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Abstract 

Composite bearers, which are the long crosstie beams, are safety-critical components in 

railway switches and crossings. Recent adoption of composites to replace aging timber 

bearers has raised the concern about their engineering performance and behaviour. Since the 

design and test standards for composite bearers are not existed, most performance evaluations 

are based on the flexural tests in accordance with the test standards for railway concrete 

sleepers. In this study, both numerical and experimental studies into the flexural behaviours 

of composite bearers have been conducted to improve the understanding into the resilience 

and robustness of the components under service load condition. The full-scale composite 

bearers are supplied by an industry partner. The full-scale tests have been conducted in 

structures laboratory at the University of Birmingham. 3D finite element modelling of the 

bearers has been developed using Strand7. The comparison between numerical and 

experimental results yields an excellent agreement with less than 3% discrepancy. The results 

exhibit that the composite bearers behave in the elastic region under service load condition. 

This implies that they can recover fully under the load, enhancing engineering resilience of 

the turnout systems. 

1. Introduction 

A novel composite material, ‘fibre-reinforced foamed urethane (FFU)’ has gained an 
important momentum for applications in railway industry. As railway bearers in switches and 
crossings, the FFU components acting as a beam are to redistribute the train forces (static and 
dynamic loads) onto track support (ballast). Also, they can secure the rail gauge to allow 
trains to travel safely [1-3]. Its structural performance must be instigated and assured at all 
time through inspection (safety-related assessment functions), monitoring (surveillance 
functions) and maintenance [4-6]. A further function of the structural elements in a ballasted 
railway track system is to aid lateral track protection to enhance the stability and stiffness of 
the track structure. Any structural deterioration or poor conditions of the elements could 
affect the reliability, safety, and quality of the railway line. This leads to impaired rail 
services, for example, if the bearers cracked dramatically, they would deform highly under 
the loads induced by wheel-rail interaction. This large differential settlement encourages the 
damage to other railway elements that in turn shortens the maintenance period of the railway 
line. However, if the bearers are more flexible (low elasticity), the track can dramatically 
deform and providing the outcome in a large differential local track surface (top smoothness) 
[7-12]. These cause higher dynamic loads, poor travelling comfort and extra train energy 
consumption [13-15]. Additionally, if the lateral resistance of the line is inadequate to support 
horizontal loads, (i.e. due to loosened ballast or abraded bearers), rail buckling may occur 
[16]. 



Railway urban turnout is a unique track system employed to divert a train from a particular 
direction or a particular line onto other lines or other directions. It is a structural grillage 
system which comprises of steel rails, crossing (uncommon line elements), points (well-
known as switches), rubber pads, steel plates, insulators, screw spikes, fasteners, beam 
bearers (either polymer, concrete, steel, or timber), ballast, and formation as shown in Figure 
1. Conventional turnout structural were typically supported by timber bearers. They allow the 
steelwork to be mounted directly on steel plates which are spiked or screwed into the bearers. 
Timber has an outstanding damping coefficient, whilst steel and concrete tend to have nearly 
no damping coefficient [17-20]. Concrete has proven to be a great counterpart to improve line 
and turnout stability – laterally, vertically [21-22]. Moreover, steel bearers perform well in a 
short period, anyway, having higher turnout settlement and ballast breakage during the long 
period [23-24].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Typical turnout geometry [25]. 

 
Material scarcity and environmental concern force researchers considering new materials 

capable of satisfying the railway system specifications. Developing new materials capable of 
satisfying the functional requirements including enhancing their recyclability. There is a 
constant search for a material that is durable, reasonably easy to produce and maintain, has 
attractive costs, and meets the expected requests effectively [26]. A crucial concern in the 
railway industry is the replacement of deteriorated and damaged bearers in existing lines [26]. 
Especially in special positions such as railways crossings and switches, railway bridges, and 
transition zones, the requirement for alternative materials to replace old timber components is 
undoubtedly important [27-28]. It is well known that common turnout generally imparts high 
impact actions on to structural members due to its blunt geometry and mechanical 
connections between closure rails and switch rails. This has boosted the importance of 
structural performance and failure modes of the elements employed in railway systems. 
Because the design method for composite bearers has not been standardized yet [1-4], most 
design concept for the composites is based on allowable stresses, which is slightly more 
conservative (more safety margin) compared with limit states design principle (Figure 2). 

 
 
 
 
 
 
 
 
 

 

 

Nomenclature 

E modulus of elasticity 

SF safety factor 

𝑛 stress 

𝑛 strain 

 



Figure 2. Schematics of allowable stress design concept for each material [29]. 

As a result, it is imperative that material reduction factors be identified based on the data 
recorded through experiments into failure mode and structural performance. These in-depth 
understandings would later help the railway owner or authority to verify the cost effectiveness 
and safety possibility of the composite bearers. This allowable stress design concept 
determines the maximum strength of constituent materials, which then cannot be exceeded in 
the component. Safety and serviceability aspects such as brittle fracture, bursting, fatigue 
failure, and allowable deflections are taken into account in this design method by the 
determination of safety factor values [30]. The cost effectiveness can then be evaluated using 
reliability indexes whether the component is either optimally, overly, or under designed. 

There are many efforts towards improving the characteristics of the materials already 
utilized in the railway track engineering (wood, concrete, and steel) as applied to the polymer 
by itself or composite polymers, using primarily fibres [31]. For over 35 years, fibre 
reinforced foamed urethane (FFU) composites have been utilized in the construction of 
railway track systems. Sekisui Chemical & Co [32] is the principal producer of this material. 
Numerous researches using Japanese testing standards are conducted for this material in order 
to define its limits of use or validated them in specific and particular cases [32]. On the other 
hand, based on the significant review for composites [1], it is clear that there is no previous 
work to evaluate the failure mode, structural damage and structural design performance of the 
FFU composites. The aim of this study is to focus the flexural behaviours of FFU composite 
bearers obtained from numerical and experimental data to enhance the insight into the 
resilience and robustness of the components under service load condition. The main highlight 
is to underpin the design ideas of plastic and FFU composite bearers. This is because the use 
of such bearers is relatively new in railway industry across the world.  Knowledge of the 
engineering design principle is therefore significant for enabling proper repair, adoption, and 
retrofit of the line components in the future. In this paper, the experimental and numerical 
investigation into the flexural modes connected with plastic and composite bearers are 
presented. These understandings will aid railway engineers to determine suitable engineering 
methods and solutions for track construction and maintenance under future uncertainties. 

2. Materials and experiment of composite beams 

An industry partner provided nine full-scale beams (160 mm depth x 250 mm width x 3200 
mm length) using fibre reinforced foamed urethane composites (designed for railway track 
components). The experimental testing is based on the evaluation benchmark of EN 13230 
(Test material specifications, support conditions, loading procedures, and some specific 
requirements for bending tests on railway track concrete sleepers). Some procedures are 
followed by these tests to prove the test information. On the other hand, EN 13230 has severe 
limitation in order to determine failure mode of flexible composites. For example, some test 
procedures are adjusted to investigate the structural damage and the failure mode of the full-
scale FFU composite beams [33-35].  
    Positive and negative bending tests are needed at the rail seats support, based on EN 
13230-2 bending testing. Since the FFU test specimens have the same positive and negative 
capacity (symmetry). In this paper, there is the only positive bending tests conducted to 
identify a resemble failure mode in a track system [26, 35-36]. The standard requires 
articulated support and must be 100 mm wide, made of steel with Brinell: HBW > 240. In the 
experiments, quasi-static load should be applied to the middle span of the beam for normal 
positive bending. Figure 3 demonstrates the layout of the bending load process. Additionally, 
it indicates the locations of many different non-destructive test (NDT) sensors. Linear 
variable differential transformers (LVDT) are placed at the mid-span location of the specimen 
to collect the deflection. Also, three acoustic emission (AE) devices are employed in each 
test. Four strain gauges are set up at the front and rear locations of each specimen to record 
stress changes. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Experimental setup of a full-scale FFU composite beam under flexural load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4. Load-deflection behaviour of full-scale FFU composite beams under flexural load [29]. 

 

3. Finite-element model of composite beam 

    The finite-element model of an FFU beam under flexural load was developed to investigate 

its flexural behaviour. The sleeper model based on Timoshenko theory is the most agreeable 

approach for generating two-dimensional concrete sleepers [37-40]. Anyway, this model was 

modelled using 6,000 bricks with a trapezoidal cross-section in STRAND7 [41-42], as shown 

in Figure 5. Also, the finite element model consists of the brick components, which take into 

account flexural and shear deformations, in order to model the FFU beam model. The 

material and geometric properties of these bricks are presented in Table 1. These properties 

were chosen because they were identical to a particular type of bearers manufactured in the 

UK. A flexural mode shape was conducted to evaluate the quality of the finite element (FE) 

model. It was found that 6,000 bricks, representing a composite beam, can provide acceptable 

estimation of bearer’s flexural behaviours under service load condition compared with the 

existing experimental measures. 
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Parameter lists Value Unit 

Elastic modulus  7000 MPa 

Poisson’s ratio 0.25 - 

Beam density 600 kg/m
3 

Beam length 3.2 m 

Beam cross-sectional area of a 

rectangle (0.16, depth * 0.25, 

width) 

0.042                         m
2 

 

 

Table 1. Engineering properties used in the modelling. 
 

 

 
 

 
 

Figure 5. Finite element analysis for modelling and behaviour of an FFU composite beam under 

flexural condition. 

 

    In order to verify the model, the flexural bending mode shape of a beam under static load 

condition obtained from the FE model were compared with experimental data. Figure 6 

shows a comparison between the finite-element analysis and experimental results of 

deflection. The outcomes are found to be in a very good agreement with around less than 3 

percent, as given in Figure 6. However, this study shows the comparison between the FEA 

and experimental data in the only static linear analysis under flexural behaviour in first load 

condition. 

 

 



 
Figure 6. Comparison the defection of Flexural behaviour between the numerical and 

experimental data under flexural load 

 

4. Result and discussion 

    As shown in Figure 4, crack propagation has been collected and marked under the load 
increment. It is obvious that the first crack (fracture of internal fibres) occurs at 34 kN and 
composites failed at 132 kN. Figure 7 demonstrates the crack propagation appears. The fibre 
cracks can be observed longitudinally along the fibre orientation. Also, minor fractures can 
be noticed before the sudden failure of the composite beams. Figure 8 illustrates the failure 
mode of the composite beams in laboratory. Obviously, first cracks or localized fibre failure 
is relative low, compared with the ultimate failure load. The rapid rupture can be seen 
through the delamination of fibres along with the beams. In fact, the brittle failure mode of 
the composites controls as the consideration of the load deflection given Figure 4. In addition, 
when larger fibre breaks are seen, the composites behave nonlinearly towards the failure 
point. While the linearization of structural behaviour is true only when the small fibre breaks 
occur. 
 
    
 
 
 
 
 
 
 
 

 

 

Figure 7. Crack behaviour of full-scale FFU composite beams under flexural load [29]. 
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Figure 8. Failure mode of full-scale FFU composite beams under flexural load [29]. 

5. Conclusion 

 

    Flexural behaviours of Fibre-reinforced foamed urethane (FFU) bearers in railway system 

are crucial for improving the understanding into the resilience and robustness of the 

components under service load condition. The flexural behaviours of an FFU composite 

model were studied using the finite element approach. Whilst, FFU beam specimens used in 

the experimental test were conducted employing a three-point bending test. The experimental 

investigations into the failure modes of FFU composites. The new insight into the load 

defection, crack propagation, and failure mode will aid the rail industry to produce a better 

decision for proper adoption of composites in railway infrastructure. The three-dimensional 

modelling has been verified and found in very good agreements with the experimental data 

with less than 3% difference, as given in Figure 6. According to the use of standard test 

approaches, it is confirmed that existing standard cannot be acceptable for the composite 

materials. Obviously, the results of flexural behaviours between numerical and experimental 

data cannot be validated without better understandings of in-track behaviours, failure modes, 

and science-based design approach for the materials. Additionally, this paper identifies that 

the composites are likely to have brittle failure modes. This means that a more safety factor 

should be applied for the element approach.  The rupture cannot literally be observed from 

the progression of cracks appeared on the surface of the element. The development of 

condition monitoring implement is essentiality before wide-spread use of composites in 

railway industry. This model has been very useful and has led to further research on structural 

behaviours of the railway FFU bearers in the track structure system or as well known ‘the in-

situ railway FFU bearer'. Also, a numerical analysis under failure condition should be 

conducted to absolutely verify the experimental data. 
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