 42 B BB 42 50.00 

13 C 1.22 31 D CD 31 22.97 

14 C 1.22 31 D CD 31 25.32 

11 C 1.22 31 D CD 31 20.44 

17 B 1.47 37 C BC 37 37.53 

17 B 1.47 37 C BC 37 38.12 

0 D 1.47 37 C DC 37 0.00 

18 B 1.61 40 C BC 40 43.93 

16 B 1.61 40 C BC 40 39.04 

5 C 1.61 40 C CC 40 11.61 

9 C 1.26 32 D CD 32 16.59 

9 C 1.26 32 D CD 32 16.02 

0 D 1.26 32 D DD 32 0.00 

3 C 1.21 30 D CD 30 5.33 

4 C 1.21 30 D CD 30 7.04 

4 C 1.21 30 D CD 30 6.36 

 

4.  The result 

The ANFIS output which is the risk level of the overcrowding can be predicted. In addition, the graph 

of training error has been presented in Figure 2. The model has been set up to train the steps in 300 

epochs and with the addition of a number of epochs, errors diminish, and error fluctuations reach a 

steady state. Clearly, the small amount of training data is a significant performance variable but the 

benefit is that the intended ANFIS example does not require time-consuming iterative training and 

testing. 

 

Figure 2. Trend of errors of trained fuzzy system 
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Moreover, the surface plot shows that the 3-D surface is hard to evaluate and the two indexes have a 

significant impact on the expected overcrowding (see Figure 3). In general, it can be inferred that with 

the 3-D diagram there is an increase in index probability, and the risk level increases, which is a logical 

conclusion. For other risk indexes of the railway station, this procedure could be used. 

 

Figure 3. The 3-D surface of the rule based system adapted for the data with MFs = 16 mf Type = 

gaussmf epoch_n = 300. 

5.  Conclusions 

In this paper, the selected model seems to be powerful for predicting the risks and aiding the decision-

making for risk management in the case of overcrowding in railway stations. The proposed new method 

of railway station risk management model using ANIFS can deal with risk data index and information 

in real-time. It is shown that the ANFIS appears to be more reasonable and appropriate because of its 

smoothness in calculating the risk levels. This dynamic model of risk management can define risk levels 

and aid the decision makers by producing convenient and reliable results based on real time data. In 

practice, the prediction ANFIS model can be a decision smart support system for managing risks which 

that can be captured through indicators or indexes to create rules depending on the inputs. The model 

has the flexibility to create a greater amount of input for future research and this is considered to be not 

such an easy task. 
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