

University of Birmingham

Path spaces of higher inductive types in homotopy
type theory
Kraus, Nicolai; von Raumer, Jakob

DOI:
10.1109/LICS.2019.8785661

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kraus, N & von Raumer, J 2019, Path spaces of higher inductive types in homotopy type theory. in 2019 34th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society Press, Thirty-
Fourth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019), Vancouver, Canada,
24/06/19. https://doi.org/10.1109/LICS.2019.8785661

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. Apr. 2024

https://doi.org/10.1109/LICS.2019.8785661
https://doi.org/10.1109/LICS.2019.8785661
https://birmingham.elsevierpure.com/en/publications/d5f8be6f-02bc-4f71-82f2-eba58c68c975

Path Spaces of Higher Inductive Types
in Homotopy Type Theory

Nicolai Kraus
University of Nottingham
Eötvös Loránd University

Jakob von Raumer
University of Nottingham

Abstract—The study of equality types is central to homotopy
type theory. Characterizing these types is often tricky, and
various strategies, such as the encode-decode method, have been
developed.

We prove a theorem about equality types of coequalizers and
pushouts, reminiscent of an induction principle and without
any restrictions on the truncation levels. This result makes it
possible to reason directly about certain equality types and to
streamline existing proofs by eliminating the necessity of auxiliary
constructions.

To demonstrate this, we give a very short argument for the
calculation of the fundamental group of the circle (Licata and
Shulman [1]), and for the fact that pushouts preserve embed-
dings. Further, our development suggests a higher version of the
Seifert-van Kampen theorem, and the set-truncation operator
maps it to the standard Seifert-van Kampen theorem (due to
Favonia and Shulman [2]).

We provide a formalization of the main technical results in
the proof assistant Lean.

I. INTRODUCTION, MOTIVATION, AND OVERVIEW

A. Homotopy Type Theory

Martin-Löf’s intensional type theory is a specific form
of type theory which can serve as both a foundation for
dependently typed programming languages and as a system in
which mathematics can be developed. An important concept
is identity or equality types: if A is a type and x, y : A are
elements, then IdA(x, y) is a type whose elements we view
as proofs that x and y are equal. Following a widespread
convention, we denote this type by (x =A y) or (x = y).
In contrast, we denote definitions by :≡.

Homotopy type theory, commonly known as HoTT, is a
variation of Martin-Löf’s type theory. It is inspired by the
observation that equalities behave like paths in homotopy
theory, and this connection is so central that equality types
are even referred to as path spaces in HoTT. As described
in the book [3], two main features distinguish it from other
variations of type theory. First, Voevodsky’s univalence axiom
(or univalence principle) ensures that the equality of types
corresponds to equivalence of types (“coherent isomorphism”).
Second, higher inductive types are an implementation of the

Nicolai Kraus was supported by the Engineering and Physical Sciences
Research Council (EPSRC), grant reference EP/M016994/1, and by the
European Union, co-financed by the European Social Fund (EFOP-3.6.2-
16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunication).

idea that, if we can generate the elements of a type inductively,
we could inductively generate its equalities at the same time.

B. Quotients and Coequalizers

One central example for a class of higher inductive types
is what we call (homotopy) coequalizers of relations. Co-
equalizers can (via straightforward constructions) be used to
encode many other higher inductive types such as circles and
spheres, tori, suspensions, general pushouts, and (via more
difficult constructions) propositional truncations [4], [5] and
higher truncations [6].

Coequalizers are of particularly great importance for the
development of HoTT in the proof assistant Lean [7], since
they are, together with propositional truncations, the only
classes of higher inductive types that are defined in the prelude
and thus “available by default”. Much of HoTT in Lean is
based on them, and they are known as quotients or typal
quotients [8] in the Lean community. While they certainly look
like quotients, we choose to avoid this name since it could be
confusing for readers outside of the Lean community (see the
discussion below).

Definition 1 (coequalizer of a relation). Assume A : U is a
type (U is a universe), and ∼ is a family of types indexed twice
over A, sometimes called a “binary proof-relevant relation”
∼: A × A → U ; we write (x ∼ y) instead of ∼ (x, y). The
coequalizer A�∼ is the higher inductive type generated by the
constructors [−] and glue, as in:

data A�∼ : U
[−] : A→ A�∼
glue : Π{a, b : A}.(a ∼ b)→ [a] = [b]

(1)

The constructors express the idea that we take A and make
related elements equal. We use curly brackets for the first two
arguments of the glue constructor, {a, b : A}, to express that
we will keep these arguments implicit to improve readability.
On paper, we can view this as purely on the level of notation,
i.e. write glue(s) simply as shorthand notation for glue(a, b, s).

Let us justify why we call A�∼ a coequalizer. In standard
category theory, given two morphisms/functions f, g : X →
A, their coequalizer Coequ(f, g) can be thought of as the ob-
ject/type A where f(x) and g(x) are identified. In “standard”

HoTT (as developed in the book [3]), this can be expressed
as the following higher inductive type:

data Coequ(f, g) : U
ι : A→ Coequ(f, g)

resp : (x : X)→ ι(f(x)) = ι(g(x))

(2)

Given f and g, we can define the relation ∼ on A by (a ∼
b) :≡ Σ(x : X).(f(x) = a) × (g(x) = b). It is then easy to
see that A�∼ is equivalent to Coequ(f, g). In Lean, where
the higher inductive type (2) is not available, we can thus use
A�∼ instead.

Vice versa, if we start with a relation ∼, we can consider
the two projections

proj1, proj2 : (Σ(a, b : A).a ∼ b) ⇒ A (3)

Then, Coequ(proj1, proj1) is equivalent to A�∼.
In order to explain why we choose to avoid calling A�∼ a

quotient, we want to emphasize two points:

(I) Recall that a (homotopy) set in HoTT is a type satisfying
the principle of unique identity proofs, i.e. a type A such
that, for a, b : A and p, q : a = b, we always have p =
q. The type A�∼ is in general not a set. However, the
variation of the construction which forces it to be a set
is in the book [3] called a set-quotient and sometimes
simply a quotient.

(II) The relation ∼ is neither required to be (homotopy)
propositional (i.e. it is “proof relevant”), nor is it required
to be reflexive, symmetric, or transitive.

It might be reasonable to speak of a quotient by a higher
relation (cf. [9]) which is freely generated by ∼, but we do
not go into this.

The points (I) and (II) above make coequalizers very flexible
and remarkably powerful. Not forcing A�∼ to be a set lets us
implement many interesting structures. For example, we can
consider the (seemingly) trivial case where A is the unit type
and ∼ is constantly unit as well. Then, the quantifications in
the constructors in (1) are unnecessary, and (1) simplifies to
the definition of the circle type S1, as on the right side:

base
loop

data S1 : U
base : S1

loop : base = base

(4)

The left side above shows how S1 can be drawn, thinking of
elements as points and equalities as paths as suggested by the
intuition that HoTT is inspired by.

L

M

N

P

f

g

Point (II) from above allows further im-
portant constructions. We have already seen
that general (homotopy) coequalizers of two
functions can be constructed. Similarly, the
(homotopy) pushout P on the right can be
defined as (M +N)�∼, where

(inl(m) ∼ inr(n)) :≡ Σ(l : L).(f(l) = m)× (g(l) = n) (5)

and (inl(m) ∼ inl(m′)), (inr(n) ∼ inr(n′)), (inr(n) ∼ inl(m))
are all empty. Here, ∼ is neither reflexive, nor symmetric, nor
transitive.
Higher inductive types, such as the ones above, allow the
development of a synthetic version of homotopy theory inside
HoTT (cf. [10], [11], [12], [13], [2], [14], [15], [16], [6]). A
main objective of this line of research is to describe, classify,
and compare path spaces (i.e. equality types) or homotopy
groups (i.e. truncated path spaces) of higher inductive types
such as circles and spheres.

For a (higher) inductive type, we know that its elements are
generated by the constructors. This is expressed by elimination
principles. Following the terminology of the book [3], we
refer to the dependent elimination rule as induction and the
non-dependent one as recursion. The induction principle for
coequalizers, as it is standard in HoTT and implemented in
Lean, states the following:

Principle 2 (induction for coequalizers). Given a type family
P : A�∼→ U , and terms

f : Π(a : A).P ([a]) (6)
e : Π{a, b : A}, (s : a ∼ b).f(a) =glue(s) f(b), (7)

we get a term

indP,f,e : Π(x : A�∼).P (x) (8)

such that indP,f,e([a]) computes to f(a) and, if applied on
glue(s), it equals what we get from e.

Here, we use the path-over a.k.a. dependent path nota-
tion [3, p.183] in the expression f(a) =glue(s) f(b): Note that
f(a) : P ([a]) and f(b) : P ([b]) do not have the same type,
but by transporting/substituting along glue(s), we can equate
them.

C. Motivation for the Main Result

Often, we want to find out what specific equality types look
like. This is directly the goal when calculating the homotopy
groups of given types (as in the synthetic homotopy theory
mentioned above), but it is also a necessary intermediate step
for many other constructions. For a very concrete example,
let us recall the calculation of the loop space of the circle
S1 by Licata and Shulman [1]. This loop space of S1, as
defined above in (4), is by definition simply the equality type
(base = base). Licata and Shulman introduce and explain the
encode-decode method: in order go get started, they “guess”
that the loop space in question is equivalent to the integers
Z (looking at the left side of (4), the intuition is that one
can go around the loop clockwise any number of times, and
negative numbers correspond to going anticlockwise). Licata
and Shulman then define a type family Cover : S1 → U ,
inspired by the “guess”, and construct functions between
Cover(x) and (base = x) in order to show that these types
are equivalent. Finally, observing that Cover(base) is Z gives
the desired result.

The encode-decode method has been employed successfully
in a variety of cases. Going through the necessary steps can

be somewhat tedious but it often at least partially mechanical.
One main goal in this paper is to develop a different method to
directly work with equality types of coequalizers and pushouts
(and constructions based on them): Since elimination rules
such as Principle 2 characterize the points of an inductive
type, and higher inductive types define points and equalities
simultaneously, we believe that it is natural to hope for an
“induction principle for equalities”, i.e. a theorem which is
reminiscent of an elimination rule. More concretely, for our
case of coequalizers, let us assume we are given a type family

Q : Π{a, b : A}.([a] = [b])→ U . (9)

We ask ourselves whether there are simple-to-check conditions
that are sufficient to conclude Q(q) for a general q, i.e. for
any given a, b : A with q : [a] = [b].

Note that Q in (9) quantifies over two elements of A and an
equality in A�∼. In comparison, if we asked the same question
for a type family S : Π(x, y : A�∼).(x = y)→ U instead of Q,
the answer would be the J eliminator (a.k.a. path induction),
which says that it would be sufficient to prove S(reflx). What
we want and need in all the application is the version with
“restricted” endpoints as in (9).

It turns out that there is an easy but powerful generalization
of the above question. We get this generalization by switching
from the global (or unbased) setting as in (9) to a local (based)
one: we can fix one of the two endpoints to be [a0] : A�∼
and replace Q by a family which is indexed only once over
A,

P : Π{b : A}.([a0] = [b])→ U . (10)

This is akin to the difference between the standard J (a.k.a.
path induction) and the Paulin-Mohring J [17] (a.k.a. based
path induction). Just as for the two versions of J , a principle
answering the based version of the question also answers the
unbased one, and we thus focus exclusively on the former.

To get some intuition for the subtleties of equality types, let
us first look at an “obvious” induction principle for (10) that
turns out to be wrong. Usually, induction principles contain
“one case for every constructor” (e.g. Principle 2 contains one
case for [−], and one case for glue). The standard equality
constructor is refl, and (1) contains a further path constructor
glue. Thus, we might try:

Incorrect principle. Given a0 and a family P as in (10) and
terms

r : P (refl[a0]) (11)
p : Π{b : A}, (s : a0 ∼ b).P (glue(s)) (12)

can we conclude Π{b : A}, (q : [a0] = [b]).P (q) ?

Counterexample. Consider the relation ∼ on the natural num-
bers N, defined by (m ∼ n) :≡ (m+1 = n). We can then look
at the coequalizer N�∼. Let us take 1 : N as the base point and
P : Π(n : N).([1] = [n]) → U , defined by P (n, q) :≡ n ≥ 1.
It is very easy to construct the terms r and p in (11,12). At
the same time, we have that P (0, glue−1) is empty.

The above naı̈ve suggestion was easy to disprove, but let
us try to understand why it was insufficient. Equalities that
come from A can, by J , be assumed to be refl; these are
sufficiently covered. However, this is not true for equalities that
are generated using the glue constructor. The counterexample
uses that we have not explicitly closed them under symmetry,
and similarly, we could have used that we have not closed
them under transitivity.

How could we fix this? Given an equality q in A�∼, we
can compose it with glue(s) assuming the endpoints match,
which suggests that the induction principle we are looking for
should assume Q(q)→ Q(q � glue(s)), where q � p denotes the
concatenation of two equalities p and q. We also can compose
with glue(s)−1, suggesting that we also need Q(q) → Q(q �

glue(s)−1). The operations of composing with glue(s) and
composing with glue(s)−1 should be inverse to each other,
which motivates us to ask for only one of them and require
this one to be an equivalence, i.e. Q(q) ' Q(q �glue(s)). This
leads us to a valid induction principle which is short, useful
(as we will see when discussing applications), and comes with
β-rules. Proving this principle is a main result of this paper:

Theorem 3 (induction for coequalizer equality). Assume we
have A, ∼ as before and a point a0 : A, and are further given
a type family

P : Π{b : A}.([a0] = [b])→ U (13)

together with terms

r : P (refl[a0]) (14)
e : Π{b, c : A}, (q : [a0] = [b]), (s : b ∼ c).

P (q) ' P (q � glue(s)) (15)

Then, we can construct a term

indr,e : Π{b : A}, (q : [a0] = [b]).P (q) (16)

with the following β-rules:

indr,e(refl[a0]) = r (17)
indr,e(q � glue(s)) = e(q, s, indr,e(q)) (18)

Remark 4. The above theorem can be proved in a way which
makes the first β-rule (17) hold judgmentally. This is what we
have done in our formalization (see Section I-G). It offers
some additional convenience. In this paper, we do not track
judgmental equalities explicitly.

D. Further Contents

Section II proves the stated theorems above. The proof
makes use of the fact that such induction principles always
have non-dependent counterparts which, when stated together
with their uniqueness properties, are interderivable with the
induction principles. The section should be seen as the core of
the paper. It is split into three subsections introducing the main
ideas, performing the technical constructions, and deriving the
induction principle from the non-dependent version. We will
see that it is useful to state our main results for pushouts

instead of coequalizers, and this is discussed further in Sec-
tion III. Building on this, we offer several further results and
applications in this paper.

In Section IV, we demonstrate first applications of our
theorems, one for the non-dependent coequalizer version and
another for the dependent pushout version. Concretely, in
Section IV-A, we show how our result immediately implies
that the loop space of the circle (4) is equivalent to the
integers [1]. In Section IV-B, we apply our result to prove a
theorem in which our main result helps to avoid a somewhat
tedious encode-decode agrument: Embeddings are preserved
under pushouts [18].

The Seifert-van Kampen theorem, a result in algebraic
topology allowing the computation of the fundamental group
of a space if the groups of subspaces are known, was formu-
lated and proved in HoTT by Favonia and Shulman [2]. How to
do a higher version of this theorem, i.e. without set-truncation,
is an open question in HoTT. In Section V, we suggest one
formulation of a higher Seifert-van Kampen theorem and prove
it using the main result of this paper.

E. Summary of our Contributions

• We prove a new induction principle for equality types in
coequalizers and pushouts.

• To demonstrate the usefulness of this principle, we
present a very short proof of the fact that the loop space of
S1 is Z [1] and that embeddings are closed under pushout
(possibly a new result in HoTT).

• We formulate and prove a higher dimensional Seifert-van
Kampen theorem, generalizing the result by Favonia and
Shulman [2].

F. Setting and Notation

We work in the “standard” version of homotopy type theory
that is also developed in the book [3] with sums, Π- and Σ-
types, a hierarchy of univalent universes U (we actually only
need two), and inductive and higher inductive types. To be
precise, the main part only requires coequalizers (Definition 1)
and no other higher inductive types, which is what Lean
provides by default; and our formalization does not require any
further “higher inductive types via postulates”. Only Section V
makes use of the additional concept of an indexed higher
inductive types, but this part is independent from the main
results of this paper.

We use standard notation as used in [3] (with only minor
modifications). In particular, we uncurry implicitly and write
f(a, b) instead of f(a)(b) or fa(b) if f has type A → B →
C. To further improve readability, we use implicit arguments
(purely on the notational level) as explained after Definition 1
above.

G. Formalization

The main technical results have been formalized in the
theorem prover Lean [7]: We formalized the equivalence of
wild categories and constructed their initial objects as in Sec-
tion II-A and II-B. We showed the non-dependent eliminator

and its uniqueness, using a shortcut to make the first β-rule
hold judgmentally, and used it to derive the dependent elim-
inator (the induction principle) with judgmental first β-rule
as proved in Section II-C. We furthermore implemented the
version for pushouts similar to the construction of Section III
and proved that pushouts preserve embeddings (Section IV-B).
We have not formalized the example in Section IV-A; the (in
the context of this paper) interesting part of that example
is immediate. Further, the development and discussion in
Section V is not formalized.

Our code can be found at gitlab.com/fplab/freealgstr.

II. THE MAIN THEOREM: PATH SPACES OF
COEQUALIZERS

We will first formulate and prove the non-dependent version
of the main result, by developing the corresponding categorical
framework inside type theory. This then allows us to derive
the induction principle as stated in Theorem 3.

A. Categorical Ideas in Type Theory

Using categorical ideas to structure constructions and reason
inside type theory is standard. The induction (a.k.a. dependent
elimination) principle of an inductive type can equivalently be
formulated as a recursion (non-dependent elimination) prin-
ciple together with a uniqueness principle, often formulated
as a universal property. A principled way of doing this is to
define objects and morphisms of a category; the statement
is then that the inductive type in question is (homotopy)
initial in this category. For the specific case of HoTT, the
connection between induction and initiality has been shown
by Awodey, Gambino and Sojakova [19] for inductive types,
and by Sojakova [20] for some higher inductive types.

However, category theory in HoTT is subtle. The “obvious”
naı̈ve definition of a category without truncation (sometimes
called a wild category; Definition 5) is not a well-behaved
notion; for example, the slice of a wild category is not a wild
category anymore. The underlying reason is that the identity
and associativity equalities do not behave like laws, but like
higher morphisms in a higher category where coherences
are required. One approach to higher categories in HoTT
is discussed in [21]. Alternatively, the univalent categories
of [22] restrict the truncation levels to avoid the issue. For us,
truncating is not a suitable strategy since it would not allow
us to prove our general result.

Although not well-behaved in general, wild categories are
still a useful tool in this paper. We do not think of them as
“bad ordinary categories” but instead as an approximation to
(∞, 1)-categories, where most of the (higher) data is omitted.
However, since none of our constructions require us to actually
use the omitted data, we get away with this. Most importantly,
we can talk about the concept of (homotopy) initiality with-
out ever referring to higher morphisms. Technically, we do
not even need associativity; it could be excluded from the
following definition without consequences for the rest of the
paper.

https://gitlab.com/fplab/freealgstr

Definition 5 (wild categories and initiality). A wild category
A, for simplicity henceforth simply category, consists of a type
|A| of objects; for X,Y : |A|, a type A(X,Y) of morphisms;
a composition operator ◦ and identities in the obvious way,
together with the two standard equalities for the identies and
one equality which states that ◦ is associative. An object X
is called initial if, for every object Y , the type A(X,Y) is
contractible (i.e. equivalent to the unit type).

For the whole section, let us assume that a type A together
with a0 : A and a relation ∼ is given. Our main category of
interest is the following:

Definition 6. The category C is defined as follows. Objects
in |C| are “pointed type families respecting ∼”, i.e. triples
(K, r, e) of the types

K : A→ U (19)
r : K(a0) (20)
e : Π{b, c : A}.(b ∼ c)→ K(b) ' K(c). (21)

Morphisms are “pointed fibrewise functions”. Explicitly, a
morphism in C((K, r, e), (K ′, r′, e′)) is a triple (f, δ, γ):

f : Π(b : A).K(b)→ K ′(b) (22)
δ : fa0(r) = r′ (23)
γ : Π{b, c : A}, (s : b ∼ c).e′(s) ◦ fb = fc ◦ e(s) (24)

Here, γ is an equality witnessing that, for any s : b ∼ c, the
following square commutes:

K(b) K(c)

K ′(b) K ′(c)

e(s)

e′(s)
fb fc

(25)

The remaining components (identities, composition, equa-
tions) are straightforward to define. For example, identities
are given as (λb.id, reflri , λs.reflei(s)) and composition by

(f ′, δ′, γ′) ◦ (f, δ, γ) :≡ (λb.(fb
′ ◦ fb), apf ′

a0
(δ) � δ′, γ′ ◦ γ),

(26)
where the last bit is given by pasting two vertically neighbor-
ing squares (25) (we do not think that writing down the full
type-theoretic expression for this offers much insight).

A variation of Theorem 3, this time not as induction but
as non-dependent elimination principle with uniqueness, can
now be stated as follows:

Theorem 7 (initiality of coequalizer equality). Consider the
object (Ki, pi, ei) of C, where the first part is given by

Ki(b) :≡ ([a0] = [b]), (27)

i.e. Ki is given by equality in the coequalizer A�∼. The point
is given by

ri :≡ refl[a0]. (28)

For every s : b ∼ c, the component ei(s) is the equivalence
between ([a0] = [b]) and ([a0] = [c]) which is given by
composition with glue(s); we simply write

ei(s) :≡ � glue(s). (29)

Then, our statement is: The object (Ki, pi, ei) is initial in the
category C.

Section II-B is devoted to the proof of this theorem, requir-
ing various constructions and lemmas.

B. Initiality of Coequalizer Equality

In order to prove Theorem 7, we consider a second category
which we call D. We will then show that C and D are
isomorphic. The point is that it is very easy to find the
initial object in D, and, via the isomorphism, it can easily
be transported to C . A useful technical tool is the formulation
of coequalizer induction as an equivalence, which is what we
start with.

Lemma 8 (coequalizer induction as equivalence). Given a
type family P : A�∼→ U , there is a canonical map from the
type

Π(x : A�∼).P (x) (30)

to the type

Σ(f : Π(a : A).P [a]).

Π{a, b : A}, (s : a ∼ b).f(a) =glue(s) f(b)
(31)

mapping g to the pair (g◦ [−], λs.apdg(glue(s))). This canon-
ical map is an equivalence.

Note that apd is the “dependent ap function” [3].

Proof. The standard induction principle, given as Principle 2
above, states that there is a function from (31) to (30) with
β-rules that essentially amount to stating that this function
is a section of the canonical map above. Lemma 8 replaces
“section” by “inverse”. This easily follows from the standard
induction principle. We are not the first to make this observa-
tion: a small variation of the lemma is already present in the
Lean library [23].

Remark 9. Note that Lemma 8 crucially depends on the “non-
recursiveness” of A�∼. For example, the analogous statement
for the natural numbers N is false (i.e. assuming it leads to a
contradiction).

In line with the strategy outlined above, we further consider
the following category D:

Definition 10 (category D). D is the category of pointed
families over A�∼. Explicitly, objects in |D| are pairs (L, p)
as in

L : A�∼→ U (32)
p : L([a0]), (33)

and morphisms in D((L, p), (L′, p′)) are pairs (g, ε) of types

g : Π(x : A�∼).L(x)→ L′(x) (34)
ε : g(p) = p′ (35)

Again, the remaining components of the category are defined
in the straightforward way.

The connection between C and D is as follows:

Lemma 11. The two categories are isomorphic, in the follow-
ing sense. There is a map

Φ0 : |D| → |C| (36)

which is an equivalence, and there is also a map

Φ1 : Π(X,Y : |D|).D(X,Y)→ C(Φ0(X),Φ0(Y)) (37)

such that each Φ1(X,Y) is an equivalence. Moreover, identi-
ties and compositions are preserved by the equivalence.

Proof. Let us unfold the type in (36); this is the type of the
equivalence Φ0 that we want to construct:

Σ(L : A�∼→ U).L([a0])

' Σ(K : A→ U).Σ(p : K(a0)).

e : Π{b, c : A}, (s : b ∼ c).K(b) ' K(c)

(38)

Lemma 8 gives us a tool to construct equivalences. Let us use
that lemma with the constant family P (x) :≡ U ; this makes
use of the fact that the lemma works on all universe levels.
The lemma then gives us, simply by replacing P (x) by U ,
renaming variables, and using that we are now in the non-
dependent special case, the following equivalence ϕ0:

(A�∼→ U)

' Σ(K : A→ U).

e : Π{b, c : A}, (s : b ∼ c).K(b) = K(c)

(39)

Moreover, we know how ϕ0 is defined, namely by

ϕ0(L) :≡ (L ◦ [−], λs.apL(glue(s))) (40)

(since we are in the non-dependent case, apd became ap).
We claim that the function Φ0 of type (38) can be con-

structed from the function ϕ0 of type (39) via two small
modifications:
• First, if we compare the domains of Φ0 with the domain

of ϕ0, and the codomain of Φ0 with the codomain of ϕ0,
we see that the “point-component” is missing from ϕ0,
i.e. the Σ-component L([a0]) is missing in its domain
and (p : K(a0)) is missing in its codomain. However,
we can just extend domain and codomain with this Σ-
component. The equation (40) tells us that this extension
is completely trivial, since K ≡ L ◦ [−], i.e. we extend
ϕ0 with the identity on one additional new component.

• The codomain of this extended ϕ0 only differs from
the codomain of Φ0 in that the component e in (39)
concludes with (K(b) = K(c)), while the component e
in (38) concludes with (K(b) ' K(c)). To close this gap,
we can use the canonical function idtoeqv which turns

an equality between types into an equivalence (cf. [3]),
and of which the univalence axiom ensures that it is an
equivalence itself.

This concludes the construction of the equivalence Φ0, and,
using (40), we can write down how the function part of it
computes when applied to a pair (L, p):

Φ0(L, p) ≡
(
L ◦ [−], p, λs.idtoeqv(apL(glue(s)))

)
(41)

The construction of Φ1 as in (37) is slightly more subtle
since it depends on Φ0, but works in essentially the same way.
Assume we are given (L, p) and (L′, p′) in |D|. We unfold the
type of Φ1((L, p), (L′, p′)) as in (37), making use of equation
(41). This gives us the type that we want to inhabit:

Σ (g : Π(x : A�∼).L(x)→ L′(x)) .

ε : g(p) = p′

' Σ (f : Π(b : A).L([b])→ L′([b])) .

Σ(δ : f(p) = p′).

γ : Π{b, c : A}, (s : b ∼ c).
idtoeqv(apL(glue(s))) ◦ f(b)

= f(c) ◦ idtoeqv(apL′(glue(s)))

(42)

Let us use Lemma 8 again, this time with the family P (x) :≡
(L(x)→ L′(x)). Simply by plugging this into Lemma 8 (and
renaming variables), we get the following equivalence ϕ1:

(Π(x : A�∼).L(x)→ L′(x))

' Σ(f : Π(b : A).L([b])→ L′([b])).

γ : Π{b, c : A}, (s : b ∼ c).f(b) =glue(s) f(c)

(43)

Similar to what we have done before, we have to use (43) to
derive (42); and as before, there are two steps. First, we need
to add the equation for the points (i.e. the components ε and
δ), but this is as simple and direct as before; we do not spell
out the details.

Second, and more interestingly, we have to show that the γ’s
of (42) and (43) coincide (i.e. that their types are equivalent).
As very often in HoTT when we want to prove something
for a specific equality (here glue(s)), the easiest way to do
this is to generalize the statement and formulate it in terms of
an arbitrary equality, which then allows path induction. The
only red herring here is that f is a family of functions; but,
since it is indexed over A and the equality in question lives
in A�∼, we cannot make use of this. The equivalence follows
from Lemma 12 below, by using f(b) for h, and f(c) for k,
and glue(s) for q.

It is easy to check that Φ1 preserves identities and compo-
sitions of morphisms.

Lemma 12. Let Z be a type, F,G : Z → U two type families,
x, y : Z and q : x = y elements and an equality. Assume we
have functions h : F (x)→ G(x) and k : F (y)→ G(y). Then,
the type (h =q k) is equivalent to the type

idtoeqv(apG(q)) ◦ h = k ◦ idtoeqv(apF (q)). (44)

Proof. By induction, we can assume q ≡ refl, in which case
both expressions evaluate to (h = k).

Having shown Lemma 11, which constitutes the main
technical difficulty of the proof of Theorem 7, we can work
with D instead of C. The benefit is that it is easy to find the
initial object of D:

Lemma 13. Let us consider the object (Li, pi) of D, given as
follows:

Li(x) :≡ ([a0] = x) (45)

pi :≡ refl[a0]. (46)

This object is initial in D.

Proof. Let (L, p) be any other object. After unfolding the
definition in (34,35), the type D((Li, pi), (L, p)) is given by

Σ
(
g : Π(x : A�∼).([a0] = x)→ L(x)

)
.

ε : g([a0], refl) = p
(47)

This type is contractible by applying “singleton contraction”
twice: first, we use that an element x together with an equality
[a0] = x form a contractible pair, simplifying the above type to
Σ(g : L([a0]).g = p; and this type is clearly contractible.

Having found the initial object in D, we transport it to C
in order to prove the categorical version of our main result,
namely Theorem 7:

Proof of Theorem 7. Since Φ1 as constructed in Lemma 11
preserves morphism spaces, Φ0 preserves the initial object.
Thus, all we need to do is to use the object found in
Lemma 13 and compute using (41). This gives us Ki

0 and ri0
immediately. The last component ei0 is correct by a standard
“path induction”-argument.

C. Derivation of the Induction Principle

The main part of the derivation of the based induction
principle (Theorem 3) from the non-dependent based for-
mulation (Theorem 7) is completely standard and follows
known principles, cf. the work by Awodey, Gambino, and
Sojakova [19]. We use the “total space” construction to turn
the dependent case into the non-dependent one. Afterwards,
we still need to derive the β-rules, and this is trickier; we use
a small trick to “strictify” equations. Let us restate the theorem
which we want to prove:

Theorem 3 (induction for coequalizer equality). Assume we
have A, ∼ as before and a point a0 : A, and are further given
a type family

P : Π{b : A}.([a0] = [b])→ U (13)

together with terms

r : P (refl[a0]) (14)
e : Π{b, c : A}, (q : [a0] = [b]), (s : b ∼ c).

P (q) ' P (q � glue(s)) (15)

Then, we can construct a term

indr,e : Π{b : A}, (q : [a0] = [b]).P (q) (16)

with the following β-rules:

indr,e(refl[a0]) = r (17)
indr,e(q � glue(s)) = e(q, s, indr,e(q)) (18)

Proof. Assume P , r and e are given. The “total space”
versions of these three components form an object (P , r, e)
of the category C, and they are defined as follows:

P : A→ U (48)

P (b) :≡ Σ(q : [a0] = [b]).P (q) (49)

r : P (a0) (50)
r :≡ (refl[a0], r) (51)

e : Π{b, c : A}.(b ∼ c)→ P (b) ' P (c) (52)
e(s) :≡ (� glue(s), e(, s,)) . (53)

Note that the last line (53) implicitly uses that an equiva-
lence between Σ-types can be constructed from a pair of
equivalences for the first and second component. Explicitly,
the function part of the equivalence e(s) maps a given pair
(q, x) with q : [a0] = [b] and x : P (q) to the pair
(q � glue(s), e(q, s, x)).

We have a morphism from the initial object of C to this
newly constructed object (let’s call it (f, δ, γ)), but we also
have the “first projection” into the other direction:

(f, δ, γ) : C
(
(Ki, pi, ei), (P , r, e)

)
(54)

(λb.proj1, reflri , λs.reflei(s)) : C
(
(P , r, e), (Ki, pi, ei)

)
(55)

It follows from initiality that the composition of these mor-
phisms is the identity on the object (Ki, pi, ei), i.e. we have
a ψ of the following type:

ψ : (λb.proj1, reflri , λs.reflei(s)) ◦ (f, δ, γ)

= (λb.id, reflri , λs.reflei(s))
(56)

In particular, given any q : [a0] = [b], we get an equality

ψ1
q : proj1(fb(q)) = q (57)

and we can define:

indr,e(q) : P (q) (58)

indr,e(q) :≡ transportP (ψ1
q , proj2(fb(q))). (59)

This defines the induction principle, but the two β-rules still
need to be justified. The equality ψ in (56) consists of three
parts, one for each component [3, Thm 2.7.2]; let us write
(ψ1, ψ2, ψ3) for them. The general idea is that, just as ψ1 has
allowed us to construct the induction principle (59), ψ2 allows
us to show the first β-equation and ψ3 gives us the second.
The main difficulty here are the many transports/pathovers
involved, since the types of ψ2 and ψ3 depend on ψ1. The
trick is to split f into (f1, f2) by setting f1b :≡ proj1 ◦ fb,
f2b :≡ proj2 ◦ fb, and similarly split δ and γ. Using this, and
calculating the left side of (56), we get

(ψ1, ψ2, ψ3) : (f1, δ1, γ1) = (λb.id, reflri , λs.reflei(s)) (60)

Now, we can generalize the situation: we claim that, for
all (ψ1, f1, . . .), we can derive the induction principle plus
two β-equalities. This formulation allows us to use based
path induction on (f1, ψ1) and assume that f1 ≡ λb.id,
ψ1 ≡ reflλb.id. This lets the mentioned dependencies disappear
and we get ψ2 : δ1 = reflri as well as ψ3 : γ1 = λs.reflei(s).
In addition, (59) simplifies to indr,e(q) :≡ proj2(fb(q)).

For the first β-equality, we unfold the type of δ:

δ : (refla0 , indr,e(refla0)) = (refla0 , r) (61)

We need to show that the second components are equal. From
δ, we get that the second components are equal when one is
transported along the δ1, and from ψ1, we get that this is a
transport along refl.

The procedure for the second β-equation is similar. The
details are best seen by considering the following diagram:

[a0] = [b] Σ(q : [a0] = [b]).P (q)

[a0] = [c] Σ(q : [a0] = [c]).P (q)

γ� glue(s)

fb

fb

� glue(s),e(,s,) (62)

γ says that this square commutes. Let us take some q : [a0] =
[b] and see how it is mapped (using f1 ≡ id and so on):

q (q, indr,e(q))

q � glue(s) (q � glue(s), ind(q � glue(s)))

(q � glue(s), e(q, s, indr,e(q))
(63)

Here, γ tells us that the two pairs at the bottom right are equal.
As before, we need that their second components are equal;
and analogously to what we did before, we use ψ3 to see that
this is the case.

III. EQUALITY IN PUSHOUTS

As discussed in the introduction, pushouts and coequalizers
can easily be defined in terms of each other. The standard
representation in the HoTT literature as a higher inductive
type, where we assume that types L,M,N and functions f :
L→M and g : L→ N are given, is as follows:

data MtLN : U
inl : M →MtLN
inr : N →MtLN
glue : Π(l : L).inl(f(l)) = inr(g(l))

L N

M MtLN
f

g

inl

inr

We write in : (M + N) → M tLN for the map given by
(inl, inr). To simplify notation, we keep the inclusions i1 :
M → (M +N) and i2 : N → (M +N) implicit.

Since pushouts are used a lot and play a vital role in the
Seifert-van Kampen theorem (cf. Section V), we want to state
our main result explicitly for pushouts instead of coequalizers.

The proofs can straightforwardly be obtained by expressing the
pushouts as coequalizers, as described in the introduction.1

Theorem 14 (induction for pushout equality). Assume
L,M,N, f, g are given as above, together with a point n0 : N .
Assume we are given families P,Q and terms r, e as follows:

P : Π{m : M}.(inr(n0) = inl(m))→ U (64)
Q : Π{n : N}.(inr(n0) = inr(n))→ U (65)
r : Q(reflinr(n0)) (66)
e : Π(l : L), (q : inr(n0) = inl(f(l))).

P (q) ' Q(q � glue(l)). (67)

Then, we can construct terms

indPr,e : Π{m : M}, (q : inr(n0) = inl(m)).P (q) (68)

indQr,e : Π{n : N}, (q : inr(n0) = inr(n)).Q(q) (69)

with the following β-rules:

indPr,e(reflinr(n0)) = r (70)

indQr,e(q � glue(l)) = e(l, q, indPr,e(q)) (71)

Remark 15. As before, the first β-rule (70) holds judgmen-
tally in our formalization.

Theorem 16 (initiality of pushout equality). Given the same
data as in the previous theorem, we can consider the category
P , whose definition mirrors that of C. Objects are quadruples
(J,K, r, e),

J : M → U (72)
K : N → U (73)

r : K(n0) (74)
e : Π(l : L).J(f(l)) ' K(g(l)) (75)

and a morphism between (J,K, r, e) and (J ′,K ′, r′, e′) con-
sists of fiberwise functions which preserve r and commute with
e.

Then, the object defined by

J i(m) :≡ (inr(n0) = inl(m)) (76)

Ki(n) :≡ (inr(n0) = inr(n)) (77)
r :≡ reflinr(n0) (78)
e(l) :≡ � glue(l) (79)

is initial in P .

IV. FIRST APPLICATIONS

We anticipate that our main result, especially in the formu-
lations of Theorem 3 and 16, will be a useful tool for a variety
of constructions in HoTT. Our own motivation for developing
these theorems is the concrete realization of the plans outlined
by the first-named author [24]. In this paper, we present two
shorter applications.

1In Lean, this is simply a specialization.

A. The Loop Space of the Circle
Recall that the loop space Ω(X) of a type X with an

(implicitly given) point x0 : X is defined to be x0 = x0. Thus,
the loop space of the circle S1 (4) is simply base = base. Let
us reprove the following known result:

Theorem 17 (Licata-Shulman [1]). Ω(S1) ' Z.

Proof. As discussed in the introduction, S1 is the coequalizer
of 1 and the relation which has 1 as its value. This allows
us to apply Theorem 7 and, since all quantifications are now
quantifications over the unit type, we can safely ignore them.
Thus,

(
Ω(S1), refl, � loop

)
is the initial object in the category

of pointed types with an automorphism. Due to the uniqueness
of initial objects, all we need is that (Z, 0, suc) is initial in
this category. This statement is completely removed from the
higher inductive type S1; it is a basic property of the integers,
analogous to the fact that (N, 0, suc) is initial in the category
of pointed types with an endofunction.

Of course, the difficulty of a concrete proof for the initiality
property depends on the concrete definition of Z that one uses.
With the definition used by Licata and Shulman (essentially
N+1+N), this is easy albeit some work. We will come back
to definitions of the integers in Remark 21.

B. Pushouts Preserve Embeddings
Recall that an embedding is a map h : X → Y whose

fibers are propositions, i.e. where, for each y : Y , the type
h−1(y) :≡ Σ(x : X).y = h(x) is a (“mere”) proposition.
Equivalently, h is an embedding if and only if

aph : Π{x, x′ : X}.(x = x′)→ (h(x) = h(x′)) (80)

is a family of equivalences between path spaces. As formalized
by Finster [18] via an encode-decode construction, embed-
dings are closed under pushout. As a further application of
our main result, we present an alternative (and significantly
shorter) argument.
Theorem 18 (Finster [18]). Embed-
dings are closed under pushout. Ex-
plicitly, if f in the diagram on the
right is an embedding, then so is inr.

L N

M MtLN
f

g

inl

inr

Proof. Using (80), we need to show that apinr : (n0 = n) →
(inr(n0) = inr(n)) is an equivalence for all points n0, n. Thus,
for any q : inr(n0) = inr(n), we want to find something in
the fiber over q. This tells us how we need to choose the type
family Q (65) of Theorem 14: we fix n0 and define

Q : Π(n : N).(inr(n0) = inr(n))→ U (81)

Q(n, q) :≡ ap−1inr (q). (82)

We also need to define the type family P (64). Given some-
thing in M , we “move” it back to N by going via the fiber,
which allows us to define P using Q:

P : Π(m : M).(inr(n0) = inl(m))→ U (83)

P (m, q) :≡ Σ((l0, q0) : f−1(m)).

Q
(
g(l0), q � apinl(q0) � glue(l0)

)
. (84)

The component r (66) is the obvious one, r :≡ (refl, refl). For
a given l : L we know that, since f is an embedding, the
type f−1(f(l)) is contractible and we can assume (l0, q0) ≡
(l, refl). This implies P (f(l), q) ' Q(g(l), q � glue(l)), which
is exactly what we need in order to define the component e
(67). Thus, we have

indQr,e : Π{n : N}, (q : inr(n0) = inr(n)).ap−1inr (q), (85)

i.e. a section s of apinr (a function such that apinr ◦ s = id).
To show that s ◦ apinr : (n0 = n)→ (n0 = n) is the identity,
we do path induction and use the first β-rule (70).

V. FREE GROUPOIDS AND A HIGHER SEIFERT-VAN
KAMPEN THEOREM

The traditional Seifert-van Kampen (SvK) theorem, a stan-
dard result in algebraic topology, makes it possible to calculate
the fundamental group of a topological space X when the
fundamental groups of two open and path-connected subspaces
covering X are already known. Favonia and Shulman [2] have
stated and shown this theorem in HoTT, where the union of
subspaces can be phrased as a (homotopy) pushout. Their
result is that fundamental groups of a pushout are equivalent
to a type code which they define as a set-quotient of a list.

Fundamental groups (in topology) are quotients of spaces
or (in HoTT) are 0-truncations of equality types. Thus, it is
natural to ask for a higher dimensional version of the theorem
which does not quotient or truncate. In homotopy theory,
different versions have been proved by Lurie [25] and Brown,
Higgins, and Sivera [26]. In HoTT, it is an open problem how
this could be done. Our results of the current paper suggest
one possible such higher SvK theorem, which (after recalling
the Favonia-Shulman result) we present in this section.

Note that the precise formulation of a theorem is part of the
open question how to generalize the SvK theorem in HoTT,
since the analogue of the code family by Favonia and Shulman
has to be defined (and a trivial solution exists: define this
analogue to be the equality). Our justification for why the
analogue we suggest is reasonable is that, by 0-truncating, the
Favonia-Shulman theorem can be recovered relatively easily.
As before in Section III, let us assume that
the types L,M,N and functions f, g in the
pushout on the right are given for the rest of
the section. As in [2], we write P :≡MtLN .

L N

M P

f

g

inl

inr

A caveat is in order. In this section, we make use of indexed
higher inductive types, and this is not part of our formalization.
Note that indexed inductive types can always be encoded via
inductive types [27], [28], and we expect that the same is true
for indexed higher inductive types.

A. The Favonia-Shulman SvK Theorem

Favonia and Shulman give two versions of the SvK theorem.
We concentrate on the first (“naive Seifert-van Kampen Theo-
rem”); we think the difference between the two versions is not
really relevant for what we present in the current paper. We
do not repeat their definition of code in full detail, since this
definition is of significant length (2 pages including careful

explanations and remarks). In a nutshell, code(u, v) is a set-
quotient of a type of lists which “link” u and v, where
u, v : P . For simplicity, we restrict ourselves to endpoints
in M + N (instead of P). Let us fix n0, n : N . Then, the
considered lists are points k1, l1, k2, l2, . . . : L together with
pi : ‖g(li) = g(ki+1)‖0 and qi : ‖f(ki) = f(li)‖0 such that
the pi and qi form a path from n0 to n as in the following
drawing, where the vertical arrows are glue’s:

n0 g(k1)

f(k1) f(l1)

g(l1) g(k2)

f(k2) f(l2)

g(l2) n
p0

q1

p1

q2

p2

(86)

Next, a set-quotient is taken which ensures that we can remove
“trivial” paths in the above picture. For example, if l1 ≡ k2
and p1 ≡ reflf(l1), then the set-quotient ensures that the above
list is identified with the following:

n0 g(k1)

f(k1) f(l2)

g(l2) n
p0

q1 � q2

p2

(87)

This set-quotient defines the type code(inr(n0), inr(n)), and
the definition where one or both endpoints are in M is
analogous. Restricted to the case where we consider endpoints
in M +N , the SvK theorem states:

Theorem 19 (Favonia and Shulman [2]). For x, y : M + N ,
there is an equivalence ‖in(x) =P in(y)‖0 ' code(x, y).

B. From Quotiented Lists to Free Higher Groupoids

The central difficulty of a higher version of the SvK theorem
is, of course, avoiding the set-truncation. Note that, in the
above description of the lists, the set-truncations in pi :
‖g(li) = g(ki+1)‖0 and qi : ‖f(ki) = f(li)‖0 can be removed
since we set-truncate later when taking the set-quotient. This
is essentially a repeated application of the equivalence

‖Σ(a : A).‖B(a)‖n‖n ' ‖Σ(a : A).B(a)‖n. (88)

This unnecessary set-truncation does make sense in the for-
mulation of the SvK theorem, where all equality types are
set-truncated, but removing it makes it easier to motivate our
higher SvK theorem.

Next, we suggest an alternative definition for the type of
lists (before quotienting/truncation). To simplify things further,
let us fix n0 : N and consider lists starting at this point.
Let us now look at the following indexed inductive type C0 :
(M+N)→ U with three constructors, where C0(x) should be
understood as a type of lists from n0 to x. Recall that we keep
the embeddings i1 : M → (M +N) and i2 : N → (M +N)
implicit.

data C0 : (M +N)→ U
nil : C0(n0)

gl : Π(l : L).C0(f(l))→ C0(g(l))

gl′ : Π(l : L).C0(g(l))→ C0(f(l))

(89)

Clearly, nil gives us the empty list. The other two constructors
allow us to switch between lists ending in a point in M to lists
ending in a point in N and vice versa. Intuitively, this is done
simply by adding a glue at the end of the list. This explains
how to add the vertical lines of a list as drawn in (86). It may
be surprising that we do not add the horizontal components
pi and qi explicitly. The reason is that they are automatically
and implicitly present in this encoding: the map transportC0

of type

Π{l, l′ : L}.(g(l) = g(l′))→
(
C0(g(l))→ C0(g(l′))

)
(90)

allows us to “insert” the upper horizontal components in (86)
and (exchanging g by f) also the lower horizontal components.

The type C0(x) encodes lists from n0 to x, but we have
not done the quotienting, i.e. the lists (86) and (87) are
still different. To remedy this, we can turn C0 into an in-
dexed higher inductive type and add constructors ensuring
that gl(l, gl′(l, x)) = x and gl′(l, gl(l, x)) = x. If we set-
truncate, this would give us the correct type, namely something
equivalent to the code(n0, x) by Favonia and Shulman. Since
we do not want to set-truncate, we have to be more careful.
gl(l) and gl′(l) together with the equality constructors will
form a pair of quasi-inverses (cf. [3]), and it is known that this
type is not well-behaved. Instead, we mirror the components
that form an actual equivalence. Although there are several
formulations that would work, we use those that turn gl into
a bi-invertible map [3], as follows:

data C : (M +N)→ U
nil : C(n0)

gl : Π(l : L).C(f(l))→ C(g(l))

linv : Π(l : L).C(g(l))→ C(f(l))

leq : Π(l : L), (x : C(f(l))).linv(l, gl(l, x)) = x

rinv : Π(l : L).C(g(l))→ C(f(l))

leq : Π(l : L), (y : C(g(l))).gl(l, rinv(l, y)) = y

(91)

This definition of C does certainly not look very appealing,
and we only give this presentation because it is the “standard”
way of presenting higher inductive types. If we allow ourselves
to fold the last five constructors into a single one, the type
looks as follows:

data C : (M +N)→ U
nil : C(n0)

gl : Π(l : L).C(f(l)) ' C(g(l))

(92)

It may also be interesting to do this in the formulation for a
coequalizer instead of a pushout. As explained in Section I-B,
this is a completely mechanical translation. Thus, assume A
with a0 : A and ∼. Then, the corresponding type G in the
“folded” form looks as follows:

data G : A→ U
nil : G(a0)

cons : Π{b, c : A}.(b ∼ c)→ G(b) ' G(c)

(93)

Let us write G(a0,) instead of G(), in order to explicitly
mention the point a0. We can call G the free higher groupoid

generated by ∼. This construction generalizes the explicit
construction of a free higher group (based on an idea by
Capriotti, cf. [29]). It also generalizes the “integer type as
a higher inductive type” (itself a special case of the free
higher group) which was independently suggested by Pinyo
and Altenkirch [30] (based on Capriotti’s idea), by van der
Weide et al. in unpublished work, and in a formalization by
Cavallo based on a remark by Mörtberg [31]. This example is
discussed further in Remark 21 below.

C. A Higher SvK Theorem

The type family C depends on the chosen point n0. To
remove this dependency, let us consider a version of C which
is indexed twice over (M +N): we write C(n0, y) for C(y).
This expression plays the role of code in our higher analogue
of the Favonia-Shulman result, Theorem 19. While it can be
extended to a family P → P → U in a straightforward way,
we choose the following formulation for simplicity (and to
match Theorem 19 more closely):

Theorem 20 (a higher Seifert-van Kampen theorem). For
x, y : M +N , we have an equivalence:

(in(x) =P in(y)) ' C(x, y). (94)

Proof. Like all (indexed/higher/ordinary) inductive types, (92)
is (homotopy-) initial in an appropriately formulated category
of algebras (see [19], [32], and others). Here is where we draw
the connection with the main result of the paper: The category
in which (92) is initial is the category P from Theorem 16.2

This is easy to see when we use the general specification and
definition of higher inductive-inductive types given by Kaposi
and Kovács [33], [34], but see Remark 21 below.

By the uniqueness of the initial object and by Theorem 16,
C(x) is equivalent to inr(n0) =P in(x). Letting n0 vary, we
get the statement of the theorem.

It is relatively straightforward to recover the set-truncated
SvK statement (Theorem 19) from the higher version (Theo-
rem 20). We can simply set-truncate both sides in (94) and
then prove that ‖C(x, y)‖0 is equivalent to code(x, y) by
constructing maps in both directions.

Remark 21. Theorem 20 and its proof deserve additional
comments. We think it is fair to say that the formal theory
of indexed higher inductive types is not yet well-established,
but it is under very active development. Kaposi and Kovács
([33], [34]) have suggested a definition for general higher
inductive-inductive types which captures the case we need.
Indexed higher inductive types are considered in some of the
cubical settings; cf. Cavallo and Harper [35], and there are
plans to extend cubical Agda [36], [37], [38] and redtt [39]
with the concept (at the time of writing, a possibly not final
version is available in cubical Agda). The syntax in (91) is
the obvious and non-controversial one for such indexed higher
inductive types. We think it would be desirable to also allow
the syntactical representation in (92), even if only as syntactic

2To be precise, the object (C ◦ i1, C ◦ i2, nil, gl) is initial in P .

sugar for (91). Note that Kaposi and Kovács allow equalities
between types, which is very similar to allowing this family
of equivalences.

The critical step in the above proof of Theorem 20 is to
establish (92) as the initial object of the category P . With
the specification suggested by Kaposi and Kovács allowing
(92), with equalities instead of equivalences, this part is easy.
However, we want to emphasize that the initiality of (91)
is not immediate at all if we use what we could call the
direct induction principle3. The direct induction principle is
the “standard” principle one derives by giving one case for
each constructor, as done in the book [3] and by current proof
assistants such as cubical Agda. Unfortunately, due to the type
dependency in the direct induction principle, it becomes very
hard to “fold” the components for the type (91) in order to
achieve the principle one would expect from (92). We expect
that implementing Theorem 20 in cubical Agda would be
extremely tedious for this reason.

The core of the problem with the direct induction principle
is that it does not allow us to “reason on the level of
constructors”. As an example, let us consider the interval
with two point constructors and one path constructor. If we
can reason on the level of constructors, it is by “singleton
contraction” clear that one point and the path constructor form
a contractible pair, and that the interval is therefore equivalent
to the type generated by a single point. With the direct
induction principle, this style of reasoning is not possible. It
turns out to be easy enough to prove the interval contractible,
but in other cases, the situation is less fortunate.

As an example, proposals by Pinyo and Altenkirch [30], un-
published work by van der Weide et al., and a formalization by
Cavallo based on a remark by Mörtberg [31] suggest to define
Z as a higher inductive type, and their very definition is chosen
such that Z should become the initial object of the category
of pointed types with automorphism (cf. Section IV-A). Their
definitions are versions of (93) with A and ∼ replaced by the
unit type and the relation constantly unit. Crucially, they have
to “unfold” the constructor cons, since this is what the current
cubical proof assistants require. It turns out that this makes
it extremely tedious to prove the resulting type equivalent to
other definitions of the integers.

VI. FINAL REMARKS

We have shown a theorem, reminiscent of an induction
principle, which allows to reason about path spaces of
pushouts/coequalizers. There are multiple reasonable formu-
lations of this result. We have then proceeded to use this
result for short proofs of two statements that had formerly
been proved with encode-decode constructions.

Kristina Sojakova has formulated an alternative version of
the proof of Theorem 3. This proof is presented in a more
direct fashion, without explicitly going through initiality in
wild categories, although all analogous steps are still taken.

3The terminology was suggested by Anders Mörtberg in a discussion with
the authors.

Such a presentation makes it easier to see that the first β-rule
in Theorem 3 and Theorem 14 holds judgmentally.

The core of the proof in Section II is the isomorphism
between C and D (Lemma 11). Strictly speaking, the full
isomorphism is not required since we are only interested
in the initial objects, but showing the isomorphism seems
conceptually cleaner and is not significantly harder that a more
minimalistic approach.

A question to consider in the future would be whether it is
possible to generalize the result from coequalizers to arbitrary
higher inductive types or at least to a larger fragment of higher
inductive types.

ACKNOWLEDGMENTS

We would like to thank Kristina Sojakova, Paolo Capriotti,
Anders Mörtberg, and Michael Shulman for their comments,
for valuable suggestions, and for inspiring discussions. We are
also grateful to the anonymous reviewers for their remarks,
which have helped us to improve this paper.

REFERENCES

[1] D. Licata and M. Shulman, “Calculating the fundamental group of the
circle in homotopy type theory,” in Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, 2013, pp. 223–
232.

[2] K.-B. Hou (Favonia) and M. Shulman, “The Seifert-van Kampen
theorem in homotopy type theory,” in 25th EACSL Annual Conference
on Computer Science Logic (CSL 2016), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 62. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 22:1–
22:16. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/
6562

[3] T. Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: http:
//homotopytypetheory.org/book/, 2013.

[4] F. van Doorn, “Constructing the propositional truncation using
non-recursive hits,” in Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, Saint Petersburg, FL,
USA, January 20-22, 2016, 2016, pp. 122–129. [Online]. Available:
http://doi.acm.org/10.1145/2854065.2854076

[5] N. Kraus, “Constructions with non-recursive higher inductive types,”
in Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science. New York, NY, USA: ACM, 2016, pp. 595–604.
[Online]. Available: http://doi.acm.org/10.1145/2933575.2933586

[6] E. Rijke, “The join construction,” 2017, arXiv:1701.07538.
[7] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer,

“The lean theorem prover,” in Automated Deduction - CADE-25, 25th
International Conference on Automated Deduction, 2015.

[8] F. van Doorn, J. von Raumer, and U. Buchholtz, “Homotopy type theory
in lean,” in Interactive Theorem Proving. Cham: Springer International
Publishing, 2017, pp. 479–495.

[9] S. Boulier, E. Rijke, and N. Tabareau, “A coinductive approach to type
valued equivalence relations,” 2017, abstract presented at the workshop
on HoTT/UF in Oxford.

[10] U. Buchholtz, F. van Doorn, and E. Rijke, “Higher groups in
homotopy type theory,” in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, ser. LICS ’18. New
York, NY, USA: ACM, 2018, pp. 205–214. [Online]. Available:
http://doi.acm.org/10.1145/3209108.3209150

[11] U. Buchholtz and K.-B. H. (Favonia), “Cellular cohomology in ho-
motopy type theory,” in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, 2018.

[12] U. Buchholtz and E. Rijke, “The Cayley-Dickson construction in homo-
topy type theory,” arXiv preprint arXiv:1610.01134, 2016.

[13] ——, “The real projective spaces in homotopy type theory,” in Proceed-
ings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, 06 2017, pp. 1–8.

[14] D. Licata and E. Finster, “Eilenberg-MacLane spaces in homotopy type
theory,” in Proceedings of the 29th Annual ACM/IEEE Symposium on
Logic in Computer Science. ACM, 2014, pp. 66–74.

[15] D. Licata and G. Brunerie, “πn(Sn) in homotopy type theory,” ser.
LNCS, vol. 8307. Springer, 2013, pp. 1–16.

[16] G. Brunerie, “The James construction and π4(s3) in homotopy type
theory,” CoRR, 2017. [Online]. Available: http://arxiv.org/abs/1710.
10307

[17] C. Paulin-Mohring, “Inductive definitions in the system Coq - rules and
properties,” in Typed Lambda Calculi and Applications (TLCA), ser.
Lecture Notes in Computer Science, M. Bezem and J. F. Groote, Eds.,
no. 664, 1993.

[18] E. Finster, “Agda library file pushoutmono,” 2017,
available on GitHub at https://github.com/HoTT/HoTT-
Agda/blob/master/theorems/stash/modalities/gbm/PushoutMono.agda.

[19] S. Awodey, N. Gambino, and K. Sojakova, “Homotopy-initial algebras
in type theory,” J. ACM, vol. 63, no. 6, pp. 51:1–51:45, Jan. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3006383

[20] K. Sojakova, “Higher inductive types as homotopy-initial algebras,”
in Principles of Programming Languages (POPL). New York,
NY, USA: ACM, 2015, pp. 31–42. [Online]. Available: http:
//doi.acm.org/10.1145/2676726.2676983

[21] P. Capriotti and N. Kraus, “Univalent higher categories via complete
semi-segal types,” Proc. ACM Program. Lang., vol. 2, no. POPL, pp.
44:1–44:29, Dec. 2017. [Online]. Available: http://doi.acm.org/10.1145/
3158132

[22] B. Ahrens, K. Kapulkin, and M. Shulman, “Univalent categories
and the Rezk completion,” Mathematical Structures in Computer
Science (MSCS), pp. 1–30, Jan 2015. [Online]. Available: http:
//journals.cambridge.org/article S0960129514000486

[23] F. van Doorn and U. Buchholtz, “The dependent universal
property,” 2017, lean library file, available on GitHub at
https://github.com/gebner/hott3/.

[24] N. Kraus, “Some connections between open problems,” 2018, Homotopy
Type Theory Electronic Seminar Talks, hosted by Dan Christensen and
Chris Kapulkin. Video and slides available on the website.

[25] J. Lurie, “Derived algebraic geometry vi: Ek algebras,” arXiv preprint
arXiv:0911.0018, 2009.

[26] R. Brown, P. J. Higgins, and R. Sivera, Nonabelian algebraic topology,
2011.

[27] T. Altenkirch, N. Ghani, P. Hancock, C. McBride, and P. Morris,
“Indexed containers,” J. Funct. Program., vol. 25, 2015. [Online].
Available: https://doi.org/10.1017/S095679681500009X

[28] C. Sattler, “On relating indexed w-types with ordinary ones,” 2015,
abstract, presented at TYPES’15.

[29] N. Kraus and T. Altenkirch, “Free higher groups in homotopy
type theory,” in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, ser. LICS ’18. New
York, NY, USA: ACM, 2018, pp. 599–608. [Online]. Available:
http://doi.acm.org/10.1145/3209108.3209183

[30] G. Pinyo and T. Altenkirch, “Integers as a higher inductive type,” 2018,
abstract, presented at TYPES’18.

[31] E. Cavallo and A. Mörtberg, “Successor on biinv-int which cancels pred
exactly,” Dec 2018, redtt implementation, available online at https://
github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red.

[32] T. Coquand, S. Huber, and A. Mörtberg, “On higher inductive types in
cubical type theory,” in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, ser. LICS ’18. New
York, NY, USA: ACM, 2018, pp. 255–264. [Online]. Available:
http://doi.acm.org/10.1145/3209108.3209197

[33] A. Kaposi and A. Kovács, “A syntax for higher inductive-inductive
types,” in 3rd International Conference on Formal Structures for
Computation and Deduction (FSCD 2018), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 108. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 20:1–
20:18. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2018/
9190

[34] ——, “Signatures and induction principles for higher inductive-inductive
types,” arXiv preprint arXiv:1902.00297, 2019.

[35] E. Cavallo and R. Harper, “Higher inductive types in cubical com-
putational type theory,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, p. 1, 2019.

[36] A. Vezzosi, “Cubical Agda,” 2018, extension to Agda, available in the
main Agda repository at https://github.com/agda/agda.

http://drops.dagstuhl.de/opus/volltexte/2016/6562
http://drops.dagstuhl.de/opus/volltexte/2016/6562
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
http://doi.acm.org/10.1145/2854065.2854076
http://doi.acm.org/10.1145/2933575.2933586
http://doi.acm.org/10.1145/3209108.3209150
http://arxiv.org/abs/1710.10307
http://arxiv.org/abs/1710.10307
https://github.com/HoTT/HoTT-Agda/blob/master/theorems/stash/modalities/gbm/PushoutMono.agda
https://github.com/HoTT/HoTT-Agda/blob/master/theorems/stash/modalities/gbm/PushoutMono.agda
http://doi.acm.org/10.1145/3006383
http://doi.acm.org/10.1145/2676726.2676983
http://doi.acm.org/10.1145/2676726.2676983
http://doi.acm.org/10.1145/3158132
http://doi.acm.org/10.1145/3158132
http://journals.cambridge.org/article_S0960129514000486
http://journals.cambridge.org/article_S0960129514000486
https://github.com/gebner/hott3/blob/64a297c4c1effa4886abcdc08dd88824a7b27455/src/hott/hit/quotient.lean#L96
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://doi.org/10.1017/S095679681500009X
http://doi.acm.org/10.1145/3209108.3209183
https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red
https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red
http://doi.acm.org/10.1145/3209108.3209197
http://drops.dagstuhl.de/opus/volltexte/2018/9190
http://drops.dagstuhl.de/opus/volltexte/2018/9190
https://arxiv.org/abs/1902.00297
https://github.com/agda/agda

[37] A. Mörtberg, “Cubical agda,” 2018, blog post at
https://homotopytypetheory.org/2018/12/06/cubical-agda/.

[38] A. Mörtberg and A. Vezzosi, “An experimental library for cubical agda,”
2018, online at https://github.com/agda/cubical.

[39] C. Angiuli, E. Cavallo, K.-B. H. (Favonia), R. Harper, A. Mörtberg,
and J. Sterling, “redtt – cartesian cubical proof assistant,” 2018, talk
available online at http://www.jonmsterling.com/pdfs/dagstuhl.pdf, im-
plementation at https://github.com/RedPRL/redtt.

https://homotopytypetheory.org/2018/12/06/cubical-agda
https://github.com/agda/cubical
http://www.jonmsterling.com/pdfs/dagstuhl.pdf
https://github.com/RedPRL/redtt

