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Abstract A mathematical model for small-scale spatial variations in gravity above
the Earth’s surface is presented. Gravity variations are treated as a Gaussian random
process arising from underground density variations which are assumed to be a Gaus-
sian random process. Expressions for two-point spatial statistics are calculated for
both the vertical component of gravity and the vertical gradient of the vertical compo-
nent. Results are given for two models of density variations: a delta-correlated model
and a fractal model. The effect of an outer scale in the fractal model is investigated. It
is shown how the results can be used to numerically generate realisations of gravity
variations with fractal properties. Such numerical modelling could be useful for inves-
tigating the feasibility of using gravity surveys to locate and characterise underground
structures; this is explored through the simple example of a tunnel detection scenario.

Keywords Gravity sensing · Near-surface geophysics · Gravity gradiometry · Fractal
gravity · Random density variations · Forward modelling

1 Introduction

This paper is concerned with gravitational clutter in gravity surveys. Gravity surveys
measure small variations in the Earth’s gravity, and these variations can provide infor-
mation about the nature and structure of the Earth and the underground environment.
Surveys are carried out in awide variety of scenarios: on land, in bore holes, on or under
the sea surface and from space (Hinze et al. 2013). They cover a large range of scales,
from small-scale surveys used to detect sinkholes (Styles et al. 2005) or archaeology
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(Panisova et al. 2016), to large-scale geophysical prospecting for minerals (Hinze et al.
2013).

The work reported here was motivated by the desire to develop a simple model of
clutter that can be used in computer simulations of small-scale gravity surveys. Of
particular interest are surveys used to detect underground objects such as sinkholes,
or pipes and other artificial structures. The ground in which the anomaly of interest
is embedded may have a density which varies from place to place. These density
variations will produce their own gravitational signal, which can be treated as random
clutter (Boddice et al. 2019). The characteristics of the clutter may determine whether
particular underground structures can be detected and identified. In this paper, results
are given for both the vertical component of gravity and the vertical gradient of the
vertical component, with particular emphasis on the latter because of its relevance
to the recent development of new, highly sensitive gradiometers based on cold-atom
technology (Sorrentino et al. 2014). These new instruments may find application in
near-surface geophysical monitoring. The gradiometer is particularly attractive for
near-surface studies. Insensitivity to Earth tides and seismic noise, combinedwith high
sensitivity, allow for more rapid and accurate surveys (Boddice et al. 2019; Kennedy
et al. 2014). Hydrological studies, pertaining to groundwater or reservoirs, are one
potential application area (Piccolroaz et al. 2015).

In Sect. 2, theoretical results for relevant statistical properties are derived. These
results relate the statistics of the gravitational variations to the statistics of the under-
ground density variations. In Sect. 3, a method is presented which enables computer
generation of data having the correct statistics; this method can be used to gener-
ate either random density variations, which can then be used in a forward model to
calculate the gravitational field, or to directly generate gravitational field data.

The approach taken is to model the clutter as a stationary Gaussian random process.
Such a process is fully described by its autocorrelation function (or, equivalently, its
power spectral density) (Middleton 1996). The task is then twofold: first, to relate the
autocorrelation function of the gravity variations to the autocorrelation function of
the underground density variations, and second, to produce a computer model which
can generate Gaussian-distributed gravity data having the prescribed autocorrelation
function. These tasks are covered in Sects. 2 and 3, respectively.

In Sect. 2.1, general expressions are given for the autocorrelation functions and
power spectral densities of gravity and gravity gradients produced by homogeneous
underground density variations; the detailed derivations are contained in an “Ap-
pendix”. Then, in Sects. 2.2 and 2.3, specific results are produced for a number of
different models of density correlation. Some of these results are in the existing liter-
ature, but some are new to the best of the author’s knowledge; the latter include the
gravity gradient results and the results for a power-law model with an outer scale.

One of the models of density variations is the power-law spectrum. Crustal density
variations in borehole samples have been shown to have spectra that display a power-
law dependence on spatial frequency (Pilkington and Todoeschuck 2004; Bansal and
Dimri 2010). Such power-law behaviour implies fractal, multi-scale spatial properties.
There is also evidence for power law behaviour of density variations in surface samples
and gravity surveys (Miranda et al. 2015).
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Section 4 presents an example of the use of computer-generated data to investigate
the problem of the detection of an underground tunnel in clutter, when the clutter has
a power-law spectrum.

2 Theory

2.1 Gravity Correlation Functions

Random processes can be characterised by average quantities, for example, mean and
variance. For spatially varying quantities, the degree of correlation between values at
two points is often an important metric. Indeed, for a Gaussian process, it provides a
complete description (Middleton 1996).

Consider a gravity measurement carried out at a point {x,y,z}. The z (vertical)

component of the gravitational field produced by random density variations σ
(

⇀
r

′
, z′
)

within a volume V is given by Hinze et al. (2013)

Fz
(

⇀
r , z
)

� −G
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where
⇀
r is a vector in the horizontal plane, that is,

⇀
r � {x, y} and G is the gravi-

tational constant. It will be assumed that the data are, if necessary, corrected for the
Earth’s curvature, so that z can be considered as the vertical component of a Cartesian
coordinate system. The geometry is shown in Fig. 1. A gravity sensor is placed at
a height z above the ground, the ground surface being at z �0 and lying in the x–y
plane. A point below the ground of density σ contributes a gravitational force at the
sensor, and the integral in Eq. (1) is over all of these contributions within the volume
of integration. A similar expression applies to the gravity gradient, Fzz, but with the
kernel of Eq. (1) being replaced by its derivative with respect to z. In practice, a vertical
gravity gradient is measured as a difference in gravity between two sensors at slightly
different heights. For simplicity, this is approximated as a true gradient, that is, the
limit of infinitesimal height separation.

Now consider the spatial autocorrelation function of the gravity signal. This is
given by a double volume integral. The integral for the autocorrelation function of the
random gravity component is
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Fig. 1 A sensor measuring
gravity or gravity gradient above
a region of ground with random
density variations

where the two outer integrals are over the infinite horizontal (x,y) plane and the random
density variations descend to a depth of za; for some results the limit za→∞ will be
taken. Here, the angled brackets denote ensemble averages, so the left-hand side of
Eq. (2) is an average over the quantity inside the brackets. The average on the left-
hand side is shown explicitly by the angled brackets, the corresponding average on

the right-hand side is implicit in ρσ

(
⇀
r

′
1,

⇀
r

′
2, z

′
1, z

′
2

)
, the correlation function of the

density variations σ . This correlation function is assumed to depend on the difference
coordinates only, that is, the density variations are assumed to be a stationary process.
Note that the convention used here is that the correlation function, ρ, has a subscript
which shows which quantity it refers to; if there is no subscript, the expression is a
generic one (the same convention is applied to the power spectral density S and the
structure function D). Thus, the correlation function of gravity is written as

ρFz �
〈
Fz
(

⇀
r 1, z1

)
Fz
(

⇀
r 2, z2

)〉
. (3)

It is clear that the correlation function of the z derivative of gravity can be found by
differentiating Eq. (3) twice. That is

ρFzz � ∂2ρFz

∂z1∂z2
. (4)

Now, the correlation function of the density variations can be written as the inverse
Fourier transform of a power spectral density Sσ

ρσ

(
⇀
r

′
1,

⇀
r

′
2, z

′
1, z

′
2

)
� 1

(2π)3

˚
Sσ

(
⇀

k

)

exp
(
i
[
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(
x ′
1 − x ′

2

)
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(
y′
1 − y′

2

)
+ kz

(
z′1 − z′2

)] )
dkxdkydkz, (5)

where the spatial wave vector is
⇀

k � {
kx , ky, kz

}
. The approach that will be taken

is to substitute Eq. (5) into Eq. (2), which yields a ninefold integral, and to evaluate
the spatial integrals first, which can be done without including an explicit functional
form for the power spectral density. The details of this calculation can be found in
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the “Appendix”. For the case of za→∞, the resulting expression for the correlation
function of Fz is

〈
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(

⇀
r 1, z1

)
Fz
(

⇀
r 2, z2

)〉

� G2

2π

˚ Sσ

(
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(
i
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])
exp

(
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(
k2x + k2y

) 1
2

)
dkxdkydkz,

(6)

where x � x1 − x2 and y � y1 − y2. It can be seen from Eq. (6) that the correlations
in the horizontal plane depend on the difference coordinates, x and y, only, whereas
the vertical correlations depend on the sum coordinate, z1 + z2 only. In principle, any
desired power spectral density Sσ can be used in Eq. (6). In practice, the resulting
integrals may or may not prove tractable.

It can be useful to have results for the two-dimensional power spectra of the grav-
ity variations. These can, for example, be used to generate numerical realisations
of random gravity variations, as in the simulations in Sect. 3. The two-dimensional
spectra are Fourier transforms of the correlation functions with respect to the x and
y coordinates only: the z coordinates remain untransformed. If the density variations
are isotropic in the horizontal plane, and the limit of za→∞ is taken, then the two-
dimensional power spectral densities of the gravity and gravity gradient are given by
[see “Appendix” Eqs. (A6) and (A7)]

SFz (ω) � 2π G2

∞∫

−∞

Sσ (ω, kz)

ω2 + k2z
exp (−ω (z1 + z2)) dkz, (7)

and

SFzz (ω) � 2π G2

∞∫

−∞

ω2Sσ (ω, kz)

ω2 + k2z
exp (−ω (z1 + z2)) dkz, (8)

where ω is the (radial) angular frequency. The derivation of Eqs. (6) and (7) is essen-
tially the same as that of Naidu (1968); however, that paper has a multiplying factor
of 4/π2 rather than 1/(2π ) [Eqs. 32 and 33 in Naidu (1968), where 2d1 � z1 + z2]. The
reason for this is twofold: First, Naidu (1968) uses a definition of the Fourier transform
in which the factor of 2π is in the forward transform rather than inverse transform
[compare with Eq. (5)], so to compare the expressions, one needs to multiply Eq. (6)
by (2π )3, which gives a multiplying factor of 4π2. Second, there is a minor error in the
result given for one of the integrals, where a value of 2/π is given instead of the correct
2π [this error affects Eqs. 24 and 26 in Naidu (1968)]; this results in an erroneous
division by π4, and thus a multiplying factor of 4/π2 rather than the correct 4π2. This
error also appears in the results of Maus (1999) (Eq. 7 in that paper), who referred to
Naidu (1968), but the correct version is given by Naidu and Mathew (1998).
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In the present paper, the following functional forms of Sσ will be considered: a
delta-correlated (spectrally flat) model and a power-law model. The former is the
simplest possible model and is sometimes used in gravity modelling (Zhdanov and
Cox 2013; Brown et al. 2016); the latter is based on the experimental data discussed
earlier (Pilkington and Todoeschuck 2004; Bansal and Dimri 2010; Miranda et al.
2015).

2.2 Delta-Correlated Model

In forward modelling of gravity, it is often the case that the volume of interest is
divided into a grid of small regions each of which is assigned a particular density. The
simplest way to introduce random density variations into such a model is to assign an
independent random density component to each region. In the limit as the grid size
tends to zero this becomes a delta-correlated model. The power spectral density is
given by the Fourier transform of the delta-correlated autocorrelation function, which
results in a flat power spectral density

Sσ

(
⇀

k

)
� d20 . (9)

From this it can be inferred that d0 has units of kg/m3/2, that is, density times square
root of volume.

Substituting Eq. (9) into Eq. (6) leads to the following results for the gravity and
gravity gradient autocorrelation functions (see Appendix, “Delta-Correlated Model”
section, note the “Appendix” also has results for the autocorrelation function from a
layer of finite thickness)

ρFz (x, y) � π G2d20(
(z1 + z2)2 + x2 + y2

)1/2 , (10)

ρFzz (x, y) � π G2d20
(
2 (z1 + z2)2 − x2 − y2

)
(
(z1 + z2)2 + x2 + y2

)5/2 . (11)

2.3 Power-Law Spectrum

Apower-law spectral model has a power spectral density that is proportional to a given
power of the spatial frequency over some range of that variable. The mathematically
simplest form of power law spectrum is

Sσ

(
⇀

k

)
� A

(
k2x + k2y + k2z

)− ν
2

, (12)

where ν is the exponent of the power-law and A is a multiplying factor that determines
the strength of the density fluctuations. Here, ν is a dimensionless number, S has units
of kg2 m−3 and A has units of kg2m−(ν+3). This model is spatially isotropic. One thing
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that is apparent with this model is that it has a singularity when the spatial frequency
is zero. For some values of ν, the singularity causes integrals containing Sσ to diverge.
One way of avoiding this unphysical divergence is to modify the functional form of
Eq. (12) to remove the singularity; this is equivalent to having an outer scale in the
spatial domain that removes large-scale correlations. This can be done by using the
following spectrum

Sσ

(
⇀

k

)
� A

(
k2x + k2y + k2z + k20

)− ν
2

, (13)

where k0 is a constant: an outer scale parameter. Another way of avoiding the sin-
gularity is to use the structure function of the gravity variations rather than the
correlation function. This latter approach has the advantage of being more mathe-
matically tractable, but the disadvantage of only working for a certain range of values
of the exponent ν. The structure function is the variance of the difference in the density
between two points separated by distance r, and is thus zero for r=0. Since one is
usually only interested in data taken over a finite region, the divergence of the structure
function for large spatial separations can be ignored. When the correlation function,
here denoted ρ, is not divergent at r=0, it is easy to show that the structure function
is given by

D (r) � 2 (ρ (0) − ρ (r)) . (14)

In situationswhere the integral for ρ diverges as r→0 [as Eq. (5)may], the structure
function can be written by taking the difference in Eq. (14) inside the integral sign,
as long as the kernel exists in the limit r→0. Note that, in the case of an isotropic
spectrum, the kernel in Eq. (5) can be re-written in spherical polar coordinates and
reduced to a single integral

Dσ (r) � 8π

∞∫

0

k2Sσ (k)

(
1 − sin (kr)

kr

)
dk. (15)

This is a useful result that links the variance of the density variations within a given
region to the spectral model. For the model of Eq. (12) the integral can be evaluated
to give

Dσ (r) � −8Aπrν−3Γ (2 − ν) sin
(πν

2

)
, (16)

where G is the Euler gamma function. Note that Eq. (16) is only valid for 3<ν <5.
The upper limit is due to the divergence as k goes to zero, and the lower limit is due
to another divergence as k goes to infinity [i.e. the lack of an inner scale in Eq. (12)].
According to Bansal and Dimri (2010), experimental data suggest that models with
values of ν between 2.86 and 3.97 are appropriate for rocks in continental crusts.
Note that the lower value of this range is less than the lower limit for convergence of
Eq. (15). However, this divergence of Eq. (15) does not mean that the pure power-law
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model cannot be used for values of ν that are less than 3. As shall be shown later, the
correlation functions for Fz and Fzz only have divergences associated with the lack of
an outer scale (i.e. at small k); the lack of an inner scale does not produce divergent
integrals. This is because gravity acts like a low-pass spatial filter which suppresses
high spatial frequencies, which correspond to small-scale density variations. It does
mean, however, that care is needed in relating the parameters of themodels of Eqs. (12)
and (13) to experimental rock density data: one cannot always simply fit to the mea-
sured variance of rock density. In fact, the same issue arises with the delta-correlated
model of Eq. (9), which also suffers from an infinite density variance.

Equations (7) and (8) can be used to find the two-dimensional power spectral den-
sities of the gravity variations with the power-law models. Making use of the integral
applied to Eq. (A23) in the “Appendix”, one finds that the model of Eq. (13) gives

SFz (ω) � 2π AG2 exp (− (z1 + z2) ω)

ω
(
ω2 + k20

) ν
2

B

(
1

2
,
ν

2
+
1

2

)
2F1

(
ν

2
,
1

2
; 1 +

ν

2
;

k20
ω2 + k20

)
,

(17)

and

SFzz (ω) � 2π AG2ω exp (− (z1 + z2) ω)

(
ω2 + k20

) ν
2

B

(
1

2
,
ν

2
+
1

2

)
2F1

(
ν

2
,
1

2
; 1 +

ν

2
;

k20
ω2 + k20

)
. (18)

Here, B is the beta function and 2F1 is a hypergeometric function. For the case where
there is no outer scale [model of Eq. (12)], these reduce to

SFz (ω) � 2π AG2 exp (− (z1 + z2) ω)

ων+1 B

(
1

2
,
ν

2
+
1

2

)
, (19)

and

SFzz (ω) � 2π AG2 exp (− (z1 + z2) ω)

ων−1 B

(
1

2
,
ν

2
+
1

2

)
. (20)

The result of Eq. (19) is the same as that given byMaus (1999), apart from the erroneous
multiplying factor discussed previously.

It is shown in the “Appendix” that when Eq. (12) is substituted into Eq. (6), the
resulting integral for the autocorrelation function diverges when ν >1. In the cor-
responding case for the gravity gradient, the resulting integral diverges for ν >3.
However, the structure function can be used for larger values of the power-law expo-
nent. The structure function for the vertical component of gravity can be expressed in
terms of a hypergeometric function [see “Appendix”, Eq. (A19)]

DFz (r) � 4Aπ2G2 (z1 + z2)ν−1

2ν−1ν sin (πν)
[
Γ
( 1
2ν
)]2
{
1 − 2F1

(
1 − ν

2
, 1 − ν

2
; 1;− r2

(z1 + z2)2

)}
,

(21)
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where the reflection formula for the gamma function has also been employed
(Abramowitz and Stegun 1970). This is valid for ν <3: for larger ν the integral does
not converge. By using the asymptotic expansion for the hypergeometric function
(Abramowitz and Stegun 1970), one finds that for large r, the structure function goes
as rν−1.

The corresponding result for the gravity gradient is (see “Appendix”; note, the
“Appendix” also contains results for a finite layer)

DFzz (r) � 2AG2 (z1 + z2)
ν−3 B

(
1

2
,
ν + 1

2

)
Γ (3 − ν)

{
1 − 2F1

(
3 − ν

2
, 2 − ν

2
; 1;− r2

(z1 + z2)2

)}
, (22)

which is valid for ν <5. The asymptotic result for large r goes as rν−3.
In Appendix “Power-Law Spectrum with Outer Scale” section it is shown that the

model with an outer scale, given by Eq. (13), produces a result for the z component of
gravity which can be reduced to a single integral

ρFz (r) � AG2ν

2kν
0

B

(
1

2
,
ν + 1

2

) ∞∫

0

exp (− (z1 + z2) k) J0 (kr) B

(
k20

k2 + k20
;
ν

2
,
1

2

)
dk.

(23)

The function B with three arguments is the incomplete beta function. It does not seem
possible to express this integral in terms of known functions, but it can be evaluated
numerically and has the advantage of being finite for ν >3. By making k0 sufficiently
small, the outer scale can, if necessary, be made large enough to have no influence
in the range of r values that are of interest. The corresponding result for the gravity
gradient simply has an extra factor of k2 multiplying the kernel of the integral.

The structure function of the density variations, Eq. (16), is plotted in Fig. 2 on a
log–log scale. In fact, the square root of the structure function is plotted, which gives
a root mean square density variation in kg/m3. Lines are shown with three different
values of the power-law exponent ν; the values of the magnitude parameter A were
chosen to give the same density variation, of 36.4 kg/m3, at a separation of 0.1 m;
note that this is merely a choice of convenience, because A is a free parameter in
this model. The results in Fig. 2 show the standard deviation of the differences in
density between a pair of points separated by the distance given on the horizontal axis.
Densities become increasingly dissimilar as the separation between points increases. It
can be seen that the power-lawmodel gives a structure function which is a straight line
when plotted on a log–log scale. This shows that variations in the density occur across
all scale sizes, which is a characteristic feature of power-lawmodels. The slopes of the
lines in Fig. 2 are simply one half of the power-law exponent. Obviously, there is an
unphysical aspect to this pure-law model: at large separations, the density variations
become unrealistically large. The larger the power-law exponent, the more rapidly
the unphysical densities are reached. This issue could be overcome by modifying the
model to include an outer scale. However, in many circumstances, this modification

123



Math Geosci

Fig. 2 The square root of the
structure function of the density
variations for the power-law
model (12) for three different
values of the power-law
exponent: ν =3.1, ν =3.5 and
ν =3.9. The corresponding
values of the magnitude
parameter A are 3.93, 100 and
482
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Fig. 3 The square root of the
structure function of the gravity
gradient variations. The solid
lines are for the power-law
model of Fig. 2, upper line
ν =3.9, lower line ν =3.5. The
dashed line is for the
delta-correlated model with d0
�30 kg/m3/2
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of the power-law model is not necessary, and the simplest form can be retained. If
one is only considering a small-scale survey (say, of order 100 m), the most important
density variations will be those on the scale size equal to or less than the dimensions
of the region being surveyed, and the predictions of the model outside of this region
can be ignored.

Result for the square root of the structure function of the gravity gradient are plotted
in Fig. 3 [using Eq. (22), and Eq. (14) applied to Eq. (11)]. Here, the separation distance
r is confined to a horizontal plane at a distance of z1 � z2 �1 m above the ground
surface. The units on the vertical axis are Eötvös units, that is, 10−9 s−2.

The solid curves are for the power-law model and the values of the parameters
are those corresponding to the upper two lines in Fig. 2. The dashed line is for the
delta-correlated model. It can be seen that the delta-correlated model gives a flat line at
large separations, that is, separations much greater than the height of the measurement
point above ground. This is a result of the lack of correlation in the underlying density
variations. The power-law models, however, produce a structure function which con-
tinues to increase as separation distance increases, which is a result of the multi-scale
nature of these models and the fact that they do not have a limiting outer scale. As
mentioned previously, one would expect this increase to end at a sufficiently large
separation, so in reality there will be an outer scale; however, for small-scale surveys,
this outer scale may not be encountered, in which case the pure power-law model will
be adequate.
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Unlike the density structure function of Fig. 2, which is characterised by just a single
slope, the power-law gravity gradient structure function has two distinct regions, each
with a different slope. At large separations, the slope approaches the asymptotic limit
of ν-3. At shorter separations, however, the structure function decreases more rapidly
with decreasing separation. This corresponds to a more rapid reduction in small-scale
spatial structure in the gravity gradient, which is a consequence of the spatial filtering
effect of gravity: the fluctuations in gravity are coming primarily from structures near
the surface, and deeper structures do not contribute.

3 Numerical Simulation

Gaussian random processes can be simulated by using the method of filtering of
Gaussian noise (Jakeman and Ridley 2006). One approach to modelling gravitational
clutter would be to generate realisations of underground density variations having the
desired correlation properties and calculate the gravitational effects of these on the
sensor using a forward gravity model. However, this has the disadvantage that a large
three-dimensional underground volume may need to be modelled, which requires
a large amount of computer memory and processing power. In the case of delta-
correlated density fluctuations, the requirement on computer memory may be reduced
by treating the underground environment as a series of separate layers, the gravitational
effects of which can be calculated separately and then summed. This works because in
the delta-correlated model there are no correlations between different layers, so they
can be treated independently of one another. For models that are not delta-correlated,
such as the power-law models of Eqs. (12) and (13), this approach cannot be used.
It would be possible to have a model that is delta-correlated in the z-direction, but
correlated in the horizontal plane, and this could then be treated as an independent set
of layers.However, a different approach,whichwill be used here, is to directly generate
the random gravity, or gravity gradient, signals by the filtering of Gaussian noise. The
one potential drawback to this is that it assumes the underground environment contains
nothing apart from the random density variations. Of course, an underground structure
of interest can be introduced to the model by adding its gravitational signal to that of
the random density variations, but this results in a spurious clutter component coming
from the region occupied by the structure of interest. So if, for example, one were to
add the signal from an underground tunnel to the model, the modelled clutter would
include spurious density variations coming from that part of the ground occupied by
the tunnel, and so the magnitude of the clutter would be overestimated. If, however,
the volume of the tunnel is only a small fraction of the total volume that contributes
to the clutter, the errors introduced may be acceptably small.

Two differentmethodswere used. The basicmethod of filtering ofGaussian random
noise was used to generate results for the delta-correlated model, and the method of
sub-harmonics (Frehlich 2000) was used for the power-law model. Both methods are
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based on the use of the discrete Fourier transform (DFT). In the basic method, a
realisation of the gravity gradient is given by

Fzz ( j
x, k
y) � Re

⎧
⎨
⎩

Nx∑
n�0

Ny∑
m�0

(a (n,m) + ib (n,m)) exp
[
2π i

(
jn
/
Nx + km

/
Ny
)]
⎫
⎬
⎭ .

(24)

Here, the real part of the right-hand side is taken; the imaginary part yields a second,
independent realisation. The gravity gradient is produced on an Nx by Ny sized grid in
the horizontal plane, with spacing of
x and
y in the x and y directions, respectively.
a and b are arrays of zero-mean Gaussian random numbers with variances given by

〈
a2 (n,m)

〉
�
〈
b2 (n,m)

〉
� 
ωx
ωy

4π2 SFzz
(
n
ωx ,m
ωy

)
. (25)

The step sizes in spatial frequency space being given by 
ωx �2π /(Nx 
x) and 
ωy

�2π /(Ny 
y). The method of sub-harmonics modifies the basic technique to more
accurately include large-scale spatial variations, which are negligible in the delta-
correlated model but significant in the power-law model. A set of sub-harmonics of
the following form are added to result (24)

SH ( j
x, k
y) � Re

⎧
⎨
⎩

Np∑
p�1

1∑
n�−1

1∑
m�−1

(a (n,m, p) + ib (n,m, p))

exp
[
2π i

(
jn
/(

3pNx
)
+ km

/(
3pNy

))]
⎫⎬
⎭ . (26)

The sub-harmonics are powers of 3, so for the results given here, which use Np=2,
the 3rd and the 9th sub-harmonics are added. a and b, are Gaussian random numbers
with

〈
a2 (n,m, p)

〉
�
〈
b2 (n,m, p)

〉
� 
ωx
ωy

32p (2π)2
SFzz

(
n

ωx

3p
,m


ωy

3p

)
. (27)

Results showing an example of the spatial variation of the gravity gradient over an
area 100 m by 100 m are given in Fig. 4 for both the delta-correlated model (using
Eq. A9 from the “Appendix”) and the power-law model (using Eq. 20). Both are
sampled on a square grid with 0.25 m spacing. The number of points on the original
grid was Nx=Ny=1024, so the plots in Fig. 4 show a reduced section of the original
grid. The size of the regions in Fig. 4 is that used for the simulations in Sect. 4, and the
reason for the larger original grid size was to improve the representation of low spatial
frequencies in the power-law model. For both cases the height of the sensor above
ground was 1 m. The delta-correlated model used d0 �5 kg/m−3/2 and the power-
law model used ν �3.5 and A=100 kg2 m−6.5. The result from the delta-correlated
model has the unstructured appearance that is characteristic of white noise. In fact,
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Fig. 4 Simulated gravity gradient clutter. Left, delta-correlated model. Right, power-law model. Units are
Eötvös

the only correlated structure is on a small scale, commensurate with the height of
the sensor above ground. This small-scale structure is a consequence of the filtering
effect of gravity, mentioned earlier. In contrast, the power-law result has structures on
multiple scales; this includes scales larger than the region shown, which is why all the
data values plotted are significantly less than the theoretical mean of zero: this region
comprises part of a larger structure. Note that the models describe density variations
of zero mean, so a constant underground density needs to be added in order to obtain
realistic, non-negative density values.

4 Tunnel Detection in Clutter

In this section, the problem of detection of the presence of a tunnel in random clutter
is presented as a simple example of how computer-generated clutter can be used in
a model of a gravity survey. The scenario that is modelled is one in which a gravity
gradiometer is scanned in one dimension along a 25 m-long straight line, below which
there may or may not be an underground tunnel. For simplicity, it is assumed that
the following things are known a priori: (i) the tunnel (if present) is at right angles to
the line of data; (ii) the tunnel is sufficiently long and uniform that its gravitational
response matches that of an infinite cylinder; (iii) the tunnel centre is a known distance
below ground; and (iv) the density contrast between the tunnel and its surroundings is
2,000 kg/m3 (corresponding to an air-filled tunnel). The gravitational gradient from an
infinite cylinder lying along the y direction, of radius r0, distance z1 below the plane
containing the sensor and density contrast η, is (Pan et al. 2017)

Fzz � −2πηG
r20
z21

1 − u2(
1 + u2

)2 , (28)

where u � x/z1 and the centre of the tunnel is at x=0. It can be seen that the shape of
the gravity gradient produced by the tunnel, in the x direction, Fzz(x), is a function of
the depth only. Three example profiles are shown in Fig. 5 for different tunnel depths.
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Fig. 5 Gravity gradient signal
from a tunnel of infinite length.
The sensor is 1 m above ground,
the tunnel radius is 0.25 m and
the density contrast is
2000 kg/m3. The three curves
are for tunnels with centres 1 m,
2 m and 4 m below the ground
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The value of the peak signal is inversely proportional to the square of z1, and the tunnel
profile becomes wider when the tunnel is deeper.

In the absence of knowledge of the tunnel depth, one approach would be to simply
identify the largest peak in the line of data as a potential tunnel signal. The model for
random clutter can be used to find the probability that such a peak was produced by
the random density variations, i.e. the probability of false alarm. However, if there is
prior knowledge of depth, a better approach is to apply a matched filter: if the depth
is known, then the shape of the tunnel signal is also known and can be used as a
matched filter. The matched filter processing involves taking the measured line of data
and cross-correlating it with the known profile function (for simplicity, DFT-based
circular correlation was used for this numerical calculation). This approach will not
only give better rejection of random clutter; it will also give a value for the radius of the
candidate tunnel. It is not difficult to show that if the profile of Eq. (28) is normalised
to the form

f1 (x) � −2
z1

Gπ2

1 − u2(
1 + u2

)2 , (29)

then the peak of the cross-correlation of Eq. (28) with Eq. (29) is simply ηr20 (this can
be shown by Fourier-transforming Eqs. (28) and (29) with respect to x, multiplying
them and then inverse-transforming to obtain the cross-correlation function). Thus,
the only unknown quantity, the tunnel radius r0, can be obtained from the value of the
cross-correlation peak. Of course, this requires prior knowledge of the tunnel depth.
Since the width of the signal peak increases with depth, errors will be introduced if
the true tunnel depth differs from the assumed depth. More sophisticated approaches
are possible, using a range of different matched filters each for a tunnel at a different
depth, for example. However, here it will be assumed that the tunnel depth is known
sufficiently well to obtain good results with a single matched filter.

Assuming there is no more than one tunnel along the 25 m line of data, the largest
cross-correlation peak is identified as a candidate tunnel, its magnitude giving a cor-
responding radius for the tunnel. The question that will be addressed by the model is,
what is the probability that a particular tunnel radius will be identified if only clutter
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Fig. 6 Probability of false alarm,
as a function of tunnel radius r0.
Circles: tunnel depth of 1 m
below ground; triangles depth of
2 m; squares, depth of 4 m. All
results used 2Eo sensor noise
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is present? This will result in a “false alarm” probability as a function of tunnel size,
that is, it will give some information about whether a tunnel of a given size could be
readily detected in the presence of clutter. Therefore, in the simulations here, no tunnel
is actually present. Each simulation run identifies a candidate tunnel with given radius
and represents a false alarm.

The probability of false alarm will depend on both the magnitude of the random
density variations and the magnitude of intrinsic sensor noise. The results plotted
in Fig. 6, show the fraction of candidate tunnels with radius above a given value.
Here, it was assumed that the sensor is subject to white, additive Gaussian noise. The
three different results correspond to no sensor noise and sensor noise with standard
deviations of 2Eo and 5Eo. Obviously, the probability goes to unity as the tunnel radius
goes to zero: a very small tunnel would give a very small response, and there is always
enough clutter present to produce a cross-correlation peak which exceeds the expected
response. The utility of the probability of false alarm plot is that it shows what size
of tunnel could be reliably detected in the presence of this amount of clutter: by only
accepting a candidate tunnel as genuine if its radius exceeds a certain threshold value,
one can reduce false alarms to an acceptable level.

The method described in Sect. 3 was used to generate 100 realisations of power-law
clutter with the same parameters that were used for the right-hand plot in Fig. 4. Each
realisation was generated on a grid with 1024 by 1024 points and a grid spacing of
0.25m. The central 25m by 25m region of the resulting 256m by 256m area was used
for the simulated surveys. Although there are only 100 truly independent realisations,
each realisation of clutter does contain multiple structures; thus, by using every row
of data along the y-axis as a distinct survey, the effective number of realisations used
was somewhat greater than 100. Sensor noise was included by adding random white
Gaussian noise to the data. Then, for each row of data, the mean was subtracted and a
straight line was fitted, the resulting linear trend also being subtracted; this was done
to remove the effect of structures that are much larger than the tunnel signal, and thus
allow a consistent cross-correlation to be obtained for each line of data. The largest
cross-correlation peak was then identified and used to calculate a candidate tunnel
radius. The values from all the rows were used to calculate a cumulative distribution
Pf. This is shown in Fig. 6 and is the probability that the candidate tunnel radius is less
than a given value. Figure 6 gives results for the three different tunnel depths used in
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Fig. 7 Probability of false
alarm, as a function of tunnel
radius r0. Circles: no sensor
noise; triangles 2Eo sensor
noise; squares, 5Eo sensor noise
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Fig. 5, with 2Eo of sensor noise. As one would expect, the deeper the tunnel the larger
it has to be in order to be detected. A tunnel of, for example, 20 cm radius could be
detected at 1 m depth with a very low probability of false alarm; however, the same
tunnel would be subject to nearly 10% false alarms at 2 m depth and 70% at 4 m depth.

Figure 7 gives results for a single tunnel depth with three different levels of sensor
noise, starting with the case of negligible noise. Even in the absence of sensor noise,
a tunnel of radius, say, 0.1 m could not be readily detectable in this level of random
clutter because setting a detection threshold at 0.1 m would result in around 80% of
runs producing a false alarm. However, setting a detection threshold at a tunnel radius
of 0.25 m would mean that tunnels of this size and larger would be detectable with a
very small probability of false alarm, as long as the sensor noise was 2Eo or lower.

5 Conclusions

The methods presented in this paper allow one to model the effects of random under-
ground density variations on gravity measurements. The theoretical results predict the
statistical properties of the gravity signals from the statistical properties of the under-
ground density variations. The numerical modelling methods allow one to generate
realisations of random gravity fields, which can be used in a gravity surveymodel. The
major underlying assumption is that the underground density variations, and therefore
the gravity variations, constitute a Gaussian random process, that is, the two-point
spatial statistics are jointly Gaussian. As with any modelling assumption, this needs
to be verified by experimental measurement. This is a task that may be suited to a new
generation of gravity gradiometers based on cold atoms, which are, in principle, capa-
ble of carrying out rapid surveys with high sensitivity. These instruments are still in
the early stages of development, and significant future improvements in sensitivity are
anticipated. In Sorrentino et al. (2014), a sensitivity of order 2Eo was reported, albeit
with laboratory-based equipment and with a 2-h integration time. Gradiometers also
have the advantage of requiring fewer corrections than gravimeters, although careful
measurement and correction of surface topography will still be necessary.

The same need for experimental validation applies to the spectralmodels considered
here. Although there is some existing evidence for power-law fractal behaviour, it
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should be noted that the surface-sample and gravity survey results in the literature
(Pilkington and Todoeschuck 2004; Miranda et al. 2015) tend to consider variations
over large scale sizes only, of order kilometres, so their relevance to the kind of small-
scale survey considered here is uncertain. Borehole data does give statistics for small-
scale density variations (sub-metre vertical separations), and there is evidence that
power-law behaviour extends down to these small scales, see Bansal andDimri (2010).
However, this data uses vertical drill samples,most ofwhich come frommanyhundreds
of metres below the surface, so their relevance to near-surface features is not clear.
Another feature of the spectralmodels presentedhere is the assumptionof homogeneity
in the spatial statistics of the density variations. This is a condition that may not be met
in practice, particularly in the vertical direction,where a certain amount of stratification
might be expected. However, for a gravity survey taking place in the horizontal plane,
a lack of homogeneity in the vertical direction would be expected to be of minor
importance: as long as density variations in horizontal layers are homogeneous, the
assumption of overall homogeneity should not lead to large errors in the predicted
horizontal correlations. Another relevant point regarding vertical stratification is that
it means that data from vertical boreholes cannot be relied upon to infer horizontal
statistics of density variations. If a borehole is going through varying strata, then the
density variations seen in the vertical samplemay be completely different inmagnitude
and nature from those within the individual, horizontal layers.

In conclusion, the results and techniques presented in this paper may be useful for
modelling of future gravity surveys where clutter from random underground density
variations is a significant factor. However, the assumptions of Gaussian statistics and
the use of particular spectral models (such as the fractal model) would need to be
verified by measurement campaigns before the results can be used with confidence.
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Appendix: Gravity Results

The x′ and y′ integrals obtained when Eq. (5) is substituted in Eq. (2) are Fourier cosine
transforms and can be evaluated using tabulated results from Erdélyi (1953). Applying

these results to evaluate the
⇀
r

′
1 and

⇀
r

′
2 integrals gives the following fivefold integral

G2

2π

˚
exp

(
i
[
kx (x1 − x2) + ky (y1 − y2)

]) 0∫

−za

0∫

−za

Sd

(
⇀

k

)
exp

(
ikz
(
z′1 − z′2

))

× exp

(
−
(
k2x + k2y

) 1
2 (∣∣z′1 − z1

∣∣ + ∣∣z′2 − z2
∣∣)
)
dz′1dz′2dkxdkydkz . (A1)
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The z′ integrals are just elementary exponential integrals and can be easily evaluated
to give Eq. (6) in the limit of za→∞, that is, for a layer of infinite depth. Results can
also be obtained for a horizontal layer of finite depth, in which case the z′1 and z′2
integrals evaluate to give

exp (−k [z1 + z2 + 2za] )

k2 + k2z
(1 + exp (2kza) + 2 cos (kzza)) , (A2)

where k �
(
k2x + k2y

) 1
2

.Assuming the density variations are isotropic in the horizontal

plane, one can convert to a radial spatial coordinate r and change kx and ky in Eq. (6) to
the polar coordinates k and θ , θ being the angle between k and r. The angular integral
can then be carried out to give a J0 Bessel function (Abramowitz and Stegun 1970),
resulting in

ρFz (r) � G2
∫ ∞

−∞

∫ ∞

0
k
Sσ (k, kz)

k2 + k2z
exp (−k (z1 + z2)) J0 (kr) dkdkz, (A3)

where r2 � x2 + y2. The two-dimensional power spectral density of the gravity
variations can be written as the Fourier transform of the correlation function

SFz
(
ωx , ωy

) �
∞∫

−∞

∞∫

−∞
ρFz (x, y) exp

(−i
[
xωx + yωy

])
dxdy. (A4)

Converting to polar coordinates and again integrating over the angular coordinate
yields

SFz (ω) � 2π

∞∫

−∞
ρFz (r) J0 (ωr) rdr . (A5)

Substituting Eq. (A3) into Eq. (A5) and changing the order of integration gives

SFz (ω) � 2πG2
∫ ∞

−∞

∫ ∞

0
k
Sσ (k, kz)

k2 + k2z
exp (−k (z1 + z2))

∞∫

0

J0 (kr) J0 (ωr) rdrdkdkz .

(A6)

The integrals with respect to r and k constitute a Fourier–Bessel transform, which
obeys

F (ω) �
∞∫

0

kF (k)

∞∫

0

J0 (kr) J0 (ωr) rdrdk, (A7)
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for any function F (Watson 1944). Comparison of Eqs. (A7) and (A6) leads to Eq. (7)
in the main text. Differentiating Eq. (7), that is, using Eq. (4), via Eq. (A5), gives
Eq. (8) for the gravity gradient.

Delta-Correlated Model

The integrals for the two-dimensional spectra (Eqs. 7 and 8) can be easily evaluated
to give

SFz (ω) � 2 (π Gd0)2

ω
exp (−ω (z1 + z2)) , (A8)

and

SFzz (ω) � 2 (π Gd0)
2 ω exp (−ω (z1 + z2)) . (A9)

For the correlation function, the kz integral in Eq. (6) is an elementary one and can
be easily evaluated. Converting to polar coordinates and integrating over the angular
coordinate gives

ρFz (x, y) � πd20 G
2

∞∫

0

exp (−2z0k) J0 (k r) dk. (A10)

Erdélyi (1953) gives a general result for integrals of this type in terms of a Legendre
polynomial.Noting that thefirst Legendre polynomial is given by P0 � 1 (Abramowitz
and Stegun 1970), gives the result of Eq. (10). The calculation can also be carried out
for the case of a finite layer, using Eq. (A2), which gives

ρFz (r) � π G2d20

⎛
⎝ 1
(
(z1 + z2)2 + r2

)1/2 − 1
(
(z1 + z2 + 2za)2 + r2

)1/2

⎞
⎠ . (A11)

The corresponding result for the gravity gradient is obtained by applying Eq. (4) to
Eq. (A11)

ρFzz (r) � π G2d20

⎛
⎝ 2 (z1 + z2)2 − r2

(
(z1 + z2)2 + r2

)5/2 − 2 (z1 + z2 + 2za)2 − r2

(
(z1 + z2 + 2za)2 + r2

)5/2

⎞
⎠ , (A12)

Equation (11) is obtained in the limit za→∞.
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Power-Law Spectrum, Structure–Function Approach

Substituting Eq. (12) into Eq. (6), one finds that the dkz integral is a tabulated one
(Gradshteyn and Ryzhik 1980), which evaluates to

√
πΓ

( 1
2 + υ

2

)

Γ
(
1 + υ

2

)
kυ+1

, (A13)

where k2 � k2x + k2y . Converting to polar coordinates and carrying out the angular
integral gives

ρFz (r) �
√

π AG2Γ
( 1
2 + υ

2

)

Γ
(
1 + υ

2

)
∞∫

0

exp (− (z1 + z2) k)

kυ
J0 (kr) dk, (A14)

where r �
∣∣∣⇀r 1 − ⇀

r 2
∣∣∣. It is easy to see that this integral diverges for ν >1, because the

lower limit of the integral is zero. Note that the exponential term in Eq. (A14) causes
the kernel to decay rapidly with increasing spatial frequency k and prevents divergence
as k goes to infinity. By setting r=0 in Eq. (A14), one can write the structure function
as

DFz (r) � 2
√

π AG2Γ
( 1
2 + υ

2

)

Γ
(
1 + υ

2

)
∞∫

0

exp (− (z1 + z2) k)

kυ
[1 − J0 (kr)] dk. (A15)

The integral in Eq. (A15) can be evaluated by using the series expansion of the
Bessel function and integrating term by term. The series is (Abramowitz and Stegun
1970)

1 − J0 (kr) � −
∞∑
n�1

(−1)n

(n!)2

(
1
4k

2r2
)n

, (A16)

and the integrals can be carried out by noting that they are Laplace transforms, which
are given in Erdélyi (1953)

∞∫

0

exp (−pt) kμdk � Γ (μ + 1)

pμ+1 , (A17)

valid for μ>−1. Note that the first term in the power series corresponds to μ �
2 − ν, which means that the structure function only converges for ν <3. By using
the duplication formula for the gamma function (Abramowitz and Stegun 1970), the
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infinite summation that results when Eq. (A16) is substituted into Eq. (A15) can be
written as

∞∑
n�1

(
− r2

(z1 + z2)2

)n
Γ
(
n + 1

2 − ν
2

)
Γ
(
n + 1 − ν

2

)

(n!)2
. (A18)

Comparing this with the series expansion of a hypergeometric function
(Abramowitz and Stegun 1970) leads to the following result

DFz (r) � AG2 (z1 + z2)ν−1

2ν−1

Γ
( 1−ν

2

)
Γ
(
1 − ν

2

)
Γ
( 1+ν

2

)

Γ
(
1 + ν

2

)
{
1 − 2F1

(
1 − ν

2
, 1 − ν

2
; 1;− r2

(z1 + z2)2

)}
. (A19)

A slight further simplification can be obtained using the reflection formula for the
gamma function (Abramowitz and Stegun 1970) which gives Eq. (21) in the main text.
Note that in the special case of ν �2, Eq. (21) can be expressed in terms of elementary
functions

DFz (r) � π (z1 + z2) AG
2

⎧⎪⎨
⎪⎩

(
1 +

[
r

(z1 + z2)

]2) 1
2

− 1 − ln

⎛
⎜⎝1

2

⎡
⎢⎣1 +

(
1 +

[
r

(z1 + z2)

]2) 1
2

⎤
⎥⎦

⎞
⎠

⎫⎪⎬
⎪⎭

. (A20)

Equation 22 for the gravity gradient can be derived by differentiating Eq. (A19)
twice, using Eqs. (4) and (14), and then using the contiguity relations for the hyper-
geometric functions (Sneddon 1961). Alternatively, one can obtain the same result by
differentiating Eq. (6).

A result can also be derived for the case of a horizontal layer of finite thickness,
using Eq. (A2). The exponential terms in Eq. (A2) evaluate in the same way as before;
however, there is the additional cosine term which contains kz. When the kz integral is
performed for the power-law model, a further cosine transform results, which can be
found in Erdélyi (1953). The structure functions can then be written in the following
integral forms, which can be evaluated numerically.

DFz (r) � 2
√

π AG2

Γ
(
1 + ν

2

)
∞∫

0

e−(z1+z2)k [1 − J0 (kr)]

[
Γ
(

ν
2 + 1

2

)

kυ

(
1 + e−2kza

)
− 4ke−k za

( za
2k

) ν
2 +

1
2 K ν

2 +
1
2

(k za)

]
dk,

(A21)
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DFzz (r) � 2
√

π AG2

Γ
(
1 + ν

2

)
∞∫

0

e−(z1+z2)k [1 − J0 (kr)]

[
Γ
(

ν
2 + 1

2

)

kυ−2

(
1 + e−2kza

)
− 4k3e−k za

( za
2k

) ν
2 +

1
2 K ν

2 +
1
2

(k za)

]
dk.

(A22)

Here K is a modified Bessel function of the second kind.

Power-Law Spectrum with Outer Scale

After substituting Eq. (13) into Eq. (6), one can convert to polar coordinates in the
{kx ,ky} plane and carry out the angular integral to give

ρ (r) � AG2

∞∫

−∞

∞∫

0

exp (− (z1 + z2) k)
(
k2 + k2z

) (
k2 + k2z + k20

)υ
2
J0 (kr) kdkdkz, (A23)

where, as before, k2 � k2x +k
2
y . The kz integral can be found in Gradshteyn and Ryzhik

(1980) in terms of a hypergeometric function, which can be written as an incomplete
beta function (Abramowitz and Stegun 1970) and gives Eq. (23) in the main text.
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