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Essentials 

 Mouse platelets have strikingly higher copy numbers of some proteins compared to 

human platelets 

 Functional implications of discrepancies are explored using a systems pharmacology 

model of GPVI 

 Interspecies differences in protein expression do not impact the regulation of GPVI 

signalling  

 Regulation of GPVI signalling is spatially regulated at the platelet membrane in 

human and mouse 
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Abstract (249 words) 

Background 

Accurate protein quantification is a vital prerequisite for generating meaningful predictions 

when using systems biology approaches, a method that is increasingly being used to unravel 

the complexities of sub cellular interactions and as part of the drug discovery process.   

Quantitative proteomics, flow cytometry and western blotting have been extensively used to 

define human platelet protein copy numbers, yet for mouse platelets, a model widely used 

for platelet research, evidence is largely limited to a single proteomic dataset in which the 

total amount of proteins were generally comparatively higher than those found in human 

platelets.   

Objectives 

To investigate the functional implications of discrepancies between levels of mouse and 

human proteins in the GPVI signalling pathway using a systems pharmacology model of 

GPVI 

Methods 

The protein copy number of mouse platelet receptors was determined using flow cytometry.  

The Virtual Platelet, a mathematical model of Glycoprotein VI (GPVI) signalling, was used to 

determine the consequences of protein copy number differences observed between human 

and mouse platelets.  

Results and conclusion 

Despite the small size of mouse platelets compared to human platelets they possessed a 

greater density of surface receptors alongside a higher concentration of intracellular 

signalling proteins.  Surprisingly the predicted temporal profile of Syk activity was similar in 

both species with predictions supported experimentally.  Super resolution microscopy 

demonstrates that the spatial distribution of Syk is similar between species, suggesting that 
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the spatial distribution of receptors and signalling molecules in activated platelets, rather 

than their copy number, is important for signalling pathway regulation.   

Introduction 

Platelets are small anucleate cells which play a vital role in vascular integrity and the 

prevention of excessive bleeding.  In addition to this key role in haemostasis inappropriate 

platelet regulation contributes to cardiovascular and inflammatory diseases.  These platelet 

mediated processes involve receptor-ligand interactions and the initiation of complex 

signalling cascades.  Indeed, current antiplatelet drugs target receptor-ligand interactions or 

signalling cascades to reduce cardiovascular events, but also have the side effect of an 

increased risk of bleeding.  There is therefore a pressing need for safer antiplatelet drugs, 

but the high cost of clinical trials has discouraged drug development.  Pharmaceutical 

companies are increasingly adopting quantitative systems pharmacology (QSP) approaches 

to determine mechanisms of action of new and existing drugs and to better utilise pre-clinical 

data to optimise clinical trial design(1, 2). QSP benefits greatly from published quantitative 

data such as receptor and signalling protein expression levels so that theoretical models can 

generate more accurate predictions.  

GPVI, a receptor for collagen, laminin and more recently recognised as a receptor for fibrin 

and fibrinogen, represents an attractive anti-thrombotic target in experimental models with 

expression limited to platelets and megakaryocytes(3-11).  Following ligand engagement a 

signalling cascade is initiated which culminates in platelet activation.  While the major 

components of this pathway are well known the underlying mechanism of activation has not 

yet been fully elucidated.  Antagonists of the platelet collagen receptor GPVI and Btk 

inhibitors (that inhibit signalling evoked by GPVI) are recognised as potential antiplatelet 

drugs(12-19), although copy numbers of receptors and signalling molecules involved in the 

GPVI signalling pathway vary widely between individuals and even more so between 

humans and mice(20-22). The functional consequences of these differences and the 

implications for the development of drugs that target this pathway are poorly understood. 



 

5 
 

Quantification of cell protein copy numbers is a critical step in the development of a 

predictive model of platelet activation(23).  Quantitative proteomics, flow cytometry and 

Western blotting have been used to measure human platelet protein copy numbers(24-27).  

Most published reports of platelet protein copy numbers have been in humans and tend to 

focus on a single protein of interest.  No previous study has provided a systematic 

comparison between different quantification methods or between species (human and 

mouse).  Zeiler et al. published the mouse platelet proteome by exploiting quantitative 

proteomics(28) and reported strikingly higher copy numbers of some proteins in mouse 

compared to human platelets, some an order of magnitude higher in mouse than human. 

This was especially surprising since mouse platelets are approximately half the volume of 

human platelets (4.3 fL vs 7.4 fL)(29, 30) implying that the densities of these proteins within 

mouse platelets are higher.  Few studies of mouse protein levels in platelets exist to 

corroborate these surprising findings. One such study quantified mouse Src family kinases 

using western blotting to compare the signal intensity of a platelet lysate with known 

amounts of recombinant protein(31).  The copy number of Src corroborated well with the 

Zeiler et al. proteomic dataset but the copy numbers of Fgr, Fyn and Lyn differed by up to 

240 orders of magnitude.  This may reflect differences in the binding capacity of antibodies 

for the native protein compared to recombinant protein or technical issues associated with 

the analysis of lipid modified proteins by mass spectrometry.   

We sought to independently determine mouse copy numbers of key platelet proteins using 

quantitative flow cytometry as an accessible method to complement mass spectrometry. To 

address the relevance of differences in protein expression we used GPVI as a model 

receptor.  Using a systems pharmacology model of human platelet GPVI signalling, which 

we call the Virtual Platelet(29), the functional implications of discrepancies between levels of 

mouse and human proteins in the GPVI signalling pathway were explored.  The model is a 

dynamic mathematical model that captures the initial events which occur following GPVI 

receptor activation.  We addressed the spatial, temporal and functional questions raised by 
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the mathematical model experimentally using mice expressing kinase dead Syk, western 

blotting for phosphorylated Syk at Y525/526, and super-resolution microscopy.  

Methods 

Flow cytometry to determine surface protein copy number 

Saturating concentrations of fluorescently labelled monoclonal antibodies were applied to 

beads of known antigen binding capacity (Quantum Simply Cellular; Bangs Laboratories) 

and 106 washed human and mouse platelets. Platelets were also incubated with 

fluorescently labelled IgG to control against non-specific antibody binding.  Bead and platelet 

fluorescence was read using flow cytometry (BD Biosciences; FACSVerse, Accuri CSampler 

Plus).  The geometric mean fluorescence was used to construct a standard curve to enable 

the protein copy number on the surface of platelets to be determined.  A linear regression 

was fitted to the standard curve.  Bead saturation is confirmed by a high R2 value close to 1.  

All monoclonal and FITC conjugated antibodies were from Emfret Analytics (5 µl/106 

platelets) except anti-CLEC-2 (10 µg/ml INU1); anti-CD41 (30 µg/ml MWReg30, BD 

Biosciences) anti-ADAM10 (10 µl/106 platelets R&D systems); PE conjugated anti-human 

GPVI antibody (2.5 µl/106 platelets HY101, BD Pharmingen) 

Flow cytometry to determine intracellular protein copy number 

8 x 106 human washed platelets suspended in 1x Hepes Buffered Saline (HBS) were fixed 

with an equal volume of 4% Paraformaldehyde for 10 mins at room temperature.  Platelets 

were washed three times with 1 x HBS with pelleting for 15 mins at 500g.  Platelets were 

permeabilise by incubation with BD Phosflow Perm Buffer III for 30mins on ice.  Following 

three washes with 1x Phosphate Buffered Saline, platelets were incubated with a saturating 

concentration of FITC conjugated anti-human Syk antibody 4D10 or FITC conjugated IgG 

control for 20 minutes at room temperature (20 µg/ml; BD Pharmingen).  The geometric 

mean fluorescence was compared to beads of known antigen binding capacity as described 

above to determine the copy number of human Syk. 
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Virtual Platelet predictions 

The mathematical model used to generate computational predictions (the Virtual Platelet) 

has been described previously(29). The model captures the interactions between key 

proteins downstream of collagen receptor GPVI, and simulations form predictions of how the 

proteins interact, to bind, regulate and activate over time. Experimental data describing the 

copy numbers of the proteins GPVI, Syk, c-Cbl and Tula-2 form model inputs and along with 

estimates of platelet volume, allows numerical solutions of the model (carried out with the 

numerical solver code of R package deSolve(32)) to predict how variation in protein copy 

numbers effects signalling downstream of the GPVI receptor.    

Full details of the interactions captured in the model, its equations and methods of calibration 

and validation are available in Dunster et al., 2015 and an interactive online interface to the 

virtual platelet is provide at https://cardiomaths.shinyapps.io/VirtualPlateletInterspecies and 

the R code available on request. 

Local sensitivity analysis was performed by varying each protein copy number by fifty 

percent above and below their initial value, the time to reach peak Syk activity was 

calculated according to 

 

where Oa and Oi represent the time to reach the peak in Syk activity in respect of the initial 

protein copy numbers. 

Human platelet preparation 

Human platelets were purified from citrated blood from consenting aspirin-free, healthy 

volunteers following procedures approved by the University of Reading Research Ethics 

Committee and prepared as previously described.(29)  
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Mouse platelet preparation 

Procedures were approved by the University of Reading’s Animal Welfare and Ethical 

Review Body.  Blood was obtained from C57/BL6 mice via cardiac puncture into acid citrate 

dextrose (ACD) following CO2 narcosis and platelets prepared (4x108 platelets/ml) as 

previously described.(33)  Platelet aggregation at 2x108 platelets/ml was followed using light 

transmission aggregometry as previously described.(34)   

Syk kinase dead expressing mouse model  

Animal experimentation was performed with ethical approval from the UK Home Office (PPL 

P0E98D513) granted to the University of Birmingham. Syk kinase-dead (Syk KD) mice refer 

to the following novel mouse strain: C57BL/6NTac-Syktm3515(K396R)Arte (Taconic Artemis) which 

expresses a Syk protein with a K396R point mutation in the presence of cre recombinase. 

For this study, mice were crossed with mice carrying the platelet and megakaryocyte specific 

Pf4 promoter driven cre. Experiments were performed by blinding the genotypes prior to the 

experiment and during analysis. 

Syk Y525/526 and LAT Y200 phosphorylation time course.  

Human and mouse washed platelets (4x108 cells/ml) prepared under non-aggregating 

conditions with stirring (1200rpm) for the indicated time points before lysis as described 

previously(26). Anti-phospho Syk (Abcam; ab58575); anti-phospho LAT (Abcam; ab68139); 

anti-Actin antibody (C-11) (Santa Cruz; sc-1615); anti-Syk 4D10 (cell signaling). 

Platelet spreading and staining 

For STORM imaging washed human and mouse platelets were spread on CRP coated 35 

mm #1.5 (0.17mm) glass bottomed dishes (MatTek Corporation, USA) as previously 

described(35).  Fixed and permeabilised platelets were labelled with a pan-Syk antibody 

(Santa Cruz; N-19:sc-1077 used at 1μg/ml) at room temperature for 1 hour followed by anti-

rabbit-Alexa647 (Life Technologies;A-21245 used at 1:300 dilution) secondary labelling and 
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Phalloidin-Alexa488 (1:300 dilution) at room temperature for 1 hour. Samples were washed 

and stored in PBS until imaged. 

STORM Imaging 

Samples were imaged on a Nikon N-STORM system in dSTORM mode which is 

characterized by a Ti-E stand with Perfect Focus, 100 × 1.49 NA TIRF objective lens, Agilent 

Ultra High Power Dual Output Laser bed  (170- mW, 647-nm laser) for the excitation and 

Andor IXON Ultra 897 EMCCD camera for the image acquisition. To allow fluorophore 

blinking, samples were imaged in a PBS based buffer consisting of enzyme solution 

(catalase 1 μg/ml, Tris (2-carboxyelthyl) phosphine hydrochloride 4 mM, glycerol 50%, KCl 

25 mM, pH 7.5 Tris-HCl 20 mM, glucose oxidase 50 µg/ml), glucose solution (glucose 100 

mg/ml, glycerin 10%) and reducing agent solution (100 mM MEA). For single colour 

(Alexa647) the N-STORM emission cube was used and the 405 laser power was then 

increased by 5% every 30 seconds during imaging to reactivate the fluorophore from the 

dark state. 20,000 frames were captured using Nikon NIS Elements v4.5 with an exposure 

time of 20 ms, gain 300 and conversion gain 3, and reconstructed using STORM analysis 

module 3.2, applying the drift correction and the Gaussian rendering. 5 separate fields of 

view (FOV) from 3 independent experiments were imaged for both mouse and human. 

Identified points, which represent individual fluorescent blinking events, were filtered on 

photon count and only those with a count >500 were selected for further cluster analysis.  

Analysis of dSTORM data 

After localizing detections (average precision 10 nm) within NIS elements Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN)(36) was used to group detections 

into clusters. For DBSCAN the radius of the local neighbourhood was set to 25 and the 

minimum number of directly reachable points was set to 10.  Edge points were included in 

clusters.  Cluster area was calculated using the convex hull of all detections within a cluster 

and cluster detection density was defined as the number of detections within a cluster 
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divided by the cluster area.  Analysis was performed on whole fields of view and 

measurements for all clusters within a technical replicate were grouped. This analysis was 

performed using the R package RSMLM (37). To measure cellular area and calculate 

clusters per/µm2 regions of interest (ROIs) were drawn around the cellular boundary using 

the epi image within Nikon NIS Elements.  

Statistical analysis 

Data is presented as the mean ± standard deviation.  Where indicated statistical analysis 

was performed using unpaired two tailed t-test or 2-way ANOVA with Bonferroni post-test.  

All statistical analyses were performed using GraphPad Prism 7. 

Results 

Mouse platelets have a greater density GPVI 

Mouse receptor copy numbers were determined by comparing antibody labelled platelets to 

antibody labelled calibration beads with known antigen binding capacities.  The mean 

fluorescence intensity of platelets stained with a monoclonal antibody to mouse GPVI 

(JAQ1) (Figure 1A) were compared to beads of known antigen binding capacity, also 

labelled with JAQ1 (Figure 1B) which were used to construct a calibration curve (Figure 1C).  

Using this, mouse platelets were determined to have 5,586 ± 1,155 copies of GPVI at the 

cell surface which is similar to proteomic estimates.   

To validate the flow cytometry approach the surface copy number of other membrane 

proteins were determined and compared to the published mouse proteomic database (Table 

1).(28)  Copy number was similar for CLEC-2, integrins α2, αIIb and α6, GPIbα and P-

selectin (activated) platelets, whereas the levels of CD9 and ADAM10 were approximately 

one order of magnitude higher when measured using proteomics.   

The approach was further validated by using the flow cytometry method to determine the 

surface copy number of human GPVI and the intracellular protein copy number of human 
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Syk and compared these to the published human proteomic database (Table 2).(24)  The 

copy number for human Syk was similar, whereas human GPVI was approximately 2 fold 

higher when measured by flow cytometry compared to the proteomic estimation. 

Modelling of mouse GPVI signalling using the Virtual Platelet simulation 

When comparing the published protein copy numbers for proteins involved in the GPVI 

signalling pathway (GPVI, Syk, Cbl and TULA-2) in human and mouse platelets there are 

some striking differences (Figure 1D)(24, 26, 28). One difference of note is the 10 fold 

increase in Syk molecules per mouse platelet compared to human platelets.  Additionally, 

due to the smaller size of mouse platelets compared to human platelets, all molecules 

involved in the initial events downstream of GPVI, including the receptor, are at a greater 

density in mouse platelets than in human (Figure 1E).  

The Virtual Platelet model of human GPVI signalling(29) was used to predict how these large 

differences in mouse platelet protein copy number influence signalling.  The model is able to 

predict the effects of variability in protein copy number on events downstream of the GPVI 

receptor.  We replaced parameters in the Virtual Platelet model with mouse protein copy 

numbers to enable comparison between the dynamics of GPVI signalling between the two 

species (Figure 2A & B).  The model was used to predict the dynamics of Syk tyrosine 

phosphorylation at positions Y525/Y526 (Y519/520 in mouse).  Phosphorylation of 

Y525/Y526 within the activation loop of the kinase domain of human Syk is a recognised Syk 

activation marker(38) and a critical step in GPVI signalling.     

Time-dependent simulations of Syk phosphorylation on the activatory loop (Y525/526) in 

platelets from a hypothetical population of human and mouse donors following ligation of 

GPVI with 10µg/ml CRP display a similar temporal pattern of tyrosine phosphorylation 

(Figure 2A). The virtual human population show a peak in Syk phosphorylation at the 

activatory site occurring in the range of 30-39 seconds following ligand being applied, while 

the virtual mouse population peaked between 18-22 seconds (Figure 2B). 
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Experimental time course of human and mouse Syk activation corroborates the 

outcomes of the modelling 

To corroborate the outcomes of the modelling, experimental time-courses of Syk 

phosphorylation at Y525/526 were determined (Figure 2C and 2D). Due to the high 

sequence similarity between human and mouse Syk, the phospho-specific antibody raised 

against phosphorylated tyrosines Y525/526 recognises the corresponding phosphorylated 

residues Y519/520 in mouse platelets(38).  The time to maximal tyrosine phosphorylation on 

the Syk activatory loop was determined by quantitative Western blotting, which for mouse 

was 31±8 seconds and for human was 34±8 seconds following stimulation with 10μg/ml 

CRP (Figure 2E), similar to the times to peak predicted by the Virtual Platelet model.    

Mouse platelets are refractory to large reductions in the number of Syk molecules  

Modelling was used to determine the sensitivity of Syk phosphorylation at position Y525/526 

in response to variation (±50%) of the key components of the Virtual Platelet model (Figure 

3). The model predicts that the time to peak Syk phosphorylation at the activatory site in 

mouse is, unlike in human platelets, insensitive to a 50% change in Syk copy number.  In 

mouse platelets there is no difference in the predicted timing of Syk activation following 50% 

Syk deficiency predicting that mouse platelets are insensitive to large variations in Syk 

protein copy number (Figure 3).  To test this, using aggregation as a functional endpoint of 

platelet activation, we used a novel mouse model which expresses a kinase dead (K396R) 

form of Syk in mice containing a megakaryocyte lineage specific Cre-deleter, Pf4-Cre(39, 

40).  Platelets express the kinase dead version of Syk and wild type Syk at the same level as 

Syk in control platelets (Supplemental Figure 1).  Heterozygous mice which have both a wild 

type Syk allele and a K396R kinase dead Syk allele were compared to litter mate controls 

(Figure 4A).  No significant difference in total Syk protein levels was observed in the Syk KD 

HT platelets when compared to control platelets (Figure 4B & 4C).  Using the assumption 

that Syk KD HT mice express both wild type and kinase dead versions of Syk in a 1:1 ratio 

we compared the aggregation of platelets from control and Syk KD HT mice in response to 
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10, 3 and 1µg/ml of CRP (Figure 4D and 4E).  No significant difference in percentage 

platelet aggregation at 5 mins following agonist addition was observed between control and 

Syk KD HT mouse platelets at any of the concentrations of CRP tested (Figure 4E).  

However, following quantification of the time to peak, a statistically significant delay was 

seen in the aggregation of Syk KD HT following the addition of 3µg/ml CRP (Figure 4F).  No 

significant difference in the time to peak was observed following 10µg/ml CRP.   

Tyrosine phosphorylation on the Syk activatory loop was determined by quantitative Western 

blotting (Figure 4G-I).  As the model predicts, no significant difference was seen in the time 

to maximal tyrosine phosphorylation on the Syk activatory loop between control and Syk KD 

HT mice following stimulation with 10µg/ml CRP.  In addition, no significant difference was 

observed in the phosphorylation of the downstream signalling molecule LAT at position Y200 

(Supplemental Figure 2).   

Despite the competition of wild type and kinase dead versions of Syk in the heterozygous 

mice and the dominant negative effect this has on signalling outcomes, heterozygous 

platelets expressing both the wild type and kinase dead version of Syk largely have no 

observable phenotype when stimulated with 10µg/ml CRP and only a minor phenotype when 

stimulated using a reduced concentration of CRP.  These data validate the model by 

demonstrating that mouse platelets are relatively resistant to a 50% variation in functional 

Syk. 

Spatial organisation of Syk in mouse and human platelets 

The spatial distribution of receptors and signalling molecules is an important consideration in 

the regulation of signalling pathways.  We hypothesized that as the initial signalling events 

are similar between mouse and human platelets, both in the Virtual Platelet model and in the 

experimental outcomes, signalling may be regulated by the spatial distribution of signalling 

molecules.  To identify and quantify the spatial distribution of Syk in human and mouse 

platelets the localisation of Syk was imaged by dSTORM super resolution microscopy using 

an Alexa 647 conjugated secondary labelled pan-Syk antibody which cross reacts with both 
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human and mouse Syk.  The DBSCAN algorithm was used to determine Syk cluster size, 

number and detection density within clusters (Figure 5).  DBSCAN identifies clusters by 

grouping points together within a defined local distance provided a minimum number of 

points can be found within that defined distance.  For this analysis, a radius of 25 nm was 

used and the minimum number of points located within the defined radius was 10.    These 

user defined conditions minimised background noise and minimised the merging of discrete 

clusters together (Supplemental Figure 3).  While mouse platelets had significantly more 

detections per cluster, a larger cluster area and an increased number of clusters per unit 

area (Figure 5C, 5D and 5E) there was no significant difference in the Syk detection density 

within clusters between human and mouse (Figure 5F). 

Discussion 

Quantification in biology is of increasing importance, not only to identify potential new drug 

targets, but to also understand the implications of signalling perturbations and variations 

have on functional outcomes by generating models reliable enough for in silico research.  

Here we use flow cytometry to quantify the level of surface receptors and to quantify 

changes in the copy number of membrane receptors at the surface of platelets.     

All platelet surface receptors tested in this study, except the metalloproteinase ADAM10 and 

the tetraspanin CD9, were within two-fold of those determined by quantitative proteomics.  

The flow cytometry approach for these two proteins gave lower surface protein copy 

numbers that were ten times lower that determined by proteomics.  These differences may 

indicate that these proteins have significant intracellular pools or decreased antibody binding 

due to steric hindrance.   Indeed, studies in other cell types demonstrate that, in addition to 

surface expression, ADAM10 is also localised to intracellular pools(41) but it is not known if 

this is the case in platelets.  Tetraspanins are recognised as membrane organisers, 

interacting with other tetraspanins and also other interacting partners such as integrins(42).  

Clustering of CD9 with other tetraspanins and membrane partners in the cell membrane may 

lead to reduced antibody binding due to steric hindrance. 
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While available proteomic datasets provide an estimation of absolute numbers of proteins, 

these data can be combined with flow cytometry to determine the copy number of proteins 

expressed at the surface and used to quantify changes in surface expression.  For example, 

as expected, resting mouse platelets have very little P-selectin molecules at their surface 

(550 ± 290 molecules per platelet).  When activated this increases to 53538 ± 8875 

molecules per platelet.  This value is in the same order of magnitude as the total amount of 

P-selectin identified in the mouse proteomic dataset (35970 ± 2712 molecules per platelet).  

Proteomics provides an indication of total P-selectin protein copy number suggesting that 

following platelet activation the majority of P-selectin is exposed to the surface of platelets. 

42816 ± 637 copies of CLEC-2 were identified on the surface of mouse platelets compared 

to only 2016 ± 239 copies reported on human platelets(43).  The copy number of human 

CLEC-2 determined by flow cytometry supports the Burkhart et al. proteomics data set which 

identified 3700 copies of CLEC-2 per human platelet.  The copy number of mouse CLEC-2 

by flow cytometry strongly supports the mouse proteomic data which identified 41652 ± 7759 

copies of CLEC-2 per mouse platelet(28).  Our data suggest that mouse platelets express 

approximately 20 times more CLEC-2 at their surface than human platelets.  The increase in 

protein copy number may contribute to the recent finding that mouse platelets can adhere to 

and form aggregates on recombinant mouse podoplanin at high shear rates whereas human 

platelets are unable to do so(44, 45).  The difference in CLEC-2 copy number raises the 

suggestion that high levels of Syk in mouse may support other Syk dependent signalling 

events such as those mediated by CLEC-2. 

When comparing the copy numbers of signalling molecules associated with the GPVI 

signalling pathway we were surprised to find that there was a 10-fold increase in Syk 

molecules in mouse platelets compared to human.  Considering how tyrosine kinases play a 

pivotal role in platelet receptor signal transduction we sought to use the Virtual Platelet 

model to explore the effect protein copy number may have on GPVI signalling in mouse 

platelets, particularly in the regulation of Syk.  The model corroborated experimental data 
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demonstrating that phosphorylation of the tyrosines within the Syk activatory loop follow a 

similar time course in mouse and human platelets despite the differences in copy number of 

Syk. 

The Virtual Platelet, a mathematical model of platelet signalling, has allowed the role and 

importance of specific signalling molecules involved in platelet activation to be determined.  

We have used the Virtual Platelet to investigate the functional implications of discrepancies 

between levels of mouse and human proteins in the GPVI signalling pathway.  This has shed 

light on the molecules and processes within platelet cells that regulate GPVI mediated 

signalling.  Models, like the Virtual Platelet, have to the potential to aid the development of 

new anti-platelet therapies, enable correlations between preclinical toxicity screening and 

clinical outcomes, and may facilitate personalised therapy.           

The Virtual Platelet simulation which used the mouse protein levels predicted a slightly larger 

difference in Syk temporal regulation compared with the experimental data.  This may lie in 

the subtle difference in the regulation of Tula-2, a histidine tyrosine phosphatase that 

negatively regulates Syk, between mouse and human(46).  Human Tula-2 has been 

reported to have a dependence on PKC.  Studies used pan-inhibitors of PKC suggests that 

PKC regulation of TULA-2 negatively regulates Syk activation.  Mouse platelets have no 

reported role for PKC in Tula-2 regulation(47).  Mouse platelets may compensate for the loss 

of this second level of regulation by having greater levels of Tula-2 compared to human.  

The counterintuitive increase in human platelet activity in response to increases or 

decreases in Syk copy numbers reflects Syk’s tight control of its own activation and 

inhibition. The copy numbers in human platelets are in balance so that Syk controls its own 

activation.  A mouse model expressing a kinase dead version of Syk was used to investigate 

the impact a loss of functional Syk had on GPVI mediated signalling.  Despite the 

competition of wild type and kinase dead versions of Syk in the heterozygous mice and the 

dominant negative effect this may have on signalling outcomes, heterozygous platelets 

expressing both the wild type and kinase dead version of Syk largely behaved like control 



 

17 
 

platelets in the experimental conditions tested.  The insensitivity of mouse platelets to 

variation in Syk leads to the hypothesis that in mice, concentrations of Syk may be more 

tightly controlled up stream, at the cell membrane.  Indeed, considerable evidence suggests 

that the spatial distribution of signalling assemblies is highly regulated.  Many membrane 

receptors do not function as single signalling units but instead associate in multimolecular 

complexes with the formation of submicron clusters implicated in the initiation, maintenance 

and down regulation of signalling pathways(48-50).   

GPVI has been shown to oligomerise in response to a range of GPVI ligands in human 

platelets(35).   dSTORM allowed fluorophore molecules to be detected and located with high 

spatial precision.  Combined with cluster analysis the relative localisation of Syk molecules in 

human and mouse platelets was determined.  Despite the 10-fold difference in the copy 

number of Syk in mouse platelets there was only a 2.7-fold increase in the number of 

clusters per spread platelet area and a 1.3- and 1.2-fold increase in the cluster area and the 

number of detections per cluster respectively.  Overall there was no significant difference in 

the relative density of Syk within the identified clusters.  This suggests that regulation of 

GPVI signalling may be at the level of receptor and explains why, despite large differences in 

protein copy number, the regulation of GPVI mediated signalling is similar between mouse 

and human. 

In conclusion, we have used a flow cytometry-based method to validate the available mouse 

proteomics data, providing a means to quantify mouse platelet surface protein expression 

and changes induced following platelet activation.  Using a systems pharmacology model of 

human platelet GPVI signalling, the Virtual Platelet, in combination with quantitative flow 

cytometry and super resolution microscopy we have identified that, despite large differences 

in protein copy number, the regulation of proximal signalling events downstream of GPVI is 

tightly regulated at the level of the cell membrane in both human and mouse platelets. 

Authorship Contributions 



 

18 
 

J.L.D., A.J.U., A.P.B., and A.Y.P. designed the study, performed experiments, analysed data 

and wrote the paper. Y.D. and T.S. performed experiments.  C.P, J.P, E.H, A.H, M.S. and 

N.S.P. performed experiments and analysed data.  B.N. provided key reagents.  All authors 

reviewed the manuscript. 

Acknowledgements 

This work was supported by the Academy of Medical Science springboard grant to A.Y.P. 

[SBF002\1099].  The support of the British Heart Foundation (BHF) is gratefully 

acknowledged by J.L.D., (PG/16/20/32074) T.S., A.P.B and A.J.U (RG/15/2/31224) to 

J.M.G.  BN is supported by the Deutsche Forschungsgemeinschaft (grant SFB/TR 240).  

The mouse model was generated with support from the BHF (FS/15/71/31677).  E.J.H was 

supported by a BHF grant (RG/13/18/30563) to S.P.W. who holds a BHF (CH0/003) 

supporting Y.D and N.S.P.  M.S. is supported by a European Union’s Horizon 2020 research 

and innovation program under Marie Sklodowska-Curie grant agreement No. 766118 to 

S.P.W., N.S.P., A.Y.P., J.M.G., B.N and A.G. The authors would also like to thank Michael 

Tomlinson, School of Biosciences, University of Birmingham, for providing antibodies used in 

this study and for his valuable advice.   

Conflicts of Interest Disclosure 

The authors declare no conflicts of interest 

References  

1. Knight-Schrijver VR, Chelliah V, Cucurull-Sanchez L, Le Novere N. The promises of 
quantitative systems pharmacology modelling for drug development. Computational and structural 
biotechnology journal. 2016;14:363-70. 

2. Leil TA, Bertz R. Quantitative Systems Pharmacology can reduce attrition and improve 
productivity in pharmaceutical research and development. Frontiers in pharmacology. 2014;5:247. 

3. Inoue O, Suzuki-Inoue K, McCarty OJ, Moroi M, Ruggeri ZM, Kunicki TJ, et al. Laminin 
stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood. 
2006;107(4):1405-12. 

4. Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M, et al. Fibrin 
activates GPVI in human and mouse platelets. Blood. 2015;126(13):1601-8. 

5. Massberg S, Konrad I, Bultmann A, Schulz C, Munch G, Peluso M, et al. Soluble glycoprotein 
VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB journal : 



 

19 
 

official publication of the Federation of American Societies for Experimental Biology. 2004;18(2):397-
9. 

6. Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D, et al. A crucial role of 
glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. The Journal of 
experimental medicine. 2003;197(1):41-9. 

7. Ebrahim M, Jamasbi J, Adler K, Megens RTA, M'Bengue Y, Blanchet X, et al. Dimeric 
Glycoprotein VI Binds to Collagen but Not to Fibrin. Thrombosis and haemostasis. 2018;118(2):351-
61. 

8. Induruwa I, Moroi M, Bonna A, Malcor JD, Howes JM, Warburton EA, et al. Platelet collagen 
receptor Glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, 
contributing to platelet adhesion and activation during thrombus formation. Journal of thrombosis 
and haemostasis : JTH. 2018;16(2):389-404. 

9. Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, et al. Platelet 
glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 
2015;126(5):683-91. 

10. Mangin PH, Onselaer MB, Receveur N, Le Lay N, Hardy AT, Wilson C, et al. Immobilized 
fibrinogen activates human platelets through glycoprotein VI. Haematologica. 2018;103(5):898-907. 

11. Onselaer MB, Hardy AT, Wilson C, Sanchez X, Babar AK, Miller JLC, et al. Fibrin and D-dimer 
bind to monomeric GPVI. Blood advances. 2017;1(19):1495-504. 

12. Andrews RK, Arthur JF, Gardiner EE. Targeting GPVI as a novel antithrombotic strategy. 
Journal of blood medicine. 2014;5:59-68. 

13. Rigg RA, Aslan JE, Healy LD, Wallisch M, Thierheimer ML, Loren CP, et al. Oral administration 
of Bruton's tyrosine kinase inhibitors impairs GPVI-mediated platelet function. American journal of 
physiology Cell physiology. 2016;310(5):C373-80. 

14. Busygina K, Jamasbi J, Seiler T, Deckmyn H, Weber C, Brandl R, et al. Oral Bruton tyrosine 
kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. 
Blood. 2018;131(24):2605-16. 

15. Bye AP, Unsworth AJ, Vaiyapuri S, Stainer AR, Fry MJ, Gibbins JM. Ibrutinib Inhibits Platelet 
Integrin alphaIIbbeta3 Outside-In Signaling and Thrombus Stability But Not Adhesion to Collagen. 
Arteriosclerosis, thrombosis, and vascular biology. 2015;35(11):2326-35. 

16. Bye AP, Unsworth AJ, Desborough MJ, Hildyard CAT, Appleby N, Bruce D, et al. Severe 
platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. 
Blood advances. 2017;1(26):2610-23. 

17. Levade M, David E, Garcia C, Laurent PA, Cadot S, Michallet AS, et al. Ibrutinib treatment 
affects collagen and von Willebrand factor-dependent platelet functions. Blood. 2014;124(26):3991-
5. 

18. Nicolson PLR, Hughes CE, Watson S, Nock SH, Hardy AT, Watson CN, et al. Inhibition of Btk 
by Btk-specific concentrations of ibrutinib and acalabrutinib delays but does not block platelet 
aggregation to GPVI. Haematologica. 2018. 

19. Ungerer M, Li Z, Baumgartner C, Goebel S, Vogelmann J, Holthoff HP, et al. The GPVI-Fc 
fusion protein Revacept reduces thrombus formation and improves vascular dysfunction in 
atherosclerosis without any impact on bleeding times. PloS one. 2013;8(8):e71193. 

20. Best D, Senis YA, Jarvis GE, Eagleton HJ, Roberts DJ, Saito T, et al. GPVI levels in platelets: 
relationship to platelet function at high shear. Blood. 2003;102(8):2811-8. 



 

20 
 

21. Furihata K, Clemetson KJ, Deguchi H, Kunicki TJ. Variation in human platelet glycoprotein VI 
content modulates glycoprotein VI-specific prothrombinase activity. Arteriosclerosis, thrombosis, 
and vascular biology. 2001;21(11):1857-63. 

22. MacGlashan DW, Jr. Relationship between spleen tyrosine kinase and phosphatidylinositol 5' 
phosphatase expression and secretion from human basophils in the general population. The Journal 
of allergy and clinical immunology. 2007;119(3):626-33. 

23. Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN. Mathematical Techniques for 
Understanding Platelet Regulation and the Development of New Pharmacological Approaches. 
Methods in molecular biology (Clifton, NJ). 2018;1812:255-79. 

24. Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, et al. The first 
comprehensive and quantitative analysis of human platelet protein composition allows the 
comparative analysis of structural and functional pathways. Blood. 2012;120(15):e73-82. 

25. Wangorsch G, Butt E, Mark R, Hubertus K, Geiger J, Dandekar T, et al. Time-resolved in silico 
modeling of fine-tuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and 
pharmacological modulation. BMC systems biology. 2011;5:178. 

26. Mazet F, Dunster JL, Jones CI, Vaiyapuri S, Tindall MJ, Fry MJ, et al. A high-density 
immunoblotting methodology for quantification of total protein levels and phosphorylation 
modifications. Scientific reports. 2015;5:16995. 

27. Protty MB, Watkins NA, Colombo D, Thomas SG, Heath VL, Herbert JM, et al. Identification 
of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of 
tetraspanin microdomains. The Biochemical journal. 2009;417(1):391-400. 

28. Zeiler M, Moser M, Mann M. Copy number analysis of the murine platelet proteome 
spanning the complete abundance range. Molecular & cellular proteomics : MCP. 2014;13(12):3435-
45. 

29. Dunster JL, Mazet F, Fry MJ, Gibbins JM, Tindall MJ. Regulation of Early Steps of GPVI Signal 
Transduction by Phosphatases: A Systems Biology Approach. PLoS computational biology. 
2015;11(11):e1004589. 

30. Hughes CE. How to perform aggregometry and lumi-aggregometry in mouse platelets. 
Platelets. 2018:1-6. 

31. Severin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, et al. Distinct and overlapping 
functional roles of Src family kinases in mouse platelets. Journal of thrombosis and haemostasis : 
JTH. 2012;10(8):1631-45. 

32. Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in R: Package deSolve. 2010. 
2010;33(9):25. 

33. Vaiyapuri S, Jones CI, Sasikumar P, Moraes LA, Munger SJ, Wright JR, et al. Gap junctions and 
connexin hemichannels underpin hemostasis and thrombosis. Circulation. 2012;125(20):2479-91. 

34. Suzuki-Inoue K, Inoue O, Frampton J, Watson SP. Murine GPVI stimulates weak integrin 
activation in PLCgamma2-/- platelets: involvement of PLCgamma1 and PI3-kinase. Blood. 
2003;102(4):1367-73. 

35. Poulter NS, Pollitt AY, Owen DM, Gardiner EE, Andrews RK, Shimizu H, et al. Clustering of 
glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling 
in platelets. Journal of thrombosis and haemostasis : JTH. 2017;15(3):549-64. 

36. Ester M, Kriegel, H., Sander, J., Xu., X. A density-based algorithm for discovering clusters in 
large spatial databases with noise. KDD-96 Proceedings. 1996;96(34):226-31. 



 

21 
 

37. Pike JA, Khan AO, Pallini C, Thomas SG, Mund M, Ries J, et al. Topological data analysis 
quantifies biological nano-structure from single molecule localization microscopy. bioRxiv. 
2018:400275. 

38. Zhang J, Billingsley ML, Kincaid RL, Siraganian RP. Phosphorylation of Syk activation loop 
tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop 
phosphotyrosine antibody. The Journal of biological chemistry. 2000;275(45):35442-7. 

39. Tiedt R, Schomber T, Hao-Shen H, Skoda RC. Pf4-Cre transgenic mice allow the generation of 
lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood. 
2007;109(4):1503-6. 

40. Wang X, Mychajlowycz M, Lau C, Gutierrez C, Scott JA, Chow CW. Spleen tyrosine kinase 
mediates BEAS-2B cell migration and proliferation and human rhinovirus-induced expression of 
vascular endothelial growth factor and interleukin-8. The Journal of pharmacology and experimental 
therapeutics. 2012;340(2):277-85. 

41. Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM 
proteases in the context of FasL shedding in T lymphocytes. Molecular immunology. 2015;65(2):416-
28. 

42. Hemler ME. Tetraspanin functions and associated microdomains. Nature reviews Molecular 
cell biology. 2005;6(10):801-11. 

43. Gitz E, Pollitt AY, Gitz-Francois JJ, Alshehri O, Mori J, Montague S, et al. CLEC-2 expression is 
maintained on activated platelets and on platelet microparticles. Blood. 2014;124(14):2262-70. 

44. Lombard SE, Pollitt AY, Hughes CE, Di Y, McKinnon T, O'Callaghan C A, et al. Mouse 
podoplanin supports adhesion and aggregation of platelets under arterial shear: A novel mechanism 
of haemostasis. Platelets. 2017:1-7. 

45. Navarro-Nunez L, Pollitt AY, Lowe K, Latif A, Nash GB, Watson SP. Platelet adhesion to 
podoplanin under flow is mediated by the receptor CLEC-2 and stabilised by Src/Syk-dependent 
platelet signalling. Thrombosis and haemostasis. 2015;113(5):1109-20. 

46. Thomas DH, Getz TM, Newman TN, Dangelmaier CA, Carpino N, Kunapuli SP, et al. A novel 
histidine tyrosine phosphatase, TULA-2, associates with Syk and negatively regulates GPVI signaling 
in platelets. Blood. 2010;116(14):2570-8. 

47. Buitrago L, Bhavanasi D, Dangelmaier C, Manne BK, Badolia R, Borgognone A, et al. Tyrosine 
phosphorylation on spleen tyrosine kinase (Syk) is differentially regulated in human and murine 
platelets by protein kinase C isoforms. The Journal of biological chemistry. 2013;288(40):29160-9. 

48. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are 
sustained in peripheral microclusters and terminated in the central supramolecular activation 
cluster. Immunity. 2006;25(1):117-27. 

49. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, 
et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by 
recruitment of Zap70 and SLP-76. Nature immunology. 2005;6(12):1253-62. 

50. Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, et al. Restriction of receptor 
movement alters cellular response: physical force sensing by EphA2. Science (New York, NY). 
2010;327(5971):1380-5. 



 

22 
 

 

Table 1 Copy number of major mouse platelet receptors 

Copy number of major mouse platelet receptors determined by flow cytometry values 

presented as the mean ± S.D n>3.  * A comparison has been made with the available mouse 

quantitative proteomics data taken from (28). Proteins highlighted in red are included in the 

Virtual Platelet model. 

 

Table 2 Copy number of human GPVI and human Syk 
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Copy number of human GPVI and human Syk determined by flow cytometry, values 

presented as the mean ± S.D n≥3.  ** A comparison has been made with the available 

human quantitative proteomics data taken from (24).  

 

Figure 1 Flow cytometry can be used to determine the copy number of mouse 

platelets receptors.  Saturating concentrations of directly dye conjugated monoclonal 

antibodies against mouse GPVI (JAQ1) were used to label platelets (A) and beads of known 

antigen binding capacity (B).  The geometric mean was used to construct a calibration graph 

which can then be used to calculate the number of proteins exposed at the platelet cell 

surface (C).  Comparison between mouse and human platelet copy numbers taken from this 

study, Zeiler et al,(2014) and Mazet et al, (2015) (D). Comparison between mouse and 

human protein densities, based on platelet volumes of 4.3fL and 7.4fL for mice and human 

respectively (E). 
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Figure 2 Virtual platelet predictions of Syk activity in a hypothetical population of 

mouse and human platelet is supported by the experimental outcomes.   (A) The 

results of 200 simulations of the Virtual platelet are shown. Each line represents a prediction 

of how Syk phosphorylation changes over time in response to protein copy numbers 

randomly selected across their normal range (Human: GPVI, 5000 +/-12%; Syk, 2763 +/-

22%, c-Cbl, 2581 +/-25%. Mouse: GPVI, 5586 +/-12%; Syk, 23286 +/-22%, c-Cbl, 3241 +/-

25%). Simulations representing Syk phosphorylation in a hypothetical mouse platelet 

(n=100) being shown in red or in a human platelet (n=100) in blue.  (B) A summary of model 

predictions for the time to reach maximal peak Syk activity with each simulation denoted 

graphically by a circle.  (C) Representative time-course of Syk Y525/Y526 phosphorylation in 

human and mouse washed platelets following GPVI ligation with 10 µg/ml CRP.  Actin acts 

as a loading control. (D) Quantification of mouse and human Syk Y525/Y526 

phosphorylation time-courses. Mean ± S.D, n=5. (E) Time to maximal Syk Y525/Y526 

phosphorylation.  Line indicates the mean ± S.D. p=0.5796 Statistical analysis was 

performed with unpaired t test. 
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Figure 3. Mouse platelets are refractory to large reductions in the number of Syk 

molecules.  Modelling suggests that the sensitivity of Syk phosphorylation to variation in 

protein copy numbers varies between human and mouse platelets.  Time to maximal Syk 

phosphorylation in a hypothetical population of human and mouse platelets is shown, where 

the copy number of each protein was varied by 50% above and below their initial value. A 

positive sensitivity score represents an increase in the time to reach peak activity and a 

negative score represents a decrease.  
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Figure 4.  (A) Genotyping strategy confirming the presence of both a Syk WT allele and KD 

version under the control of PF4-Cre in the heterozygous mice (HT) and homozygous mice 

(HO) . (B) Total Syk protein levels were measured by Western blot in control (WT) and Syk 

KD HT (HT) mice using two different anti-Syk antibodies.  (C) Quantification of Syk levels in 

platelets from WT and Syk KD HT mice. Mean ± S.D, n=3. 4D10 p=0.146, N19 p=0.305 

Statistical analysis was performed with unpaired t test (D) Platelet aggregation of washed 

control (WT) and heterozygous (HT) mice induced by 10 and 3 µg/ml CRP (addition of 

agonist indicated by arrowhead).  (E) Quantification of % aggregation at 5 mins of control 

(WT) and Syk KD HT (HT) platelets.  Mean ± S.D, n≥3. Statistical analysis was performed 

with a 2-way ANOVA with Bonferroni post-test (ns; p>0.05)  (F) Quantification of time to 
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peak of control (WT) and Syk KD HT (HT) platelets.  Mean ± S.D, n≥3. Statistical analysis 

was performed with a 2-way ANOVA with Bonferroni post-test (ns; p>0.05, *p<0.05) (G) 

Representative time-course of Syk Y525/Y526 phosphorylation in WT and Syk KD HT 

mouse washed platelets following GPVI ligation with 10µg/ml CRP.  Actin acts as a loading 

control. (H) Quantification of control (WT) and Syk KD HT (HT) Syk Y525/Y526 

phosphorylation time-courses. Mean ± S.D, n=3. (I) Time to maximal Syk Y525/Y526 

phosphorylation.  Line indicates the mean ± S.D.  p=0.193 Statistical analysis was 

performed with unpaired t test.  

 

Figure 5. Spatial distribution of Syk in mouse and human platelets.  Representative plot 

of clusters in a human platelet (A) and a mouse platelet (B) spread on CRP.  Clusters were 

identified using DBSCAN with a radius of 25 nm and a minimum number of points as 10.  

Each cluster is identified by a different colour, the black points are background points which 

do not meet the criteria to be included in a cluster.  Quantification of the number of 

detections per cluster (C), cluster area (D), number of clusters per spread platelet area (E) 

and the detection density within clusters (F) in human and mouse platelets.  Mean ± S.D, 

n=3 *p≤0.05 **p≤0.01 Statistical analysis was performed with unpaired t test.  
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Supplemental figure 1: Total Syk protein levels were measured by Western blot in control 

platelets (+/+;PF4-Cre) and platelets expressing Syk K396R KD (fl/fl;PF4-Cre). n=3 
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Supplemental Figure 2 (A) Representative time-course of LAT Y200 phosphorylation in WT 

and Syk KD HT mouse washed platelets following GPVI ligation with 10µg/ml CRP.  Actin 

acts as a loading control.  (B) Quantification of control (WT) and Syk KD HT (HT) LAT Y200 

phosphorylation time-courses. Mean ± S.D, n=3 (HT), n=2 (WT). (C) Time to maximal LAT 

Y200 phosphorylation.  Line indicates the mean ± S.D  

 

Supplemental Figure 3. Spatial distribution of Syk in mouse and human platelets.  

Representative plot of clusters in a human platelet (A) and a mouse platelet (B) spread on 

CRP.  Clusters were identified using DBSCAN with the indicated radius (r) and minimum 
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number of points (p).  Each cluster is identified by a different colour, the black points are 

background points which do not meet the criteria to be included in a cluster.  Quantification 

of the number of detections per cluster (C), cluster area (D), number of clusters per spread 

platelet area (E) and the detection density within clusters (F) in human and mouse platelets.  

Mean ± S.D, n=3 *p≤0.05 **p≤0.01 Statistical analysis was performed with unpaired t test.   

 

  


