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Atrial fibrillation is a substantial healthcare challenge 
and is considered to be a global pandemic, as prevalence 
rates have increased greatly1 and atrial fibrillation
related hospitalisations outnumber those of major 
cardiac conditions such as heart failure and myocardial 
infarction.2 Atrial fibrillation confers an increased 
risk of stroke and mortality; it therefore needs to be 
detected not only to manage the arrhythmia but also to 
prevent comorbidities and death.3 A 10second, 12lead 
electrocardiograph (ECG) in current clinical practice is 
unlikely to reveal possible atrial fibrillation if not present 
in this short monitoring time. Silent or undetected atrial 
fibrillation is common and the few screening methods 
available are demanding in terms of time and resources. 
Continuous monitoring by means of loop recorders is 
often indicated, particularly in case of embolic stroke of 
undetermined source (ESUS).4 Novel and userfriendly 
wearables to identify arrhythmias have emerged with 
recent digital advances: wearable ECG technology using 
automated photoplethysmography algorithms have 
shown feasible and accurate cardiac rhythm detection 
and can aid in monitoring the dynamic burden of 
time spent in atrial fibrillation,5 while mobile atrial 
fibrillation applications are available for patients and 
healthcare professionals for education and guidance in 
management.6

In The Lancet, Zachi Attia and colleagues7 report a 
study in which they aimed to develop and validate an 
artificial intelligence (AI)enabled ECG using a trained 
neural network to detect the electrocardiographic 
signature of atrial fibrillation during sinus rhythm. 

Structural changes in the atria predispose to atrial 
arrhythmias.8 Deducting atrial fibrillation in a sinus 
rhythm ECG has been attempted previously by using 
P wave and PR interval traces to describe phenomena 
such as interatrial block.9 Here, Attia and colleagues 
hypothesised that the signature of atrial fibrillation due 
to the structural changes in the atria could be identified 
by a trained network, using a standard 10second, 
12lead ECG recorded during sinus rhythm. Rather 
than trying to observe atrial fibrillation by prolonged 
monitoring of sinus rhythm, the authors suggest 
that AI can avoid this needleinahaystack scenario 
and instead identify from as few as one normal sinus 
rhythm ECG if there is indeed a needle hidden within. 
P wave characteristics are likely to be picked up by the 
network, but no criteria are predefined or revealed in 
retrospect. In total, almost 650 000 ECGs from a cohort 
of 180 922 patients aged 18 years or older with at least 
one normal sinus rhythm, standard 10second, 12lead 
ECG from the Mayo Clinic ECG laboratory, were used to 
develop, test, and validate the network. Patients and 
their digitally available ECGs were randomly assigned 
to three datasets: a training dataset (70% of the 
patient cohort) used to train the network, an internal 
validation dataset (10% of the patient cohort) to 
optimise the network, and a testing dataset (20% of 
the patient cohort) to identify the ability of the AI
enabled ECG to detect atrial fibrillation. When using 
a single AIenabled ECG, mathematical performance 
of the network showed an impressive area under the 
curve of the operating receiver curve of 0·87 (95% CI 
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0·86–0·88), sensitivity of 79·0% (77·5–80·4), specificity 
of 79·5% (79·0–79·9), F1 score of 39·2% (95% CI 
38·1–40·3), and overall accuracy of 79·4% (79·0–79·9). 
Performance improved when including all ECGs 
acquired during each patient’s window of interest, 
which began at the study start date for those without 
atrial fibrillation and 31 days before the first recorded 
atrial fibrillation ECG for patients with atrial fibrillation.

There are several strengths of the approach taken by 
Attia and colleagues. First, they used a large cohort of 
patients and their ECGs and prevented bias by dividing 
the patients over three datasets, demonstrating a 
robust approach. Their findings will be of clinical 
importance, especially in identifying silent atrial 
fibrillation, and might have important implications 
for secondary prevention of patients with ESUS in 
terms of providing appropriate oral anticoagulation 
to prevent recurrences of stroke. Furthermore, this 
approach could lead to a paradigm shift in recording 
sinus rhythm rather than atrial fibrillation on an 
ECG, with a specific focus on identifying structural 
changes. However, false negatives might also be 
part of the outcomes and would prevent appropriate 
therapy. Moreover, the network has been tested to 
retrospectively identify atrial fibrillation rather than 
predicting atrial fibrillation. The AIenabled algorithm 
would require further validation in a different patient 
cohort, testing a healthier outofhospital population, 
as well as a rigorous prospective clinical trial 
assessment. Advanced refinement might be necessary 
before the network can be used for primary atrial 
fibrillation prediction.

Notwithstanding the limitations, the network can 
support clinical decision making, helping to relieve 
the healthcare burden related to atrial fibrillation. 
Further improvement of available systems, as well 
as related research, is warranted to optimise the 
identification of atrial fibrillation and appropriate 
management accordingly. Combining ECG algorithms 
with age, gender, clinical features, and biomarkers10 
might further improve identification of patients with 
atrial fibrillation. Additionally, linking these variables 
with genetic markers,11 AIenabled algorithms,7 and 
smart monitoring by means of wearables5 to diagnose 
atrial fibrillation and quantify atrial fibrillation burden 
promises a safer and more efficient prevention of atrial 
fibrillationrelated complications.

In summary, Attia and colleagues are to be 
congratulated for their innovative approach and the 
thorough development and local validation of the AI
enabled ECG. Given that AI algorithms have recently 
reached cardiologist level in diagnostic performance,12 
this AIECG interpretation is groundbreaking in 
creating an algorithm to reveal the likelihood of atrial 
fibrillation in ECGs showing sinus rhythm.
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