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Abstract 28 

From psychology to economics there has been substantial interest in how costs (e.g., 29 

delay, risk) are represented asymmetrically during decision-making when attempting to gain 30 

reward or to avoid punishment. For example, in decision-making under risk, individuals show 31 

a tendency to prefer to avoid punishment than to acquire the equivalent reward (loss aversion). 32 

Although the cost of physical effort has recently received significant attention, it remains 33 

unclear whether loss aversion exists during effort-based decision-making. On the one hand, 34 

loss aversion may be hardwired due to asymmetric evolutionary pressure on losses and gains 35 

and therefore exists across decision-making contexts. On the other hand, distinct brain regions 36 

are involved with different decision costs, making it questionable whether similar asymmetries 37 

exist. Here, we demonstrate that young healthy human participants (Females:Males=16:6) 38 

exhibit loss aversion during effort-based decision-making by exerting more physical effort in 39 

order to avoid punishment than to gain a same-size reward. Next, we show that medicated 40 

Parkinson’s disease (PD) patients (Females:Males=9:9) show a reduction in loss aversion 41 

compared to age-matched controls (Females:Males=11:9). Behavioural and computational 42 

analysis revealed that people with PD exerted similar physical effort in return for a reward, but 43 

were less willing to produce effort in order to avoid punishment. Therefore, loss aversion is 44 

present during effort-based decision-making and can be modulated by altered dopaminergic 45 

state. This finding could have important implications for our understanding of clinical disorders 46 

that show a reduced willingness to exert effort in the pursuit of reward. 47 

Significance Statement 48 

Loss aversion – preferring to avoid punishment than to acquire equivalent reward – is 49 

an important concept in decision-making under risk. However, little is known about whether 50 

loss aversion also exists during decisions where the cost is physical effort. This is surprising 51 

given that motor cost shapes human behaviour, and a reduced willingness to exert effort is a 52 
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characteristic of many clinical disorders. Here, we show that healthy human individuals exert 53 

more effort to minimise punishment than to maximise reward (loss aversion). We also 54 

demonstrate that medicated Parkinson’s disease patients exert similar effort to gain reward but 55 

less effort to avoid punishment when compared with healthy age-matched controls. This 56 

indicates that dopamine-dependent loss aversion is crucial for explaining effort-based decision-57 

making. 58 

Introduction 59 

There has been substantial interest into how a cost, such as delay or reward uncertainty, 60 

discounts the utility, or ‘value’, an individual associates with the beneficial outcome of a 61 

decision (Bautista, Tinbergen, & Kacelnik, 2001; Daw & Doya, 2006; Fehr & Rangel, 2011; 62 

Green & Myerson, 2004; Kahneman & Tversky, 1979; Rachlin, 2006; Rachlin & Green, 1972; 63 

Stephens, 2001; Stephens & Krebs, 1986). One cost that has recently received significant 64 

attention is physical effort (effort-based decision-making, Chong et al., 2015; Klein-Flügge, 65 

Kennerley, Friston, & Bestmann, 2016; Le Bouc et al., 2016; Shadmehr, Huang, & Ahmed, 66 

2016). Previous work has investigated the computational, neural and neurochemical 67 

mechanisms involved when individuals evaluate rewards that are associated to physical effort 68 

(Burke, Brunger, Kahnt, Park, & Tobler, 2013; Hauser, Eldar, & Dolan, 2017; Kurniawan, 69 

Guitart-Masip, & Dolan, 2011; Prévost, Pessiglione, Météreau, Cléry-Melin, & Dreher, 2010), 70 

with a diminished willingness to exert effort being a prevalent characteristic of many clinical 71 

disorders such as Parkinson’s disease (Baraduc, Thobois, Gan, Broussolle, & Desmurget, 2013; 72 

Chong et al., 2015).  73 

With other costs, such as delay and uncertainty, prior work has examined how they are 74 

represented differently when attempting to gain reward or avoid punishment. For example, in 75 

decision-making under risk, individuals show a tendency to prefer to avoid punishment than to 76 

acquire the equivalent reward, a phenomenon called loss aversion (Kahneman & Tversky, 1979; 77 
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Tversky & Kahneman, 1992). Surprisingly, it remains unclear whether people also exhibit loss 78 

aversion during effort-based decision-making. On the one hand, loss aversion may be 79 

hardwired due to asymmetric evolutionary pressure on losses and gains (Kahneman & Tversky, 80 

1979; Tom, Fox, Trepel, & Poldrack, 2007; Tversky & Kahneman, 1992b), and thus should be 81 

observed in any cost-benefit decision-making context. On the other hand, distinct brain regions 82 

are involved in decision-making with different costs (Bailey, Simpson, & Balsam, 2016; 83 

Galaro, Celnik, & Chib, 2019; Hauser et al., 2017; Prévost et al., 2010), making it questionable 84 

whether similar asymmetries should exist.  For example, while the cingulate cortex is 85 

implicated in effort-based decision-making, other brain areas such as the ventromedial 86 

prefrontal cortex are thought to play a more important role for decision-making under risk 87 

(Klein-Flügge et al., 2016). Although several studies have attempted to address this question, 88 

these either do not directly examine loss aversion (Galaro et al., 2019), do not involve the 89 

execution of the effortful action (Nishiyama, 2016) or the cost of effort is confounded with the 90 

cost of temporal delay (Porat, Hassin-Baer, Cohen, Markus, & Tomer, 2014).  91 

The neurotransmitter dopamine appears to be crucial for effort-based decision-making. 92 

For example, People with Parkinson’s disease (PD) when off dopaminergic medication exhibit 93 

a reduced willingness to exert effort in the pursuit of reward, with medication restoring this 94 

imbalance (Chong et al., 2015; Le Bouc et al., 2016; Skvortsova, Degos, Welter, Vidailhet, & 95 

Pessiglione, 2017). Interestingly, during decision-making under risk and reinforcement 96 

learning, Parkinson’s disease patients on dopaminergic medication display an enhanced 97 

response to reward but a reduced sensitivity to punishment (Collins & Frank, 2014; Frank, 98 

2005; Frank, Seeberger, & O’Reilly, 2004). Although this suggests that dopamine availability 99 

might shape loss aversion across contexts (Clark & Dagher, 2014; Timmer, Sescousse, 100 

Esselink, Piray, & Cools, 2017), and in particular that medicated PD patients should show 101 
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reduced loss aversion, the role of dopamine during effort-based decision-making within a 102 

reward or punishment context has not been directly investigated.   103 

In this paper, we demonstrate that young healthy participants exhibit loss aversion 104 

during effort-based decision-making; individuals were willing to exert more physical effort in 105 

order to minimise punishment than maximise reward. In addition, behavioural and 106 

computational analysis revealed that medicated Parkinson’s disease patients showed a 107 

reduction in loss aversion compared to age-matched controls. Specifically, although patients 108 

exerted similar physical effort in return for reward, they were less willing to produce effort to 109 

avoid punishment. Therefore, loss aversion is present during effort-based decision-making and 110 

this asymmetry is modulated by dopaminergic state. 111 

Materials and Methods 112 

Participants 113 

Ethics statement. 114 

The study was approved by Ethical Review Committee of the University of 115 

Birmingham, UK, and was in accordance with the Declaration of Helsinki. Written informed 116 

consent was obtained from all participants. 117 

Young healthy participants 118 

Twenty-two young healthy participants (age: 23.1 ± 4.56; 16 females) were recruited 119 

via online advertising and received monetary compensation upon completion of the study. 120 

They were naïve to the task, had normal/corrected vision, and reported to have no history of 121 

any neurological condition. 122 

Parkinson’s disease patients (PD) and healthy age-matched controls (HC) 123 

Eighteen PD patients were recruited from a local participant pool through Parkinson’s 124 

UK. They were on their normal schedule of medication during testing (levodopa-containing 125 
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compound: n=7, dopamine agonists (including pramipexole, ropinirole): n=6, or combination 126 

of both: n=5). Clinical severity was accessed with the Unified Parkinson’s Disease Rating Scale 127 

(UPDRS, Table 1) (Fahn & Elton, 1987). Twenty HC were also recruited via a local participant 128 

pool. All patients/participants had a Mini-Mental Status Exam (Folstein, Folstein, & McHugh, 129 

1975) score greater than 25 (Table 1). Table 1 summarises the demographics of the patients 130 

and age-matched controls. Both groups received monetary compensation upon completion of 131 

the study.   132 

 133 

[INSERT TABLE 1 HERE] 134 

 135 

Experimental design 136 

Experimental set up 137 

Participants were seated in front of a computer (Figure 1A) running a task implemented 138 

in Psychtoolbox (http:// Psychtoolbox.org) and Matlab (MathWorks, USA). Two custom-built 139 

vertical handles were positioned on a desk in front of the participants, each of which housed a 140 

force transducer with sample rate of 200 hertz (https://www.ati-ia.com). The force produced 141 

on each handle enabled participants to independently control two cursors on the computer 142 

screen (Figure 1A). During the main experiment, one handle was assigned as the decision-143 

making handle; participants grasped this handle with their hand and produced a left or right 144 

directed force in order to move the decision cursor into the appropriate option box to indicate 145 

their choice. The other handle was designated as the force execution handle; participants rested 146 

their index finger next to the bottom of the handle and produced a force by pressing their index 147 

finger inward on the handle (i.e., push left for the right index finger, push right for the left index 148 

finger). As the lateral force recorded by the transducers was sensitive to the height at which the 149 

force was applied to the handle, participants were asked to maintain their index finger below a 150 
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protective ring placed 1.5cm above the bottom of the handle (Figure 1A). This ensured that the 151 

finger position on the handle did not change across the experiment. In addition, to maintain a 152 

consistent arm position and minimise the use of alternative proximal muscles the participants’ 153 

forearm was firmly strapped to the table at the wrist and elbow. 154 

 155 

[INSERT FIGURE 1 HERE] 156 

 157 

Procedure 158 

Before the main effort-based decision-making task, participants were asked to produce 159 

a maximal voluntary contraction (MVC) of their first dorsal interosseous (FDI) muscle 160 

(isometric contraction of the index finger against the handle) for 3 seconds. This was repeated 161 

3 times and the average maximum force was taken as their MVC. For the young healthy 162 

participants, the index finger of the dominant hand was chosen to produce the force. For people 163 

with PD, the index finger of the most affected side was chosen to produce the force (dominant 164 

hand: n=11, non-dominant hand: n=7). For the HC, we chose a similar ratio of dominant hand 165 

and non-dominant hand as their force producing hand (dominant hand: n=12, non-dominant 166 

hand: n=8). Following the MVC, participants had 12 trials to practise the 6 force levels that 167 

were used in the main decision-making task (see Effort-based decision-making task section for 168 

details). The force levels were shown to participants as a set of arcs (Figure 1A).  169 

The effort-based decision-making task consisted of 2 conditions (reward and 170 

punishment), the order of which was counter-balanced across participants. For both PD and 171 

HC groups, each condition (reward or punishment) consisted of 10 epochs of 6 trials (60 trials). 172 

Each epoch included 1 trial of each of the 6 force levels in a randomised order, ensuring an 173 

even distribution of force levels. At the beginning of each condition (reward or punishment), 174 

the score started at 0. In the reward condition, the total score was positive and the participants 175 
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were asked to maximise the points they gained. In the punishment condition, the total score 176 

was negative and the participants were asked to minimize the points they lost. Following the 177 

effort-based decision-making task, participants were again asked to produce 3 consecutive 3-178 

second MVCs. They were instructed that this had to be above 90% of the MVC they produced 179 

at the beginning of the experiment. Importantly, participants were made aware of this 180 

requirement at the beginning of the study (after the first MVC and before the main effort 181 

decision-making task). This protocol was intended to ensure that participants maintained an 182 

interest in not becoming overly fatigued by continually choosing the effortful (high reward, 183 

low punishment) choice throughout. In addition to the fixed monetary compensation for 184 

participating in the study (£15; ~90 mins), participants were told at the beginning of the 185 

experiment that they had the chance to be entered into a lottery to win an extra £100 if their 186 

performance (total score) was among the top 5 of participants (one lottery per group) and they 187 

were able to maintain 90% MVC at the end of the experiment. Therefore, all participants were 188 

encouraged to accumulate as many points as possible (and lose as few points as possible) whilst 189 

avoiding unnecessary effort. 190 

Effort-based decision-making task 191 

The task was adapted from classic effort-based decision-making paradigms (Bonnelle, 192 

Manohar, Behrens, & Husain, 2016; Bonnelle et al., 2015; T. T.J. Chong, Bonnelle, & Husain, 193 

2016; Le Heron et al., 2018; Skvortsova et al., 2017). There were two trial types: reward and 194 

punishment (Figure 1B,C) and the task consisted of one block of each. On a reward trial (Figure 195 

1B), participants chose between executing a certain force level in return for reward (gaining 196 

points) and skipping the trial in return for 0 points. On a punishment trial (Figure 1C), 197 

participants chose between executing a certain force level in return for 0 points and skipping 198 

the trial in return for being punished (losing points).  199 
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On each trial, participants were presented with a combination of points and a force level, 200 

which was a percentage of their MVC (offer phase). For the young group, the force was 1 of 6 201 

levels: 11, 21, 32, 42 53, 67% of MVC. For both the older age groups (PD and HC), these six 202 

levels were: 9, 18, 27, 36, 45, 54% of MVC. The force levels used for the older age groups 203 

were lower because a pilot study revealed they fatigued significantly faster than younger 204 

participants. At the beginning of each condition (reward, punishment), these six force levels 205 

were paired with [5 10 15 20 25 30] points respectively. The initial pairings were selected based 206 

on pilot experiments. Unbeknown to participants, the points associated with each force level 207 

were then adjusted on a trial-by-trial basis using an adaptive staircase algorithm (see Adaptive 208 

staircase algorithm section for details). Following the offer phase, participants indicated their 209 

choice by exerting a force on the decision handle which moved the yellow decision cursor 210 

(Figure 1A) from the middle of the screen into one of the option boxes (execute force or skip 211 

force). As soon as participants indicated their choice, the unchosen option disappeared. If the 212 

force option was chosen, participants were required to execute the force on the handle with this 213 

being represented by the blue force cursor moving from the start position towards a target line, 214 

and staying above the target line for 4 seconds at which point they heard a cash register sound 215 

‘ka-ching’ from the headphone. If they failed to exert the required force, the trial was repeated. 216 

The trial was always terminated 6.5 seconds after their choice. This meant that participants had 217 

to wait for 6 seconds if they chose to skip the force, or they had to produce the required force 218 

within 6 seconds. We carefully controlled the time for force execution and skip decisions to be 219 

identical so that there was no confound between delay and effort discounting as in previous 220 

studies (Doyle, 2010; Loewenstein, Frederick, & O’donoghue, 2002). 221 

Adaptive staircase algorithm  222 

A staircase procedure was performed independently for each of the six force levels 223 

(Figure 2A,D). Specifically, for each force level, the points offered were increased or decreased 224 
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using an initial step-size of 8, depending on whether participants rejected (skipped) or accepted 225 

the opportunity to execute the force in order to receive (or avoid losing) those points, 226 

respectively. The step-size was doubled if participants rejected or accepted a force level 3 times 227 

in a row, and the step-size was halved if participants reversed their decision on the force level, 228 

i.e., an acceptance followed by a rejection on a force level or vice-versa (Taylor & Creelman, 229 

2005). As the staircase procedure was performed independently for each of the six force levels, 230 

it allowed us to determine the point of subjective indifference at which participants assigned 231 

equal value to acceptance and rejection for each force level. Importantly, the points and force 232 

combinations offered in the reward and punishment conditions were under the same adaptive 233 

procedure as described above, the only difference being whether the points were framed as 234 

rewards or punishments (Figure 1 B,C; Tversky & Kahneman, 1981).  235 

A possibility to be noted is that the adaptive staircase procedure might not stabilise due 236 

to fatigue (Massar, Csathó, & Van der Linden, 2018; Meyniel, Sergent, Rigoux, Daunizeau, & 237 

Pessiglione, 2013; Müller & Apps, 2019). A successful staircase procedure would lead to a 238 

situation where the points offered would fluctuate around a participant’s indifference point (IP) 239 

(see Data and statistical analysis) by the end of each condition (Figure 2). For example, if the 240 

initial points offered were lower/higher than a participant’s IP then the participant should 241 

initially reject/accept the offer until the points offered resembled their IP. The points offered 242 

should then remain stable around the IP. In this case, the variance of the points offered will 243 

decrease from early to late trials (Figure 2). However, if a participant experienced fatigue then 244 

it is likely that they would begin to reject offers that they had accepted in earlier trials; this 245 

would cause the variance of the points offered to remain high in later trials and lead to an 246 

unstable IP. To test for this possibility, we compared the variance in points offered (Figure 2A, 247 

D) for each force level between the first and second half of the trials within each condition. A 248 

four-way mixed ANOVA examined the effect of (1) Time (first vs second half), (2) Force 249 
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Level (six levels), (3) Condition (reward vs punishment) and (4) Group (HC vs PD) on the 250 

variance of points offered (Figure 2G-J).   251 

 252 

[INSERT FIGURE 2 HERE] 253 

 254 

Data and statistical analysis 255 

Data were analysed with Matlab using custom scripts. The data and codes are available 256 

at https://osf.io/hw4rk/. Our first question was to ask if young healthy participants expressed 257 

loss aversion during effort-based decision-making, i.e., a preference to exert more physical 258 

effort in order to minimise punishment than maximise reward. For each of the six force levels, 259 

we estimated the points at which the probability of accepting the force option was 50% (effort 260 

IP). Specifically, for each force level, a logistic function (𝑦 =
1

1+𝑒−𝛽(𝑥−𝛼)
) was fitted to the 261 

points offered and the binary choices made by participants (Figure 2). As shown in Figure 2B, 262 

the effort IP was then defined as the reward magnitude (x-axis) at which the sigmoid crossed 263 

y = 0.5.   264 

An average effort IP (across six force levels) was then calculated for each participant 265 

in the reward and punishment conditions (referred to as reward IP and punishment IP 266 

respectively), indicating an individual’s tendency to produce force in each condition. Each 267 

participant’s loss aversion index was then defined as a ratio between reward IP and punishment 268 

IP. A loss aversion index that was larger than 1 indicated loss aversion. Due to non-normalities 269 

in the data, a Wilcoxon Signed-ranks test (signrank function in Matlab) was used to test if the 270 

loss aversion index for young healthy participants was significantly greater than 1. To assess 271 

effort-based loss aversion in PD patients and HC, we compared their loss aversion index using 272 

non-parametric independent samples Mann-Whitney U-tests (ranksum function in Matlab). To 273 

examine the loss aversion differences in more detail, a two-way mixed ANOVA compared the 274 

https://osf.io/hw4rk/
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average effort indifference point across group (PD vs HC) and condition (reward vs. 275 

punishment). In order to address non-linearity and heteroscedasticity (unequal variance), the 276 

effort IP was log-transformed.  277 

Computational modelling of choice 278 

Decision-making behaviour was modelled using an effort-based discount model that 279 

quantifies how the utility of obtaining reward or avoiding punishment decreases as the physical 280 

effort associated with it becomes progressively more demanding. Such models have been 281 

extensively used to examine the behavioural and neural basis of effort-based decision-making 282 

(Białaszek, Marcowski, & Ostaszewski, 2017; Botvinick, Huffstetler, & McGuire, 2009; 283 

Hartmann, Hager, Tobler, & Kaiser, 2013; Klein-Flügge, Kennerley, Saraiva, Penny, & 284 

Bestmann, 2015; Lockwood et al., 2017; Prévost et al., 2010). The key aim of the modelling 285 

analysis was to quantify each participant’s willingness to invest effort for a beneficial outcome 286 

within a single parameter (i.e., the effort discounting parameter). This enabled us to compare 287 

decision-making behaviour between the HC and PD groups in the reward and punishment 288 

conditions in a relatively simple manner (Chong et al., 2017; Hartmann et al., 2013; Lockwood 289 

et al., 2017).  290 

We fitted participant responses using linear, parabolic and hyperbolic effort discounting 291 

functions, which are often used to capture effort discounting (Białaszek et al., 2017; Hartmann 292 

et al., 2013; Klein-Flügge et al., 2015; McGuigan et al., 2019; Lockwood et al., 2017). The 293 

shape of these functions reflects how increasing costs (i.e., effort) discounts or ‘devalues’ the 294 

associated benefits (i.e., the number of points gained or avoided losing): 295 

Linear: 𝑈(𝑡) = 𝐴(𝑡) − 𝑙𝐸(𝑡) 296 

Parabolic: 𝑈(𝑡) = 𝐴(𝑡) − 𝑙𝐸(𝑡)2 297 

Hyperbolic: 𝑈(𝑡) =
𝐴(𝑡)

1+𝑙𝐸(𝑡)
 298 
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The total utility, U(t), of the offer on trial t is a function of:  (1) E(t), the physical effort required 299 

(scaled to the proportion of the MVC) in order to gain a reward or to avoid a punishment, (2) 300 

A(t), the reward/punishment amplitude (i.e., the number of points offered) and (3) l, the 301 

discounting parameter. The parameter, l, reflects the steepness of the effort discounting 302 

parameter, with a higher value indicating that the participant required a greater reward in order 303 

to perform the same level of effort. 304 

The probability of choosing the effort option at trial t is given by the softmax function: 305 

𝑃(𝑡) =
1

1 + exp⁡(−𝛽 × 𝑈(𝑡))
 306 

where U(t) is the total utility of the offer on trial t, and β accounts for stochasticity in participant 307 

choices. Let y(t) be the participant choice on trial t (skip=0; accept effort=1). The parameters 308 

(l and β) that maximises the likelihood function over N trials was found for each participant:  309 

𝐿 =∑𝑦(𝑡)log⁡(𝑝(𝑡))

𝑁

𝑡=1

+ (1 − 𝑦(𝑡))log⁡(1 − 𝑝(𝑡)) 310 

where N is the number of trials for each participant (reward and punishment conditions 311 

combined; N=120). The parameters that maximised this likelihood was found for each 312 

participant by using the search function fmincon in Matlab (minimizing the negative of the log 313 

likelihood). In addition, to avoid local minima, the function MultiStart in Matlab was used with 314 

a 1000 start positions. 315 

For each type of discount function (linear, hyperbolic and parabolic), we explored both 316 

the possibility of one joint discounting parameter for reward and punishment and separate 317 

discounting parameters for reward and punishment. A total of 6 models were compared. To 318 

compare the models, we utilised Bayesian Information Criterion (BIC) (Schwarz, 1978). 319 

Specifically, for each model, the BIC summed over all participants were compared (the lower 320 
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the value, the better the model fit) (Rigoux, Stephan, Friston, & Daunizeau, 2014; Stephan, 321 

Penny, Daunizeau, Moran, & Friston, 2009). Such aggregation of BIC across participants 322 

corresponds to fixed-effect analyses (Stephan et al., 2009).  To account for the random-effect 323 

analysis in which models are treated as a random variable that can differ between participants 324 

(Stephan et al., 2009), we also conducted Friedman’s test on individual BIC to compare the 325 

model fits. To examine the effect of Group (HC vs PD) and Condition (Reward vs Punishment) 326 

on the discount parameter, a two-way mixed ANOVA was used. The normality assumption in 327 

the data (the discount parameter in each cell) was not violated, as assessed by Shapiro-Wilk's 328 

test of normality (p > .05). In addition, there was homogeneity of variances (p > .05) and 329 

covariances (p > .001) as assessed by Levene's test of homogeneity of variances and Box's M 330 

test, respectively.  331 

Results 332 

Evidence for loss aversion in young healthy participants 333 

Our first question was to ask if young healthy participants expressed loss aversion 334 

during effort-based decision-making. To examine this, we first assessed how the effort IP 335 

(Figure 2) was affected by the force level in the reward and punishment conditions. As expected, 336 

the effort IP became progressively larger as the force level became more demanding, indicating 337 

a sensitivity to effort across reward and punishment conditions (Figure 3A). For each 338 

participant, an average effort IP was obtained across force levels for the reward (reward IP) 339 

and punishment (punishment IP) conditions, with the loss aversion index being defined as a 340 

ratio between these values (>1 = loss aversion; Figure 3B). As the loss aversion index was 341 

significantly greater than 1 (z=3.65, p<0.001, median=1.369, Figure 3B), it suggests that loss 342 

aversion was clearly evident in young healthy participants during effort-based decision-making.   343 

[INSERT FIGURE 3 HERE] 344 
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 345 

Reduced loss aversion in PD patients compared to HC 346 

Similar to the young healthy participants, the effort IP for both the HC (Figure 4A) and 347 

PD (Figure 4B) groups increased progressively as the force level became more demanding, 348 

suggesting sensitivity to effort across reward and punishment conditions. In addition, as the 349 

loss aversion index was significantly greater than 1 for both HC (z=3.823, p<0.001, 350 

median=2.09, Figure 4C) and PD (z=2.983, p=0.003, median=1.260, Figure 4D), it indicates 351 

that loss aversion was present in both groups. Importantly, PD patients displayed significantly 352 

less loss aversion than HC (z=2.441, p=0.015, Figure 4E), with this being a result of medicated 353 

PD patients appearing less sensitive to punishment (Figure 4F).  This was confirmed by a two-354 

way mixed ANOVA which revealed a significant interaction between Group (HC vs PD) and 355 

Condition (reward vs punishment) (F(1,36)= 6.412, p=0.016) for the average indifference point. 356 

Specifically, Bonferroni-corrected independent t-tests revealed the PD and HC groups had a 357 

similar reward IP (p=0.591, Figure 4F), but the PD group displayed a higher punishment IP 358 

(p=0.011, Figure 4F). As the adaptive staircase procedure (i.e. the process of determining the 359 

IP for each participant) showed similar variability across conditions (reward, punishment) and 360 

groups (HC, PD), it suggests the results were unlikely due to differences in fatigue (Figure 2). 361 

Specifically, while there was a decrease in variance in the points offered from early to late trials 362 

(F(1,36)=12.744; p=0.001), there was no significant effects of Condition or Group (reward vs 363 

punishment: F(1,36)=0.230, p=0.634; HC vs PD: F(1,36)=3.780; p=0.062). In addition, there 364 

was no significant differences between participant’s MVC before and after the main effort-365 

based decision-making task (HC: z=0.635, p=0.526, pre-MVC: 16.08±14.04N (Newton, 366 

Median ± Median Absolute Deviation), post-MVC 12.00±8.26N; PD: z=0.500, p = 0.617, pre-367 

MVC: 12.66 ± 11.40 N, post-MVC 12.70 ± 6.18). Therefore, it is unlikely that PD patients 368 

reduced loss aversion was due to fatigue. 369 
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 370 

[INSERT FIGURE 4 HERE] 371 

 372 

Decision-making behaviour in our task was modelled using an effort-based discount 373 

model that quantifies how the utility of reward decreases as the physical effort associated with 374 

it becomes progressively more demanding. We fitted participant choices to three typical 375 

discounting functions: linear, parabolic and hyperbolic, which are often used to capture effort 376 

discounting (Białaszek et al., 2017; Hartmann et al., 2013; Klein-Flügge et al., 2015; 377 

McGuigan et al., 2019; Lockwood et al., 2017). We found that a parabolic effort discounting 378 

function with separate discounting parameters for the reward and punishment conditions 379 

provided the best fit for both the PD and HC groups (Table 2). Specifically, the summed 380 

Bayesian Information Criterion (BIC) was lowest for the parabolic function with separate 381 

discounting parameters (the lower the value, the better the model fit) (Table 2). To investigate 382 

this at a subject-level, a Friedman’s test on individual BIC was performed (Rigoux et al., 2014; 383 

Stephan et al., 2009). In general, similar results were observed with the parabolic function 384 

consistently being associated with significantly lower BIC for both groups (Table 2). To 385 

reinforce these results, R2 was found to be greater for the parabolic function for both groups 386 

(Table 2).  387 

 388 

[INSERT TABLE 2 HERE] 389 

 390 

Using the winning model (parabolic function with separate discounting parameters), 391 

we compared parameters across the PD and HC groups. In the reward condition, the effort 392 

discounting parameter was found to be similar between the HC and PD groups, suggesting 393 

medicated PD patients were equally as motivated to exert effort in return for reward (Figure 394 
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5A,B). However, in the punishment condition, the PD group had an increased effort 395 

discounting parameter suggesting they were less willing to exert effort in order to avoid 396 

punishment (Figure 5A,C). This was confirmed by a two-way mixed ANOVA that showed a 397 

significant interaction between group (HC vs PD) and condition (reward vs punishment) 398 

(F(2,36)=5.22, p=0.042). Bonferroni-corrected independent t-tests revealed that while the 399 

discounting parameter (l) was similar between PD and HC (p=0.548) for reward, it was 400 

significantly higher for the PD group in the punishment condition (p=0.018, Figure 5A).  401 

 402 

[INSERT FIGURE 5 HERE] 403 

 404 

Discussion 405 

In summary, we have shown that loss aversion is consistently present during effort-406 

based decision-making in young healthy participants and both people with Parkinson’s disease 407 

(PD) and healthy older adults (HC). Although loss aversion is widely regarded as one of the 408 

most robust and ubiquitous findings in economic decision-making (Kahneman & Tversky, 409 

1979; Tversky & Kahneman, 1992), the surprisingly few studies that have directly examined 410 

loss aversion during physical effort-based decision-making have found it to not exist. For 411 

instance, Porat et al., (2014) showed that while half of young healthy participants were willing 412 

to expend greater effort to avoid punishment than to gain an equivalent reward, the other half 413 

showed the opposite preference. In addition, Nishiyama, (2016) found a similarly large degree 414 

of variability across participants in preference for maximising gains or minimising losses 415 

during an effort-based decision-making task. Therefore, while both studies found differences 416 

between gain and loss at an individual level, they did not find loss aversion during effort-based 417 

decision-making at a group level. However, we believe that there are several issues with the 418 

previous studies which may restrict their capacity to directly examine loss aversion during 419 
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effort-based decision making. First, in Porat et al., (2014), gaining reward or avoiding 420 

punishment required the participant to execute additional key presses. As a result, to obtain 421 

more reward (or avoid more punishment) the participants had to produce more effort and also 422 

had to wait longer. Therefore, the additional effort cost was confounded with a delay cost. It is 423 

worth noting that the temporal discount for losses is generally less steep than that for gains 424 

(Estle, Green, Myerson, & Holt, 2006). Importantly, this confound was carefully eliminated in 425 

our paradigm as all trials, including the skip option trials, had identical durations. Second, in 426 

Nishiyama, (2016), participants were tasked with making a series of choices of whether to 427 

engage in an effortful task (to obtain reward or to avoid punishment) via a questionnaire. That 428 

is, participants did not actually have to perform an effortful task. The absence of loss aversion 429 

could be a result of participants being less sensitive to the imaginary effort involved in a 430 

questionnaire. This possibility is supported by our results in which loss aversion is more clearly 431 

expressed at higher effort levels.  432 

The second key finding of the present study was that medicated PD patients showed a 433 

reduction in loss aversion compared to HC. This reduction in loss aversion was due to people 434 

with PD investing similar physical effort in return for a reward but being less willing to produce 435 

effort to avoid punishment. Although previous studies have already demonstrated that 436 

medicated PD patients are equally as motivated to exert effort in return for reward as aged-437 

matched controls (Chong et al., 2015; Le Heron et al., 2018; McGuigan et al., 2019), this is the 438 

first study to show that medicated PD patients exhibit a reduction in their willingness to 439 

produce effort to avoid punishment.  440 

To understand this reduced loss aversion in medicated PD patients, one key question is 441 

whether it is due to an altered sensitivity to the cost of effort, an altered sensitivity to the action 442 

outcomes (i.e., the reward or punishment that is associated with the action) or a combination 443 

of both. In effort-based decision making, it has been repeatedly shown that PD patients exhibit 444 
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reduced willingness to expend effort in return for reward and dopaminergic medication is able 445 

to ameliorate this deficit (Chong et al., 2015, Le Heron et al., 2016, Skvortsova et al., 2017). 446 

Many earlier studies have also shown that manipulating dopamine can shift the effort/reward 447 

trade-off in healthy participants and animals (Bardgett, Depenbrock, Downs, Points, & Green, 448 

2009; Chong et al., 2015; Floresco, Tse, & Ghods-Sharifi, 2008; J. D. Salamone, Correa, Farrar, 449 

& Mingote, 2007). However, despite dopamine being clearly central to effort-based decision-450 

making, its precise role is unclear. This uncertainty is because an increased sensitivity to reward 451 

or a decreased sensitivity to effort could both explain a similar shift in preference. On the one 452 

hand, previous work has highlighted the effect of dopamine on effort expenditure. 453 

Hyperdopaminergic rats, for example, have been shown to be more willing to expend physical 454 

effort to obtain reward (Beeler, Daw, Frazier, & Zhuang, 2010). While in humans, Le Heron 455 

et al., (2018) showed that medicated PD patients exert more effort to obtain a similar level of 456 

reward compared to when in an off-medication state (Le Heron et al., 2018). However, other 457 

work has claimed that even if dopamine seems to promote energy expenditure, it only does so 458 

as a function of the upcoming action outcome (reward) and not as a function of the upcoming 459 

energy cost itself (Le Bouc et al., 2016; Skvortsova et al., 2017; Walton & Bouret, 2019). 460 

Unfortunately, as the current study did not isolate effort from action outcomes it is unable to 461 

provide any further insight into this argument. In future, it would be interesting to test people 462 

with PD on and off medication during our task in addition to a task that selectively measures a 463 

participant’s sensitivity to effort (Salimpour, Mari, & Shadmehr, 2015). This experiment 464 

should help determine whether the current results are linked to dopamine medication altering 465 

sensitivity to effort or due to it altering sensitivity to the action outcome associated with 466 

producing that effort.  467 

Interestingly, similar differences in sensitivity to reward and punishment have 468 

previously been observed in medicated PD patients during reinforcement learning. Specifically, 469 
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Frank et al., (2004) showed that medicated PD patients expressed normal learning from reward-470 

based tasks (positive outcomes) but impaired learning from punishment-based tasks (negative 471 

outcomes). Conversely, unmedicated PD patients showed the opposite bias where they were 472 

better at learning from punishment than reward. The authors used biologically-based 473 

computational modelling to explain these results where medicated PD patients, with sufficient 474 

dopamine, learn from positive feedback through the direct, pro-kinetic (‘GO’) pathway of the 475 

Basal Ganglia (Frank, 2005). In contrast, learning from negative feedback is impaired because 476 

the medication blocks/reduces the dips in dopamine associated with punishment that would 477 

lead to learning via the indirect, anti-kinetic (‘NoGo’) pathway. Such a dual opponent actor 478 

system represented by distinct striatal (D1/D2) populations can differentially specialize in 479 

discriminating positive and negative action values. As such, this model can explain the effects 480 

of dopamine on both learning and decision making across a variety of tasks including 481 

probabilistic reinforcement learning and effort-based choice (Collins & Frank, 2014; Shiner et 482 

al., 2012; Smittenaar et al., 2012). Therefore, although highly speculative, our current results 483 

could be explained by dopaminergic medication having a differential effect on the direct and 484 

indirect pathway of the Basal Ganglia which have been associated with the processing of 485 

reward and punishment-based action outcomes, respectively (Argyelan et al., 2018; Kravitz, 486 

Tye, & Kreitzer, 2012). At the very least, it would be interesting to interrogate whether 487 

unmedicated PD patients showed a reduced sensitivity to reward but normal sensitivity to 488 

punishment (reflecting enhanced loss aversion) as suggested by this previous work (Collins & 489 

Frank, 2014; Frank, 2005).  490 

In conclusion, loss aversion is clearly present during effort-based decision-making and 491 

is modulated by dopaminergic state. This presents interesting future questions surrounding 492 

clinical disorders that have shown a reduced willingness to exert effort such as depression and 493 

stroke. For example, it is possible that disorders that have shown a reduced willingness to exert 494 
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effort in the pursuit of reward could show a normal, or even enhanced, willingness to exert 495 

effort in order to avoid punishment.  496 
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Table 1: Demographics for PD and HC groups (means ± SD) 709 

 710 

a. MMSE=Mini-Mental Status Exam is a 30-point questionnaire that is used extensively in clinical and research 711 
settings to measure cognitive impairment (Folstein et al., 1975).  712 
b. BIS/BAS= the behavioural inhibition system (BIS) and the behavioural activation system (BAS) (Carver & 713 
White, 1994).  714 
c. DASS-21=Depression (Normal: 0-9), Anxiety (Normal 0-7) and Stress (Normal: 0-14) Scales (Antony, Cox, 715 
Enns, Bieling, & Swinson, 1998). Three PD patients chose not to finish this questionnaire. d. UPDRS=Unified 716 
Parkinson’s Disease Rating Scale (UPDRS) (Fahn & Elton, 1987). 717 
 718 
 719 
 720 

Table 2: Model comparison. The parabolic effort discounting with separate discount 721 

parameters ([l+,l-]) for the reward and punishment conditions provided the best fit for choices 722 

of both the PD and HC groups. Summed BIC, Friedman’s test (Rigoux et al., 2014; Stephan et 723 

al., 2009) and R2 (Median ± Median Absolute Deviation) are provided for each group (HC, 724 

PD).  Specifically, for each model, the Bayesian Information Criterion (BIC) summed over all 725 

participants were compared (the lower the value, the better the model fit). 726 

 727 
  HC  PD 

 BIC Mean  

Rank 

R2  BIC Mean  

Rank 

R2 

Linear (l)  3045 4.17 0.64±0.21  2973 4.33 0.58±0.22 

(l+, l-)  3072 4.70 0.72±0.18  2964 4.28 0.61±0.22 

 

Parabolic (l)  2991 2.77 0.74±0.24  2867 2.89 0.72±0.25 

(l+, l-)  2870 2.05 0.81±0.22  2785 2.11 0.85±0.26 

 

Hyperbolic (l)  3065 3.55 0.60±0.18  2962 3.83 0.64±0.22 

(l+, l-)  3005 3.75 0.70±0.21  2924 3.56 0.69±0.25 

 

Friedman 

test 

   χ2=26.26 

p<0.001 

   χ2=19.11 

p=0.002 

 

  728 

 PD HC Group difference 

N 18 20  

Age (years) 66 ± 7.68 69 ± 4.54 t(36)= 1.30, p=0.20 

Gender (M: F) 9:9 9:11 𝜒2(1)= 0.001, p= 0.97 

MMSEa 28.9±1.5 29.5±0.85 t(36)=1.61, p=0.12 

 

BIS/BASb BIS 20.22±2.75 20.18±2.38 t(36)=-0.05, p=0.96 

Reward responsiveness 9.11±2.91 8.95±1.58 t(36)=-0.21, p=0.83 

Drive 9.77±3.07 9.91±2.22 t(36)= 0.16, p=0.88 

Fun seeking 9.66±2.45 8.72±2.21 t(36)=-1.27, p=0.21 

 

DASS21c Depression 3.45±3.76 4.93±4.94 t(33)=-1.03, p=0.30 

Anxiety 1.81±2.75 6.13±4.03 t(33)=-3.87, p<0.001 

Stress 5.90±5.53 6.93±5.00 t(33)=-0.57, p=0.46 

 

UPDRSd 23.61±18.88 N/A  

Hoehn and Yahr stage 1.85±0.60 N/A  

Disease duration (months) 39.22±30.1 N/A  

Duration since last dose (hours) 2.08±0.90 N/A  



 

 

30 

Figure 1: Experimental setup.  (A) Experimental equipment. (B-C) Typical reward (B) and 729 

punishment (C) trials. (D) Average force trace across participants on levels 1, 3 and 6. 0 second 730 

(x-axis) is the moment at which the participants indicated their choice and they were allowed 731 

to start exerting the force. Error-bars represent SEM across participants. (E) Young participants 732 

(red), PD patients (green) and healthy age-matched controls (blue) all modulated their force 733 

appropriately. The solid black line indicates the minimum force required. Error-bars represent 734 

SEM across participants. 735 

 736 

Figure 2: Procedure for determining the effort indifference point. Exemplary choices and 737 

fits are shown for one participant and two effort levels. (A, D): The points offered for each 738 

force level (A: Level 2; D: Level 5). Unbeknown to participants, the points associated with 739 

each force level were adjusted on a trial-by-trial basis using an adaptive staircase algorithm. 740 

Specifically, the points offered were increased or decreased using an initial step size of 8, 741 

depending on whether participants rejected (skipped) or accepted the opportunity to execute 742 

the force in order to receive (or avoid losing) those points. (B,C, E, F): A sigmoid function 743 

(red line) was fitted separately to the choices (arrow) generated at each effort level (y axis: 0 = 744 

reject force, 1 = accept force), given the points (reward or punishment) offered for this force 745 

level (x-axis). The point of subjective indifference point (IP, circle) was defined as the 746 

magnitude at which the sigmoid crossed y = 0.5.  (G-J): The variance of the points offered for 747 

each force level within the first and second half of each condition for the HC group (G= reward, 748 

H=punishment) and PD group (I-reward, J=punishment). Error-bars represent SEM across 749 

participants. 750 

 751 

Figure 3: Loss aversion in young healthy participants. (A) Effort IP in reward (solid circles) 752 

and punishment (open diamonds). For each force level (x-axis), we estimated a score at which 753 

the probability of choosing to produce the force was 50% (effort IP, y-axis). Given a particular 754 

force level, a higher IP indicated less willingness to produce the force. Error-bars represent 755 

SEM across participants. Grey circles/diamonds indicate individual data points. (B) Loss 756 

aversion index for each individual. Loss aversion is reflected by participants being more willing 757 

to produce a force to avoid losses than receive same-sized gains (higher reward IP than 758 

punishment IP given a force level). Loss aversion was therefore quantified as a ratio between 759 

the reward IP and the punishment IP (loss aversion index; y-axis). A value greater than 1 760 

indicates loss aversion.  761 

 762 

Figure 4: Loss aversion in HC and PD groups. (A-B) Effort IP in reward (solid circle) and 763 

punishment (open diamond) conditions for the HC (A) and PD (B) groups. For each force level 764 

(x-axis), we estimated a score at which the probability of choosing to produce the force was 765 

50% (effort IP, y-axis). Given a particular force level, a higher IP indicated less willingness to 766 

produce the force. Error-bars represent SEM across participants. Grey indicates individual data 767 

points. (C-D) Loss aversion across participants for the HC (C) and PD (D) groups. Loss 768 

aversion is reflected by participants being more willing to produce a force to avoid losses than 769 

receive similar gains. Therefore, the loss aversion index was measured as a ratio between the 770 

reward IP and the punishment IP (y-axis). A value greater than 1 indicates loss aversion. (E) 771 

Loss aversion index. Error-bars represent SEM across participants. (F) Reward IP and 772 

punishment IP across groups.  773 

 774 

Figure 5: Parabolic (winning model) discounting parameter (l) for the HC and PD groups. 775 

(A) Effort discounting parameter (l) for the HC and PD groups in the reward and punishment 776 

conditions. (B, C) Parabolic model predictions for the effort IP across force options in the 777 

reward (B) and punishment (C) conditions. The model predictions were calculated by 778 
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estimating a score for which the probability of the model choosing the force option was 50%. 779 

Error-bars represent SEM across participants. 780 
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