
 
 

University of Birmingham

Size-resolved physico-chemical characterization of
diesel exhaust particles and efficiency of exhaust
aftertreatment
Zeraati Rezaei, Soheil; Alam, Salim; Xu, Hongming; Beddows, David; Harrison, Roy

DOI:
10.1016/j.atmosenv.2019.117021

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zeraati Rezaei, S, Alam, S, Xu, H, Beddows, D & Harrison, R 2020, 'Size-resolved physico-chemical
characterization of diesel exhaust particles and efficiency of exhaust aftertreatment', Atmospheric Environment,
vol. 222, 117021. https://doi.org/10.1016/j.atmosenv.2019.117021

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 06/11/2019.

Published by Elsevier in Atmospheric Environment: https://doi.org/10.1016/j.atmosenv.2019.117021

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.1016/j.atmosenv.2019.117021
https://doi.org/10.1016/j.atmosenv.2019.117021
https://birmingham.elsevierpure.com/en/publications/7148a1a3-636e-4bcc-9bdc-adfe5a9ed11d


1 
 

 1 

Size-Resolved Physico-Chemical 2 

Characterization of Diesel Exhaust Particles and 3 

Efficiency of Exhaust Aftertreatment 4 

 5 

 6 

Soheil Zeraati-Rezaei1, Mohammed S. Alam2, 7 

Hongming Xu1, David C. Beddows2,3 8 

and Roy M. Harrison2,3∗† 9 
 10 

 11 
1 Department of Mechanical Engineering 12 

School of Engineering, University of Birmingham, Edgbaston 13 
Birmingham, B15 2TT 14 

United Kingdom 15 
 16 

2 School of Geography, Earth & Environmental Sciences 17 
University of Birmingham, Edgbaston, Birmingham, B15 2TT 18 

United Kingdom 19 
 20 

3 National Centre for Atmospheric Science 21 
School of Geography, Earth and Environmental Sciences 22 

University of Birmingham 23 
Edgbaston, Birmingham B15 2TT 24 

United Kingdom 25 
  26 

                                                 
∗ To whom correspondence should be addressed. 
Tele: +44 121 414 3494; Fax: +44 121 414 3708; Email: r.m.harrison@bham.ac.uk 
 
† Also at: Department of Environmental Sciences / Center of Excellence in Environmental Studies, King Abdulaziz 
University, PO Box 80203, Jeddah, 21589, Saudi Arabia 
 



2 
 

HIGHLIGHTS 27 

• Particle emissions sampled from a light-duty diesel engine 28 
• Size fractionated from <10 nm to >10 µm diameter and then chemically characterized 29 
• Hydrocarbons peak at 100 nm and are alkanes (main), cyclics, bicyclics, aromatics 30 
• Hydrocarbons removed by >90% by DOC+DPF while oxygenates formed within DOC+DPF 31 
• High concentration of <2.5 nm particles measured and efficiently removed by DOC+DPF 32 

  33 
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ABSTRACT 34 

Knowledge of physico-chemical characteristics of particle emissions from combustion engines is 35 

essential for various modelling purposes and environmental analysis. It is of particular interest to 36 

obtain emission factors of intermediate-volatility organic compounds (IVOC) and semi-volatile 37 

organic compounds (SVOC) which have not been comprehensively reported in the literature due to 38 

the limitations of characterisation methods. In the current study, a multi-stage Nano impactor and 39 

the two-dimensional gas chromatography (GC×GC) mass spectrometry (MS) technique were used 40 

to comprehensively characterise size fractionated particle phase emissions from a light-duty diesel 41 

engine based on the particle size, compound groups and carbon number. The number size 42 

distributions of particles between 1.2-1000 nm were also investigated. Exhaust gas samples were 43 

taken before a diesel oxidation catalyst (DOC), after the DOC and after the DOC combined with a 44 

catalysed diesel particulate filter (DPF). In samples taken before the DOC (engine-out), the total 45 

particulate IVOC+SVOC (I+SVOC) emission factor was approximately 105 milligrams per 46 

kilogram of fuel consumed (which was ~49% of the total particle mass) and the peak concentration 47 

of different classes of I+SVOC was found in the particle size bins close to 100 nm where most of 48 

the total particle mass was found. Alkanes, with maximum abundance at C24, were the most 49 

dominant class of I+SVOC in samples taken before and after the aftertreatment devices. Total 50 

particulate I+SVOC emissions were removed with ~75% efficiency using the DOC and by ~92% 51 

using the DOC+DPF. Alkanes, cycloalkanes, bicyclics and monoaromatics were all removed by 52 

>90% using the DOC+DPF; however, oxygenates were removed by only ~76% presumably due to 53 

the oxidation of different species within the aftertreatment system and reappearance as oxygenates. 54 

A high concentration of particles was measured in the sub-2.5 nm range. These particles were 55 

efficiently removed by the DOC+DPF due to both the loss of I+SVOC and physical filtration. 56 

 57 

Key words: Diesel engine; Particulate matter; Particle size magnifier; SVOC; DOC; DPF; 58 

  59 
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1. INTRODUCTION 60 

Adverse environmental and health effects of primary and secondary emissions originated from 61 

combustion engines have motivated research into their properties and possible abatement 62 

mechanisms. Conventionally, diesel compression ignition engines are more energy efficient (emit 63 

less CO2) compared to their gasoline spark ignition engine counterparts (Heywood, 1988; Stone, 64 

1999). This has resulted in widespread utilisation of diesel engines for heavy-duty and light-duty 65 

applications; currently in Europe approximately half of the road vehicles are diesel fuelled (IEA, 66 

2016; ICCT, 2018), even though there has been a recent decline in the number of newly registered 67 

diesel vehicles (ICCT, 2018; Department for Transport UK, 2018).  However, conventional diesel 68 

vehicles with no or malfunctioning aftertreatment systems can emit higher levels of oxides of 69 

nitrogen (NOx) and particulate matter compared to gasoline vehicles. There still can be some 70 

challenges for the modern diesel aftertreatment systems to operate efficiently under certain 71 

operating conditions. For instance, NOx abatement in the fuel-lean exhaust of diesel vehicles can be 72 

problematic at low exhaust temperatures (Majewski and Khair, 2006), and the impact of active 73 

regeneration of a diesel particulate filter (DPF) on deteriorating engine fuel economy and increasing 74 

vehicle emissions (including particulate matter itself) can be considerable (Majewski and Khair, 75 

2006; Gordon et al., 2014). 76 

 77 

Emissions of particles, the pollutant with the greatest public health impact (IEA, 2016), contain 78 

mostly elemental carbon and organic compounds (Eastwood, 2008; Kittelson, 1998).  The organic 79 

fraction is complex as it derives from thousands of different hydrocarbons (HC) in unburned fuel 80 

and engine lubricating oil and contains compounds resulting from partial combustion and pyrolysis 81 

(Funkenbusch et al., 1979; Black and High, 1979; Alam et al., 2016; Zeraati-Rezaei et al., 2016; 82 

Laurence et al., 1996).  Typical European diesel fuels and engine lubricating oils are mainly 83 

comprised of intermediate–volatility organic compounds (IVOC) and semi-volatile organic 84 

compounds (SVOC) in the range of C11 to C30 (fuel) and C16 to C33 (oil) (Alam et al., 2018). Gas-85 
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particle partitioning of the IVOC+SVOC (I+SVOC), with different volatilities and vapour 86 

pressures, is highly active under the exhaust conditions (Alam et al., 2016; Donahue et al., 2006), 87 

with at least one percent of the SVOC mass being found in either the condensed or gas phase 88 

(Donahue et al., 2006).  Their vapour pressure in the atmosphere is between 10-11 and 10-5 atm and 89 

compounds in the exhaust of on-road diesel vehicles can contribute to the formation of secondary 90 

organic aerosol (SOA) (Gordon et al., 2014; Zhao et al., 2015; Drozd et al., 2019).  This highlights 91 

the importance of knowing their detailed composition and concentration within the engine exhaust. 92 

 93 

In this paper, the terms primary emissions and primary organic aerosol (POA) refer to pollutants 94 

which exit the tailpipe, or are produced by processing in ambient air within a few seconds of 95 

emission, such as the particles formed by nucleation of hot vapours as emissions dilute in roadside 96 

air (Charron and Harrison, 2003).  This differentiates them from secondary pollutants which form 97 

from chemical reactions in the atmosphere on a longer timescale. 98 

 99 

Studies, such as those by Huang et al. (2015) and Sakurai et al. (2003), have shown that the organic 100 

fraction of particles is composed of compounds such as normal and branched alkanes, alkyl-101 

cycloalkanes, various aromatics and polycyclic aromatic hydrocarbons (PAH). However, few 102 

studies have addressed SVOC with large carbon numbers (C>15) in a detailed quantitative manner 103 

since they are largely unresolved by conventional gas chromatography (GC) techniques and create 104 

an unresolved complex mixture (UCM) in the chromatogram (Alam et al., 2016).  Zhao et al. (2015) 105 

claimed that on average more than 90% of compounds with approximately similar effective 106 

saturation concentrations to those of C12 to C22 n-alkanes (i.e. between 103 and 106 µg/m3) appeared 107 

as a UCM in conventional GC mass spectrometry (MS) techniques. However, using a more 108 

comprehensive technique, such as two-dimensional GC (GC×GC), helps to overcome this issue. 109 

Alam et al. (2018) conducted a comprehensive study on diesel I+SVOC emissions using GC×GC 110 
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time of flight (ToF) MS and were able to characterise each major I+SVOC class according to the 111 

carbon number. 112 

Gordon et al. (2014) conducted environmental chamber experiments to investigate SOA formation 113 

from the diluted exhaust of medium- and heavy-duty diesel vehicles (the minimum engine 114 

displacement volume was 5.9 L). They reported that knowledge of the uncharacterised less volatile 115 

species in the UCM (~30% of the non-methane organic gas emissions) is necessary to better 116 

understand SOA formation. Characterising these species can also lead to more accurate emission 117 

factors. Total POA emission factors of below 100 mg/kgf (milligrams per kilogram of fuel 118 

consumed) were reported for the vehicles with no exhaust aftertreatment. These emission factors 119 

were calculated under the assumption that all carbon in the fuel is converted to CO2 (Gordon et al., 120 

2014).  Actual measurements of engine fuel consumption can be helpful in improving the accuracy 121 

of normalising the emission concentrations. 122 

 123 

Some studies have shown that I+SVOC emission factors are strongly influenced by the exhaust 124 

aftertreatment technology installed on the vehicle (Gordon et al., 2014; Zhao et al., 2015; Liu et al., 125 

2018; May et al., 2013).  Liu et al. (2018) reported that the soluble organic fraction of particle 126 

emissions from a large (8.9 L) non-road diesel engine was decreased by >80% when using a diesel 127 

oxidation catalyst (DOC) in combination with a selective catalytic reduction system (SCR) and a 128 

DPF. They suggested that a large fraction of SVOC is possibly in the gas phase under exhaust 129 

conditions and is influenced by the DOC. Gordon et al. (2014) found that primary particle 130 

emissions and SOA formation in the diluted exhaust of medium-heavy duty diesel vehicles 131 

equipped with a catalysed DPF were very small under normal operation. However, during active 132 

DPF regeneration, significant amounts of primary particles and SOA formation were measured. 133 

SOA concentrations in the diluted exhaust of some vehicles with no DPF were more than two times 134 

that of POA. Studies on light-duty diesel vehicles are very limited; May et al. (2013) recommended 135 
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investigating the volatility distribution of I+SVOC emissions from the light-duty diesel vehicles 136 

widespread in Europe. 137 

 138 

The majority of POA emissions from diesel vehicles are believed to be semi-volatile (May et al., 139 

2013); therefore, they are likely to shrink in size as a result of evaporation in the atmosphere due to 140 

high dilution and long residence time (Robinson et al., 2007; Dall’Osto et al., 2011).  It has been 141 

shown that atmospheric-like dilution of the exhaust of diesel vehicles with no DPF causes one-half 142 

to two-thirds of the POA to evaporate (May et al., 2013).  However, the composition and 143 

concentration of I+SVOC in each size class of engine exhaust particles have not previously been 144 

reported comprehensively in the literature. Size-resolved chemical composition data can be 145 

particularly useful and essential for: 146 

• determining gas transfer effects on the atmospheric evolution of emitted engine particles on 147 

different scales (for example in the study conducted by Nikolova et al. (2018) on the 148 

neighbourhood scale; 149 

• understanding and modelling of particle evolution within the vehicle exhaust system, designing 150 

and modelling of oxidative and reductive catalysts as well as particulate filters. 151 

 152 

“Another topic that has not been clearly covered in the available literature, is the study of very small 153 

particles with diameters <3 nm emitted from modern light-duty engines. Recently, these particles 154 

have been shown to be a major fraction of the total particle emissions measured in the atmosphere 155 

(Hietikko et al., 2018) which are sourced from road transportation (including both heavy-duty and 156 

passenger vehicles) and those emitted from a heavy-duty engine during engine laboratory 157 

experiments – emission factors as high as 4.3×1015 (kgfuel)−1 were measured (Rönkkö et al., 2017). 158 

Järvinen et al. (2019) used a particle size magnifier (PSM) and investigated in-traffic emissions 159 

from city buses (including Euro VI compliant buses). They found that the studied buses can be 160 

sources of large concentrations of particles in the diameter range of 1.3-3 nm, even using 161 
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aftertreatment system, depending on the driving conditions. These very small particles emitted from 162 

different engines are believed to have both volatile and non-volatile constituents. Alanen et al. 163 

(2015) studied the formation and physical properties of the particle emissions from a natural gas 164 

engine including study of particles <3 nm with a PSM. They suggested that particles did not 165 

evaporate completely even at 265 °C and have non-volatile cores, although it should be mentioned 166 

that diesel engine particle emissions are very different from natural gas engine emissions. Even in 167 

less recent studies, the presence of non-volatile cores in the sub-3 nm particles was highlighted. 168 

Filippo and Maricq (2008) investigated the volatility of particle emissions larger than 2 nm in the 169 

exhaust of light-duty vehicles and reported that the nucleation mode particles remain non-volatile to 170 

>400 °C indicative of solid cores. The sources of these very small particles with presumably a solid 171 

core are assumed to be in high temperature regions inside or in the vicinity of the combustion 172 

chamber due to their electrical charge (Alanen et al., 2015; Sgro et al., 2012; Filippo and Maricq, 173 

2008). It is important to investigate sub-3 nm particles emitted from modern light-duty diesel 174 

engines and obtain their emission factors as the picture is not clear for the fleet using these 175 

engines.” 176 

 177 

In the current paper, for the first time, size-resolved particle phase I+SVOC emission factors 178 

(concentrations normalised to the actual engine fuel consumption) for a light-duty diesel engine are 179 

comprehensively reported based on the compound type and carbon number using a multi-stage 180 

Nano impactor and GC×GC-ToF-MS technique. Furthermore, emission factors for CO, total HC 181 

(THC), NO, NO2, NOx, CO2, particle mass and number are presented. Particle size distributions are 182 

characterised also in the sub-2.5 nm range using a PSM coupled with a condensation particle 183 

counter. The link between particle size distribution and presence of I+SVOC in each particle size 184 

bin is addressed. Furthermore, the individual effects of a DOC and a catalysed DPF on 185 

characteristics of gaseous and particle (including I+SVOC and sub-2.5 nm) emissions are 186 

investigated. Although engine and aftertreatment designs as well as fuel and lubricating oil 187 



9 
 

formulations are different around the world, presenting the results before and after these 188 

aftertreatment devices can help elucidate situations where there are no or limited exhaust 189 

aftertreatment systems installed in the vehicle. 190 

 191 

 192 

2. EXPERIMENTAL SETUP 193 

Experiments were conducted on a 2.2 L, 4-cylinder in-line diesel compression ignition (CI) engine 194 

equipped with a common rail direct-injection (DI) system and a variable-nozzle-turbine (VNT) 195 

turbocharger. This is a light-duty production engine, as found in the market designed for vehicles 196 

registered after 2011 (Euro 5), without any major changes to its original settings. Main 197 

specifications of the engine are listed in Table 1. The schematic of the engine dynamometer test cell 198 

is illustrated in Figure 1. The open engine control unit (Open-ECU) allows full control over the 199 

engine operating parameters. 200 

 201 

Experiments were performed at the low engine load of 1.4 bar brake mean effective pressure 202 

(BMEP) and speed of 1800 revolutions per minute (RPM). This engine condition was selected from 203 

a dynamometer testing matrix used for assessing the engine performance and fuel economy in a 204 

target vehicle new European driving cycle (NEDC) test. Furthermore, I+SVOC characterisation at 205 

this condition is believed to be important as the formation rate of SOA from I+SVOC has shown to 206 

be higher in the diluted exhaust of engines operating at lower loads (Gordon et al., 2014). A 207 

pilot+main fuel injection strategy with an injection pressure of 600 bar was used and exhaust gas 208 

recirculation (EGR) was fixed at 33%. Experiments were conducted under the steady state engine 209 

condition – the engine was fully warmed-up and thermally stable. 210 

 211 

The engine was equipped with a newly-fitted DOC+DPF exhaust aftertreatment system; the DOC 212 

was located upstream of the DPF. The honeycomb of the DOC has a circular profile with a diameter 213 
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of 144 mm and length of 96 mm and has 20×20 (400) cells per square inch. The DPF brick is 157 214 

mm in length and has an oval cross section (188 mm and 153 mm in cross sectional profile). This 215 

DPF is believed to be catalysed as it oxidised unconverted exhaust CO and HC during the 216 

experiments. During these experiments, exhaust back pressure did not exceed the level at which it is 217 

required to use the active regeneration strategies. Active regeneration of the DPF is known to 218 

significantly increase primary particulate matter emissions and SOA formation (Gordon et al., 219 

2014). However, it is necessary to identify the contribution of the active regeneration emissions to 220 

the total light-duty vehicle emissions; but this was out of the scope of the current study. Gordon et 221 

al. (2014) estimated this to be negligible for medium- and heavy-duty diesel vehicles by considering 222 

the regeneration frequency – total particulate matter filtration efficiency was reduced by less than 223 

2%. 224 

 225 

Ultra-low sulphur diesel fuel that complied with the EN590 specifications was used for these 226 

experiments – cetane number was 52.5 and sulphur content was approximately 8 mg/kg. This diesel 227 

fuel has been comprehensively analysed previously and results showed that it includes n-alkanes, 228 

branched alkanes (mono-, di-, tri-, tetra- and penta-methyl), n-alkyl cycloalkanes, branched 229 

monocyclic alkanes, C1–C12 substituted bicyclic alkanes, C1–C4 substituted tetralins and indanes, 230 

C3–C12 substituted monocyclic aromatics, C1–C3 substituted biphenyls/acenaphthenes, C1–C4 231 

substituted bicyclic aromatics, C1–C2 substituted fluorenes, C1–C2 substituted 232 

phenanthrene/anthracenes and unsubstituted PAH (Alam et al., 2018). The majority of the 233 

compounds are aliphatic, and aromatic mass content is approximately 10% (Alam et al., 2018).  234 

Engine fuel mass consumption was measured by an AVL 733s dynamic fuel meter equipped with 235 

an AVL 752-60 fuel cooler. Fuel temperature in the feed and return lines was monitored and 236 

controlled to assure repeatable fuel consumption measurements. The fuel meter was calibrated 237 

frequently using a built-in function. Fuel consumption measurement error by the AVL 733s is from 238 

0.12% to 0.2% of the measured values depending on the fuel consumption. 239 
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 240 

The utilised SAE 5W30 part-synthetic lubricating oil is representative of the standardised engine 241 

lubricating oils available in the market complying with the ACEA A1/B1 and API SN/CF oil 242 

industry standards and the WSS-M2C913-B vehicle manufacturer specifications. Characterisation 243 

results of the typical engine lubricating oils have been reported elsewhere (Alam et al., 2018; Liang 244 

et al., 2018). Briefly, a typical SAE 5W30 lubricating oil mainly contains C16–C33 straight and 245 

branched chain alkanes, C16–C33 monocyclic alkanes, C17–C33 bicyclic alkanes, C17–C33 tricyclic 246 

alkanes and C16–C33 monocyclic aromatics (Alam et al., 2018). 247 

 248 

Calibrated K-type thermocouples (RS Company), with mostly 3 mm probe diameter, were used to 249 

measure temperatures at different locations of the engine and test cell. Pressure data were measured 250 

at different locations using Variohm EuroSensor EPT 3100 pressure transducers (max 2 bar). These 251 

pressure transducers were calibrated frequently by using a Druck DPI 601 portable pressure 252 

indicator/calibrator. 253 

 254 

Regulated gaseous emissions were repeatedly measured by a calibrated Horiba MEXA-7100-DEGR 255 

exhaust gas analyser directly from the exhaust pipe at different locations. Each measurement is the 256 

average of 180 samples (each sample takes 1 s). Horiba MEXA-7100-DEGR uses the 257 

chemiluminescence detection (CLD) technique for NOx and NO, dry non-dispersive Infra-Red 258 

(NDIR) technique for CO and CO2, hot-wet (uncondensed) flame ionisation detector (FID) 259 

technique for THC and magneto-pneumatic (MPA) technique to measure oxygen (O2). 260 

Measurement linearity related to using analysers included in the Horiba MEXA-7100-DEGR are all 261 

≤ ± 1% of full-scale output. Engine exhaust gas was delivered to the analyser by means of the 262 

heated sampling line with temperature maintained at 191±3°C. The method for derivation of the 263 

emission factors from measurements conducted by this instrument is provided in Supplementary 264 

Information, section A1. 265 
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 266 

A calibrated Cambustion DMS500 MKII fast particulate analyser was used to measure exhaust 267 

particle size distributions in the size range of approximately 5 nm to 1000 nm. It separates different 268 

sizes of particles based on their aerodynamic drag and charge while migrating in an electric field 269 

(Cambustion, 2015a). The integrated two-stage dilution system of the utilised DMS500 uses hot 270 

compressed air for the first diluter (dilutes at low dilution ratios) and cleaned exhaust gas (by a 271 

carbon high-efficiency-particulate-air (HEPA) filter) for the second diluter (dilutes at high dilution 272 

ratios using a rotating disk). The first dilution ratio was fixed at 1:5 in the current study. The 273 

secondary dilution ratio is normally required to be adjusted to ensure concentrations are within the 274 

detectable range. In the current study, the secondary dilution ratio was fixed at approximately 1:100 275 

for the measurements of size distributions before and after the DOC, while for after the DPF 276 

measurements, a secondary dilution ratio of 1:1 was used as the particle concentrations were very 277 

low. The dilution ratio is calculated automatically using the built-in software and all the results are 278 

corrected for the dilution ratio at each test point. Use of a carbon HEPA filter for the secondary 279 

diluter, rather than a normal HEPA filter, was designed to strip the majority of the volatile species 280 

for the dilution of sampled exhaust gas. A software package utilising a Bayesian statistical 281 

algorithm (Cambustion, 2015b) provided by Cambustion was used to separate the nucleation and 282 

accumulation modes based on the concentration, mean size and width (geometric standard 283 

deviation) of the distribution. In this way, the total concentration of each mode is calculated 284 

separately while considering the number of classes per decade of the measurable size range 285 

(Cambustion, 2015a).  Moreover, total mass can be calculated more accurately, as explained in 286 

Cambustion (2015c), since the characteristics (e.g. effective density and physical geometry) of 287 

particles of each mode are different. The electrometers of the DMS500 were zeroed before the start 288 

of each data point collection using the built-in Autozero function to ensure minimum offset noise 289 

effect on the results. The data were averaged over 60 s for a single measurement while each data 290 

point presented in this paper is the average of multiple measurements. The standard deviation of the 291 
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data was carefully monitored when repeating the experiments to ensure small deviations from the 292 

mean value. As an example, the standard deviation of the total particle number concentration was 293 

up to 2 orders of magnitude smaller than the mean value of the data points. The method for 294 

derivation of the emission factors from measurements performed by the DMS500 is provided in 295 

Supplementary Information, section A2. In this paper, the results obtained by using the DMS 296 

sampling system are presented in a grey box. 297 

 298 

An in-house engine exhaust dilution system (Figure 2) was used for diluting the hot exhaust gas 299 

before introducing it to the Nano-Moudi and Particle Size Magnifier systems which are described 300 

later in this section. This dilution system incorporates a modified TSI model 3302A diluter. The 301 

diluter was modified to use compressed air passed through a high flow rate moisture trap and two 302 

HEPA filters. The undiluted hot exhaust sample, delivered via a heated line maintained at 191±3°C, 303 

mixes with a filtered external airstream at ambient temperature. The sampling lines used in the 304 

exhaust dilution and sample collection system are conducting-tubing to minimise any particle loss. 305 

Dilution ratio was kept at approximately 1:50±5 confirmed by measurements of NOx before and 306 

after the dilution system. The temperature at the sampling points (after the diluter) was 25±5°C. It 307 

should be highlighted that this in-house dilution system is different from the integrated dilution 308 

system within the DMS500 (described earlier). 309 

 310 

An A10 Particle Size Magnifier (PSM) from Airmodus combined with a TSI 3775 condensation 311 

particle counter (CPC) was used to measure particles with mobility diameter between 1.2 nm to 2.5 312 

nm. The PSM grows nanoparticles to the sizes that can be further grown and detected by the CPC 313 

(Airmodus, 2017). The condensing liquid used in the PSM was diethylene glycol (Airmodus, 2013) 314 

while it was n-butanol in the CPC. The scanning measurement mode of the PSM was used for these 315 

experiments which continuously adjusts the cut-off diameter of the PSM (Airmodus, 2013; 316 

Kangasluoma et al., 2013).  Each sampling event lasted for 30 minutes including 6 scans (each for 5 317 
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minutes). The PSM has been calibrated by Airmodus using ammonium sulphate particles produced 318 

in a tube furnace and size selected with a high resolution differential mobility analyser (DMA) 319 

(Airmodus, 2013).  The method for derivation of the emission factors from measurements done by 320 

the PSM system is provided in Supplementary Information, section A3. 321 

 322 

A Nano-micro orifice uniform deposit impactor (Nano-Moudi) 125 instrument from MSP Copley 323 

Scientific was utilised for collecting exhaust particles at different sizes for size-resolved 324 

characterisation of the I+SVOC. In a Nano-Moudi (an inertial impactor), particles are collected on 325 

different stages based on the Stokes number which is a function of particle density, slip correction, 326 

particle diameter, air viscosity, nozzle diameter and volumetric flow rate through the nozzle. 327 

Thirteen stages of the Nano-Moudi from S1 to S13 with nominal 50% cut-points of 10000, 5600, 328 

3200, 1800, 1000, 560, 320, 180, 100, 56, 32, 18 and 10 nm, respectively, were used in this study. 329 

In this paper, when discussing Nano-Moudi results of >100 nm, for example, it means particles in 330 

the diameter range of 100 nm to 180 nm (the cut-point of the previous stage); this does not apply to 331 

S1 as there is no stage before it. Volumetric flow rate through the Nano-Moudi was 9 litres per 332 

minute and samples were collected for 30 minutes using polypropylene backed PTFE 47 mm filters 333 

from Whatman. 334 

 335 

I+SVOC on each stage of the Nano-Moudi were characterised using two-dimensional gas 336 

chromatography time-of-flight mass spectrometry (GC×GC-ToF-MS). Details of this GC×GC-ToF-337 

MS characterisation method are provided by Alam et al. (2019).  Briefly, the PTFE filters were 338 

spiked with internal standards and subsequently were immersed in dichloromethane (DCM) and 339 

then the mixture was ultrasonicated for 20 minutes at 20°C. The extract was concentrated to 50 µL 340 

under a gentle flow of nitrogen. Then this sample was analysed by means of a two-column GC 341 

7890A from Agilent Technologies equipped with a cryogenic modulator (Zoex ZX2). The GC×GC 342 

was connected to a Bench-ToF-Select from Markes International. The scan speed and ionisation 343 
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energy were set at 50 Hz and 70 eV, respectively. Details of the temperature ramp settings are 344 

provided by Alam et al. (2016). All the analysis include consideration of internal standards and 345 

subtraction of the I+SVOC content found on the blank filters. Solvent blank injections and blank 346 

filter extractions both did not show any peaks in the chromatography and so all compounds are 347 

below the detection limit, indicating no instrument artefacts (please refer to Alam et al. (2019) for 348 

more information). Data were processed and post-processed via GC Image v2.5 from Zoex 349 

Corporation. Computer language for identifying chemical (CLIC) was used to characterise different 350 

classes of I+SVOC within each sample. Using this technique in earlier work (Alam et al., 2018), we 351 

reported mass closures of approximately 90% and 75% for diesel fuel and engine lubricating oil 352 

samples and around 85% and 75% of the total ion current were identified for gas and particle phase 353 

diesel engine I+SVOC emissions respectively. The uncertainty of this analysis method is 354 

approximately 24% and more details are provided in Alam et al. (2108).  Repeatability of the 355 

I+SVOC volatility profile and concentration has been ensured during different testing campaigns 356 

and also by comparing Nano-Moudi results with those of single PTFE filters using the same engine 357 

but at different times. In the current study, we found that C13 to C37 alkanes (including straight- and 358 

branched-chain), C14 to C32 cycloalkanes, C16 to C23 bicyclic alkanes, C13 to C26 monocyclic 359 

aromatics and C9 to C27 oxygenated compounds (including ketones, aldehydes and furanones) are 360 

the most abundant I+SVOC classes in the diesel exhaust particle samples and therefore are the 361 

focus of this paper. The method for derivation of the I+SVOC emission factors is provided in 362 

Supplementary Information, section A4. 363 

 364 

3. RESULTS AND DISCUSSION 365 

3.1 Regulated Gaseous Emissions and Particle Size Distribution 366 

3.1.1 Gaseous emissions 367 

Gaseous emission factors and their reduction percentage (conversion or reduction efficiency 368 

depending on the species) over the aftertreatment devices are listed in Table 2. Engine-out (before 369 
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DOC) emission factors for CO and THC at this low load engine condition were relatively high 370 

because of lower combustion efficiency. However, their conversion efficiencies were high and they 371 

were decreased at two separate stages – once over the DOC and once over the DPF. This is an 372 

indication that the utilised DPF is catalyst coated. In addition, these results confirm that the DOC 373 

and DPF were in an active state for converting HC, which is important for discussing I+SVOC 374 

results later in this section. It is believed that the absence of NO2 production was due to the fact that 375 

the operating temperature was not high enough (was below 200°C) to initiate this process (Kim et 376 

al., 2011). The conversion of NO2 to NO is believed to be due to its decomposition and 377 

consumption of its oxygen content by the available CO and HC on the catalyst active sites. There 378 

was an overall reduction of NOx due to conversion of NO to N2 over the catalysts. Exhaust gas 379 

temperature after the DOC, before entering the DPF, increased by approximately 23°C and this is 380 

believed to be because of exothermic reactions within the DOC (e.g. combustion of CO and HC 381 

which subsequently increased the CO2 concentration). 382 

 383 

3.1.2 Particle emissions 384 

Effects of the DOC and DPF on the size distribution of particle emissions can be seen in Figure 3. 385 

In this figure, particles with diameter between 1.2 and 2.5 nm were measured by the PSM system 386 

and particles with diameter between 4.87 and 1000 nm were measured by the DMS system (refer to 387 

the experimental setup section). Volume size distributions (Figure 3 (b)) were calculated under the 388 

assumption that all particles have a completely spherical geometry – an assumption that may not be 389 

completely correct for larger diesel exhaust particles, especially in the accumulation mode 390 

(Kittelson, 1998). 391 

 392 

PSM results showed a high concentration peak at approximately 1.5 nm in the samples taken both 393 

before and after the DOC (Figure 3 (a)). The concentration was the highest for measurements before 394 

the DOC, decreased after the DOC, and was negligible after the DOC+DPF. The possibility of 395 
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formation and/or growth of small particles in the exhaust dilution system is reduced when 396 

concentrations of gaseous volatile and semi-volatile HC are decreased by using a DOC. For such 397 

small particles, kinetic limitations to the loss of semi-volatile constituents are very small, and 398 

therefore even constituents of quite low volatility can evaporate. Considering the results before and 399 

after the DOC+DPF system, one can conclude that the sub-2.5 nm particle emissions from the 400 

current diesel engine contain both volatile and non-volatile constituents. The non-volatile nuclei are 401 

efficiently removed by the DPF as shown in Figure 3 as also reported by Filippo and Maricq (2008) 402 

for light-duty diesel vehicles. The sources of these particles (which presumably include a solid core) 403 

are assumed to be in high temperature regions inside or in the vicinity of the combustion chamber 404 

due to their electrical charge (Filippo and Maricq, 2008; Alanen et al., 2015; Sgro et al., 2012). 405 

Sulphur storage and release in the newly-fitted aftertreatment system (acting as a reservoir) is 406 

another possibility (Herner et al., 2011; Kittelson et al., 2006). It has been reported that sulphur 407 

storage and release mechanisms are more related to the DOC rather than the DPF of the 408 

aftertreatment system (Swanson et al., 2009). Within a DOC or a catalysed DPF, engine out SO2 409 

can convert to SO3. SO3 can react with H2O and form H2SO4 (sulphuric acid) which can nucleate 410 

under the atmospheric conditions. Tiszenkel et al. (2019) conducted a preliminary study about the 411 

effects of temperature on the nucleation and growth of sulphuric acid using the Tandem Aerosol 412 

Nucleation and Growth Environment Tube (TANGENT). They used a PSM after the nucleation 413 

tube of the TANGENT system and confirmed that at temperatures around 24°C, similar to the 414 

temperature of the dilution point for the PSM results in the current study, clusters with a diameter of 415 

1.65-1.70 nm were formed, hypothetically via a ternary process. This diameter, which is close to the 416 

peak concentration diameters measured in the current study, did not change significantly as the 417 

sulphuric acid concentration was increased. This finding can indicate a possible role of sulphuric 418 

acid in forming sub-2.5 nm particles, although the exhaust gas mixture is very different to the 419 

mixture that Tiszenkel et al. (2019) studied. However, in the current study, the sulphur content of 420 

the ULSD fuel was very low (approximately 8 mg/kg), but the sulphur content of the engine 421 
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lubricating oil and its contribution to the emissions are unknown. It would be interesting to 422 

investigate the sensitivity of size distribution and characteristics of these very small diesel exhaust 423 

particles to the dilution conditions, e.g. dilution ratio and relative humidity as two important factors 424 

(Shi and Harrison, 1999). 425 

 426 

Bimodal particle size distributions, with both modes of nucleation and accumulation (the latter also 427 

referred to as the soot mode), were detected in measurements by the DMS upstream and 428 

downstream of the DOC (Figure 3(a)). Particle concentrations after the DPF appear to be negligible 429 

– there was no sign of an enhanced nucleation mode concentration which has been reported by other 430 

researchers for some engine operating conditions (Herner et al., 2011). Count median diameter 431 

(CMD) of the nucleation mode particles was 19.3 and 17.6 nm upstream and downstream of the 432 

DOC, respectively. CMD of accumulation mode particles upstream and downstream of the DOC 433 

was 54.9 and 50.4 nm, respectively. 434 

 435 

The DOC had a considerable effect in reducing the nucleation mode particles – mass decreased 436 

from 0.0094 to 0.0032 g/kgf. The nucleation mode comprises particles with a small non-volatile 437 

core (ca 5 nm) and a major part condensed semi-volatile HC (Filippo and Maricq, 2008; Lähde et 438 

al., 2009; Rönkkö et al., 2007).  In the dilution system and in the presence of soot particles, semi-439 

volatile HC, which can also nucleate during dilution, can be adsorbed by the soot surface and 440 

increase the size and mass of particle emissions. The DOC oxidises some of the gaseous HC and 441 

therefore contributes to a reduction in nucleation mode particle number. 442 

 443 

There was also a reduction of the accumulation mode particles in the DOC – mass decreased from 444 

0.2063 to 0.1664 g/kgf. The accumulation mode comprises a larger graphitic carbon core, with a 445 

coating of condensed semi-volatile HC (Shi et al., 1999; Shi et al., 2000).  Exothermic reactions 446 

inside the DOC can increase the temperature near active sites and may facilitate oxidation of HC 447 
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already adsorbed on soot particles. However, the data in Figure 3 show little change in particle size 448 

on passing through the DOC. These particles can also deposit on the top and to the monolith walls 449 

of the DOC (Eastwood, 2008). These deposited particles cannot be catalytically converted and 450 

therefore may only be oxidised under high temperature conditions. Therefore, the results suggests 451 

both loss of particles in the DOC and particle shrinkage due to HC oxidation. 452 

 453 

Figure 3(b) illustrates that the peak of volume size distribution was associated with particles with 454 

diameter of 100 nm for measurements before the DOC. The majority of volume (and presumably 455 

mass) of particles are present around this particle diameter. Particles measured by the PSM made 456 

very little contribution to the total volume due to their small diameter. 457 

3.2 Particle Phase I+SVOC Composition and Size Distribution 458 

Table 3 shows the results for particle mass (using the DMS) and I+SVOC mass (using the Nano-459 

Moudi). In this table, nucleation mode (Nuc.) particle mass and accumulation mode (Acc.) particle 460 

mass (calculated as described in the experimental setup section) were added to calculate the total 461 

particle mass (PM). The DMS results after the DOC+DPF showed a very small number of particles 462 

and therefore no peaks of nucleation and accumulation were detected using the log-normalisation 463 

method. Total mass of each I+SVOC class (namely alkanes, cycloalkanes, bicyclic alkanes, 464 

monocyclic aromatics and oxygenated compounds) were calculated by adding the data of Nano-465 

Moudi stages below 1000 nm, which is the maximum measurable diameter by the utilised DMS. 466 

This was done in order to help elucidate the relation between total PM and total I+SVOC (addition 467 

of all classes) and each I+SVOC class. 468 

 469 

Total PM decreased by approximately 21%, comparing measurements before and after the DOC 470 

and this was driven by the decrease of both nucleation and accumulation mode particles. Total 471 

particle phase I+SVOC before the DOC made a high contribution to the total PM (more than 48%) 472 

as presented in Table 4. Similar to the observations for gas phase THC that were discussed earlier, 473 
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particle phase I+SVOC concentrations decreased in two stages, once over the DOC and once over 474 

the DPF. The reduction percentage of total particle phase I+SVOC over the DOC was more than 475 

74% and over the DOC+DPF was approximately 91%. The DOC can help oxidise the engine-out 476 

gas phase SVOC (Liu et al., 2018) and consequently decrease the particle phase I+SVOC collected 477 

in the diluted exhaust. Later, when the exhaust gas passes the catalysed DPF, apart from further 478 

conversion of I+SVOC, particles are physically trapped. After the DPF, the number of solid core 479 

particles is low and consequently less condensation sink is available for the gas phase I+SVOC (if 480 

any) to condense/adsorb on them. In the current study, the particle phase I+SVOC measured after 481 

the DOC+DPF must have mainly derived from vapour passing the DOC and DPF which condensed 482 

on the filters after the dilution, as the DMS showed negligible measureable particles exiting the 483 

DPF. It should be borne in mind that the DMS and Nano-Moudi used different dilution systems 484 

(described in the experimental setup section) while the conditions of the Nano-Moudi dilution 485 

system were more similar to the atmospheric dilution (dilution with only ambient air). Moreover, 486 

the utilised comprehensive GC technique has a high sensitivity for measuring small concentrations 487 

(a few ng/m3) of I+SVOC. Although adsorption artefacts are not expected to be very high on the 488 

PTFE filters used in this study, a small amount of gas phase I+SVOC condensation and adsorption 489 

on stages of the Nano-Moudi at different sampling locations could have happened. Further to the 490 

current study, it would be interesting to investigate the effects of varying the dilution conditions 491 

such as dilution ratio, temperature, pressure and relative humidity on the concentrations and 492 

characteristics of different I+SVOC classes in different particle size ranges. 493 

 494 

Total particle phase I+SVOC mass after the DOC+DPF was approximately 8.9 mg/kgf. Gordon et 495 

al. (2014) conducted an environmental chamber study and reported emission factors of <~10 mg/kgf 496 

for total black-carbon and POA and SOA for medium/heavy-duty diesel vehicles equipped with a 497 

catalysed DPF. Although PTFE filters were used for the current study and adsorption artefacts are 498 

not expected to be so severe, it may be worthy of mention that May et al. (2013) reported that for 499 
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the test vehicles equipped with a DPF, up to 90% of the POA collected on the quartz filters from the 500 

constant volume sampler were actually adsorbed vapours. It is expected that comprehensive 501 

analysis of gas phase I+SVOC after the DPF will clarify gas-particle partitioning under various 502 

dilution conditions. 503 

 504 

Among the different I+SVOC classes, alkanes had the highest mass ratio to the total measured PM 505 

(Table 4) and I+SVOC (Table 5) at each sampling location. This was expected since the results 506 

from earlier analyses of diesel fuel and engine lubricating oil indicated the abundance of alkanes 507 

(Funkenbusch et al., 1979; Alam et al., 2016; Zeraati-Rezaei et al., 2016; Alam et al., 2018; Liang 508 

et al., 2018).  The I+SVOC content found in the particle phase is very similar to that found in the 509 

engine lubricating oil (Zeraati-Rezaei et al., 2016; Alam et al., 2018).  Alkanes and monocyclic 510 

aromatics had the highest conversion efficiency (decrease percentage or removal efficiency) over 511 

the DOC and the lowest was for oxygenated compounds (Table 3). These results highlight the lower 512 

catalytic reactivity for the cyclic alkanes compared to total normal- and branched-alkanes. Semi-513 

volatile oxygenated compounds, which are believed to be products of combustion of fuel and 514 

lubricating oil within the engine, decreased by only ~20% over the DOC and therefore made a 515 

higher contribution to the total PM and I+SVOC after the DOC. This can be due to the partial 516 

oxidation and breakdown of different compounds over the DOC and their appearance as oxygenated 517 

compounds – further discussion is provided later in this section. Generally, the decrease in 518 

concentration of all I+SVOC classes was more than 90% over the DOC+DPF except for 519 

oxygenated compounds which was approximately 76%. Since the utilised DPF was catalysed, it can 520 

be hypothesised that the oxidation process of the gas phase I+SVOC in the DPF was ongoing 521 

during the sampling. This process can result in gas phase partial oxidation by-products that can 522 

condense/adsorb on the existing particles or the PTFE filter. 523 

 524 
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For a more detailed analysis, Figure 4 (a, b, c) illustrates emission factors for different classes of 525 

I+SVOC (total alkanes, cycloalkanes, bicyclic alkanes (bicyclics), monocyclic aromatics 526 

(monoaromatics) and oxygenated compounds (oxygenates) in different size bins (sampled using the 527 

Nano-Moudi) before DOC, after DOC and after DOC+DPF. This figure also includes the 528 

conversion efficiency of each class of I+SVOC at each size bin (stage) when using the DOC (Figure 529 

4(b)) and DOC+DPF (Figure 4(c)). Contour plots showing particle size and carbon number for each 530 

I+SVOC class and measurement location are available in Figure 5 and Supplementary Information, 531 

sections C1 to C4. Tables of the raw data (µg/kgf) containing size bin and carbon number for each 532 

class and measurement location can be found in Supplementary Information, sections B1 to B5. 533 

 534 

The peak concentration of total I+SVOC upstream of the DOC was found in the size bin close to 535 

100 nm. This is probably due to the higher total mass of particles in this size range – the peak of 536 

particle volume shown in Figure 3(b) was at the same particle diameter. This may also indicate that 537 

although particles in the accumulation mode are formed of both carbonaceous cores and I+SVOC 538 

coatings, their I+SVOC fraction upstream of the DOC is high at this engine condition. Moreover, in 539 

the dilution system, due to their high concentration and total surface area, they act as sinks for the 540 

available gas phase I+SVOC to condense/adsorb on. It may be worthy of mention that I+SVOC 541 

concentration in the size bins >5600 and >10000 nm are relatively high. In the current study, 542 

measurement of size distribution for these large particles was not available; however, it is 543 

hypothesised that even if their concentrations have been low they could act as sinks for the gas 544 

phase I+SVOC as they have large surface areas and are collected on the two top stages in the Nano-545 

Moudi. 546 

 547 

Alkanes were generally the dominant mass fraction in each size bin at the three measurement 548 

locations. In terms of conversion efficiency when using the DOC, they generally had the highest 549 

values across different stages followed closely by monoaromatics and then bicyclics>cycloalkanes. 550 



23 
 

Oxygenated compounds had the lowest conversion efficiency, if this is a correct interpretation. For 551 

oxygenated compounds, as shown in Figure 4 and Supplementary Information, section C4, except 552 

for size bins >3200 nm, the size distribution of I+SVOC did not change considerably (reduction 553 

percentage was ~20% for all). Therefore, if there were gas phase I+SVOC partial oxidation 554 

processes, the by-products were evenly condensed/adsorbed on different particle size bins after the 555 

DOC. Conversion efficiency of different classes in the size range of 10 to 18 nm (S13) was 556 

relatively low. It should be noted that the concentration of I+SVOC before the DOC was the lowest 557 

in this size bin. Due to the small physical size of these particles, their high surface to volume ratio 558 

can cause them to adsorb more vapour. When the DPF was added to the system, conversion 559 

efficiency of all classes (except oxygenated compounds) in all size ranges was more than 560 

approximately 85%. 561 

 562 

Figure 6 illustrates the concentration of different I+SVOC classes based on the carbon number. The 563 

presented data is the sum of concentrations available in all of the size bins of the Nano-Moudi. In 564 

the results upstream of the DOC, a bimodal distribution of alkanes, based on the carbon number, 565 

was found in the particle phase diesel I+SVOC emissions; this has been also reported by Black and 566 

High (1979) and Alam et al. (2016).  Diesel fuel and engine lubricating oil are the sources of these 567 

two peaks; the first peak is from lighter HC in the fuel and the second peak is from heavier HC in 568 

the oil. 569 

 570 

Similar to the observations when analysing various lubricating oil samples (Funkenbusch et al., 571 

1979; Zeraati-Rezaei et al., 2016; Alam et al., 2018; Liang et al., 2018), alkanes with carbon 572 

number around 24 had the highest contribution to the total amount of I+SVOC collected in the 573 

current experiments. C20 had the highest concentration for the oxygenated compounds and C22 had 574 

the highest concentration for the rest of the analysed I+SVOC classes. 575 

 576 
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The efficiency of the DOC in removing I+SVOC depended on both the class of compounds and 577 

carbon number. In the case of alkanes, conversion efficiency of C20 to C34 was a little lower than the 578 

rest of the analysed range. Oxidation theory cannot always explain the experimental data, 579 

suggesting that there may be other removal mechanisms (Majewski and Khair, 2006).  In theory, 580 

once the catalyst reaches the light-off temperature for a specific exhaust constituent, the rate of 581 

oxidation is controlled by the rate of mass transfer or diffusion rate of that species. This implies that 582 

there is more diffusion of low molecular weight HC with higher volatility compared to high 583 

molecular weight HC. However, short chain alkanes are known to have higher light-off 584 

temperatures compared to longer chain alkanes. As opposed to theory, interestingly, some studies 585 

have shown that longer chain HC were removed more efficiently over a catalyst (Eastwood, 2008; 586 

Johnson and Kittelson, 1994).  Research shows that decreasing C-H bond strength of n-alkanes with 587 

increasing their chain length reduces their surface ignition temperature on a catalyst (Veser et al., 588 

1999; Hunter and East, 2002; Diehl et al., 2010), and hence longer chain n-alkanes are more 589 

reactive over a catalyst. In addition, this behaviour of the DOC might be partly explained by the fact 590 

that there are possibilities that heavier HC can be catalytically cracked into lighter HC (Majewski 591 

and Khair, 2006). 592 

 593 

Generally, conversion efficiency of semi-volatile cycloalkanes with higher carbon number was less 594 

than the ones with lower carbon number over the DOC. The trend for bicyclic alkanes was similar 595 

to the trend for alkanes – higher at the beginning and end of the carbon number range, while C18 and 596 

C19 bicyclic alkanes had low conversion efficiencies (<35%). Conversion efficiency of monocyclic 597 

aromatics with carbon number ≥18 was high (Figure 6). Conversion efficiency of oxygenated 598 

compounds with 9≤carbon number≤17 was generally less than 10%. It can be hypothesised that 599 

these relatively lighter I+SVOC that appeared after the DOC were by-products of synthesis from 600 

partial oxidation of heavier I+SVOC. 601 

 602 
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Using the DOC+DPF, reduction percentage of all the classes (except oxygenated compounds) was 603 

generally more than 80% for different carbon numbers with the possible exception of low 604 

concentration C13 and C14 monocyclic aromatics, although this looks likely to be an artefact of 605 

imprecision of the very low concentrations measured. 606 

 607 

4. SUMMARY AND CONCLUSIONS 608 

Size-resolved physico-chemical characteristics of the intermediate- and semi-volatile particle 609 

emissions from a light-duty diesel engine have been investigated upstream and downstream of the 610 

diesel oxidation catalyst (DOC) and the catalysed diesel particulate filter (DPF). Particle phase 611 

intermediate- and semi-volatile organic compounds (I+SVOC) have been comprehensively 612 

characterised based on the compound type (class) and carbon number using a multi-stage Nano 613 

impactor and GC×GC-ToF-MS technique. The number size distributions of particles between 1.2-614 

1000 nm have been also investigated. The DOC and the DPF were in an active state for converting 615 

hydrocarbons. 616 

In samples taken before the DOC, the emission factor for total I+SVOC found in the sub-1000 nm 617 

particles was 104.8 mg/kgf. I+SVOC made a large contribution to the total mass of particles 618 

(~49%), and alkanes had the highest mass ratio to the total I+SVOC (~63%). The concentrations of 619 

different classes of I+SVOC emissions were ranked as alkanes (65.6 mg/kgf) >cycloalkanes 620 

>monoaromatics =oxygenates >bicyclics (8.2 mg/kgf). As a summary, Figure 5 shows the 621 

concentration of alkanes (the most abundant class similar to the observations in the lubricating oil 622 

analysis) with respect to the carbon number and particle diameter. Importantly, before the DOC, the 623 

peak concentration of all classes was found in the particle size bin close to 100 nm due to the higher 624 

total mass of particles in this size bin. This is indicative of a high concentration of I+SVOC 625 

constituents in the accumulation mode particle emissions from the light-duty engine. Before the 626 

DOC, alkanes with carbon number around 24 made the largest contribution to the total I+SVOC 627 
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mass, while C22 had the highest concentration for cycloalkanes, bicyclics and monoaromatics, and it 628 

was C20 for the oxygenates. 629 

Similar to the gaseous total hydrocarbons, particle phase total I+SVOC emissions decreased in two 630 

stages, firstly over the DOC (by ~75%) and then over the DPF (total ~92%). After the DOC, total 631 

I+SVOC made a smaller contribution to the total particle mass (~16%). The removal efficiency of 632 

different I+SVOC species over the DOC was ranked as monoaromatics (~85%) >alkanes >bicyclics 633 

>cycloalkanes >oxygenates (~20%). Using the DOC+DPF system resulted in removal efficiencies 634 

of >90% for all classes of I+SVOC except oxygenates which was approximately 76%. Due to the 635 

lower removal efficiency of the oxygenates, their concentrations were the highest after alkanes in 636 

the measurements after the DOC and DOC+DPF. This was presumably due to the ongoing 637 

oxidation of various species inside the DOC and DPF. Some of the lighter I+SVOC that were 638 

measured after the aftertreatment devices are believed to be by-products of synthesis and partial 639 

oxidation of heavier I+SVOC. Generally, I+SVOC found in the particle size range of 10 nm to 18 640 

nm had the lowest removal efficiencies over the DOC probably due to their higher surface to 641 

volume ratio which makes them susceptible to adsorb more vapour. With the addition of the DPF, 642 

in general, I+SVOC were evenly removed from different particle size bins. 643 

High concentrations of sub-2.5 nm particles were measured and the peak was approximately 644 

1.9×1015 particles/kgf (dN/dlogdp/kgf) at around 1.5 nm. This peak decreased by >50% after the 645 

DOC and was much lower (1.1×1014 parts/kgf) after the DOC+DPF. These reductions are believed 646 

to be due to both the loss of intermediate- and semi-volatile constituents and physical filtration. It is 647 

hypothesised that these particles have both volatile and non-volatile constituents. 648 

 649 

The results of this study can be used as an input and validation database for various modelling 650 

platforms considering source emissions at low engine loads. In future studies, it is suggested that 651 

size-resolved characteristics of I+SVOC and sub-2.5nm particles emissions are investigated under 652 

various engine loads and speeds as well as transient engine conditions, and consequently various 653 
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gas hourly space velocities for the oxidation catalysts and filters as well as active regeneration of 654 

the filters. These complementary investigations can eventually help interpret the real driving 655 

emissions (RDE) when the engine and aftertreatment systems undergo various operating modes. 656 
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NOMENCLATURE 868 

Acc. Accumulation mode (also referred to as soot mode) 

Bicyclics Bicyclic alkanes 

BMEP Brake mean effective pressure 

CI Compression ignition 

CLD Chemiluminescence detection 

CLIC Computer language for identifying chemical 

CMD Count median diameter 

CO Carbon monoxide 

CO2 Carbon dioxide 

CPC Condensation particle counter 

DCM Dichloromethane 

DI Direct-injection 

DMA Differential mobility analyser 

DOC Diesel oxidation catalyst  

DPF Diesel particulate filter 

EGR Exhaust gas recirculation 

FID Flame ionisation detector 

GC Gas chromatography 

GC×GC Two-dimensional gas chromatography 

GC×GC-ToF-MS 

Two dimensional gas chromatography time-of-flight mass 

spectrometry 

g/kgf Grams per kilogram of fuel consumed 

HC Hydrocarbons 

HEPA High-efficiency-particulate-air 

H2SO4 Sulphuric acid 

I+SVOC IVOC+SVOC 

IVOC Intermediate-volatility organic compounds 

mg/kgf Milligrams per kilogram of fuel consumed 

Monoaromatics Monocyclic aromatics 

MPA Magneto-pneumatic 

MS Mass spectrometry  

Nano-Moudi Nano-micro orifice uniform deposit impactor 

NDIR Non-dispersive Infra-Red 
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NEDC New European driving cycle 

NO Nitrogen monoxide 

NO2 Nitrogen dioxide 

NOx Oxides of nitrogen  

Nuc. Nucleation mode 

O2 Oxygen 

Open-ECU Open engine control unit 

Oxygenates Oxygenated compounds 

PAH Polycyclic aromatic hydrocarbons 

PM Particle mass 

POA Primary organic aerosol 

PSM Particle size magnifier 

RDE Real driving emissions 

RPM Revolutions per minute 

SCR Selective catalytic reduction system  

SOA Secondary organic aerosol 

SVOC Semi-volatile organic compounds 

THC Total hydrocarbons 

ToF Time of flight 

UCM Unresolved complex mixture 

VNT Variable-nozzle-turbine 
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TABLES LEGENDS 870 

Table 1:   Engine specifications. 871 
 872 
Table 2:   Gaseous emissions characteristics (Red. % means the percentage of decrease of each 873 

parameter over the aftertreatment systems). 874 
 875 
Table 3:   Particle mass (PM) and I+SVOC emissions characteristics. 876 
 877 
Table 4:   Mass ratio of each class of I+SVOC to the total particle mass (PM). 878 
 879 
Table 5:   Mass ratio of each class of I+SVOC to the total I+SVOC. 880 
 881 
 882 

FIGURES LEGENDS 883 

Figure 1:   Schematic of the engine test cell. 884 
DAQ refers to the data acquisition board, 885 
* samples were taken before DOC, after DOC and after DOC+DPF. 886 

 887 
Figure 2:   Schematic of the dilution and sample collection system. 888 

* this flow meter (rotameter) was used to assure flow rates and was removed during 889 
sampling 890 

 891 
Figure 3:   Particle size distribution (a) number and (b) volume at different sampling locations. 892 

(Particles with diameter between 1.2 nm and 2.5 nm were measured with the PSM 893 
sampling system and particles with diameter between 4.87 nm and 1000 nm (the grey 894 
area) were measured with the DMS sampling system). 895 

 896 
Figure 4:   Total I+SVOC concentrations at different exhaust particle sizes collected by the 897 

Nano-Moudi; (a) Before DOC, (b) After DOC, (c) After DOC+DPF (bars represent 898 
the concentrations and lines represent conversion efficiencies using DOC (b) and 899 
DOC+DPF (c)). 900 

 901 
Figure 5:   Contour plots of intermediate- and semi-volatile alkane concentrations collected by 902 

the Nano-Moudi at different sampling locations. 903 
 904 
Figure 6:   Concentrations and conversion efficiencies of different types of I+SVOC (collected 905 

by the Nano-Moudi) versus their carbon number at different sampling locations (bars 906 
represent the concentrations, and lines represent conversion efficiencies using DOC 907 
(red lines / lower conversion efficiencies) and DOC+DPF (green lines / higher 908 
conversion efficiencies)). 909 

 910 
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Table 1:  Engine specifications. 912 

Bore (mm) 86.0 

Stroke (mm) 94.6 

Connecting Rod Length 

(mm) 

155.0 

Capacity (cm3) 2198 

Compression Ratio 15.5:1 

Injection System DI Common Rail (Solenoid 

Injectors) 

 913 

  914 
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Table 2:  Gaseous emissions characteristics (Red. % means the percentage of decrease of each 915 
parameter over the aftertreatment systems). 916 

 
CO THC NO NO2 NOx CO2 

Exhaust Gas 
Temperature 

 
g/kgf

 °C 

Before DOC 97.92 19.97 0.83 4.07 4.90 3015 186 

After DOC 2.16 7.62 3.06 0.00 3.06 3209 209 

After DOC+DPF 0.00 2.33 2.83 0.03 2.85 3228 206 

Red. (DOC) % 97.79 61.85 -270.45 99.99 37.49 -6.4 -12.6 

Red. (DOC+DPF) % 100.00 88.32 -241.93 99.32 41.74 -7.1 -10.7 

Exhaust backpressure difference before and after the aftertreatment system was approximately 5.4 mbar. 917 

  918 



37 
 

Table 3:  Particle mass (PM) and I+SVOC emissions characteristics. 919 

     I+SVOC 

 

Total 
PM 

Total 
I+SVOC 

Nuc. 
PM 

Acc. 
PM 

Alkanes Cyclo-
alkanes 

Bicyclic 
Alkanes 

Monocyclic 
Aromatics 

Oxygenated 
Compounds 

 
g/kgf 

Before DOC 0.2156 0.1048 0.0094 0.2063 0.0656 0.0122 0.0082 0.0094 0.0094 

After DOC 0.1696 0.0265 0.0032 0.1664 0.0115 0.0043 0.0018 0.0014 0.0075 

After DOC+DPF 0.0000 0.0089 0.0000 0.0000 0.0045 0.0012 0.0005 0.0006 0.0022 

Red. (DOC) % 21.36 74.71 65.84 19.34 82.51 65.09 77.64 84.79 20.08 

Red. (DOC+DPF) % 100.00 91.50 100.00 100.00 93.16 90.34 94.37 93.90 76.49 

PM is from the DMS sampling system and I+SVOC is from the Nano-Moudi sampling system using the in-house 920 
dilution system 921 
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Table 4:  Mass ratio of each class of I+SVOC to the total particle mass (PM). 923 

 
Alkanes 

Cyclo-
alkanes 

Bicyclic 
Alkanes 

Monocyclic 
Aromatics 

Oxygenated 
Compounds 

Total I+SVOC 

 % 

Before DOC 30.4 5.7 3.8 4.4 4.4 48.6 

After DOC 6.8 2.5 1.1 0.8 4.4 15.6 

After DOC+DPF - - - - - - 

PM is from the DMS sampling system and I+SVOC is from the Nano-Moudi sampling system using the in-house 924 
dilution system 925 
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Table 5:  Mass ratio of each class of I+SVOC to the total I+SVOC. 927 

 
Alkanes 

Cyclo-
alkanes 

Bicyclic 
Alkanes 

Monocyclic 
Aromatics 

Oxygenated 
Compounds 

 % 

Before DOC 62.6 11.7 7.8 9.0 9.0 

After DOC 43.3 16.1 6.9 5.4 28.3 

After DOC+DPF 50.4 13.2 5.2 6.4 24.8 

I+SVOC is from the Nano-Moudi sampling system using the in-house dilution system 928 
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 930 

Figure 1:  Schematic of the engine test cell. 931 
DAQ refers to the data acquisition board, 932 
* samples were taken before DOC, after DOC and after DOC+DPF. 933 
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 935 

Figure 2:  Schematic of the dilution and sample collection system. 936 
* this flow meter (rotameter) was used to assure flow rates and was removed during sampling 937 
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 939 
(a) 940 

 941 
(b) 942 

Figure 3:  Particle size distribution (a) number and (b) volume at different sampling locations. 943 
(Particles with diameter between 1.2 nm and 2.5 nm were measured with the PSM sampling system 944 
and particles with diameter between 4.87 nm and 1000 nm (the grey area) were measured with the 945 
DMS sampling system). 946 
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 948 
(a) 949 

 950 
(b) 951 

 952 
(c) 953 

Figure 4:  Total I+SVOC concentrations at different exhaust particle sizes collected by the Nano-954 
Moudi; (a) Before DOC, (b) After DOC, (c) After DOC+DPF (bars represent the concentrations 955 
and lines represent conversion efficiencies using DOC (b) and DOC+DPF (c)). 956 
  957 
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958 

959 

 960 
 961 
Figure 5:  Contour plots of intermediate- and semi-volatile alkane concentrations collected by the 962 
Nano-Moudi at different sampling locations. 963 
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964 

 965 
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 968 
 969 

Figure 6:  Concentrations and conversion efficiencies of different types of I+SVOC (collected by 970 
the Nano-Moudi) versus their carbon number at different sampling locations (bars represent the 971 
concentrations,the f and lines represent conversion efficiencies using DOC (red lines / lower 972 
conversion efficiencies) and DOC+DPF (green lines / higher conversion efficiencies)). 973 
 974 
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