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Summary

The cereal crops rice (Oryza sativa), maize (Zeamays ssp.mays) andwheat (Triticum aestivum)

provide half of the food eaten by humankind. However, understanding their biology has proved

challenging due to their large size, long lifecycle and large genomes. The model plant

Arabidopsis thaliana avoids these practical problems and has provided fundamental under-

standing of plant biology, however not all of this knowledge is directly transferrable to cereals.

Recent developments in gene editing, speed breeding and genome assembly techniques mean

that the challenges associated with working with the major cereal crops can be overcome.

Resources such as mutant collections and genome sequences are now available for these crops,

making them attractive experimental systems with which to make discoveries that are directly

applicable to increasing crop production.

I. Introduction

Across the biological sciences, model species have played major
roles in improving our understanding of the fundamental processes
that govern life. Decades of intensive study of the model plant
Arabidopsis thaliana have produced insights into plant develop-
ment and responses to the environment, particularly at the
molecular level. However, it has long been recognised that one
model species is not sufficient to represent the diversity of plants.
Since the nineteenth century, when Mendel discovered the
fundamental laws of inheritance using peas (Pisum sativum),
researchers have studied many different plant model systems, from
legumes through to tomato (Solanum lycopersicum), petunia
(Petunia hybrid) and antirrhinum (Antirrhinum majus). Amongst

the cereals, maize (Zeamays ssp.mays) has served as a genetic model
system for almost a century, and its use in scientific research led to
seminal discoveries about mobile DNA elements and epigenetics
(reviewed in Nannas & Dawe (2015)). The sequencing of the
Arabidopsis and rice (Oryza sativa) genomes almost 20 years ago
opened up new possibilities for investigations into molecular
genetics, with these species subsequently dominating research.
However, we can now generate comprehensive genome assemblies
even for highly complex plant genomes. This represents a turning
point that could confer equal standing tomultiple species for use in
studies to understand the molecular mechanisms underlying plant
biology and crop production. Here I will compare the features of
model species that make them powerful research tools and outline
recent developments that make the most widely grown cereal crops
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– rice, maize and wheat (Triticum aestivum) – tractable experi-
mental systems for molecular biology in their own right, thus
blurring the boundaries between model species and cereal crops.

II. What defines a model plant?

Model species are extensively studied with the aim of understand-
ing particular biological processes and the expectation that this will
provide insight into other species. Model plant species have
practical characteristics: small size, ease of growth, high fecundity,
short generation time, small genome and amenability to genetic
manipulation, including crossing, mutagenesis and gene modifi-
cation. Recently, Chang et al. (2016) suggested that such
practicalities are not the only reasons why model systems become
widespread. As more scientists adopt the model species, the
availability of simple and reliable methods for lab protocols such as
DNA extraction, protein purification and transformation can
influence its uptake. Furthermore, as a community of users
develops, the availability of resources such as genetic stocks held in
germplasm centres, annotated genomes and databasesmay boost its
uptake.

III. Models for cereal crops

The three most widely grown cereal crops (maize, rice and wheat)
provide c. 50% of the calories consumed by humankind (Alexan-
dratos & Bruinsma, 2012). With an ever-increasing population
and the challenges associatedwith climate change,we face anurgent
need to understand the biology of these cereals to meet the growing
demand for food, feed and fuel. Unfortunately, barriers such as
their large genomes, long generation times and large sizesmean that
cereals have proved difficult to work with.

Instead, from the 1980s onwards, Arabidopsis has been widely
used as amodel specieswithwhich to improve our understandingof
plant biology. The study of Arabidopsis has enabled us to gain a
fundamental understanding of many plant-specific processes, and
this information has been used to inform the study of these same
processes in cereal crops. Of the 41 682 papers published from
1965 to 2015 onArabidopsis with one ormore citations, 37%were
cited by a paper principally focussed on a species other than
Arabidopsis (Provart et al., 2016), showing that Arabidopsis
research has been used by those working on other species.However,
certain processes which are highly relevant to crop production are
not present in Arabidopsis (e.g. mycorrhization), and there are
processes for which knowledge from Arabidopsis cannot simply be
extrapolated (e.g. starch metabolism; Smith, 2012). Furthermore,
although it has been shown that similar gene families are involved in
regulating traits in Arabidopsis and cereals, the individual family
members involved and the network of connections may be quite
different, as has been shown for flowering (Hill & Li, 2016) and
senescence (Borrill et al., 2019a). Therefore, to fully understand
cereal biology, research is required in cereal species themselves.

Several monocot models for crop species have been proposed to
overcome some of the limitations of Arabidopsis research and
improve our understanding of cereal biology. Setaria viridis was
proposed as a model for maize and Brachypodium distachyon as a

model for wheat due to their close evolutionary relationships and
model plant characteristics (Brutnell, 2015; Table 1). However,
when these species were proposed, molecular work was already
being carried out in rice which demonstrated the power of studying
a crop species directly to apply discoveries in the field. Rapid
developments in technology, building in part upon approaches
developed in rice, meant that wheat and maize could be studied at
the molecular level in their own right. Therefore, the use of
monocot model species as stepping stones to maize and wheat was
not widely adopted.

IV. Recent developments redefine model plants

The availability of genome sequences lays the foundation for
molecular biology work. The advent of low-cost next generation
sequencing, long-read technology, improved assembly and scaf-
folding methods mean that having a small genome size is no longer
a key consideration when looking to produce a reference genome
sequence. For the past 10 years, a high-quality genome sequence for
rice (International Rice Genome Sequencing Project, 2005) and a
draft genome sequence for maize (Schnable et al., 2009) have been
available. Recently, long-read technologies and optical mapping
improved the maize genome sequence (Jiao et al., 2017) and a
chromosome-level assembly for the 16 Gb hexaploid genome of
wheat was published (IWGSC et al., 2018). The release of these
high-quality genome sequences indicates that genome size no
longer presents a technological barrier, although the cost of
sequencing large genomes remains high.

The development of gene editing has also influenced our ability
to study gene function in a range of plant species. Previously, the
large-scale mutant or insertion line collections in establishedmodel
species such as Arabidopsis and rice (reviewed in Holland & Jez,
2018;Hong et al., 2019) gave researchers working on these plants a
major advantage in characterising gene function. However,
CRISPR-Cas9 has been shown to function in all three major
cereal crops and can be used to produce transgene-free genome-
edited plants that could be readily commercialised (reviewed in
Zhu et al. (2017)). CRISPR-Cas9 is conventionally used to induce
small deletions within genes to cause frame-shift or knock-outs but
can be used to carry out awhole range ofmore complex editing such
as specific base editing or epigenetic modification (reviewed in Adli
(2018)). These methods are now being applied in cereals (Li et al.,
2018).

Developments have also been made to shorten generation times
and reduce plant size (Fig. 1). Cereal breeders have been
accelerating generation times for decades by stressing plants in
small pots. This method has been successfully applied in large scale
commercial and public breeding programmes, for example at the
International Rice Research Institute (Collard et al., 2017).
Manipulating environmental conditions has also enabled ʻspeed
breedingʼ, which involves growing plants under longer day length
and harvesting seeds before they are fully mature; this greatly
accelerates wheat generation times (Watson et al., 2018). An
alternative approach taken to shorten cereal generation time is to
select varieties with extremely rapid lifecycles, including wheat
‘Apogee’ (25 d) (Bugbee & Koerner, 1997), Fast-Flowering
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Mini-Maize (60 d) (McCaw et al., 2016) and rice ‘Xiaowei-Se5’
(46 d) (Hu et al., 2018). These rapid lifecycle cereal varieties are also
much smaller than conventional varieties (Fig. 1) and are well-
suited to cultivation in the controlled environment conditions used
widely by plant science researchers. Although a variety of
agronomically relevant traits such as disease resistance and
flowering time can be studied using speed breeding or rapid
lifecycle varieties (Watson et al., 2018), there are certain traits, such
as yield or plant height, for which research may prove difficult (Hu
et al., 2018), particularly in rapid lifecycle varieties.

Many of the resources which make working with Arabidopsis
attractive are now available for cereal crops. Rice, maize and wheat
have accurate genemodel annotations, extensive molecular biology
methods and sequenced mutant populations (Table 1) that are
suitable for reverse genetics approaches (Settles et al., 2007;
Williams-Carrier et al., 2010; Krasileva et al., 2017; Li et al., 2017).
Gene expression atlases are also available for all three species (Borrill
et al., 2016;Xia et al., 2017;Ramirez-Gonzalez et al., 2018;Hoopes
et al., 2019). Together these resources enable routine study of gene
function in rice, maize and wheat.

V. The future of cereal research

Despite the availability of new approaches and resources, one area
that remains a challenge is the production of transgenic plants,
especially for wheat andmaize. This presents a rate-limiting step for
biological understanding of gene function. Whilst transformation
of rice is routinely carried out bymany research groups using callus
induction methods (Hiei et al., 2014), maize and wheat transfor-
mation require high-quality facilities and technical expertise to
transform immature embryos (Fig. 2a). This restricts

transformation to specialised laboratories in universities, institutes
and multi-national seed companies. A further challenge for cereals
is that efficient transformation is genotype-dependent, and there-
fore only a handful of varieties can be transformed at high enough
efficiencies to make transformation routine.

Recently, however, several methods have shown promise as
means by which to expand the number of transformable varieties.
In maize, the expression of the transcription factors Baby boom and
Wuschel2 increased both the transformation efficiency and the
range of varieties transformed (Fig. 2b; Lowe et al., 2016). This
system also increased the transformation efficiency of rice (Lowe
et al., 2016) and has been proposed as amethod of increasing wheat
transformation efficiency and allowing genotype-independent
transformation (Borrill et al., 2019b). It may also be possible to
extend the range of transformable genotypes by using bacteria other
than Agrobacterium tumefaciens for transformation (Fig. 2a). For
example, Ensifer adhaerens, a soil-related bacterium, has been
shown to transform IR64, an indica rice variety that is difficult to
transform using A. tumefaciens (Zuniga-Soto et al., 2015). How-
ever, further work is required to increase the low transformation
efficiencies achieved with non-Agrobacterial species and test this
approach in wheat and maize. The ability to carry out transfor-
mation on any genotype would accelerate the integration of
transgenic events in cereal breeding pipelines and facilitate the
evaluation of the effects of the transgenic or gene editing event in a
locally adapted variety.

An alternative method of altering gene function in elite lines is
the use of CRISPR-Cas9 in conjunction with haploid induction to
induce edits without any transformation event in the recipient
plant. Kelliher et al. (2019) crossed a CRISPR-Cas9 expressing
maize line to wheat, which produced a haploid wheat line edited at

Small genome

Short lifecycle
(~ 2 months)

Small size
(25–40 cm)

Large size
(80–100 cm)

Long lifecycle
(> 4 months)

Large genome

(a)

Reduced size in
rapid lifecycle

varieties
(45–50 cm)

Short lifecycle
(~ 2 months) in 
rapid lifecycle

varieties or speed
breeding

Large genome manageable with 
new sequencing technologies

(b) (c)

Fig. 1 Recent developments bypass traditional model species requirements. (a) Traditional model species such as Arabidopsis thaliana have a short lifecycle,
small size and small genome. (b) Cereal crops such as wheat have a long lifecycle, large size and a large genome. (c) New approaches such as speed breeding,
rapid lifecycle varieties and improved sequencing techniques enable cereal crops to havemanyof the characteristics ofmodel species.Note: plants not drawn to
scale.
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Cre Bbm Wus2

gRNA Cas9

Cas9

Dissect
immature embryo

Inoculate with
Agrobacterium

Select transformed callus

Dissect embryo
from mature seed

Inoculate with
Agrobacterium

Generate
callus

Select transformed callus with
BBM/WUS construct excised

Collect
developing seeds

Fertilise wheat
ovule with

maize pollen

Cas9-gRNA from
maize edits wheat

chromosome

Haploid produced
by male genome

elimination

Callus produced
by embryo

rescue

+ colchicine

Haploid
plantlet

Select edited
doubled haploids

Generate
callus

CRE excises
BBM/WUS
construct

Cre

(a)

(b)

(c)

×

Fig. 2 Improving transformation in maize and wheat to alleviate genotype dependency. (a) Conventional transformation of maize and wheat. Immature
embryos are dissected from developing seeds. The immature embryo is then inoculated with Agrobacterium tumefaciens (brown). A callus is generated by
tissue culture and the transformed callus (blue) can be selected using amarker gene. Alternative bacterial species (pink and purple) have been proposed as one
route by which to overcome genotype-dependency in transformation. (b) Expression of Baby boom (Bbm) andWuschel2 (Wus2) increases transformation
efficiency and thenumberof genotypeswhich canbe transformed inmaize.Using transgenicmaize expressingBbmandWus2enables embryosdissected from
mature seeds to be used for transformation. The dissected embryo is inoculated with A. tumefaciens and undergoes tissue culture. The callus produced is
desiccated to induce the expression of Cre recombinase (Cre) from a desiccation inducible promoter. Cre excises the transgenic cassette at the LoxP sites
(triangles) to prevent the expression ofBbm/Wus2 from causing undesirable phenotypic effects in subsequent generations. The transformed callus (blue)with
the Bbm/Wus2 construct excised can then be selected. The light blue background indicates stages at which the Bbm/Wus2 construct is expressed. (c) Haploid
inducermaize lines expressing aCRISPR/Cas9 construct caneditwheat target genes, thusbypassingawheat transformation step. Pollen fromahaploid inducer
maize line expressing Cas9 with a gRNA for a wheat target gene is used to fertilize an emasculated wheat ear. The Cas9-gRNA edits the wheat target gene
(brown star) in the fertilized ovule. Subsequently the male (maize) genome is eliminated to produce a haploid gene-edited embryo. The embryo is rescued by
tissueculture toproduceahaploidplantlet.Colchicine treatment induces chromosomedoublingandgene-editeddoubledhaploidwheatplants canbe selected.
This method could be used to edit genes in a wide range of wheat varieties because it does not depend on A. tumefaciensmediated transformation of wheat.
The green background indicates stages at which the Cas9-gRNA construct is expressed.
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the target site (Fig. 2c). Although the reported efficiencies were low,
the optimisation of this method presents an attractive route via
which to induce edits inmultiple elite wheat varieties after only one
transformation event, without requiring transformation of the elite
varieties themselves andwith no risk of inheritance of the transgenic
cassette.

CRISRP-Cas9 has also been used to rapidly domesticate orphan
crops by removing undesirable traits (Lemmon et al., 2018). This
approach of targeting known phenotypic genes could be used to
make maize, rice and wheat more amenable to laboratory studies,
for example by targeting genes for reduced size. Transformation
methods that can be applied to a wider range of varieties (Fig. 2)
may bypass some of the limitations of the current rapid lifecycle
varieties that are only available in a few genetic backgrounds.
Secondly, this approach could be applied to facilitate the study of
other cereals or to generate custommodel species or varieties for the
examination of particular traits.

The difficulties in molecular biology techniques such as
transformation, which are variety dependent, show that there is
still a lot to learn about the influence of genetic variation on the
biology of a plant. Genomic studies are now revealing the huge
range of genetic variation within plant species; for example, the re-
sequencing of 3000 rice varieties has identified over 10 000 novel
full-length protein-coding genes (Wang et al., 2018). Some of these
genes, which are absent from the reference variety Nipponbare,
may have agronomically relevant functions, as has been shown for
the SUB1A gene, which confers resistance to flooding but is not
present in japonica varieties (Xu et al., 2006). Pan-genome projects
for the study of genomic diversity have also been initiated in maize
(Brohammer et al., 2018) and wheat (Borrill et al., 2019b), with
early results frommaize underlining the importance of transposable
elements in driving genomic variation (Anderson et al., 2019).
Leveraging the variation in these species will be critical to furthering
our understanding of cereal biology and developing improved elite
varieties.

Looking to the future, at the global political level there is an
increased interest in food security, which will have an important
influence on cereal research. In 2015 the United Nations set a
SustainableDevelopmentGoal to end hunger by 2030. This global
interest has already started to increase the amount of funding
allocated to cereal research, which in turn has helped to accelerate
the development of many new technologies. However, it remains
difficult to determine which came first – the technology or the
funding.More researchers are being attracted to work on cereals, in
part due to the funding landscape, but also due to the increased
tractability of cereals for molecular biology work. To give one area
of research as an example, cloning the first disease resistance genes in
cereals took a minimum of 5–10 yr. Now with genomics
approaches, resistance genes can be cloned far more rapidly, as
evidenced by the exponentially increasing number of cloned
resistance genes in wheat (Keller et al., 2018) and papers publishing
multiple resistance genes simultaneously, which would have been
unthinkable even a few years ago (Steuernagel et al., 2016;Marchal
et al., 2018). Through the techniques and resources available now,
and those currently under development, it is likely that there will be

similar expansions in understanding themolecularmechanisms of a
whole range of traits in cereals.

VI. Conclusions

We now have the tools, resources and approaches with which to
accelerate our fundamental understanding of the biology of the
three major cereal crops using the species themselves, whilst
considering the insights gained in traditionalmodel systems such as
Arabidopsis. Studying cereals directly will translate the promise of
genetic solutions more rapidly into the field, through breeding
programmes and agronomic practices. We will need to take
advantage of multiple approaches to feed the growing world
population and to stabilise, let alone increase, yields under climate
change. Traditional model species can give us insight into
conserved processes, but the opportunities to work directly on
cereal crops are now too great to ignore.
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