
 
 

University of Birmingham

Shallow embedding of type theory is morally correct
Kaposi, Ambrus; Kovács, András; Kraus, Nicolai

DOI:
10.1007/978-3-030-33636-3_12

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kaposi, A, Kovács, A & Kraus, N 2019, Shallow embedding of type theory is morally correct. in G Hutton (ed.),
Mathematics of Program Construction: 13th International Conference, MPC 2019, Porto, Portugal, October 7–9,
2019, Proceedings., Chapter 12, Lecture Notes in Computer Science, vol. 11825, Springer, pp. 329-365, 13th
International Conference on Mathematics of Program Construction (MPC 2019), Porto, Portugal, 7/10/19.
https://doi.org/10.1007/978-3-030-33636-3_12

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 27. Apr. 2024

https://doi.org/10.1007/978-3-030-33636-3_12
https://doi.org/10.1007/978-3-030-33636-3_12
https://birmingham.elsevierpure.com/en/publications/ae16ea3d-8f86-4a2d-9f2e-e44bda90dd89


Shallow Embedding of Type Theory is Morally
Correct⋆

Ambrus Kaposi[0000−0001−9897−8936], András Kovács[0000−0002−6375−9781], and
Nicolai Kraus[0000−0002−8729−4077]

Eötvös Loránd University

Abstract. There are multiple ways to formalise the metatheory of type
theory. For some purposes, it is enough to consider specific models of
a type theory, but sometimes it is necessary to refer to the syntax, for
example in proofs of canonicity and normalisation. One option is to em-
bed the syntax deeply, by using inductive definitions in a proof assistant.
However, in this case the handling of definitional equalities becomes tech-
nically challenging. Alternatively, we can reuse conversion checking in the
metatheory by shallowly embedding the object theory. In this paper, we
consider the standard model of a type theoretic object theory in Agda.
This model has the property that all of its equalities hold definitionally,
and we can use it as a shallow embedding by building expressions from
the components of this model. However, if we are to reason soundly about
the syntax with this setup, we must ensure that distinguishable syntac-
tic constructs do not become provably equal when shallowly embedded.
First, we prove that shallow embedding is injective up to definitional
equality, by modelling the embedding as a syntactic translation target-
ing the metatheory. Second, we use an implementation hiding trick to
disallow illegal propositional equality proofs and constructions which do
not come from the syntax. We showcase our technique with very short
formalisations of canonicity and parametricity for Martin-Löf type the-
ory. Our technique only requires features which are available in all major
proof assistants based on dependent type theory.

Keywords: type theory, shallow embedding, set model, standard model,
canonicity, parametricity, Agda

1 Introduction

Martin-Löf type theory [32] (MLTT) is a formal system which can be used for
writing and verifying programs, and also for formalising mathematics. Proof
assistants and dependently typed programming languages such as Agda [43],
Coq [33], Idris [9], and Lean [36] are based on MLTT and its variations.
⋆ The research has been supported by the European Union, co-financed by the Eu-

ropean Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research
Collaborations Grounding Innovation in Informatics and Infocommunications and
FOP-3.6.3-VEKOP-16-2017-00002) and COST Action EUTypes CA15123.



2 A. Kaposi et al.

Specific versions of MLTT have many interesting properties, such as canon-
icity, normalisation or parametricity. Normalisation in particular is practically
significant, since it enables decidable conversion checking and thus decidable type
checking. These properties are of metatheoretic nature; in other words, they are
answers to questions about type theory, rather than questions inside type theory.
We wish to effectively study these questions in a formal and machine-checked
setting.

1.1 Technical Challenges of Deep Embeddings

We refer to the type theory that we wish to study as the object (type) theory.
If we want to use Agda (or another proof assistant) to study it, the most direct
way is to use native inductive definitions to represent the syntax. This is called
a deep embedding. Such an embedding could be an inductive type representing
syntactic expressions Expr, with a constructor for every kind of term former.
Examples for such constructors are the following:

Pi : Expr → Expr → Expr
lam : Expr → Expr
app : Expr → Expr → Expr

The idea is simple: Pi takes two expressions e1, e2 as arguments, and if these
represent a type A and a type family B over A, then Pi e1 e2 represents the cor-
responding Π-type. Similarly, lam represents λ-abstraction and app application.

Of course, this inductive definition of Expr does not ensure that every expres-
sion “makes sense”; e.g. Pi e1 e2 will not make sense unless e1 and e2 are of the
form described above. We need to additionally define inductive relations which
express well-formedness and typing for specific syntactic constructs. This way of
defining raw terms together with well-formedness relations is called an extrinsic
approach.

Depending on the available notion of inductive types in the metatheory,
we can use more abstract representations. For example, if inductive-inductive
types [37] are available, then we can define a syntax which contains only well-
formed terms [10]. In this case, we have an intrinsic definition for the syntax. We
have the following signature for the type constructors of the embedded syntax,
respectively for contexts, types, substitutions and terms:

Con : Set
Ty : Con → Set
Sub : Con → Con → Set
Tm : (Γ : Con) → TyΓ → Set

However, with the intrinsic inductive-inductive definitions we also need sep-
arate inductive relations expressing definitional equality. We can avoid these
relations by using a quotient inductive [29,2] syntax instead. This way, defini-
tional equality is given by equality constructors. For example, associativity of



Shallow Embedding of Type Theory is Morally Correct 3

type substitution would be given as the following [◦] equality, where we also
introduce substitution composition and type substitution first, and implicitly
quantify over variables:

· ◦ · : SubΘ∆ → SubΓΘ → SubΓ∆

· [ · ] : Ty∆ → SubΓ∆ → TyΓ
[◦] : (A [σ]) [δ] = A [σ ◦ δ]

The quotient inductive definition allows higher-level reasoning than the purely
inductive-inductive one. In the former case, every metatheoretic construction
automatically respects definitional equality in the syntax, since it is identified
with meta-level propositional equality. In the latter case, object-level definitional
equality is just a relation, and we need to explicitly prove preservation in many
cases.

However, even with quotient induction, there are major technical challenges
in formalising metatheory, and an especially painful issue is the obligation to ex-
plicitly refer to conversion rules even in very simple constructions. For example,
we might want to take the zeroth de Bruijn index with type Bool in some ex-
tended Γ� Bool typing context. For this, we first need a weakening substitution
declared in the syntax (or admissible from the syntax):

weaken : Sub (Γ � A) Γ

Now, we are able to give a general type for the zeroth de Bruijn index:

vzero : Tm (Γ � A) (A[weaken])

The weakening is necessary because A has type TyΓ, but we also want to mention
it in the Γ � A context.

Now, we might try to use vzero to get a term with type Tm (Γ � Bool)Bool.
However, we only get vzero : Tm (Γ � Bool) (Bool[weaken]). We also need to
refer to the computation rule for substituting Bool which just forgets about the
substitution:

Bool[] : Bool[σ] = Bool
Hence, the desired term needs to involve transporting over the Bool[] equa-

tion:

vzeroBool : Tm (Γ � Bool)Bool
vzeroBool :≡ transport(Tm Γ) Bool[] vzero

This phenomenon arises with extrinsic and purely inductive-inductive syn-
taxes as well; in those cases, instead of transporting along an equation, we need
to invoke a conversion rule for term typing. For extrinsic syntaxes, we addition-
ally have a choice between implicit and explicit substitution, but this choice does
not change the picture either.

Hence, all of the mentioned deeply embedded syntaxes require constructing
explicit derivations of definitional equalities. In more complex examples, this is



4 A. Kaposi et al.

a technical burden which is often humanly impossible to handle. Also, proof
assistants are often unable to check formalisations within sensible time because
of the huge size of the involved proof terms.

1.2 Reflecting Definitional Equality

To eliminate explicit derivations of conversion, the most promising approach is
to reflect object-level definitional equality as meta-level definitional equality. If
this is achieved, then all conversion derivations can be essentially replaced by
proofs of reflexivity, and the meta-level typechecker would implicitly construct
all derivations for us.

How can we achieve this? We might consider extensional type theory with
general equality reflection, or proof assistants with limited equality reflection.
In Agda there is support for the latter using rewrite rules [12], which we have
examined in detail for the previously described purposes. In Agda, we can just
postulate the syntax of the object theory, and try to reflect the equations. This
approach does work to some extent, but there are significant limitations:

– Type-directed equalities cannot be reflected, such as η-rules for empty sub-
stitutions and unit types, or definitional proof irrelevance for propositions.
Rewrite rules must be syntax-directed and have a fixed direction of rewriting.

– Rewrite rules yield poor evaluation performance and hence poor type check-
ing performance, because they are implemented using a general mechanism
which does not know anything about the domain, unlike the meta-level con-
version checker.

– In the current Agda implementation (version 2.6), rewrite rules are not flex-
ible enough to capture all desired computational behavior. For example, the
left hand side of a rewrite rule is treated as a rigid expression which is not
refined during the matching of the rule. Given an f : Bool → Bool → Bool
function, if we add the rewrite rule ∀x. f x (notx) = true, the expession
f true false will not be rewritten to true, since it does not rigidly match the
notx on the left hand side. In practice, this means that an unbounded num-
ber of special-cased rules are required to reflect equalities for a type theory.
Lifting all the restricting assumptions in the implementation of rewrite rules
would require non-trivial research effort.

It seems to be difficult to capture the equational theory of a dependent object
theory with general-purpose implementations of equality reflection. In the future,
robust equality reflection for conversion rules may become available, but until
then we have to devise workarounds. If the object theory is similar enough to
the metatheory, we can reuse meta-level conversion checking using a shallow
embedding.

In this paper we describe such a shallow embedding. The idea is that in the
standard model of the object theory equations already hold definitionally, and
so it would be convenient to reason about expressions built from the standard
model as if they came from arbitrary models, e.g. from the syntax.



Shallow Embedding of Type Theory is Morally Correct 5

However, we should only use shallow embeddings in morally correct ways:
only those equations should hold in the shallow embedding that also hold in
the deeply embedded syntax. In other words, we should be able in principle to
translate every formalisation which uses shallow embedding to a formalisation
which uses deeply embedded syntax.

To address this, first we prove that shallow embedding is injective up to
definitional equality: the metatheory can only believe two embedded terms def-
initionally equal if they are already equal in the object theory. This requires us
to look at both the object theory and the metatheory from an external point of
view and reason about embedded meta-level terms as pieces of syntax.

Second, we describe a method for hiding implementation details of the stan-
dard model, which prevents constructing terms which do not have syntactic
counterparts and which also disallows morally incorrect propositional equalities.
This hiding is realised with import mechanisms; we do not formally model it,
but it is reasonable to believe that it achieves the intended purposes.

1.3 Contributions

In order to reason about the metatheory of type theory in a proof assistant, we
present a version of shallow embedding which combines the advantage of shallow
embeddings (many definitional equalities) with the advantage of deep embeddings
(no unjustified equalities).
In detail:
1. We formalise in Agda the standard “Set” model (metacircular interpretation

[22]) of a variant of MLTT with a predicative universe hierarchy, Π-types,
Booleans, Σ-types and identity types (Section 3). All equalities hold defini-
tionally in this model. A variation of this (see below) is the model we propose
for metatheoretic reasoning.

2. For an arbitrary model of the object theory, we construct the termified model
(Section 4), where contexts, types, substitutions and terms are all modelled
by closed terms. We formalise the shallow embedding into Agda as the in-
terpretation of the object syntax into its termified model. We prove that this
translation is injective (Section 5), thereby showing that definitional equal-
ity of shallowly embedded terms coincides with object-theoretic definitional
equality. This result holds externally to Agda (like parametricity): we need
to step one level up and consider the syntax of Agda as well. Additionally,
we show that internally to Agda, injectivity of the standard interpretation
is not provable.

3. We describe a way of hiding the implementation of the standard model
(Section 6), in order to rule out constructions and equality proofs which are
not available in the object syntax.

4. Using shallowly embedded syntax, we provide a concise formalisation of
canonicity for MLTT (Section 7.2), using a proof-relevant logical predicate
model in a manner similar to [14] and [27]. We also provide a formalisation
of a syntactic parametricity translation [6] of MLTT in Section 7.1.



6 A. Kaposi et al.

The contents of Sections 3, 4, 6 and 7 were formalised [30] in Agda. Additional
documentation about technicalities is provided alongside the formalisation.

1.4 Related Work

Work on embedding the syntax of type theory in type theory spans a whole
spectrum from fully deep embeddings through partly deep embeddings to fully
shallow ones.

Deep embeddings give maximal flexibility but at the high price of explicit
handling of definitional equality derivations. Extrinsic deep embeddings of type
theory are given in Agda [18,1] and Coq [44]. Meta Coq provides an extrinsic deep
embedding of the syntax of almost all of Coq inside Coq [5]. An intrinsic deep
embedding with explicit conversion relations using inductive-inductive types is
given in [10] and another one using inductive-recursive types is described by [16].

Quotient inductive-inductive types are used in [3,4] to formalise type theory
in a bit more shallow way reusing propositional equality of the metatheory to
represent conversion of the object theory.

Higher-order abstract syntax (HOAS) [39,23] uses shallow embedding for the
substitution calculus part of the syntax while the rest (e.g. term formers such as
λ and application) are given deeply, using the function space of the metalanguage
to represent binders. It has been used to embed simpler languages in type theory
[17,40,11], however, to our knowledge, not type theory itself.

McBride [34] uses a mixture of deep and shallow embeddings to embed an
intrinsic syntax of type theory into Agda. In this work, inductively defined types
and terms are given mutually with their standard interpretation, and while there
are deep term and type codes, all indexing in the syntax is over the standard
model. In a sense, this is an extension of inductive-recursive type codes to codes
of terms as well. This gives a usability improvement compared to deep embedding
as equality of indices is decided by the metatheory. However, definitional equality
of terms still has to be represented deeply.

Shallow embedding has been used to formalise constructions on the syntax
of type theory. [26,8,42] formalise the correctness of syntactic translations using
shallow embeddings in Coq. [28,29] formalise syntactic translations and mod-
els of type theory depending on previous shallow models. Our work provides a
framework in which these previous formalisations could be rewritten in a more
principled way.

Reflection provides an interface between shallow and deep embeddings. Meta
Coq [5] provides a mechanism to reify shallow Coq terms as deeply embedded
syntax. The formalisation happens shallowly, making use of the typechecker of
Coq, and deeply embedded terms are obtained after reification. The motivation
is very similar to ours, but their syntax is extrinsic while we use an intrinsic
syntax.

More generally, using type theory as an internal language of a model can be
seen as working in a shallow embedding. Synthethic homotopy theory (e.g. [24])
can be seen as a shallow embedding in type theory, compared to a deep em-
bedding where homotopy theory is built up from the ground analytically. [38]



Shallow Embedding of Type Theory is Morally Correct 7

uses MLTT extended with some axioms to formalise arguments about a presheaf
model, [15] uses MLTT as the internal language of a cubical set model, [29] uses
MLTT as the internal language of a categories-with-families model.

Our wrapped shallow embedding (Section 6) resembles the method by Dan
Licata [31] to add higher inductive types to Agda with eliminators computing
definitionally on point constructors. He also uses an implementation hiding to
disallow pattern matching but retain definitional behaviour.

2 The Involved Theories

In this paper, we altogether need to involve three different theories. We give a
quick overview below, then describe them and the used notation in this section.

1. Agda, which we use in two ways: as a metatheory when using shallow em-
bedding, but also as an object theory, when we study embedding from an
external point of view. In the latter case, we only talk about a small subset
of Agda’s syntax which is relevant to the current paper.

2. The external metatheory. We assume that this is a conventional exten-
sional type theory with a universe hierarchy. However, we are largely agnostic
and set theory with a suitable notion of universe hierarchy would be ade-
quate as well. We primarily use the external metatheory to reason about
Agda’s syntax. However, since this metatheory is extensional, we can omit
all coercions and transports when working inside it informally, and thus we
also use it to obtain a readable notation.

3. The object theory, which we wish study by shallow embedding into Agda.
We single out a particular version of MLTT as object theory, and describe
it in detail. However, our shallow embedding should work for a wider range
of object theories; we expand on this in Section 8.1.

2.1 Agda

Agda is a proof assistant based on intensional type theory. When we present
definitions in Agda, we use a monospace font. We describe below the used features
and notation.

Universes are named Set i. Also, we use universe polymorphism which allows
us to quantify over (i : Level). We use zero and suc for the zero and successor
levels, and i ⊔ j for taking least upper bounds of levels.

Dependent functions are notated (x : A) → B. There is also an implicit func-
tion space {x : A} → B, such that any expression with this type is implicitly
applied to an inferred A argument. In this paper, we also use implicit quan-
tification over variables in type signatures. For example, instead of declaring a
type as f : {A : Set} → A → A, we may write f : A → A. This shorthand (al-
though supported in the latest 2.6 version of Agda) is not used in the actual
formalisations.



8 A. Kaposi et al.

We also use Σ types, unit types, Booleans and propositional equality. There
are some names which coincide in the object theory and in agda, and we dis-
ambiguate them with a m. prefix (which stands for “meta”). So, we use m.Σ A
B for dependent pairs with (t m., u) as constructor and m.fst and m.snd as
projections. We use m.Bool, m.true and m.false for Booleans. We use m.⊤ for the
unit type with constructor m.tt, and use t ≡ u for propositional equality with
m.refl and m.J.

2.2 The External Metatheory

This is an extensional type theory, with predicative universes Seti, dependent
functions (x : A) → B, and dependent pairs as (x : A)×B. Propositional equality
is denoted · = · , with constructor refl. We have equality reflection, which means
that if p : t = u is derivable, then t and u are definitionally equal. We also have
uniqueness of identity proofs, meaning that for any p, q : t = u we also have
p = q.

2.3 The Object Type Theory

We take an algebraic approach to the syntax and models of type theory. There
is an algebraic signature for the object type theory, which can be viewed as a
large record type, listing all syntactic constructions along with the equations
for definitional equality. Models of a type theory are particular inhabitants of
this large record type, and the syntax of a type theory is the initial model
in the category of models, where morphisms are given by structure-preserving
families of functions. The setup can be compared to groups, a more familiar
algebraic structure: there is a signature for groups, models are particular groups,
morphisms are group homomorphisms, and the initial group (“syntax”) is the
trivial group (free group over the empty set). A displayed model over a model
M is a way of encoding a model together with a morphism into M. Displayed
models can be viewed as containing induction motives and methods for a theory
(following the nomenclature of [35]), hence we need this notion to talk about
induction over the syntax. For instance, a displayed model for the theory of
natural numbers contains a family P : N → Set (the induction motive) together
with induction methods showing that P is inhabited at zero and taking successors
preserves P . A generic method for deriving the notions of model, morphism and
displayed model from a signature is given in [29].

More concretely, our object type theory is given in Figures 1a and 1b as a
category with families (CwF) [20] extended with additional type formers. We
present the signature of the object theory in an extensional notation, which
allows us to omit transports along equations. We also implicitly quantify over
variables occurring in types, and leave these parameters implicit when we apply
functions as well. Additionally, we extend the usual notion of CwF with indexing
by metatheoretic natural numbers, which stand for universe levels.

This notion of model yields a syntax with explicit substitutions. The core
structural rules and the theory of substitutions are described by the components



Shallow Embedding of Type Theory is Morally Correct 9

Con : N → Set
Ty : N → Con i → Set
Sub : Con i → Con j → Set
Tm : (Γ : Con i) → Ty j Γ → Set
id : SubΓΓ

· ◦ · : SubΘ∆ → SubΓΘ → SubΓ∆

ass : (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν)
idl : id ◦ σ = σ

idr : σ ◦ id = σ

· [ · ] : Ty i∆ → SubΓ∆ → Ty iΓ
· [ · ] : Tm∆A → (σ : SubΓ∆) → TmΓ (A[σ])

[id] : A[id] = A

[◦] : A[σ ◦ δ] = A[σ][δ]

[id] : t[id] = t

[◦] : t[σ ◦ δ] = t[σ][δ]

• : Con 0

ϵ : SubΓ •

•η : (σ : SubΓ •) = ϵ

· ▷ · : (Γ : Con i) → Ty j Γ → Con (i ⊔ j)

· , · : (σ : SubΓ∆) → TmΓ (A[σ]) → SubΓ (∆ ▷ A)

p : Sub (Γ ▷ A) Γ

q : Tm (Γ ▷ A) (A[p])
▷β1 : p ◦ (σ, t) = σ

▷β2 : q[σ, t] = t

▷η : (p, q) = id
, ◦ : (σ, t) ◦ ν = (σ ◦ ν, t[ν])
Π : (A : Ty iΓ) → Ty j (Γ ▷ A) → Ty (i ⊔ j) Γ

lam : Tm (Γ ▷ A)B → TmΓ (ΠAB)

app : TmΓ (ΠAB) → Tm (Γ ▷ A)B

Πβ : app (lam t) = t

Πη : lam (app t) = t

Π[] : (ΠAB)[σ] = Π (A[σ]) (B[σ↑])

lam[] : (lam t)[σ] = lam (t[σ↑])

Σ : (A : Ty iΓ) → Ty j (Γ ▷ A) → Ty (i ⊔ j) Γ

· , · : (u : TmΓA) → TmΓ (B[id, u]) → TmΓ (ΣAB)

fst : TmΓ (ΣAB) → TmΓA

snd : (t : TmΓ (ΣAB)) → TmΓ (B[id, fst t])

Fig. 1a. The object type theory as a generalised algebraic structure. σ↑ abbreviates
(σ ◦ p, q).



10 A. Kaposi et al.

Σβ1 : fst (u, v) = u

Σβ2 : snd (u, v) = v

Ση : (fst t, snd t) = t

Σ[] : (ΣAB)[σ] = Σ (A[σ]) (B[σ↑])

, [] : (u, v)[σ] = (u[σ], v[σ])

⊤ : Ty 0Γ
tt : TmΓ⊤
⊤η : (t : TmΓ⊤) = tt
⊤[] : ⊤[σ] = ⊤
tt[] : tt[σ] = tt
U : (i : N) → Ty (i+ 1)Γ

· : TmΓ (U i) → Ty iΓ
c : Ty iΓ → TmΓ (U i)

Uβ : cA = A

Uη : c a = a

U[] : (U i)[σ] = (U i)

[] : a[σ] = a[σ]

Bool : Ty 0Γ
true : TmΓBool
false : TmΓBool
if : (C : Ty i (Γ ▷ Bool)) → TmΓ (C[id, true]) → TmΓ (C[id, false]) →

(t : TmΓBool) → TmΓ (C[id, t])
Boolβ1 : ifC uv true = u

Boolβ2 : ifC uv false = v

Bool[] : Bool[σ] = Bool
true[] : true[σ] = true
false[] : false[σ] = false
if[] : (ifC uv t)[σ] = if (C[σ↑]) (u[σ]) (v[σ]) (t[σ])

Id : (A : Ty iΓ) → TmΓA → TmΓA → Ty iΓ
refl : (u : TmΓA) → TmΓ (IdAuu)

J :
(
C : Ty i (Γ ▷ A ▷ Id (A[p]) (u[p]) 0)

)
→ TmΓ (C[id, u, reflu]) →

(e : TmΓ (IdAuv)) → TmΓ (C[id, v, e[p]])
Idβ : JC w (reflu) = w

Id[] : (IdAuv)[σ] = Id (A[σ]) (u[σ]) (v[σ])

refl[] : (reflu)[σ] = refl (u[σ])

J[] : (JC w e)[σ] = J (C[σ↑↑]) (w[σ]) (e[σ])

Fig. 1b. The object type theory as a generalised algebraic structure. σ↑ abbreviates
(σ ◦ p, q).



Shallow Embedding of Type Theory is Morally Correct 11

from Con to , ◦. Contexts (Con) and substitutions (Sub) form a category (id to
idr). There is a contravariant, functorial action of substitutions on types and
terms ( · [ · ] to [◦]), thus types (of fixed level) form a presheaf on the category of
contexts and terms form a presheaf on the category of elements of this presheaf.
The empty context (•) is the terminal object.

Contexts can be extended by · ▷ · . Substitutions can be viewed as abstract
lists of terms, with · , · allowing us to extend a substitution with a term. We can
also take the “tail” and the “head” of an extended σ : SubΓ (∆▷A) substitution;
the tail is given by p ◦ σ : SubΓ∆, and the head is given by q[σ] : TmΓA[p].
p is usually called a weakening substitution, and q corresponds to the zeroth de
Bruijn index. We denote n-fold composition of the weakening substitution p by
pn (where p0 = id), and we denote De Bruijn indices the following way: v0 := q,
v1 := q[p], . . . , vn := q[pn]. We define lifting of a substitution σ : SubΓ∆ by
σ↑ : Sub (Γ ▷ A[σ]) (∆ ▷ A) := (σ ◦ p, q). We observe that it has the property
↑[] : (σ↑) ◦ (δ, t) = (σ ◦ δ, t).

Π-types are characterised by a natural isomorphism between TmΓ (ΠAB)
and Tm (Γ ▷ A)B, with lam and app being the morphism components. This
notion of application is different from the conventional one, but in our setting
with explicit substitutions, the two applications are inter-derivable, and our app
is simpler to interpret in models. We define conventional application as t $u :=
(app t)[id, u]. A ⇒ B abbreviates non-dependent functions, and is defined as
ΠA (B[p]).

Σ-types are given by the constructor · , · and projections fst and snd, and we
also support the η-law. There is a unit type ⊤ with one constructor tt and an
η-law. We have a hierarchy of universes, given by natural isomorphisms between
Ty iΓ and TmΓ (U i) for every i. The isomorphism consists of a coding morphism
(c) and a decoding morphism, denoted by underlining · . This presentation of
universes is due to Thierry Coquand, and has been used before in [25] for in-
stance. In the Agda formalisations, where we cannot underline, we write El for
the decoding morphism.

We also have a propositional identity type Id, with usual constructor refl and
elimination J with definitional β-rule.

Note that terms of Π-, Σ- and U-types are all characterized by natural isomor-
phisms, with substitution laws corresponding to naturality conditions. Hence, we
only need to state naturality in one direction, and the other direction can be
derived. For example, we only state the [] substitution rule, and the other law
for substituting c can be derived.

Remark. It is important that we present the notion of signature in extensional
type theory instead of in Agda. The reason is that many components in the
signature are well-typed only up to previous equations in the signature, and
hence would need to include transports in intensional settings. The simplest
example for this is the ▷β2 component with type q[σ, t] = t. The left side of the
equation has type TmΓ (A[p][σ, t]), while the right side has type TmΓ (A[σ]),
and the two types can be shown equal by [◦] and ▷β1, so in intensional type
theory we would need to transport one side.



12 A. Kaposi et al.

Writing out the whole signature with explicit transports is difficult. The
number of transports rapidly increases as later equations need to refer to trans-
ported previous types, and we may also need to introduce more transports just
to rearrange previous transports over different equations. In fact, the current
authors have not succeeded at writing out the type of the J[] substitution rule
in intensional style. This illustrates the issue of explicit conversion derivations,
which we previously explained in Section 1.1.

3 The Standard Model and Shallow Embedding

Previously, we described the notion of signature for the object theory, but as
we remarked, merely writing down the signature in Agda is already impractical.
Fortunately, we do not necessarily need the full intensional signature to be able
to work with models of the object theory. The reason is that some equations can
hold definitionally in specific models, thereby cutting down on the amount of
transporting required. For example, if [◦] and ▷β1 hold definitionally in a model,
then the type of ▷β2 need not include any transports.

The standard model of the object theory in Agda has the property that all of
its equations hold definitionally. It was described previously by Altenkirch and
Kaposi [3] similarly to the current presentation, although for a much smaller
object theory.

Before presenting the model, we explain a departure from the signature de-
scribed in Section 2.3. In the signature, we used natural numbers as universe
levels, but in Agda, it is more convenient to use universe polymorphism and
native universe levels instead. Hence, the types of the Con, Ty, Tm and Sub
components become as follows:

Con : (i : Level) → Set (suc i)
Ty : (j : Level) → Con i → Set (i ⊔ suc j)
Sub : Con i → Con j → Set (i ⊔ j)
Tm : (Γ : Con i) → Ty j Γ → Set (i ⊔ j)

Instead of using level polymorphism, we could have used the types given
in Figure 1a together with an N-indexed inductive-recursive universe hierarchy,
which can be implemented inside Set0 in Agda [19]. This choice would have added
some boilerplate to the model. We choose now the more convenient version, but
we note that the metatheory of universe polymorphism and universe polymorphic
algebraic signatures should be investigated in future work.

3.1 The Standard Model

We present excerpts from the Agda formalisation, making some quantification
implicit to improve readability. Let us first look at the interpretation of the type
constructors of the object theory:



Shallow Embedding of Type Theory is Morally Correct 13

Con : (i : Level) → Set (suc i)
Con i = Set i

Ty : (j : Level) → Con i → Set (i ⊔ suc j)
Ty j Γ = Γ → Set j

Sub : Con i → Con j → Set (i ⊔ j)
Sub Γ Δ = Γ → Δ

Tm : (Γ : Con i) → Ty j Γ → Set (i ⊔ j)
Tm Γ A = (γ : Γ) → A γ

Contexts are interpreted as types, dependent types as type families, substi-
tutions and terms as functions. Type and term substitution and substitution
composition can be all implemented as (dependent) function composition.

_∘_ : Sub Θ Δ → Sub Γ Θ → Sub Γ Δ
σ ∘ δ = λ γ → σ (δ γ)

_[_] : Ty j Δ → Sub Γ Δ → Ty j Γ
A [ σ ] = λ γ → A (σ γ)

_[_] : Tm Δ A → (σ : Sub Γ Δ) → Tm Γ (A [ σ ])
t [ σ ] = λ γ → t (σ γ)

The empty context becomes the unit type, context extension and substitution
extension are interpreted using the meta-level Σ-type.

∙ : Con zero
∙ = m.⊤

ε : Sub Γ ∙
ε = λ γ → m.tt

_▷_ : (Γ : Con i) → Ty j Γ → Con (i ⊔ j)
Γ ▷ A = m.Σ Γ A

_,_ : (σ : Sub Γ Δ) → Tm Γ (A [ σ ]) → Sub Γ (Δ ▷ A)
σ , t = λ γ → (σ γ m., t γ)

p : Sub (Γ ▷ A) Γ
p = m.fst

q : Tm (Γ ▷ A) (A [ p ])
q = m.snd

We interpret object-level universes with meta-level universes at the same
level. Since Agda implements Russell-style universes, coding and decoding are
trivial, and Tm Γ (U j) ≡ Ty j Γ holds definitionally in the model.



14 A. Kaposi et al.

U : (j : Level) → Ty (suc j) Γ
U j = λ γ → Set j

El : Tm Γ (U j) → Ty j Γ
El a = a

c : Ty j Γ → Tm Γ (U j)
c A = A

For Π, Σ, Bool and Id, the interpretation likewise maps object-level con-
structions directly to their meta-level counterparts; see the formalisation [30] for
details. We note here only the J[] component: its type and definition are trivial
here thanks to the lack of transports. Below, σ ↑ A refers to the lifting of σ :
Sub θ Γ to Sub (Θ ▷ A [ σ ]) (Γ ▷ A).

J[] : J C w t [ σ ]
≡ J (C [σ ↑ A ↑ Id (A [ p ]) (u [ p ]) q ]) (w [ σ ]) (t [ σ ])

J[] = m.refl

3.2 Shallow Embedding

Having access in Agda to the standard model of the object theory, we may now
form expressions built out of model components, for example, we may define a
polymorphic identity function as follows. Here, v⁰ and v¹ are shorthands for de
Bruijn indices.

idfun : Tm ∙ (Π (U zero) (Π (El v⁰) (El v¹)))
idfun = lam (lam v⁰)

The basic idea of shallow embedding is to view expressions such as idfun and
its type, which are built from components of the standard model, as standing
for expressions coming from an arbitrary model. This arbitrary model is often
meant to be the syntax, but it does not necessarily have to be.

With idfun, we can enjoy the benefits of reflected equalities: we can write
down Π (El v⁰) (El v¹) without transports, because the types of vⁿ de Bruijn
indices compute by definition to U zero from U zero [ pⁿ ].

A larger example for shallow embedding is presented in Section 7.2: there we
prove canonicity by induction on the syntax, but represent the syntax shallowly,
so we never have to prove anything about syntactic definitional equalities. Other
examples are syntactic models [8]: this means that we build a model of an object
theory from the syntax of another object theory. Every such model yields, by
initiality of the syntax, a syntactic translation. We also present in Section 7.1
a formalisation of a syntactic parametricity translation in this style, using the
same shallowly embedded theory for both the source and target syntaxes.

However, “pretending” that embedded expressions come from arbitrary mod-
els is only valid if we:



Shallow Embedding of Type Theory is Morally Correct 15

1. Do not construct more contexts, substitutions, terms or types than what are
constructible in the syntax.

2. Do not prove more equations than what are provable about the syntax.

We will expand on the first concern in Section 6. With regards to the second
concern, it would be addressed comprehensively with a proof that the standard
model is injective. We define its statement as follows. Assume that we have a
deeply embedded syntax for the object theory in Agda, with components named
as Con, Sub and so on. By initiality of the syntax, there is a model morphism from
the syntax to the standard model, which includes as components the following
interpretation functions:

⟦_⟧ : Con i → Set i
⟦_⟧ : Ty j Γ → ⟦ Γ ⟧ → Set j
⟦_⟧ : Sub Γ Δ → ⟦ Γ ⟧ → ⟦ Δ ⟧
⟦_⟧ : Tm Γ A → (γ : ⟦ Γ ⟧) → ⟦ A ⟧ γ

Injectivity may refer to these functions; for example, injectivity on terms is
stated as follows:

⟦⟧-injective : (t u : Tm Γ A) → ⟦ t ⟧ ≡ ⟦ u ⟧ → t ≡ u

However, we can show by reasoning external to Agda that injectivity of the
standard model is not provable.

Theorem 1. The injectivity of the standard model is not provable in Agda.

Proof. We note that the object syntax includes functions which are definitionally
inequal but equal extensionally, such as the following two functions:

f : Tm ∙ (Π Bool Bool)
f = lam (if Bool true false v⁰)

g : Tm ∙ (Π Bool Bool)
g = lam v⁰

If function extensionality is available in the metatheory, the ⟦ f ⟧ and ⟦ g ⟧
interpretations of these terms can be proven to be propositionally equal. There-
fore, injectivity of the standard model and function extensionality are incompat-
ible. But since we know that MLTT is consistent with function extensionality,
it follows that injectivity of the standard model is not provable. ⊓⊔

This shows that the internal statement of injectivity is too strong. We weaken
it by considering injectivity up to Agda’s definitional equality. This requires us
to step outside Agda and reason about its syntax.



16 A. Kaposi et al.

3.3 An External View of the Standard Model

Let us consider some computation rules for the interpretation function of the
standard model:

⟦ ∙ ⟧ = m.⊤
⟦ Γ ▷ A ⟧ = m.Σ ⟦ Γ ⟧ ⟦ A ⟧
⟦ id ⟧ = λ γ → γ
⟦ σ ∘ δ ⟧ = λ γ → ⟦ σ ⟧ (⟦ δ ⟧ γ)
⟦ ε ⟧ = λ γ → m.tt
⟦ σ , t ⟧ = λ γ → (⟦ σ ⟧ γ m., ⟦ t ⟧ γ)
⟦ A [ σ ] ⟧ = λ γ → ⟦ A ⟧ (⟦ σ ⟧ γ)
⟦ t [ σ ] ⟧ = λ γ → ⟦ t ⟧ (⟦ σ ⟧ γ)
⟦ U j ⟧ = λ γ → Set j
...

If we consider the results of the interpretation function from the “outside”,
we see that interpreted object-theoretic terms evaluate to closed Agda terms.
For example, if we have a context in the object theory:

Γ = ∙ ▷ Bool ▷ Bool

Its ⟦ Γ ⟧ interpretation evaluates to the following closed Agda term (a left-
nested Σ-type):

m.Σ (m.Σ m.⊤ (λ γ → m.Bool)) (λ γ → m.Bool)

Hence, externally, the interpretation function implements a syntactic trans-
lation which converts any object-theoretic construction to a closed Agda term.
We model shallow embedding as this syntactic translation: whenever we write
a shallowly embedded expression like lam (if Bool true false v⁰), there is a
corresponding expression in the object theory with the same shape, but in Agda
this expression can be evaluated further by unfolding the definitions of the stan-
dard model.

In the next section we formalise this syntactic translation, and in Section
5 we additionally prove that it is injective. From this it follows that shallow
embedding does not introduce new definitional equalities.

4 The Termification of a Model

For any given model M = (Con,Ty,Sub,Tm, . . .) of the object type theory, we
can construct a new model T M = (ConT ,TyT ,SubT ,TmT , . . .). We call T M the
termification of M. The idea is that every context, type, substitution, and term
can be regarded as a very specific term in the empty context; and all operations
can be seen as operations on these terms.

If we take M to be the syntax, by initiality we get a morphism to T M, which
we use to model shallow embedding as a syntactic translation. Note that this



Shallow Embedding of Type Theory is Morally Correct 17

ConT i := Tm • (U i)

TyT j Γ := Tm • (Γ ⇒ (U j))

SubT Γ∆ := Tm • (Γ ⇒ ∆)

TmT ΓA := Tm • (ΠΓ appA)

idT := lam v0

σ◦T δ := lam (σ[ϵ] $(δ[ϵ] $ v0))
A[σ]T := lam ((appA)[ϵ, app (σ[ϵ])])

t[σ]T := lam ((app t)[ϵ, app (σ[ϵ])])

•T := c⊤
ϵT := lam tt
Γ ▷T A := c (ΣΓ appA)

σ,T t := lam ((appσ), (app t))

pT := lam (fst v0)
qT := lam (snd v0)
ΠT AB := lam

(
c (Π appA appB[ϵ, (v1, v0)])

)
lamT t := lam (lam (t[ϵ] $(v1, v0)))
appT t := lam (t[ϵ] $ fst v0 $ snd v0)
ΣT AB := lam

(
c (Σ appA appB[ϵ, (v1, v0)])

)
u,T v := lam (appu, app v)

fstT t := lam (fst (app t))

sndT t := lam (snd (app t))

⊤T := lam (c⊤)

ttT := lam tt
UT := lam (c (U i))

aT := a

cT A := A

BoolT := lam (c Bool)
trueT := lam true
falseT := lam false
ifT C uv t := lam

(
ifC[ϵ] $(v1, v0) (appu) (app v) (app t)

)
IdT Auv := lam

(
c
(
Id appA (appu) (app v)

))
reflT u := lam (refl (appu))

JT C w e := lam
(
J C[ϵ] $(v2, v1, v0) (appw) (app e)

)

Fig. 2. The termification construction



18 A. Kaposi et al.

translation formally goes from the object theory to the object theory. This means
that we reuse the object theory to formalise the relevant syntactic fragment
of Agda. This is a fairly strong simplifying assumption, which relies on Agda
conforming to the CwF formulation of type theory. However, it is also necessary,
because formalising the actual implementation of Agda is not feasible.

Although our main interest is the termification of the syntax, the construction
works for arbitrary models, so we present it in this generality.

The four sorts of the new model T M are the following:

ConT i := Tm • (U i)

TyT j Γ := Tm • (Γ ⇒ (U j))

SubT Γ∆ := Tm • (Γ ⇒ ∆)

TmT ΓA := Tm • (ΠΓ appA)

All contexts, types, substitutions, and terms of the new model T M are M-
terms in the empty M-context. It is not hard to see that the definitions above
type-check: for example, if we have Γ : ConT i and A : TyT j Γ, then by definition
Γ : Ty i • and appA : Ty j (• ▷ Γ), which means we can build ΠΓ appA as in the
definition of TmT ΓA.

The object theory, as shown in Figures 1a and 1b, has 29 operators. In
Figure 2, we show how all 29 operators (together with the four sorts) of the
model T M are constructed from components of M. Finally, it is straightforward
albeit tedious to check the 37 equalities that are required to hold. We have
done the calculations both with pen and paper and in Agda. We do not give
explicit paper proofs, but we refer to our formalisation instead: there, we state
all equalities explicitly, and they are all proved using m.refl. This concludes the
construction of the model T M.

5 The Injectivity Result

In this section, we show that we can shallowly embed the syntax without creating
new definitional equalities.

If we apply the termification construction of Section 4 on the syntax Syn, we
get a model T Syn. Further, we have a morphism of models J ·K : Syn → T Syn by
the initiality of the syntax which maps • : Con 0 to J•K = •T , and which maps
Γ ▷ A : Con i to JΓ ▷ AK = JΓK▷T JAK, and so on.

An interesting property of the morphism J ·K is that it is injective. Before
stating precisely what this means, we need the following definition:

Definition 1. Given two contexts Γ : Con i, ∆ : Con j in the object theory [or
any model M], we write Γ ≃ ∆ for the type in the metatheory whose elements
are quadruples F = (F1, F2, F12, F21) as follows: F1 and F2 are substitutions in
the syntax [more generally, in M] and F12, F21 are equalities,

F1 : SubΓ∆



Shallow Embedding of Type Theory is Morally Correct 19

F2 : Sub∆Γ

F12 : F2 ◦ F1 = idΓ

F21 : F1 ◦ F2 = id∆.

We call such a quadruple an isomorphism.

Theorem 2. The morphism of models J ·K : Syn → T Syn is injective, in the
following sense:

(T1) If Γ : Con i, ∆ : Con j are contexts such that JΓK = J∆K, then we have Γ ≃ ∆.
(T2) If A,B : Ty iΓ are types such that JAK = JBK, then we have A = B.
(T3) If σ, τ : SubΓ∆ are substitutions such that JσK = JτK, then σ = τ .
(T4) If s, t : TmΓA are terms such that JsK = JtK, then we have s = t.

Proof. We show the following metatheoretic statements:

(P1) For a context Γ : Con i, we have an element (Γ1,Γ2,Γ12,Γ21) of

Γ ≃
(
• ▷ JΓK)

(P2) For a type A : Ty iΓ, we have an equation

A= : A = app JAK[Γ1]

(P3) For a substitution σ : SubΓ∆, we have an equation

σ= : σ = ∆2 ◦ (ϵ, app JσK) ◦ Γ1

(P4) For a term t : TmΓA, we have an equation

t= : t = (app JtK)[Γ1]

Of course, the statement of the theorem follows easily from (P1)–(P4); for ex-
ample, if we have JsK = JtK as in (T4), we get s = (app JsK)[Γ1] = (app JtK)[Γ1] = t
from the above.

Before verifying (P1)–(P4), we can first convince ourselves that these expres-
sions type-check in the extensional type theory which we use as metatheory. For
(P1), this is clear. In (P2), the types are as follows:

A : Ty iΓ
thus JAK : Tm • (JΓK ⇒ U i)

thus app JAK : Tm (• ▷ JΓK)U i

thus app JAK : Ty i (• ▷ JΓK)
thus app JAK[Γ1] : Ty iΓ

The case (P4) is almost identical to this, but needs to make use of (P2):

t : TmΓA



20 A. Kaposi et al.

thus JtK : Tm • (Π JΓK app JAK)
thus app JtK : Tm (• ▷ JΓK) app JAK
thus (app JtK)[Γ1] : TmΓ (app JAK[Γ1])

by A= (app JtK)[Γ1] : TmΓA

One checks similarly that (P3) type-checks.
We prove (P1)–(P4) by constructing a displayed model. As described in Sec-

tion 2.3, this corresponds to “induction over the syntax”.
To construct the displayed model, we need to cover the four sorts, 29 opera-

tors, and 37 equalities in Figures 1a and 1b. The components for the four sorts
are given by (P1)–(P4). Two of the 29 operators construct a context, namely
• and ▷; for these, we need to construct an isomorphism. For the remaining 27
operators, we need to prove an equality. The components for the 37 equalities
are automatic: Since (P2)–(P4) are equalities, all equality components of the
displayed model amount to equalities between equalities, which are trivial in our
extensional metatheory. Note that none of the equalities in Figures 1a and 1b
are between contexts.

We start with the two operators that construct contexts. The case for the
empty context is easy: we need to find (•1, •2, •12, •21) showing

• ≃
(
• ▷ J•K)

This is simple:

•1 : Sub • (• ▷ J•K)
•1 := (ϵ, tt)
•2 : Sub (• ▷ J•K) •
•2 := ϵ

The equality •12 follows from •η, and the equality •21 follows from ▷η and ⊤η.
Next, we have the case Γ▷A, where we can already assume the property (P1)

for Γ and (P2) for A. After unfolding the definition of JΓ ▷ AK = JΓK▷T JAK, we
see that we have to construct an isomorphism

(Γ ▷ A) ≃
(
• ▷ Σ JΓK app JAK)

The two substitutions are:

(Γ ▷ A)1 : Sub (Γ ▷ A)
(
• ▷ Σ JΓK app JAK)

(Γ ▷ A)1 :=
(
ϵ, (v0[Γ1 ◦ p], v0)

)
(Γ ▷ A)2 : Sub

(
• ▷ Σ JΓK app JAK) (Γ ▷ A)

(Γ ▷ A)2 :=
(
Γ2 ◦ (ϵ, fst v0), snd v0

)
Quick calculations give us

(Γ ▷ A)1 ◦ (Γ ▷ A)2



Shallow Embedding of Type Theory is Morally Correct 21

=
(
ϵ, (v0[Γ1 ◦ p], v0)

)
◦
(
Γ2 ◦ (ϵ, fst v0), snd v0

)
=

(
ϵ, (v0[Γ1 ◦ Γ2 ◦ (ϵ, fst v0)], snd v0)

)
=

(
ϵ, (fst v0, snd v0)

)
=

(
ϵ, v0

)
= (p, q)
= id

as well as

(Γ ▷ A)2 ◦ (Γ ▷ A)1

=
(
Γ2 ◦ (ϵ, fst v0), snd v0

)
◦
(
ϵ, (v0[Γ1 ◦ p], v0)

)
=

(
Γ2 ◦ (ϵ, v0[Γ1 ◦ p]), v0

)
=

(
Γ2 ◦ ((p, q) ◦ (Γ1 ◦ p)), v0

)
=

(
Γ2 ◦ Γ1 ◦ p, v0

)
= (p, q)
= id

The first of the remaining 27 operations is the identity substitution id :
SubΓΓ, where we can already assume property (P1) for Γ. We need to show

id= : id = Γ2 ◦ (ϵ, app JidK) ◦ Γ1

We unfold JidK = idT = lam v0 and use Πη to simplify the right-hand side of the
equation to

Γ2 ◦ (ϵ, v0) ◦ Γ1,

which by •η, ▷η and Γ12 is equal to id as required.
The calculations for the remaining 26 operations are similar, Appendix A

contains all of them in full detail. For completeness, the components discussed
above are included in the figure as well. This completes the proof of the injectivity
result. ⊓⊔

6 Wrapped Standard Model

In the previous section, we have shown that our specific version of shallow em-
bedding does not introduce new definitional equalities. However, in practice we
can only apply Theorem 2 if there actually exists an object-theoretic expression
which is embedded, but there are many inhabitants in the standard model which
do not arise as interpretations of object-theoretic expressions.

For example, contexts are interpreted as left-nested Σ-types, but since Con
i is defined as Set i in the standard model, we can just inhabit Con zero with
m.Bool or any small Agda type. This would be morally incorrect in a shallow
embedding situation, since we might rely on properties that are not provable
about the object syntax.



22 A. Kaposi et al.

Additionally, even if we avoid extraneous inhabitants, some propositional
equalities may be provable in the standard model, which are provable false in
the syntax. In Proof 1 we gave such an example, where function extensionality
yields additional equality proofs. In general, we want the freedom to assume
function extensionality and other extensionality principles (e.g. for propositions
or coinductive types) in the metatheory, so outlawing these principles in the
metatheory is not acceptable as an enforcer of moral conduct.

Our proposed enforcement method is the following: wrap the interpretations
of contexts, terms, substitutions and types in the standard model in unary record
types, whose constructors are private and thus invisible to external modules. For
contexts and types, the wrappers are as follows:

record Con' i : Set (suc i) where
constructor mkC
field

∣_∣C : Set i

record Ty' (j : Level)(Γ : Con' i) : Set (i ⊔ suc j) where
constructor mkT
field

∣_∣T : ∣ Γ ∣C → Set j

We define Sub' and Tm' likewise, with mks, |_|s, mkt and |_|t, and put these
four types in a module. In a different module, we define the “wrapped” standard
model. The sorts in the model are defined using the wrapper types:

Con : (i : Level) → Set (suc i)
Con = Con'

Ty : (j : Level)(Γ : Con i) → Set (i ⊔ suc j)
Ty = Ty'

Sub : Con i → Con j → Set (i ⊔ j)
Sub = Sub'

Tm : (Γ : Con i) → Ty j Γ → Set (i ⊔ j)
Tm = Tm'

The rest of the model needs to be annotated with wrapping and unwrapping.
Some examples for definitions, omitting type declarations for brevity:

id = mks λ γ → γ
σ ∘ δ = mks λ γ → ∣ σ ∣s (∣ δ ∣s γ)
A [ σ ] = mkT λ γ → ∣ A ∣T (∣ σ ∣s γ)
t [ σ ] = mkt λ γ → ∣ t ∣t (∣ σ ∣s γ)
∙ = mkC m.⊤
ε = mks λ γ → m.tt



Shallow Embedding of Type Theory is Morally Correct 23

Γ ▷ A = mkC (m.Σ ∣ Γ ∣C ∣ A ∣)
σ , t = mks λ γ → (∣ σ ∣s γ m.,Σ ∣ t ∣t γ)
p = mks m.fst
q = mkt m.snd
U j = mkT λ γ → Set j
El a = mkT ∣ a ∣t
c A = mkt ∣ A ∣T

Importantly, the wrapped model still supports all equations definitionally.
This is possible because the wrapper record types support η-equality, which
expresses that mkC | Γ |C is definitionally equal to Γ, and likewise for the other
wrappers. In short, unary records in Agda yield isomorphisms of types up to
definitional equality.

The usage of the wrapped standard model for shallow embedding is simply as
follows: we import the wrapped standard model, but do not import the module
containing the wrapper types.

This way, there is no way to refer to the internals of the model. In fact, the
only way to construct any inhabitants of the embedded syntax in this setup is
to explicitly refer to the components of the wrapped model. For instance, Con
zero cannot be anymore inhabited with m.Bool, since m.Bool has type Set₀, but
we need a Con' zero, which we can only inhabit now using the empty context
and context extension.

7 Case Studies

As a demonstration of using the shallowly embedded syntax, in this section
we describe our formalisation of a syntactic parametricity translation and a
canonicity proof for MLTT. These are formalised as displayed models over the
syntax (that is, over the wrapped standard model described in Section 6).

7.1 Parametricity

Parametricity was introduced by Reynolds [41] in order to formalise the notion
of representation independence. The unary version of his parametricity theorem
states that terms preserve logical predicates: if a predicate holds for a semantic
context, then it holds for the interpretation of the term at that context. Reynolds
formulated parametricity as a model construction of System F. Bernardy et al.
[6] noticed that type theory is powerful enough to express statements about
its own parametricity and defined parametricity as a syntactic operation. This
operation turns a context into a lifted context which has a witness of the logical
predicate for each type in the original context. There is a projection from this
lifted context back to the original context. A type A is turned into a predicate
over A in the lifted context and a term is turned into a witness of the predicate
for its type in the lifted context. We note that a more indexed version of this
translation can be defined: This turns a context is into a type in the original



24 A. Kaposi et al.

context (that is, a predicate over the original context), a type into a predicate
over the original context, a witness of the predicate for the original context and
an element of the type. Substitutions and terms are turned into terms expressing
preservation of the predicates. We define this indexed version of the translation
in Agda.

The sorts are given as follows in our displayed model. We use S. prefixes to
refer to the syntax, and use -ˢ superscripts on variables coming from the syntax.

Con : ∀ i → S.Con i → Set (suc i)
Con i Γˢ = S.Ty i Γˢ

Ty : ∀ i (Γ : Con j Γˢ) (Aˢ : S.Ty i Γˢ) → Set (suc i ⊔ j)
Ty i Γ Aˢ = S.Ty i (Γˢ S.▷ Γ S.▷ Aˢ S.[ S.p ])

Sub : ∀ (Γ : Con i Γˢ)(Δ : Con j Δˢ) → S.Sub Γˢ Δˢ → Set (i ⊔ j)
Sub Γ Δ σˢ = S.Tm (Γˢ S.▷ Γ) (Δ S.[ σˢ S.∘ S.p ])

Tm : ∀ (Γ : Con i Γˢ)(A : Ty j Γ Aˢ) → S.Tm Γˢ Aˢ → Set (i ⊔ j)
Tm Γ A tˢ = S.Tm (Γˢ S.▷ Γ) (A S.[ S.id S., tˢ S.[ S.p ] ])

A context over a syntactic context Γˢ is a syntactic type in Γˢ. A type over a
syntactic type Aˢ is a syntactic type in the context Γˢ extended with two more
components: Γ, that is the logical predicate for Γˢ and Aˢ itself (which has to
be weakened using S.p). A substitution over σˢ is a term in context Γˢ S.▷ Γ
which has a type saying that the predicate Δ holds for σˢ. We have the analogous
statement for terms. We refer to the formalisation [30] for the rest of the displayed
model, it follows the original parametricity translation.

All equalities of the displayed model hold definitionally. Compared to a pre-
vious formalisation using a deep embedding [3], it is significantly shorter (322
vs. 1682 lines of code – we only counted the lines of code for the substitution
calculus, Π and the universe because only these were treated in the previous
formalisation). Note that although we implemented the displayed model, we did
not implement the corresponding eliminator function which translates an S-term
into its interpretation; we discuss such eliminators in Section 8.2.

7.2 Canonicity

Canoncity for type theory states that a term of type Bool in the empty context
is equal to either true or false. Following [14,27] this can be proven by another
logical predicate argument. We formalise this logical predicate as the following
displayed model. We list the definitions for sorts and Bool for illustration.

Con : ∀ i → S.Con i → Set (suc i)
Con i Γˢ = S.Sub S.∙ Γˢ → Set i

Ty : ∀ i (Γ : Con j Γˢ) (Aˢ : S.Ty i Γˢ) → Set (suc i ⊔ j)
Ty i Γ Aˢ = ∀ {ρˢ} → Γ ρˢ → S.Tm S.∙ (Aˢ S.[ ρˢ ]) → Set i



Shallow Embedding of Type Theory is Morally Correct 25

Sub : ∀ (Γ : Con i Γˢ)(Δ : Con j Δˢ) → S.Sub Γˢ Δˢ → Set (i ⊔ j)
Sub Γ Δ σˢ = ∀ {ρˢ} → Γ ρˢ → Δ (σˢ S.∘ ρˢ)

Tm : ∀ (Γ : Con i Γˢ)(A : Ty j Γ Aˢ) → S.Tm Γˢ Aˢ → Set (i ⊔ j)
Tm Γ A tˢ = ∀ {ρˢ}(ρ' : Γ ρˢ) → A ρ' (tˢ S.[ ρˢ ])

Bool : Ty zero Γ S.Bool
Bool ρ' tˢ = m.Σ m.Bool λ β → m.if _ S.true S.false β ≡ tˢ

A context over Γˢ is a proof-relevant predicate over closed substitutions into Γˢ.
A type over Aˢ is a proof-relevant predicate over closed terms of type A where
the type is substituted by a closed substitution for which the predicate holds.
A substitution over σˢ is a function which says that if the predicate Γ holds for
a closed substitution ρˢ then Δ holds for σˢ composed with ρˢ. A term over tˢ
similarly states that if Γ holds for a ρˢ, then A holds for tˢ S.[ ρˢ ].

The predicate Bool holds for a closed term tˢ of type S.Bool if there is a
metatheoretic boolean (β : m.Bool) which when converted to a syntactic boolean
is equal to tˢ: in short, it holds if tˢ is either S.true or S.false. The equality is
expressed as a metatheoretic equality ≡, which we generally use for representing
conversion for the object syntax.

The formalisation of canonicity consists of roughly 1000 lines of Agda code.
However, out of this, 400 lines are automatically generated type signatures,
which are of no mathematical interest, and are necessary only because of tech-
nical problems in Agda’s inference of implicit parameters. These problems also
prevented us from formalising the J[] component in the displayed model, but
otherwise the formalisation is complete.

7.3 Termification and Injectivity

We also implemented termification (Section 4) in Agda as a model and it is
also possible to implement the injectivity proof (Section 5) using the shallow
embedding, without postulating an elimination principle of the shallow syntax
(the Agda proof of injectivity is not yet completed). Injectivity is given by a
displayed model over the syntax which contains both the termification model of
the syntax and the (P1)–(P4) components of the injectivity proof as follows. We
use TS. prefix to refer to components of the termified model for the syntax.

record Con i (Γˢ : S.Con i) : Set (suc i) where
field

⟦_⟧ : TS.Con i
_₁ : S.Sub Γˢ (S.∙ S.▷ S.El ⟦_⟧)
_₂ : S.Sub (S.∙ S.▷ S.El ⟦_⟧) Γˢ
_₁₂ : _₁ S.∘ _₂ ≡ S.id
_₂₁ : _₂ S.∘ _₁ ≡ S.id



26 A. Kaposi et al.

record Ty j (Γ : Con i Γˢ) (Aˢ : S.Ty j Γˢ) : Set (i ⊔ suc j) where
field

⟦_⟧ : TS.Ty j ⟦ Γ ⟧
_⁼ : Aˢ ≡ S.El (S.app ⟦_⟧ S.[ Γ ₁ ])

record Sub (Γ : Con i Γˢ)(Δ : Con j Δˢ)(σˢ : S.Sub Γˢ Δˢ) :
Set (i ⊔ j) where
field

⟦_⟧ : TS.Sub ⟦ Γ ⟧ ⟦ Δ ⟧
_⁼ : σˢ ≡ (Δ ₂ S.∘ (S.p S., S.app ⟦_⟧)) S.∘ Γ ₁

record Tm (Γ : Con i Γˢ)(A : Ty j Γ Aˢ)(tˢ : S.Tm Γˢ Aˢ) :
Set (i ⊔ j) where
field

⟦_⟧ : TS.Tm ⟦ Γ ⟧ ⟦ A ⟧
_⁼ : tˢ ≡ m.tr (S.Tm Γˢ) (A ⁼ m.⁻¹) (S.app ⟦_⟧ S.[ Γ ₁ ])

The ⟦_⟧ components are just the termification model while the rest of the record
types implement (P1)–(P4). Compared to the proof presented in this paper
using the extensional metatheory, in Agda the last equation contains an explicit
transport m.tr over the equality proof A ⁼.

8 Discussion

8.1 Range of Embeddable Object Theories

So far, we focused on a particular object theory, which was described in Sec-
tion 2.3 in detail. However, there is a rather wide range of object theories suit-
able for shallow embedding. There are some features which the object theory
must possess. We discuss these in the following in an informal way.

First, object theories must support a “standard model” in the metatheory,
which is injective in the external sense described in our paper. External injec-
tivity is important: for example, for a large class of algebraic theories, terminal
models exist (see e.g. [29]), where every type is interpreted as the unit type. The
motivation of shallow embedding is to get more definitional equalities, but in
terminal models we get too much of it, because all inhabitants are definitionally
equal. Injectivity filters out dubious embeddings like terminal models.

The notion of standard model is itself informal. We may say that a standard
model should interpret object-level constructions with essentially the same meta-
level constructions. This is clearly the case when we model type theories in Agda
which are essentially syntactic fragments of Agda. However, this should not be
taken rigidly, as there might be externally injective shallow embeddings which
do not fall into the standard case of embedding syntactic fragments. Thus far
we have not investigated such theories; this could be a potential line of future
work.

Some language-like theories, although widely studied, do not seem to sup-
port shallow embedding. For example, partial programming languages do not



Shallow Embedding of Type Theory is Morally Correct 27

admit a standard Set-interpretation; they may have other models, but those are
unlikely to support useful definitional equalities, when implemented in MLTT.
However, a potential future proof assistant for synthetic domain theory [7] could
support useful shallow embedding for partial languages. Likewise, variants of
type theories such as cubical [13] or modal type theories could present further
opportunities for shallow embeddings which are not available in MLTT.

On the other hand, undecidable definitional equality in the object theory
does not necessarily preclude shallow embedding. For example, we could add
equality reflection to the object theory considered in this paper, thereby making
its definitional equality undecidable. Assuming funext : (∀ x → f x ≡ g x) →
f ≡ g, we can interpret equality reflection as follows in the standard model:

reflect : (t u : Tm Γ A) → Tm Γ (Id A t u) → t ≡ u
reflect t u p = funext p

So, the standard model of an extensional object theory has one equation
which is not definitional anymore: the interpretation of equality reflection. But
we still get all the previous benefits from the other definitional equalities in the
model.

Generally, if the equational theories on the object-level and the meta-level
do not match exactly, shallow embedding is still usable.

If the metatheory has too many definitional equalities, then we can just
modify the standard model in order to eliminate the extra equalities. For ex-
ample, if the object theory does not have η for functions, we can introduce a
wrapper type for functions, with η-equality turned off1:

record Π' {i}{j}(A : Set i)(B : A → Set j) : Set (i ⊔ j) where
no-eta-equality
constructor lam'
field
app' : ∀ x → B x

η can be still proven for Π' propositionally, however using the wrapping trick
(Section 6) this equality won’t be exported when using the syntax.

If the metatheory has too few definitional equalities, then shallow embedding
might still be possible with some equations holding only propositionally. We saw
such an example with the shallow embedding of equality reflection. However,
if we can reflect some but not all equalities, that can be still very helpful in
practical formalisations.

8.2 Recursors and Eliminators for the Embedded Syntax

Shallow embedding gave us a particular model with strict equalities. The ques-
tion is: assuming that we only did morally correct constructions, is it consistent
to assume that the embedded syntax is really the syntax, i.e. it supports recur-
sion and induction principles? For example, for our object theory, initiality (i.e.
1 Or use an inductive type definition instead of a record.



28 A. Kaposi et al.

unique recursion) for the embedded syntax means that for any other model M
containing Conᴹ, Tyᴹ, Subᴹ etc. components, there is a model morphism from the
embedded syntax to M which includes the following functions:

⟦_⟧ : Con i → Conᴹ i
⟦_⟧ : Ty j Γ → Tyᴹ j ⟦ Γ ⟧
...

If “morally correct” means that all of our constructions can be in principle
translated to constructions on deeply embedded syntax, then it is clearly con-
sistent to rely on postulated initiality. We note here that the translation from
shallow to deeply embedded syntax is an instance of translating from extensional
type theory to intensional type theory [21,45], which introduces transports and
invocations of function extensionality in order to make up for missing defini-
tional equalities. However, in this paper we do not investigate moral correctness
more formally.

If we do postulate initiality for the embedded syntax, we should be prepared
that recursors and eliminators are unlikely to compute in any current proof
assistant. In Agda, we attempted to use rewrite rules to make a postulated
recursor compute on shallow syntax; this could be in principle possible, but the
β-rules for the recursor seem to be illegal in Agda as rewrite rules. How great
limitation the lack of computing recursion is? We argue that it is not as bad as
it seems.

First, in the literature for semantics of type theory, it is rare that models of
type theory make essential use of recursors of other models. The only example
we know is in a previous work by two of the current authors and Altenkirch [29].

Second, many apparent uses of recursors in models are not essential, and can
be avoided by reformulating models. We used such a technique in Section 7.3.
Here we give a much simpler analogous example: writing a sorting function for
lists of numbers, in two ways:

1. First, we write a sorting function, given by the recursor for a model of the
theory of lists. Then, we prove by induction on lists that the function’s
output is really sorted. The latter step is given by a displayed model over
the syntax of lists, which displayed model refers to the previous recursor.

2. We write a function which returns a Σ-type containing a list together with
a proof that it is sorted.

In the latter case, we only use a single non-displayed model, and there is no
need to refer to any recursor in the model.

8.3 Ergonomics

We consider here the experience of using shallowing embedding in proof assis-
tants, in particular in Agda, where we have considerable experience as users of
the technique. We focus on issues and annoyances, since the benefits of shallow
embedding have been previously discussed.



Shallow Embedding of Type Theory is Morally Correct 29

Goal types and error messages are not the best, since they all talk about expres-
sions in the wrapped standard model instead of the deeply embedded syntax.
Hence, working with shallow embedding requires us to mentally translate be-
tween syntax and the standard model. It should be possible in principle to back-
translate messages to deep syntax. In Agda, DISPLAY pragmas can be used to
display expressions in user-defined way, but it seems too limited for our purpose.

Increased universe level of the embedded syntax. Let us assume an object type
theory without a universe hierarchy. In this case the type of contexts can be given
as Con : Set₀ in an inductive data definition or a postulated quotient inductive
definition. In contrast, the standard model defines Con as Set, hence Con has type
Set₁ in this case. In Agda, this increase in levels can cause additional boilerplate
and usage of explicit level lifting. A way to remedy this is to define Con as a
custom inductive-recursive universe, which can usually fit into Set₀, but in this
case we get additional clutter in system messages arising from inductive-recursive
decoding.

9 Conclusions

In this paper, we investigated the shallow embedding of a type theory into type
theory. We motivated it as an effective technique to reflect definitional equalities
of an object type theory. We showed that shallow embedding of a particular
object theory is really an embedding, since it is injective in an external sense.

We do not suggest that shallow embedding can replace deep embedding in
every use case. For example, when implementing a type checker or compiler, one
has to use deep embeddings. We hope that future proof assistants will be robust
and powerful enough to allow feasible direct formalisations and make shallow
embeddings unnecessary.

A potential line of future work would be to try to use shallow embedding as
presented here for other object theories and formalisations. Subjectively, shal-
low embedding made a huge difference when we formalised our case studies; a
previous formalisation [3] of the parametricity translation took the current first
author months to finish, while the current formalisation took less than a day, for
a much larger object theory. Formalisations which were previously too tedious
to undertake could be within reach now. Also, it could be explored in the future
whether morally correct shallow embedding works for object theories which are
not just syntactic fragments of the metatheory. For instance, structured cate-
gories other than CwFs, such as monoidal categories could be investigated for
shallow embedding.

References

1. Abel, A., Öhman, J., Vezzosi, A.: Decidability of conversion for type theory in type
theory. Proceedings of the ACM on Programming Languages 2(POPL), 23 (2017)



30 A. Kaposi et al.

2. Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Nordvall Forsberg, F.: Quo-
tient inductive-inductive types. In: Baier, C., Dal Lago, U. (eds.) Foundations of
Software Science and Computation Structures. pp. 293–310. Springer International
Publishing, Cham (2018)

3. Altenkirch, T., Kaposi, A.: Type theory in type theory using quotient inductive
types. In: Bodik, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 18–29. ACM (2016).
https://doi.org/10.1145/2837614.2837638

4. Altenkirch, T., Kaposi, A.: Normalisation by Evaluation for Type Theory, in Type
Theory. Logical Methods in Computer Science Volume 13, Issue 4 (Oct 2017).
https://doi.org/10.23638/LMCS-13(4:1)2017

5. Anand, A., Boulier, S., Cohen, C., Sozeau, M., Tabareau, N.: Towards certified
meta-programming with typed template-coq. In: Avigad, J., Mahboubi, A. (eds.)
Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 10895, pp. 20–39. Springer
(2018). https://doi.org/10.1007/978-3-319-94821-8_2

6. Bernardy, J.P., Jansson, P., Paterson, R.: Proofs for free — parametricity for
dependent types. Journal of Functional Programming 22(02), 107–152 (2012).
https://doi.org/10.1017/S0956796812000056

7. Birkedal, L., Mogelberg, R.E., Schwinghammer, J., Stovring, K.: First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. In: 2011
IEEE 26th Annual Symposium on Logic in Computer Science. pp. 55–64. IEEE
(2011)

8. Boulier, S., Pédrot, P.M., Tabareau, N.: The next 700 syntactical models of type
theory. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs. pp. 182–194. CPP 2017, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3018610.3018620

9. Brady, E.: Idris, a general-purpose dependently typed programming language: De-
sign and implementation. J. Funct. Program. 23(5), 552–593 (2013)

10. Chapman, J.: Type theory should eat itself. Electronic Notes in Theoretical Com-
puter Science 228, 21–36 (Jan 2009). https://doi.org/10.1016/j.entcs.2008.12.114

11. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: Proceedings of the 13th ACM SIGPLAN International Conference on Func-
tional Programming. pp. 143–156. ICFP ’08, ACM, New York, NY, USA (2008).
https://doi.org/10.1145/1411204.1411226

12. Cockx, J., Abel, A.: Sprinkles of extensionality for your vanilla type theory. TYPES
2016 (2016)

13. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a construc-
tive interpretation of the univalence axiom (December 2015)

14. Coquand, T.: Canonicity and normalisation for dependent type theory. CoRR
(2018), http://arxiv.org/abs/1810.09367

15. Coquand, T., Huber, S., Sattler, C.: Homotopy canonicity for cubical type theory.
In: Geuvers, H. (ed.) Proceedings of the 4th International Conference on Formal
Structures for Computation and Deduction (FSCD 2019) (2019)

16. Danielsson, N.A.: A formalisation of a dependently typed language as an inductive-
recursive family. In: Altenkirch, T., McBride, C. (eds.) TYPES. Lecture Notes in
Computer Science, vol. 4502, pp. 93–109. Springer (2006)

17. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-Order Abstract Syntax in Coq.
Tech. Rep. RR-2556, INRIA (May 1995), https://hal.inria.fr/inria-00074124

https://doi.org/10.1145/2837614.2837638
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1145/1411204.1411226
http://arxiv.org/abs/1810.09367
https://hal.inria.fr/inria-00074124


Shallow Embedding of Type Theory is Morally Correct 31

18. Devriese, D., Piessens, F.: Typed syntactic meta-programming. In: Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2013). pp. 73–85. ACM (September 2013).
https://doi.org/10.1145/2500365.2500575

19. Diehl, L.: Fully Generic Programming over Closed Universes of Inductive-Recursive
Types. Ph.D. thesis, Portland State University (2017)

20. Dybjer, P.: Internal type theory. In: International Workshop on Types for Proofs
and Programs. pp. 120–134. Springer (1995)

21. Hofmann, M.: Extensional concepts in intensional type theory. Thesis, University
of Edinburgh, Department of Computer Science (1995)

22. Hofmann, M.: Syntax and semantics of dependent types. In: Semantics and Logics
of Computation. pp. 79–130. Cambridge University Press (1997)

23. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proceedings
of the 14th Annual IEEE Symposium on Logic in Computer Science. pp. 204–.
LICS ’99, IEEE Computer Society, Washington, DC, USA (1999), http://dl.acm.
org/citation.cfm?id=788021.788940

24. Hou (Favonia), K.B., Finster, E., Licata, D.R., Lumsdaine, P.L.: A mecha-
nization of the blakers-massey connectivity theorem in homotopy type theory.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science. pp. 565–574. LICS ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2933575.2934545

25. Huber, S.: Cubical Interpretations of Type Theory. Ph.D. thesis, University of
Gothenburg (2016)

26. Jaber, G., Lewertowski, G., Pédrot, P.M., Sozeau, M., Tabareau, N.: The Defi-
nitional Side of the Forcing. In: Logics in Computer Science. New York, United
States (May 2016). https://doi.org/10.1145/2933575.2935320

27. Kaposi, A., Huber, S., Sattler, C.: Gluing for type theory. In: Geuvers, H. (ed.)
Proceedings of the 4th International Conference on Formal Structures for Compu-
tation and Deduction (FSCD 2019) (2019)

28. Kaposi, A., Kovács, A.: A Syntax for Higher Inductive-Inductive Types. In: Kirch-
ner, H. (ed.) 3rd International Conference on Formal Structures for Computation
and Deduction (FSCD 2018). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 108, pp. 20:1–20:18. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.20

29. Kaposi, A., Kovács, A., Altenkirch, T.: Constructing quotient inductive-inductive
types. Proceedings of the ACM on Programming Languages 3(POPL), 2 (2019)

30. Kaposi, A., Kovács, A., Kraus, N.: Formalisations in Agda using a morally cor-
rect shallow embedding (May 2019), https://bitbucket.org/akaposi/shallow/src/
master/

31. Licata, D.: Running circles around (in) your proof assistant; or, quo-
tients that compute (2011), http://homotopytypetheory.org/2011/04/23/
running-circles-around-in-your-proof-assistant/

32. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.,
Shepherdson, J. (eds.) Logic Colloquium ’73, Proceedings of the Logic Colloquium,
Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 73–118. North-
Holland (1975)

33. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2019), http://coq.inria.fr, version 8.9

34. McBride, C.: Outrageous but meaningful coincidences: dependent type-safe syn-
tax and evaluation. In: d. S. Oliveira, B.C., Zalewski, M. (eds.) Proceedings of

https://doi.org/10.1145/2500365.2500575
http://dl.acm.org/citation.cfm?id=788021.788940
http://dl.acm.org/citation.cfm?id=788021.788940
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.1145/2933575.2935320
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
https://bitbucket.org/akaposi/shallow/src/master/
https://bitbucket.org/akaposi/shallow/src/master/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://coq.inria.fr


32 A. Kaposi et al.

the ACM SIGPLAN Workshop on Generic Programming. pp. 1–12. ACM (2010).
https://doi.org/10.1145/1863495.1863497

35. McBride, C., McKinna, J.: Functional pearl: I am not a number — I
am a free variable. In: Proceedings of the 2004 ACM SIGPLAN Work-
shop on Haskell. pp. 1–9. Haskell ’04, ACM, New York, NY, USA
(2004). https://doi.org/10.1145/1017472.1017477, http://doi.acm.org/10.1145/
1017472.1017477

36. de Moura, L., Kong, S., Avigad, J., Van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: International Conference on Automated
Deduction. pp. 378–388. Springer (2015)

37. Nordvall Forsberg, F.: Inductive-inductive definitions. Ph.D. thesis, Swansea Uni-
versity (2013)

38. Orton, I., Pitts, A.M.: Axioms for Modelling Cubical Type Theory in a Topos.
In: Talbot, J.M., Regnier, L. (eds.) 25th EACSL Annual Conference on Com-
puter Science Logic (CSL 2016). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 62, pp. 24:1–24:19. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.24

39. Pfenning, F., Elliott, C.: Higher-order abstract syntax. SIGPLAN Not. 23(7), 199–
208 (Jun 1988). https://doi.org/10.1145/960116.54010

40. Pientka, B., Dunfield, J.: Beluga: A framework for programming and reasoning
with deductive systems (system description). In: Proceedings of the 5th Interna-
tional Conference on Automated Reasoning. pp. 15–21. IJCAR’10, Springer-Verlag,
Berlin, Heidelberg (2010)

41. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason,
R.E.A. (ed.) Information Processing 83, Proceedings of the IFIP 9th World Com-
puter Congress, Paris, September 19-23, 1983. pp. 513–523. Elsevier Science Pub-
lishers B. V. (North-Holland), Amsterdam (1983)

42. Tabareau, N., Tanter, É., Sozeau, M.: Equivalences for Free. Proceedings of
the ACM on Programming Languages pp. 1–29 (Sep 2018), https://hal.inria.fr/
hal-01559073

43. The Agda development team: Agda (2015), http://wiki.portal.chalmers.se/agda
44. Wieczorek, P., Biernacki, D.: A Coq formalization of normalization by evaluation

for Martin-Löf type theory. In: Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. pp. 266–279. CPP 2018,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3167091

45. Winterhalter, T., Sozeau, M., Tabareau, N.: Eliminating reflection from type the-
ory. In: Proceedings of the 8th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs. pp. 91–103. ACM (2019)

A The injectivity displayed model

We list the components of the displayed model for the injectivity proof described
in Section 5. We don’t write subscripts for metavariables and operators of the
syntax, only for components of the displayed model (1, 2, 12, 21 and =).

Con iΓ := Γ ≃
(
• ▷ JΓK)

Ty j (Γ1,Γ2,Γ12,Γ21)A := A = app JAK[Γ1]

Sub (Γ1,Γ2,Γ12,Γ21) (∆1,∆2,∆12,∆21)σ := σ = ∆2 ◦ (ϵ, app JσK) ◦ Γ1

https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1145/960116.54010
https://hal.inria.fr/hal-01559073
https://hal.inria.fr/hal-01559073
http://wiki.portal.chalmers.se/agda
https://doi.org/10.1145/3167091


Shallow Embedding of Type Theory is Morally Correct 33

Tm (Γ1,Γ2,Γ12,Γ21)A= t := t = (app JtK)[Γ1]

id= : id =

Γ2 ◦ Γ1 =

Γ2 ◦ (ϵ, app (lam v0)) ◦ Γ1 =

Γ2 ◦ (ϵ, app JidK) ◦ Γ1

σ= ◦= δ= : σ ◦ δ =

∆2 ◦ (ϵ, app JσK) ◦Θ1 ◦Θ2 ◦ (ϵ, app JδK) ◦ Γ1 =

∆2 ◦ (ϵ, app JσK[ϵ, app JδK]) ◦ Γ1 =

∆2 ◦ (ϵ, (JσK[ϵ] $(JδK[ϵ] $ v0))) ◦ Γ1 =

∆2 ◦ (ϵ, app Jσ ◦ δK) ◦ Γ1

A=[σ=]= : A[σ] = appJAK[∆1][∆2 ◦ (ϵ, app JσK) ◦ Γ1] =

(app JAK)[ϵ, app (JσK[ϵ])][Γ1] = app JA[σ]K[Γ1]

t=[σ=]= : t[σ] = (appJtK)[∆1][∆2 ◦ (ϵ, app JσK) ◦ Γ1] =

(app JtK)[ϵ, app (JσK[ϵ])][Γ1] = app Jt[σ]K[Γ1]

•1 := (ϵ, tt)
•2 := ϵ

•12 : •1 ◦ •2 = (ϵ, tt) ◦ ϵ = (ϵ, tt) = (p, q) = id
•21 : •2 ◦ •1 = ϵ ◦ (ϵ, tt) = ϵ = id
ϵ= : ϵ = ϵ ◦ · · · = •2 ◦ (ϵ, app JσK) ◦ Γ1

(Γ1, . . . ) ▷1 A= :=
(
ϵ, (v0[Γ1 ◦ p], v0)

)
(Γ1,Γ2, . . . ) ▷2 A= :=

(
Γ2 ◦ (ϵ, fst v0), snd v0

)
(Γ1,Γ2, . . . ) ▷12 A= : (Γ1,Γ2, . . . ) ▷1 A= ◦ (Γ1,Γ2, . . . ) ▷2 A=(

ϵ, (v0[Γ1 ◦ p], v0)
)
◦
(
Γ2 ◦ (ϵ, fst v0), snd v0

)
=(

ϵ, (v0[Γ1 ◦ Γ2 ◦ (ϵ, fst v0)], snd v0)
)
=(

ϵ, (fst v0, snd v0)
)
=(

ϵ, v0
)
=

(p, q) =
id

(Γ1,Γ2, . . . ) ▷21 A= : (Γ1,Γ2, . . . ) ▷2 A= ◦ (Γ1,Γ2, . . . ) ▷1 A=(
Γ2 ◦ (ϵ, fst v0), snd v0

)
◦
(
ϵ, (v0[Γ1 ◦ p], v0)

)
=(

Γ2 ◦ (ϵ, v0[Γ1 ◦ p]), v0
)
=(

Γ2 ◦ Γ1 ◦ p, v0
)
=

(p, q) =
id

σ=,= t= : (σ, t) =



34 A. Kaposi et al.

(∆2 ◦ (ϵ, app JσK) ◦ Γ1, app JtK[Γ1]) =

(∆2 ◦ (ϵ, fst v0), snd v0) ◦ (ϵ, (app JσK, app JtK)) ◦ Γ1 =

(∆1, . . . ) ▷2 A= ◦ (ϵ, app Jσ, tK) ◦ Γ1

p= : p =

Γ2 ◦ Γ1 =

Γ2 ◦ (ϵ, fst v0) ◦
(
ϵ, (v0[Γ1 ◦ p], v0)

)
=

Γ2 ◦ (ϵ, app JpK) ◦ (Γ1, . . . ) ▷1 A=

q= : q = v0 =

lam(snd v0) =
(snd v0)[ϵ, (v0[Γ1 ◦ p], v0)] =
app JqK[(Γ1, . . . ) ▷1 A=]

Π= A= B= : ΠAB =

Π app JAK[Γ1] app JBK[(Γ1, . . . ) ▷1 A=] =

Π app JAK[Γ1] app JBK[ϵ, (v1, v0)][Γ1
↑] =

app JΠABK[Γ1]

lam= t= : lam t =

lam (app JtK[(Γ1, . . . ) ▷1 A=]) =

lam (app JtK[ϵ, (v1, v0)][Γ1
↑]) =

lam (app JtK[ϵ, (v1, v0)])[Γ1] =

app (lam (lam (JtK[ϵ] $(v1, v0))))[Γ1] =

app Jlam tK[Γ1]

app= t= : app t =
app (app JtK[Γ1]) =

app (app JtK)[Γ1
↑] =

app (app JtK)[ϵ, v1, v0][Γ1
↑] =

app (app JtK)[ϵ, v0[Γ1 ◦ p], v0] =
app (app JtK)[ϵ, fst v0, snd v0][ϵ, (v0[Γ1 ◦ p], v0)] =
app (app JtK)[ϵ, fst v1, v0][id, snd v0][ϵ, (v0[Γ1 ◦ p], v0)] =
app (app JtK[ϵ, fst v0])[id, snd v0][(Γ1, . . . ) ▷1 A=] =

(JtK[ϵ] $ fst v0 $ snd v0)[(Γ1, . . . ) ▷1 A=] =

app (lam (JtK[ϵ] $ fst v0 $ snd v0))[(Γ1, . . . ) ▷1 A=] =

app Japp tK[(Γ1, . . . ) ▷1 A=]

Σ= A= B= : ΣAB =

Σ app JAK[Γ1] app JBK[(Γ1, . . . ) ▷1 A=] =

Σ app JAK[Γ1] app JBK[ϵ, (v1, v0)][Γ1
↑] =



Shallow Embedding of Type Theory is Morally Correct 35

app JΣABK[Γ1]

u=,= v= : (u, v) =

(app JuK[Γ1], app JvK[Γ1]) =

(app JuK, app JvK)[Γ1] =

app Ju, vK[Γ1]

fst= t= : fst t =
fst (app JtK[Γ1]) =

(fst (app JtK))[Γ1] =

app Jfst tK[Γ1]

snd= t= : snd t =
snd (app JtK[Γ1]) =

(snd (app JtK))[Γ1] =

app Jsnd tK[Γ1]

⊤= : ⊤ = ⊤[Γ1] = app (lam (c⊤))[Γ1] = app J⊤K[Γ1]

tt= : tt = tt[Γ1] = app (lam tt)[Γ1] = app JttK[Γ1]

U= : U i = U i[Γ1] = app (lam (c (U i)))[Γ1] = app JU iK[Γ1]

a==
: a = app JaK[Γ1] = app JaK[Γ1]

c= A= : A = app JAK[Γ1] = app JcAK[Γ1]

Bool= : Bool = c Bool[Γ1] = app JBoolK[Γ1]

true= : true = true[Γ1] = app JtrueK[Γ1]

false= : false = false[Γ1] = app JfalseK[Γ1]

if= C= u= v= t= : ifC uv t =

if app JCK[(Γ ▷ Bool)1] (app JuK[Γ1]) (app JvK[Γ1])

(app JtK[Γ1]) =

if app JCK[ϵ, (v1, v0)][Γ1
↑] (app JuK[Γ1]) (app JvK[Γ1])

(app JtK[Γ1]) =

if JCK[ϵ] $(v1, v0) (app JuK) (app JvK) (app JtK)[Γ1] =

app JifC uv tK[Γ1]

Id= A= u= v= : IdAuv =

Id app JAK[Γ1] (app JuK[Γ1]) (app JvK[Γ1])(
Id app JAK (app JuK) (app JvK)) [Γ1]

app JIdAuvK[Γ1]

refl= u= : reflu =

refl (app JuK[Γ1]) =

refl (app JuK)[Γ1] =



36 A. Kaposi et al.

app JrefluK[Γ1]

J= C= w= e= : JC w e =

J app JCK[(Γ ▷ A ▷ . . . )1] (app JwK[Γ1]) (app JeK[Γ1]) =

J app JCK[ϵ, (v2, v1, v0)][Γ1
↑↑] (app JwK[Γ1]) (app JeK[Γ1]) =(

J app JCK[ϵ, (v2, v1, v0)] (app JwK) (app JeK)) [Γ1] =

app JJC w eK[Γ1]


	Shallow Embedding of Type Theory is Morally Correct

