
 
 

University of Birmingham

A bound for the rank-one transient of
inhomogeneous matrix products in special case
Kennedy-Cochran-Patrick, Arthur; Sergeev, Sergey; Berezny, Stefan

DOI:
10.14736/kyb-2019-1-0012

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Kennedy-Cochran-Patrick, A, Sergeev, S & Berezny, S 2019, 'A bound for the rank-one transient of
inhomogeneous matrix products in special case', Kybernetika, vol. 55, no. 1, pp. 12-23.
https://doi.org/10.14736/kyb-2019-1-0012

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© Institute of Information Theory and Automation 2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.14736/kyb-2019-1-0012
https://doi.org/10.14736/kyb-2019-1-0012
https://birmingham.elsevierpure.com/en/publications/e2a10764-b2e2-4342-91e6-a7b7c8900af9


K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 1 , P A G E S 1 2 – 2 3

A BOUND FOR THE RANK-ONE TRANSIENT OF
INHOMOGENEOUS MATRIX PRODUCTS
IN SPECIAL CASE

Arthur Kennedy-Cochran-Patrick, Sergĕı Sergeev, and Štefan Berežný

We consider inhomogeneous matrix products over max-plus algebra, where the matrices in
the product satisfy certain assumptions under which the matrix products of sufficient length are
rank-one, as it was shown in [6] (Shue,Anderson,Dey 1998). We establish a bound on the
transient after which any product of matrices whose length exceeds that bound becomes rank-
one.

Keywords: max-plus algebra, matrix product, rank-one, walk, Trellis digraph

Classification: 15A80, 68R99, 16Y60, 05C20, 05C22, 05C25

1. INTRODUCTION

By max-plus algebra we mean the linear algebra developed over the max-plus semiring
Rmax, which is the set Rmax = R ∪ {−∞} equipped the additive operator a ⊕ b =
max{a, b} and the multiplicative operator a⊗ b = a+ b. We will be mostly interested in
the max-plus matrix multiplication A ⊗ B defined for any two matrices A = (ai,j) and
B = (bi,j) with entries in Rmax of appropriate sizes by the rule

(A⊗B)i,j =
⊕

1≤k≤n

ai,k ⊗ bk,j = max
1≤k≤n

ai,k + bk,j .

In particular, the kth max-plus power of a square matrix A is defined as

A⊗k = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
(k times)

.

A lot of work has been done on max-plus powers of a single matrix. Main results
of the present paper are in some relation to the bounds on the ultimate periodicity
of the sequence of max-plus matrix powers {At}t≥1, like those established in [4], [5].
However, instead of max-plus powers of a single matrix we will consider max-plus inho-
mogeneous matrix products of the form A1⊗A2 . . .⊗ . . .⊗Ak where matrices A1, . . . , Ak
are taken from an infinite matrix set X . We will make use of the assumptions made
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in [6] and derive a bound for the rank-one transient of inhomogeneous products of ma-
trices from X which is the minimal K such that A1 ⊗ A2 ⊗ . . . ⊗ Ak for any k ≥ K
can be represented as a max-plus outer product ~x⊗ ~y>, where column vectors ~x and ~y
depend on the matrix product. In Theorem 4.1 we first obtain a sufficient condition for
an inhomogenous product to be rank-one. The bound on the rank-one transient is then
obtained in Corollaries 4.3 and 4.4.

A practical motivation of this study comes from the switching max-plus dynamical
systems of the form x(k + 1) = A(k) ⊗ x(k) where matrices A(k) can vary. Such
systems arise in some scheduling applications being related to the way that max-plus
algebra is used in modeling discrete event dynamical systems [1]. Let us also note,
in particular, a recent application of switching max-plus systems of above form in the
legged locomotion of robots [3], where changing matrices A(k) model the switch of gaits.

This paper is based on the ideas of [6] where the steady state properties of max-plus
inhomogeneous matrix products were considered. The aim of [6] was to prove that,
under certain assumptions, a sufficiently long max-plus matrix product is rank-one and
it can be written as the outer product of two vectors. Components of these vectors are
optimal weights of walks going to and from node 1 respectively. However, it seems to us
that there is an oversight in [6, Corollary 3.1]. This oversight is that in order to prove
that the initial and final parts of an optimal walk are bounded in length, paper [6] uses
a method in which one removes part of a walk in order to create a more optimal walk.
This would be fine if the matrices were the same however since they are different then
removing matrices from the product changes the product and one ends up working with
a different product. The result of [6] is also proved for a sufficient k that is large enough
but no concrete bounds are established, so this invited us to look for a bound on the
length of a max-plus inhomogeneous matrix product after which it becomes an outer
product of two vectors. Such bound is the main result of this paper.

The structure of this paper will be as follows. Chapter 2 defines the key ideas and
notation that will be used throughout the paper. In Chapter 3 we introduce and prove
the lemmas required to prove the main theorem. Chapter 4 contains the proof of the main
theorem as well as corollaries that follow from the theorem one being a coarser bound
on k. Finally, Chapter 5 presents an example which demonstrates a long enough inho-
mogeneous matrix product which is an outer max-plus product of two vectors.

2. DEFINITIONS AND ASSUMPTIONS

2.1. Walks and digraphs

The aim of this subsection is to introduce some important definitions concerning 1)
directed weighted graphs, associated with a matrix and 2) trellis digraphs associated
with inhomogeneous matrix products. Note that Definitions 2.2 and 2.4 are standard [2],
and Definition 2.3 follows [6].

Definition 2.1. A directed graph (digraph) is a pair (N,E) where N is a finite set of
nodes and E ⊆ N ×N = {(i, j) : i, j ∈ N} is the set of edges where (i, j) is a directed
edge from node i to node j.

A weighted digraph is a digraph with associated weights wi,j ∈ Rmax for each edge
(i, j) in the digraph.
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Definition 2.2. A digraph associated with a square matrix A is a digraphDA = (NA, EA)
where the set NA has the same number of elements as the number of rows or columns in
the matrix A. The set EA ⊆ NA×NA is the set of edges in DA where the weight of each
edge (i, j) is associated with the respective entry in the matrix A, i. e. wi,j = ai,j ∈ Rmax.
If an entry in the matrix is negative infinity, this means that there is no edge connecting
those nodes in that direction.

Definition 2.3. Matrices A,B ∈ Rn×nmax are called geometrically equivalent if EA = EB .

Definition 2.4. A sequence of nodes W = (i0, . . . , il) is called a walk on a weighted
digraph D = (N,E) if (is−1, is) ∈ E for each s : 1 ≤ s ≤ l. This walk is a cycle if the
start node i0 and the end node il are the same. It is a path if no two nodes in i0, . . . , il
are the same. The length of W is l(W ) = l. The weight of W is defined as the max-plus
product (i. e., the usual arithmetic sum) of the weights of each edge (is−1, is) traversed
throughout the walk, and it is denoted by pD(W ). Note that a sequence W = (i0) is
also a walk (without edges), and we assume that it has weight and length 0.

A digraph is strongly connected if for any two nodes i and j there exists a walk
connecting i to j. A matrix is irreducible if the graph associated with it in the sense of
Definition 2.2 is strongly connected.

Definition 2.5. The trellis digraph TΓ(k) = (N , E) associated with the product Γ(k) =
A1⊗A2⊗ . . .⊗Ak is the digraph with the set of nodes N and the set of edges E , where:

(1) N consists of k + 1 copies of N which are denoted N0, . . . , Nk, and the nodes in
Nl for each 0 ≤ l ≤ k are denoted by 1 : l, . . . , n : l;

(2) E is defined by the following rules:

a) there are edges only between Nl and Nl+1 for each l,

b) we have (i : (l − 1), j : l) ∈ E if and only if (i, j) is an edge of DAl
, and

the weight of that edge is (Al)i,j .

The weight of a walk W on TΓ(k) is denoted by pT (W ).

Definition 2.6. Consider a trellis digraph TΓ(k).
By an initial walk connecting i to j on TΓ(k) we mean a walk on TΓ(k) connecting

node i : 0 to j : m where m is the first and the last time the walk arrives at node j and
is such that 0 ≤ m ≤ k.

By a final walk connecting i to j on TΓ(k) we mean a walk on TΓ(k) connecting node
i : l to j : k, where l is the first and the last time the walk leaves node i and is such that
0 ≤ l ≤ k.

A full walk connecting i to j on TΓ(k) is a walk on TΓ(k) connecting node i : 0 to j : k.

2.2. Key notations

Here we will introduce the notation that will be used throughout the paper. We begin
by introducing the following two matrices.
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Notation 2.7. The “boundaries” of X :

Asup: the entrywise supremum over all matrices in X . More precisely, Asup
ij = sup

X∈X
(X)ij .

In max-plus matrix notation,

Asup =
⊕
X∈X

X.

The weight of a walk W on DAsup will be denoted by psup(W ).

Ainf : the entrywise infimum over all matrices in X . More precisely, Ainf
ij = inf

X∈X
(X)ij .

We now introduce a number of useful parameters. The first group of parameters
relates to DAsup and DAinf , and the second to TΓ(k).

Notation 2.8. λ∗: the largest cycle mean in the submatrix (Asup
i,j )i,j 6=1:

λ∗ = max
k≥1

(
max

2≤i1,...,ik≤n

Asup
i1i2

+ . . .+Asup
iki1

k

)
.

Notation 2.9. Weights of some paths and walks on DAsup and DAinf :

αi: the maximal weight of paths on DAsup connecting i to 1;

βj : the maximal weight of paths on DAsup connecting 1 to j;

γij : the maximal weight of paths on DAsup connecting i to j and not going through
node 1;

wi: the maximal weight of walks of length not exceeding k on DAinf connecting i to 1;

vj : the maximal weight of walks of length not exceeding k on DAinf connecting 1 to j.

Notation 2.10. Weight of optimal walks on TΓ(k):

w∗i : the maximal weight of initial walks on TΓ(k) connecting i to 1;

v∗j : the maximal weight of final walks on TΓ(k) connecting 1 to j.

Note that the length of any walk on TΓ(k) does not exceed k.

2.3. Key assumptions

We will use the following main assumptions, which are very similar to those of [6].

Assumption 2.11. The matrices Ai, i ∈ 1, ..., k are chosen from a set X of geometri-
cally equivalent irreducible matrices, and the matrix Ainf is also geometrically equivalent
to any of them.

Assumption 2.12. The digraph of each matrix in the set X has a unique critical cycle
of length 1 at node 1 with weight 0.
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Assumption 2.13. The digraph of the matrix Asup has a unique critical cycle of length
1 at node 1 of weight 0.

Note that, if the unique critical cycle of length one is at any other node than 1, then
none of our main results will change significantly. However, the given assumptions are
still very limiting in terms of the type of matrix and the real world situation that this
can apply to.

3. PRELIMINARY LEMMAS

The aim of this section is to prove some preliminary lemmas which will help us to
construct the terms in the bound of Theorem 4.1 and its corollaries. The main ideas are
that the lengths of optimal initial and final walks are bounded (Lemmas 3.1 and 3.2)
and that after some transient on the length any optimal full walk should pass through
node 1 (Lemma 3.3).

Lemma 3.1. Let W1 be an optimal initial walk on trellis digraph TΓ(k) connecting i to
1. Then we have the following upper bound on its length:

l(W1) ≤ w∗i − αi
λ∗

+ (n− 1). (1)

P r o o f . Due to Assumptions 2.12 and 2.13 we have λ∗ < 0. The weight of any optimal
walk W1 connecting i to 1 is less than or equal to that of a path P1 connecting i to 1
on DAsup plus the remaining length multiplied by λ∗ < 0. Thus

pT (W1) ≤ psup(P1) + (l(W1)− (n− 1))λ∗.

Next we bound psup(P1) ≤ αi, hence

pT (W1) ≤ αi + (l(W1)− (n− 1))λ∗. (2)

Now assume by contradiction that l(W1) >
w∗

i−αi

λ∗ + (n− 1). However, this is equivalent
to

αi + (l(W1)− (n− 1))λ∗ < w∗i . (3)

Combining (2) with (3) we obtain pT (W1) < w∗i meaning that W1 is not optimal,
a contradiction. The proof is complete. �

We now state an analogous lemma on the length of an optimal final walk. The proof
is similar and will be omitted.

Lemma 3.2. Let W2 be an optimal final walk on trellis digraph TΓ(k) connecting 1 to
j. Then we have the following upper bound on its length:

l(W2) ≤
v∗j − βj
λ∗

+ (n− 1). (4)
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Lemma 3.3. Let

k >
w∗i − αi + v∗j − βj

λ∗
+ 2(n− 1). (5)

Then any optimal full walk W connecting i to j on TΓ(k) and going through node 1 is
decomposed as,

W = W1 ◦ C ◦W2

where W1 is an optimal initial walk and W2 is an optimal final walk which satisfy

l(W1) ≤ w∗i − αi
λ∗

+ (n− 1),

l(W2) ≤
v∗j − βj
λ∗

+ (n− 1),

C consists of several loops 1→ 1 and

pT (W ) = w∗i + v∗j .

P r o o f . Let W be an optimal full walk connecting i to j that traverses node 1 at
least once. Note first that all edges between the first and the last occurrence of 1 in W
can be replaced with the copies of (1, 1), since these edges are present in every matrix
Xα from X . Assumption 2.13 implies that this leads to a strict increase of the weight,
therefore we must have W = W̃1 ◦ C̃ ◦ W̃2, where C̃ consists of several edges (1, 1), W̃1

is an initial walk from i to 1 and W̃2 is a final walk from 1 to j. We have pT (C̃) = 0, so
pT (W ) = pT (W̃1) + pT (W̃2).

Now we note that by Lemmas 3.1 and 3.2 the length k is sufficient for constructing
a walk W ′ = V1 ◦ C ′ ◦ V2 where V1 is an optimal initial walk from i to 1, C ′ consists
of several copies of (1, 1) and V2 is an optimal final walk from 1 to j. The weight of this
walk is w∗i + v∗j .

By the optimality of V1 and V2 we have pT (W̃1) ≤ pT (V1) and pT (W̃2) ≤ pT (V2).
Since W is optimal, both inequalities should hold with equality.

That is, W̃1 is an optimal initial walk connecting i to 1 and W̃2 is an optimal final walk
connecting 1 to j, so that W̃1, W̃2 and C̃ can be taken for W1, W2 and C respectively.
The proof is complete. �

Lemma 3.4. Let

k >
w∗i + v∗j − γi,j

λ∗
+ (n− 1). (6)

Then any full walk W connecting i to j on TΓ(k) that does not go through node 1 has
weight smaller than w∗i + v∗j .

P r o o f . Due to Assumption 3.1 and 3.2 the weight of any walk pT (W ) connecting
i → j and not going through 1 will be less than or equal to the weight of a path P on
DAsup going from i to j plus the remaining length multiplied by λ∗:

pT (W ) ≤ psup(P ) + (k − (n− 1))λ∗. (7)
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As P is a path from i→ j, its weight is bounded above by γij . Therefore

psup(P ) + (k − (n− 1))λ∗ ≤ γij + (k − (n− 1))λ∗. (8)

We now see that (6) is equivalent to

γij + (k − (n− 1))λ∗ < w∗i + v∗j . (9)

Combining (7),(8) and (9) we see that pT (W ) < w∗i + v∗j , thus the proof is complete.
�

4. MAIN RESULTS

Now we can move on to the main theorem of the paper, with its modifications and
corollaries.

Theorem 4.1. Let Γ(k) be an inhomogenous max-plus matrix product Γ(k) = A1 ⊗
A2 ⊗ . . .⊗Ak with k satisfying

k > max
(w∗i + v∗j − γij

λ∗
+ (n− 1),

w∗i − αi + v∗j − βj
λ∗

+ 2(n− 1))
)

(10)

for some i, j ∈ N , then

Γ(k)i,j = Γ(k)i,1 ⊗ Γ(k)1,j

= Γ(k)i,1 + Γ(k)1,j .

P r o o f . As seen by Lemma 3.4, if

k >
w∗i + v∗j − γij

λ∗
+ (n− 1)

then any walk on TΓ(k) not going through node 1 will have weight smaller than w∗i + v∗j .
By Lemma 3.3, if

k >
w∗i − αi + v∗j − βj

λ∗
+ 2(n− 1)

then any optimal full walk going through node 1 will consist of the three parts W1,W2

and C as defined in the Lemma and its weight will be w∗i + v∗j . Hence if k satisfies both
inequalities then any optimal full walk goes through node1 and has weight

Γ(k)ij = w∗i + v∗j

Observe that w∗1 and v∗1 are equal to 0, since the weight of any optimal initial or final
walk on TΓ(k) connecting 1 to 1 is 0. Therefore

Γ(k)i,1 = w∗i + v∗1 = w∗i ,

Γ(k)1,j = w∗1 + v∗j = v∗j ,

and

Γ(k)i,j = Γ(k)i,1 + Γ(k)1,j .

�
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Let us extend Theorem 4.1 to a matrix form.

Corollary 4.2. If the matrix product Γ(k) with length k satisfies

k > max
i,j∈N

(w∗i + v∗j − γij
λ∗

+ (n− 1),
w∗i − αi + v∗j − βj

λ∗
+ 2(n− 1))

)
for all i, j ∈ N , then Γ(k) is rank one and

Γ(k) =


Γ(k)1,1

Γ(k)2,1

...
Γ(k)n,1

⊗ [Γ(k)1,1 Γ(k)1,2 . . . Γ(k)1,n

]
.

P r o o f . Using Theorem 4.1 for all i, j ∈ N , if k satisfies the condition (10) then

Γ(k)i,j = Γ(k)i,1 + Γ(k)1,j .

Since this applies for all i, j ∈ N , Γ(k)i,1 and Γ(k)1,j can be written as vectors in Rn.
Using the max-plus outer product of these two vectors it becomes

Γ(k) =


Γ(k)1,1

Γ(k)2,1

...
Γ(k)n,1

⊗


Γ(k)1,1

Γ(k)1,2

...
Γ(k)1,n


>

thus proving the corollary. �

The bounds of Theorem 4.1 and Corollary 4.2 are interesting to see but they are
implicit. This is because in order to calculate w∗i and v∗j you need to calculate Γ(k) in
which the length of the product is dictated by the bound using w∗i and v∗j . However

another bound can be derived from Theorem 4.1 using Ainf . From the definition of Ainf ,
wi and vj it is easy to see that for all i, j ∈ N

wi ≤ w∗i and vj ≤ v∗j

These inequalities, together with Theorem 4.1, imply the following results.

Corollary 4.3. Let Γ(k) be an inhomogenous max-plus matrix product Γ(k) = A1 ⊗
A2 ⊗ . . .⊗Ak with k satisfying

k > max
(wi + vj − γij

λ∗
+ (n− 1),

wi − αi + vj − βj
λ∗

+ 2(n− 1))
)

for some i, j ∈ N , then

Γ(k)i,j = Γ(k)i,1 ⊗ Γ(k)1,j

= Γ(k)i,1 + Γ(k)1,j .
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We now also extend Corollary 4.3 to a matrix form.

Corollary 4.4. Let Γ(k) be an inhomogenous max-plus matrix product Γ(k) = A1 ⊗
A2 ⊗ . . .⊗Ak with k satisfying

k > max
i,j∈N

(wi + vj − γij
λ∗

+ (n− 1),
wi − αi + vj − βj

λ∗
+ 2(n− 1))

)
then Γ(k) is rank one and

Γ(k) =


Γ(k)1,1

Γ(k)2,1

...
Γ(k)n,1

⊗ [Γ(k)1,1 Γ(k)1,2 . . . Γ(k)1,n

]
.

Note that this bound is explicit, and in particular it can be found numerically without
having to calculate Γ(k) beforehand. This is a bound for the rank-one transient of
inhomogeneous products.

5. AN EXAMPLE

To illustrate what has been achieved in the paper let us consider an example. Let DA

be a digraph consisting of five nodes with the generalised associated weight matrix (for
convention let ε = −∞),

A =


a1,1 a1,2 a1,3 ε ε
a2,1 ε ε ε a2,5

ε ε ε a3,4 ε
ε a4,2 ε ε ε
a5,1 ε ε a5,4 ε

 ,
where ai,j ∈ Rmax. Consider the set X = {A1, A2, A3} where

A1 =


0 −1 −2 ε ε
−3 ε ε ε −3
ε ε ε −4 ε
ε −5 ε ε ε
−6 ε ε −5 ε

 ,

A2 =


0 −4 −3 ε ε
−4 ε ε ε −3
ε ε ε −2 ε
ε −1 ε ε ε
−1 ε ε 1 ε

 ,

A3 =


0 2 −4 ε ε
−5 ε ε ε −6
ε ε ε −4 ε
ε −3 ε ε ε
−2 ε ε 2 ε

 .
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It can be seen that these satisfy the assumptions with the top left entry of each matrix
being zero. Using these we can calculate the coarser bounds of Corollaries 4.3 and 4.4.
In order to do that we need Asup and Ainf , which are

Asup =


0 2 −2 ε ε
−3 ε ε ε −3
ε ε ε −2 ε
ε −1 ε ε ε
−1 ε ε 2 ε

 and Ainf =


0 −4 −4 ε ε
−5 ε ε ε −6
ε ε ε −4 ε
ε −5 ε ε ε
−6 ε ε −5 ε

 .
We now begin to calculate the bounds of Corollaries 4.3 and 4.4. The only cycle that
does not got through node 1 is (2 → 5 → 4 → 2) which has average weight λ∗ = − 2

3 .
Using Asup we get αi, βj and γi,j as the entries of

α =


0
−3
−6
−4
−1

 , β =


0
2
−2
1
−1

 , γ =


ε ε ε ε ε
ε −2 ε −1 −3
ε −3 ε −2 −6
ε −1 ε −2 −4
ε 1 ε 2 −2

 .
Using Ainf we can also calculate wi and vj as the entries of

w =


0
−4
−13
−9
−6

 , v =


0
−5
−4
−8
−10

 .
With these pieces we can construct the bounds for k for each combination of i and j:

k > max
i,j∈N



ε ε ε ε ε
ε 14.5 ε 20.5 20.5
ε 26.5 ε 32.5 29.5
ε 23.5 ε 26.5 26.5
ε 22 ε 28 25

 ,


8 18.5 11 21.5 21
9 20 12.5 23 23
18 29 21.5 32 32
15 26 18.5 29 29

15.5 26 18.5 29 29


⇔ k > 32.

This means that if a matrix product Γ(k) has length greater then 32 then it will be
rank-one. Let us now take a random product of length 44:

Γ(k) = A1 ⊗A3 ⊗A1 ⊗A2 ⊗A3 ⊗A1 ⊗A2 ⊗A2 ⊗A1 ⊗A3 ⊗A1

⊗A2 ⊗A1 ⊗A2 ⊗A3 ⊗A3 ⊗A1 ⊗A2 ⊗A1 ⊗A1 ⊗A3 ⊗A2

⊗A3 ⊗A2 ⊗A2 ⊗A3 ⊗A1 ⊗A1 ⊗A2 ⊗A3 ⊗A2 ⊗A1 ⊗A3

⊗A1 ⊗A2 ⊗A3 ⊗A1 ⊗A3 ⊗A3 ⊗A1 ⊗A2 ⊗A2 ⊗A1 ⊗A1.

We obtain that

Γ(k) =


0 −1 −2 −6 −4
−3 −4 −5 −9 −7
−10 −11 −12 −16 −14
−10 −11 −12 −16 −14
−6 −7 −8 −12 −10

 .
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We see that Γ(k) = w∗i ⊗ (v∗j )> = Γ(k)i,1 ⊗ (Γ(k)1,j)
> where

w∗ =


0
−3
−10
−10
−6

 , v∗ =


0
−1
−2
−6
−4

 .
Note that the bound appearing in Corollary 4.2 is equal to

max
i,j∈N



ε ε ε ε ε
ε 7 ε 16 10
ε 16 ε 25 16
ε 19 ε 25 19
ε 16 ε 25 16

 ,


8 12.5 8 18.5 12.5
8 12.5 8 18.5 12.5
14 18.5 14 24.5 18.5
17 21.5 17 27.5 21.5

15.5 20 15.5 26 20


 = 27.5,

which is smaller than the coarser bound 33.
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