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ABSTRACT Machine learning in real-world scenarios is often challenged by concept drift and class
imbalance. This paper proposes a Resample-based Ensemble Framework for Drifting Imbalanced Stream
(RE-DI). The ensemble framework consists of a long-term static classifier to handle gradual and multiple
dynamic classifiers to handle sudden concept drift. The weights of the ensemble classifier are adjusted
from two aspects. First, a time-decayed strategy decreases the weights of the dynamic classifiers to make
the ensemble classifier focus more on the new concept of the data stream. Second, a novel reinforcement
mechanism is proposed to increase the weights of the base classifiers that perform better on the minority
class and decrease the weights of the classifiers that perform worse. A resampling buffer is used for storing
the instances of the minority class to balance the imbalanced distribution over time. In our experiment,
we compare the proposed method with other state-of-the-art algorithms on both real-world and synthetic
data streams. The results show that the proposed method achieves the best performance in terms of both
Prequential AUC and accuracy.

INDEX TERMS Online ensemble learning, resample learning, reinforcement, concept drift, class imbalance.

I. INTRODUCTION

With the wide application of machine learning, online learn-
ing with concept drift and class imbalance has received
increased research attention. Practical applications in soft-
ware engineering, risk management, traffic flows, sensor
networks and social media mining face challenges of both
concept drift and class imbalance [1], [2].

In a data stream, instances are generated over time based
on an underlying probability distribution P;(x,y;) [3]. If the
probability distribution changes at time ¢, concept drift will
occur. According to Bayes’ theorem [4], such drift can be
divided into real concept drift and virtual concept drift. First,
changes to the posterior distribution P;(y|x) without affecting
P;(y) will lead to real concept drift, which could change
the decision boundary and decrease the performance of the
classification model. Variation of the prior probability P;(y)
without affecting P;(y|x) will lead to virtual concept drift,
which changes the proportions of instances in different cat-
egories and is related to the class imbalance phenomenon.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shirui Pan.

Moreover, concept drift can be divided into sudden concept
drift and gradual concept drift [5]. Sudden drift changes from
an old concept to a new concept immediately, leading to
a sharp decline in the classification performance. Gradual
drift slowly affects the data concept, so that the classification
model has an adjustment period for adapting to the new
concept. If the learning algorithm focuses on only the latest
instances, it will show rapid adaptability to sudden concept
drift. A learning model trained by long-term instances is more
conducive to handling gradual concept drift [6].

Class imbalance learning always faces the challenge that
the minority class is underrepresented [7]. Classification
models without any imbalance handling mechanism tend to
be biased towards the majority categories and ignore the
minority categories. Therefore, even if a classification model
achieves high overall accuracy, it could perform poorly on
the minority categories. In the scenario where the minority
classes are especially important, such as spam filtering and
risk management, the performance evaluation method should
focus on the minority classes. Moreover, the conditions are
more challenging when concept drift and class imbalance
occur simultaneously.

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.
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Researchers have proposed many methods to solve the
joint problem of concept drift and class imbalance. Accord-
ing to the manner of instance arrival, the methods can
be divided into block-based methods and online learning
methods. Gao et al. [8] and Jing et al. [9] first pro-
posed Uncorrelated Bagging (UCB), which uses an ensem-
ble method with a series of classifiers trained by a more
balanced set by means of resampling the minority class
and undersampling the majority class. Chen and He [10]
proposed the Selectively Recursive Approach (SERA) algo-
rithm, which selects minority instances that are similar to
those in recent data blocks. The algorithm also discards
instances that are not related to the current processing block
according to a distance metric. Then, the Recursive Ensem-
ble Approach (REA) was proposed; this approach modi-
fied SERA into an ensemble approach [11]. Ditzler and
Polikar [12] proposed Learn*™.CDS and Learn™+.NIE for
concept drift and class imbalance. Learn**.CDS combines
the concept drift processing algorithm Learn®™ NSE [13]
with the Synthetic Minority class Oversampling TEch-
nique (SMOTE), which generates instances of the minor-
ity class [14]. Learn™ NIE modifies Learn™ NSE and
replaces SMOTE with bagging-based sub-ensemble meth-
ods to address class imbalance. All the above methods are
block-based algorithms which require instances to arrive in
batches at each time step.

Different from block-based methods, online learning is
more challenging, because only one instance is available at
each time step. Online learning methods can be categorized
into two main types: active handling methods that employ
a drift detection mechanism [15]-[18] and passive meth-
ods [19], [20]. The Drift Detection Method for Online Class
Imbalance (DDM-OCI) [16] is an active detection method
that uses minority-class recall (i.e., true positive rate) as the
indicator for concept drift. Linear Four Rates (LFR) [15] was
further proposed to use the confusion matrix of the minority-
class recall and precision and the majority-class recall and
precision for drift detection. Additionally, many studies have
evaluated indicators of classification performance. Brzezin-
ski and Stefanowski [21], [22] modified the AUC for the
online learning condition and proposed the Prequential AUC
(PAUC), which can reflect the real classification performance
of the minority classes, as an evaluation index. Furthermore,
the Page-Hinkley test [23] uses the PAUC as the indicator
and forms PAUC-PH, which can integrate other classification
algorithms and actively detect drift and imbalance. However,
PAUC-PH will reset and retrain the model when drift or
imbalance occurs and will discard all previous knowledge.

Conversely, passive methods do not detect concept
drift and class imbalance but continuously evolve the
classifiers with the data stream. Many passive methods
use ensemble-based methods or sampling-based methods
[19], [20]. Wang et al. [20] modified the ensemble learning
algorithm Online Bagging (OB) [24] and proposed Over-
sampling Online Bagging (OOB) and Undersampling Online
Bagging (UOB). These methods calculate the real-time size
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of classes to evaluate the current imbalance degree for deter-
mining the sampling times of instances. Moreover, a time
decay factor is used to decrease the impact of historical data.
DDM-OCI, LRF, PAUC-PH, OOB and UOB are designed for
binary classification, which defines two classes: minority and
majority.

Generally, block-based learning methods learn fixed-size
data blocks and respond inefficiently to sudden concept drift
which happens within a data block. Although reducing the
size of the data blocks can help to address sudden drift, this
change increases the computational cost and degrades the per-
formance in the stable state [6]. In contrast to the block-based
methods, online learning models are dynamically updated by
new arriving instances and can rapidly adapt to sudden con-
cept drift. However, they may perform quite poorly at the ini-
tial stage of training compared to block-based ones, because
only one instance is used at each time step. Therefore, in
this proposal, we are motivated to combine the advantages of
block-based and online learning. The component classifiers
in our ensemble method are created by a block-based method
and the instances are processed in an online manner.

In this paper, we propose a novel resample-based ensemble
framework for a drifting data stream with class imbalance
(RE-DI). The novelty lies in the following aspect. First,
we proposed a novel ensemble framework that includes a
long-term static classifier and multiple dynamic classifiers
using a sliding window. The static classifier is maintained and
updated throughout the entire learning procedure to handle
gradual changes in the data stream. The dynamic classi-
fiers learn only recently received data and are more suitable
for addressing sudden concept drift. Second, the classifier
weights are dynamically adjusted by two approaches. A novel
reinforcement mechanism dynamically adjusts the predictive
weights of the base classifiers and improves the classification
performance for the minority class. Older dynamic classifiers
have their weights periodically decreased, so that the final
ensemble model can focus on the latest concept of the data
stream. Third, to balance the imbalance ratio of training
samples, a resample-based initialization method for base clas-
sifiers is proposed. It uses a resampling buffer group to store
and supply instances of the minority class.

The rest of this paper is organized as follows. The
resample-based ensemble framework for drifting imbalance
stream is proposed in Section 2. Section 3 present the experi-
mental results and analysis, and the conclusions are presented
in Section 4.

Il. METHODS

In this section, a novel resample-based ensemble frame-
work for drifting imbalanced data streams is proposed.
In section A, the learning procedure of the resample-based
ensemble framework, which combines block-based and
online incremental techniques, is introduced. Then, in section
B, we propose the ensemble classifiers and the weight
adjusting mechanism. At last, section C presents a novel
resample-based initialization procedure for a base classifier

VOLUME 7, 2019
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FIGURE 1. Structure of resample-based ensemble framework.

that aims at solving the learning problem posed by class
imbalance. First, we introduce the structure of the resample-
based ensemble framework.

As shown in Figure 1, the ensemble classifier E consists
of a static classifier Cy; and D dynamic classifiers Cy (d =
1,2, ..., D). The D dynamic classifiers are periodically cre-
ated and replaced. Additionally, the resampling buffer group
is used for supplying training samples of the minority class.
As the class imbalance ratio could vary and the minority class
can change into the majority class, all L categories have a
corresponding resampling buffer.

A. ENSEMBLE LEARNING PROCEDURE

Tradition block-based learning algorithms create base clas-
sifiers and make predictions in the units of a fixed-size
data block. The classifiers are trained on the current data
blocks and make predictions on subsequent data blocks.
However, concept drift can occur at any point in the data
stream. Therefore, if concept drift occurs within a data block,
block-based learning methods will have a delay in adapting
to concept drift. Online learning addresses the newly arriv-
ing instances one by one and can rapidly respond to the
changes in data stream. However, the block-based learning
algorithm will have more training samples for initializing a
new classifier. Additionally, in the resample-based ensemble
framework, dynamic classifiers are dynamically created and
replaced. Each dynamic classifier only exists for a period.
Therefore, the component classifiers in the ensemble frame-
work are created by a block-based method, and instances
in the data stream are processed in an online learning
manner.

Let S be an infinite data stream ..., Xj, Xjy1, Xi+2, - - ..
At time ¢, the arriving instance is x; and the class label of
X; 18 y;. A circular cache array B is used to cache instances
from the data stream and form data blocks. In addition, the
length of the circular cache array B is I. Therefore, the data

VOLUME 7, 2019

Algorithm 1 Ensemble Learning Procedure
Inputs:
1. S: data stream with unknown label
2. L: number of classes
3. I: size of the data blocks
4. D: number of dynamic classifiers
5. &: instance selection ratio of the classifier initialization.
Output: Ensemble Classifier £
Initialization:
1. B: circular cache array, initialized as an empty array
2. U[l]: resampling buffer for storing instances
3. p = 0: counter of processed instances
4. i = 0: indicator of current position in circular
cache array
5. k = 0: indicator of the dynamic classifiers
Process:
1. while (S. hasNext()) do
2. Xpew =S. nextInstance()
3.p=p+1
4.if (p < Ithen// Before B is fully filled for the first time
5. Blp-1]= xpew
6. else if (p == I) then// Fill the array for the first time
7. Blp-11= Xuew
8. Cs;= CreateNewBaseClassifier(e,U,I ,L,D,wd,
w’,DCIR|[I]) Create static classifier
9. k=1
10. ¢ = Cs// Create the first dynamic classifier
11. else // (p > I) has more instances than /
12. i = (p-1)%I//iis the current index for A
13.  TrainOnlnstance (xnew,i,L,D,wd,wS ,DCIR[I])
14. i = (i+ 1)%I// i moves circularly
15. if (i == 0) then // The array is filled again
16. k=k+1
17.  Cy= CreateNewBaseClassifier(e, U, 1, L, D, we,
w* ,DCIR][]]) create new dynamic classifier
18. if (k > D) then
19. Cqy < Cygp1d=1,...,D-1)
20. Cp <« Gy
21. endif
22.  Update the predictive weight of classifiers by (3)
23. Calculate damped class imbalance ratio by (5)
24. end if
25. end if
26. end while
27. fori = Oto/-1do // Address remaining instances
28. Xpew = Bli]
29. TrainOnlnstance (x,ww,i,L,D,wd w5 .DCIR[I])
30. end for

stream can be regarded as a consequent data block queue By,
By, ...By, By ... Algorithm 1 shows the ensemble learning
procedure of the proposed methods.

After the learning process begins, the circular array B
continuously caches arriving instances from the data stream
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until it is filled for the first time. When the circular array is
filled for the first time, the first data block B; is used to create
the static classifier C,, which is copied as the first dynamic
classifier Cy following the process in Algorithm 4. Then, the
instances in the circular array are learned one by one. The
learning process starts from the first position in the circular
cache array, and an indicator i is used to represent the current
processing position. The procedure for training on an instance
is shown in Algorithm 2.

Algorithm 2 TrainOnInstance(Xpey, i, L, D, w? .w*, DCIR[I])

Inputs:

1. X002 new instance from data stream

2. i: current processing position of the data block

3. L: number of classes

4. D: number of dynamic classifiers

5. w': weight of static classifier

6. w?: weights of dynamic classifiers (d = 1, ..., D)

7. DCIR[!]: damped class imbalance ratio

Output: Adjusted weights w* and wd(d =1,...,D)

Process:

1. x; = B[i] //get instance from the circular cache array

2. ReinforcementWeightAdjustment(x;,L ,D,wd W,
DCIR[I])

3. update the static classifier and dynamic classifiers
with x;

4. Bli]= Xuew //cache the new instance Xy,

First, instance x; is obtained from the circular cache array
BIi]. Then, the reinforcement weight adjustment mechanism
(Algorithm 3) is used to improve the classification perfor-
mance of the ensemble framework for the minority class.
Then, the static classifier and dynamic classifiers are trained
using x;. Once the instance in position i is learned, the instance
is replaced by the newly arriving instance X, and the indi-
cator moves to the next position in the circular cache array.
When indicator i reaches the last position, all the instances in
the cache array have been replaced, meaning that a new data
block is formed. Then, the indicator moves to the first place
and the algorithm will learns from the new data block from
the beginning.

When a new data block is formed, the algorithm creates a
new dynamic classifier Cy,, in the ensemble. As the learning
procedure proceeds, the number of classifiers in the ensemble
framework continues to grow. If the number of classifiers
exceeds D, the earliest dynamic classifier C; is dropped.
Then, the subsequent classifier will replace the former clas-
sifiers one by one C4 <« Cgy1 d = 1, ..., D—1) to
ensure that there are always D classifiers in the ensemble
framework. Next, the weights of the dynamic classifiers are
updated according to (3), and the damped class imbalance
ratio is calculated by (5). Finally, when no more instance can
be obtained from the data stream, the algorithm learns the
remaining instances in the cache array.

65106

B. ENSEMBLE FRAMEWORK WITH REINFORCEMENT
ADJUSTED AND TIME-DECAYED WEIGHT

In this section, the ensemble framework with reinforcement-
adjusted weight is introduced. The ensemble classifier con-
sists of a static classifier and a dynamic classifier sliding
window. To handle the long-term tendency of the data stream,
the static classifier Cy learns the whole data stream while the
dynamic classifiers Cy learn only a part of the data stream,
which is defined as:

n

Ss - Z Bk
k:Dl (1)

Se=Y Bupyk, d=1,2,...D
k=d

Suppose the current processed data block is By, the data
stream learned by the static classifier is S; and the parts
learned by the dynamic classifier are Sy. The dynamic clas-
sifier Cy, learns only the most recent D — d + 1 data blocks
of the data stream. Each dynamic classifier exists for only a
period of time and is replaced by the newly created dynamic
classifier. The joint prediction of the ensemble classifier is
the weighted combination of the static classifier and dynamic
classifiers, is calculated as follows:

D
F@= @+ Y o W, I=1...L @

d=1

flE (x) is the ensemble prediction that instance x belongs to
class [. w* and w9 (d =1, ..., D) are the predictive weights
of the static classifier and dynamic classifiers. The weight of
the static classifier w* is initialized to 0.5, and the weights
of the dynamic classifiers w? decrease over time. Whenever
a new dynamic classifier is created, its initial weight is set
to 1/D, and the weights of the old dynamic classifiers are
reduced repeatedly over time, as shown in Equation (3). Then,
the weights of all the classifiers are normalized

1
W’ <« —
2
d d
o <~ (1 — = ’
a-2)
D 1

o” <~ 5

d=1,2,...D—-13) (3)

Through dynamic weight attenuation, the newly created
dynamic classifier is given more weight than the older clas-
sifiers in the joint prediction. Therefore, the algorithm will
focus more on the latest instances, which will help to adapt
to concept changes in the data stream. Additionally, in the
class imbalanced learning condition, the classification perfor-
mance on the minority class should be given more attention.
The data stream learned by each dynamic classifier is differ-
ent, so the classification capacity for the minority category
of the dynamic classifiers is different. Therefore, to improve
the joint prediction accuracy of the ensemble classifier for
the minority class, a reinforcement weight adjustment mech-
anism is proposed in Algorithm 3.

First, for arrival instance x of class y, the algorithm deter-
mines whether instance x belongs to the minority class

VOLUME 7, 2019
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Algorithm 3 ReinforcementWeightAdjustment (x, L, D, we,
w*, DCIR [1]).

Inputs:

1. x: processed instance of label y

2. L: number of classes

3. D: number of dynamic classifiers

4. w¥: weight of static classifier

5. w: weights of dynamic classifiers (d = 1, ..., D)

6. DCIR|[!]: damped class imbalance ratio

Output: Adjusted weights w* and w¥(d = 1,..., D)

Process:

1. if (DCIR[y]<1/L) then // if instance x belongs to the

minority class
2. ford =1toD do:

3. if (Predictright(x,C;) ==True) then//Cy
predicts right

4 w? = w? % (1 + 1/D) // increase weight of Cy

5 else

6. w? = w? % (1 — 1/D) // decrease weight of Cy

7 end if

8. end for

9. if (Predictright(x,C;) ==True) then//C predicts right

10. w* = w' x (1 + 1/D) // increase weight of Cj

11. else

12. w® = w* % (1 — 1/D) // decrease weight of C;

13. end if

14. end if

according to the Damped Class Imbalance Ratio (DCIR).
Then, if x is in the minority class, the prediction results of
the static classifier and dynamic classifiers are used as the
foundation for adjusting the weights. That is, if a classifier
correctly predicts the class label of x, the weight of this
classifier is increased by (1 + 1/D). Otherwise, weight w?
is decreased by (1-1/D). Therefore, classifiers that perform
better on the minority class are given more weight in the
ensemble prediction.

In sum, the ensemble classifier with reinforcement-
adjusted weight makes the following efforts to address con-
cept drift and class imbalance. To deal with the different
types of concept drift, the ensemble framework includes a
long-term static classifier and multiple dynamic classifiers.
The static classifier in the ensemble framework is used
throughout the entire learning procedure, which helps to han-
dle gradual concept change. Then, the dynamic classifiers use
a sliding window [25] structure to learn partial data streams
and enable rapid adaptability to sudden concept drift. The
weight adjustment strategy contributes in two aspects. On the
one hand, the weights of the dynamic classifiers are decreased
over time to make the ensemble classifier focus more on the
new concept of the data stream. On the other hand, the rein-
forcement mechanism selectively adjusts the weights of the
static classifier and dynamic classifiers, improving the overall
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classification performance of the ensemble classifier E for the
minority class.

C. RESAMPLE-BASED INITIALIZATION FOR

BASE CLASSIFIER

In the scenario where the data stream is class imbalanced,
the learning model will lack training samples of the minor-
ity class because of the biased class distribution. Many
block-based methods [9], [10], [12] apply random sampling
or smart sampling techniques to form class-balanced train-
ing sets. However, if concept drift occurs, these sampling
methods could select instances of the old concepts that will
lower the classification performance. These sampling meth-
ods thus cannot be used in online learning conditions. OOB
and UOB [20] integrate oversampling and undersampling
methods into online bagging which train more times with
the minority class or train fewer times with the majority
class. The component classifiers in online bagging address
all the instances throughout the entire learning procedure,
but in our proposed ensemble, the dynamic classifier only
exists for a certain period and learns a partial data stream.
There is no guarantee that the dynamic classifier can obtain
enough instances of the minority class in its corresponding
partial data stream. Therefore, in this section, a resample-
based initialization method for base classifiers is proposed to
solve this problem by improving the classification capacity
for the minority class during the initialization process of the
base classifiers.

As the class imbalance condition of the data stream could
change over time, the minority class and majority class may
transform into each other. Therefore, for each category I,
a resampling buffer U[l] (Il = 1, ..., L) (pink rectangle) is
used to cache instances of this class. Whenever the ensemble
classifier addresses an instance, it stores the instance in the
corresponding resampling buffer by class label. Instances are
stored in order and the later arriving instances are used first.
In addition, the length of the resampling buffer is periodi-
cally reduced to save memory and discard old instances. The
resample-based initialization procedure for the base classi-
fiers is shown in Algorithm 4.

Whenever a new data block arrives, a new classifier is
created. Assume that the current processing data block is B;,.
First, the algorithm uses the top €l instances of the cur-
rent block B, and forms an initialized dataset R,. Then,
for each instance in R,, the reinforcement mechanism is
used to adjust the predictive weights of the classifiers in
the ensemble framework. Then, the numbers of instances in
different categories H,[/] in the initialized dataset R, are
calculated. To balance the training samples of the different
classes, instances in the resampling buffer are used according
to (4).

el
H, () < —, Shortage
) @)
H, () > T Enough
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Algorithm 4 CreateNewBaseClassifier(e, U, I, L, D, wd wh,
DCIR[]]

Input:

1. e: instance selection ratio

2. U: resampling buffer

3. I: size of data block

4. L: number of classes

5. D: number of dynamic classifiers

6. w: weights of dynamic classifiers (d = 1, ..., D)

7. DCIR[!]: damped class imbalance ratio

Output: A new classifier C,,

Process

1. Select the top ¢/ instances of current block B,, to form
the initialization set R,

2.for i =0toIs-1 do:

3. x; = Ryli]

4. ReinforcementWeightAdjustment(xi,L,D,wd,

w¥,DCIR|[I])

5. end for

6. Calculate instance numbers H,[[] of different
classes in R,

7. Create the classifier C,,

8. For each class [, if H,[l] < I * ¢/L, use the most recent
I x ¢/L - H,[!] instance in U[/] to train C,,,

9. Use Ry, to train Cy,y,

10. Store the instances from R, to the corresponding
resampling buffer by class label

11. Reduce the length of all resampling buffers U[/]

tol xe/L
12. Return Cyeyy

Define ¢ as the instance selection ratio. [ is the size of
the data block, and L is the number of classes. To ensure
that the classifier can obtain enough instances of the minority
class, set e//L as the minimum quantity of instances for each
category to initialize the new classifier. For each class [,
if H,(l) is smaller than £I/L, the new classifier C,,,, will be
updated by the most recent I * &/L - H,[l] instances from
the resampling buffer U[!], otherwise, Cp,, has trained on
enough instances of class /. Finally, use R, to update C,g,,.
Furthermore, instances from R,, are stored in the correspond-
ing resampling buffer by class label. Finally, the length of
all the resampling buffers is reduced to €//L, which is the
maximum quantity needed by the resampling procedure.

To evaluate the class imbalance degree of the data stream,
the damped class imbalance ratio (DCIR) is proposed. For all
the dynamic classifiers that exist in the ensemble classifier,
each classifier has a corresponding initialization dataset R;.
The class distribution Hy(I) of Ry is also calculated. Then the
damped class imbalance ratio is:

>0 Hy 1w

DCIR (I) =
Yo Yoy Ha 11w

&)
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w? is the predictive weight of classifier C; calculated

in (3). For each class [, the weighted summation of the
instances including all the initialization dataset R, is calcu-
lated. DCIR(]) is the ratio of category / to the summation of
all the categories. As w? decays with time, the older class
distribution information has less effect in calculating DCIR,
which helps the algorithm focus on the most recent class
imbalance ratio of the data stream.

Ill. EXPERIMENTS

In this section, the performance of RE-DI is compared with
that of the other state-of-the-art methods, including OOB,
UOB, LB and AREF. First are three modification methods of
online bagging. OOB and UOB [20] integrate sampling meth-
ods in online bagging for class imbalance learning. Lever-
aging Bagging (LB) [26] which modifies online bagging by
adding more randomization in the ensemble is also compared.
In addition, the most recent learning method for an evolving
data stream, Adaptive Random Forests (ARF) [27] is also
included.

All the algorithms are implemented in the MOA data
stream software suite [28]. All the algorithms will first test
on the arriving instance and then train on it. Particularly,
RE-DI has its own task function to realize the special learning
procedure that combines the block-based and online learning
methods, and the other methods use the prequential evalu-
ation settings in MOA. To maintain the consistent perfor-
mance of the base classifier, all the comparative methods
except ARF, apply the Hoeffding Tree as the base classifier.
The Hoeffding Tree is an incremental, anytime decision tree
induction algorithm that is capable of learning from massive
data streams. And it was wildly used as base classifier in
researches of online data stream learning. ARF uses ARFHo-
effding which is specifically designed for this algorithm as
the base classifier. It is worth mentioning that RE-DI can use
other classifiers provided by MOA as the base classifier of
the ensemble. Moreover, all the experiments are carried out
on a machine with an eight-core Intel i7-6700 CPU, 3.4 GHz
processor, and 32 GB of RAM.

Section A to E present the results of comparing RE-DI
with other state-of-the-art methods. In section F, a verification
experiment is designed and carried out to prove the effect of
the static classifier and dynamic classifiers in the ensemble
framework.

A. DATA STREAMS

In the experimental evaluation, we used both synthetic data
streams and real data streams to compare the performance of
the algorithms in different situations. The default parameters
of RE-DI are D = 10, I = 500, and ¢ = 0.20. For each
dataset, we conducted five parallel experiments on all the
data streams. To evaluate the performance of algorithms in
a specific condition of a data stream, we chose the synthetic
generators in MOA, Agrawal and HYP to generate synthetic
datasets. In addition, to verify the practicability in real-word
applications, we also used real-world data streams.
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TABLE 1. Characteristic of data streams.

Data stream No. Inst No. Attrs Class Class ratio Drift Type No. Drifts
covtype36 53k 54 2 172 - -
PAKDD 50k 28 2 1/4 -
poker23 390k 10 2 1/9 - -
GMSC 150 k 10 2 1/14 - -
Agrawals; 100 k 9 2 3/7 sudden 3
Agrawalyg 100 k 9 2 2/8 sudden 3
Agrawalg 100 k 9 2 1/9 sudden 3
Agrawalgg 100 k 9 2 3/7,2/8,1/9,3/7 sudden 3
HYPs; 100 k 5 2 3/7 gradual 1
HYPog 100 k 5 2 2/8 gradual 1
HYP 100 k 5 2 1/9 gradual 1
HYPrg 100 k 5 2 1/1,1/9 gradual 1

Agrawal is used to generate data streams with sudden
concept drift and class imbalance. The different functions
of the generators simulate various concepts of data streams.
When a sudden concept drift occurs, the generation function
changes within 25 instances. First, data streams with a fixed
class imbalance ratio and sudden concept drift (Agrawals7,
Agrawalpg, Agrawalyg) are generated. Then, a data stream
with virtual drift and real sudden drift (Agrawalgs) is gen-
erated. The class imbalance ratio changes with the concept
drift (3/7,2/8,1/9,3/7) at the 1/4, 2/4 and 3/4 position of the
data stream. HYP is used for simulating data streams with
gradual drift and class imbalance. First, data streams with
gradual concept drift and a fixed class imbalance ratio are
generated (HYP37, HYP2g, HYP19). HYPg( is a data stream
with gradual concept drift and a class imbalance ratio that
varies from 1/1 to 1/9. All the synthetic data streams have
100k instances.

For the real data streams, we chose four commonly used
data streams as benchmarks, PAKDD [21], Give Me Some
Credit (GMSC), Forest Covertype (Covtype) [27] and poker.
PAKDD predicts credit card fraud cases from a large amount
of transaction records. GMSC is a credit scoring data stream
which is used for risk assessment in loan. PAKDD and
GMSC are binary data streams which can be used directly.
For the multi-class data streams, the same approach in [9]
which selects one category as the majority and another
as the minority, is applied to convert the data streams to
binary streams. Covtype contains the forest cover type for
30x30 meter cells obtained from US Forest Service (USFS)
Region 2 Resource Information System (RIS) data. Cov-
type contains 581, 012 instances, 54 predictive attributes
and 7 classes from 1 to 7. In covtype36, class 3 is used as
the majority and class 6 is the minority. Poker consists of
10 predictive attributes and 10 classes. Each record of Poker
is an example of a hand consisting of five playing cards drawn
from a standard deck. Poker23 selects class 2 as the majority
and class 3 as the minority. Table 1 summarizes the main
characteristics of the experimental data streams.

B. EVALUATION INDICATOR
Traditional classification performance evaluation methods
use accuracy as the indicator. However, accuracy reflects only
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the overall performance on all categories, when the accuracy
of the minority class is poor, the overall accuracy is still
high. AUC calculates the area under the ROC curve and
is a suitable metric for evaluating class imbalance learning.
However, AUC can be used in only offline learning condition.
Recently, many works [21, 22] have modified AUC for online
learning conditions and propose Prequential AUC (PAUC).
Therefore, we applied Prequential AUC as the experimental
evaluation indicator. Additionally, we compared the PAUC
indicator with the traditional accuracy indicator.

C. PARAMETER SENSITIVITY

In this section, to verify the parameter sensitivity of RE-
DI, we performed parameter comparison experiments on the
main setting parameters, including the number of dynamic
classifiers D, the size of the data blocks /, and the instance
selection ratio ¢. The default values are D = 10,1 = 500,
and ¢ = 0.20. For each parameter, we conducted five parallel
experiments on all the data streams.

From Table 2, we can see that all the parameters have
an impaction on the classification performance of RE-DI.
First, within the parameters selected for the experiments,
the number of dynamic classifiers is positively correlated
with the classification performance. Second, RE-DI performs
better at block sizes of 500 and 750, which shows that the
best optimal block size parameter is determined by the exper-
imental data stream. At last, the classification performance is
improved when the algorithm uses more instances during the
initialization process. Intuitively, the higher instance selec-
tion ratio can help the new classifier acquire a more detailed
understanding of the current data stream.

D. COMPARATIVE STUDY ON DATA STREAMS
In this section, the performance of the algorithms on different
data streams is compared. RE-DI was compared with PAUC-
OOB, PAUC-UOB, PAUC-LB and PAUC-AREF. All the com-
parison methods are ensemble methods, and the experiments
were conducted 5 times independently. Table 3 shows the
average AUC (%) and average Accuracy (%) of the algo-
rithms on all data streams.

First, the performance of the data streams with sudden
concept drift and class imbalance, which are generated by
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TABLE 2. Average auc (%) with different number of dynamic classifiers, block size and instance selection ratio.

Data st D u £
ata stream 1 5 10 15 20 | 100 250 500 750 1000 | 0.05 0.1 __ 0.5 _ 02 _ 025
covtype36 96.7 98.4 98.6 98.6 98.6 98.3 98.6 98.6 98.5 98.2 97.9 98.3 98.5 98.6 98.7
PAKDD 60.0 63.9 65.8 66.5 67.0 65.4 65.4 65.8 65.4 65.8 63.0 63.9 64.9 65.8 66.7
poker23 95.5 97.3 97.9 98.2 98.4 95.9 96.6 97.9 97.1 97.9 96.7 96.8 98.0 97.9 97.7
GMSC 77.2 83.5 85.2 85.8 86.1 83.4 84.6 85.2 85.3 85.1 83.6 83.9 84.6 85.2 85.9
Agrawals; 85.0 93.7 94.6 94.7 94.7 91.7 89.1 94.6 93.7 93.6 90.3 89.2 91.0 94.6 94.9
Agrawalyg 76.8 88.6 90.3 90.8 91.0 86.3 88.0 90.3 91.1 90.7 88.6 88.2 90.1 90.3 91.0
Agrawal;o 70.0 84.1 86.9 87.9 88.5 81.9 85.1 86.9 86.8 86.8 85.2 84.6 85.2 86.9 87.8
Agrawalgg 87.0 93.0 94.0 94.2 94.2 91.5 88.6 94.0 92.8 93.4 89.1 88.5 90.0 94.0 93.5
HYP;, 98.5 99.3 99.4 99.5 99.5 99.2 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
HYPy 97.3 98.9 99.1 99.1 99.2 98.7 99.0 99.1 99.1 99.1 99.0 99.0 99.0 99.1 99.1
HYPyy 95.8 98.0 98.4 98.5 98.6 97.8 98.4 98.4 98.6 98.5 98.2 98.3 98.3 98.4 98.5
HYPx: 96.5 98.3 98.5 98.5 98.5 98.1 98.4 98.5 98.5 98.3 98.3 98.3 98.5 98.5 98.6
TABLE 3. Average auc (%) and accuracy (%) of different algorithms.
Data stream RE-DI PAUC-OOB PAUC-UOB PAUC-LB PAUC-ARF
AUC Acc. AUC Acc. AUC Acc. AUC Acc AUC Acc.
1 covtype36 98.6 95.1 69.9 68.0 74.2 69.1 98.5 95.1 97.7 92.5
2 PAKDD 65.8 80.3 63.5 70.7 60.7 424 62.6 79.9 63.2 80.1
3 poker23 97.9 95.1 71.7 87.6 68.4 58.9 98.0 96.7 93.5 93.5
4 GMSC 85.2 93.6 84.9 89.7 71.2 93.0 81.9 93.5 80.4 93.5
5 Real Avg 86.9 91.0 72.5 79.0 68.6 65.6 85.3 91.3 83.7 89.9
6 Real Avg Rank 1.25 1.38 4.50 4.50 4.75 4.50 2.50 2.00 3.25 2.62
7 Agrawals; 94.6 88.7 84.2 71.5 74.1 67.1 85.7 81.6 87.5 81.3
8 Agrawalyg 90.3 87.2 85.4 76.4 73.6 66.9 81.7 84.8 87.0 84.3
9 Agrawalo 86.9 91.4 84.8 84.9 73.1 67.3 77.0 91.0 82.3 90.4
10 Agrawalgg 94.0 89.5 84.2 72.2 74.4 65.3 82.0 83.5 85.6 84.1
11 HYP;, 99.4 96.5 99.1 95.1 97.4 90.7 99.1 95.4 98.9 95.0
12 HYPys 99.1 95.8 98.6 94.3 95.8 87.2 98.5 94.9 98.4 94.5
13 HYPyo 98.4 96.9 96.1 92.4 90.9 82.1 97.5 96.4 97.3 95.9
14 HYPgg 98.5 95.2 95.3 89.1 83.9 75.0 97.0 93.4 96.9 93.1
15 Synthetic Avg 91.5 92.7 85.8 84.5 80.4 75.2 83.1 90.1 88.7 89.8
16 Synthetic Avg Rank 1.00 1.00 3.00 3.88 5.00 5.00 3.12 2.12 2.88 3.00
17 Overall Avg 92.4 92.1 84.8 82.7 78.2 72.1 88.3 90.5 89.1 89.9
18 Overall Avg Rank 1.08 1.12 3.08 4.08 4.92 4.83 2.92 2.08 3.00 2.88

Agrawal (Agrawalsy, Agrawalyg, Agrawal g, Agrawalggs) are
compared. RE-DI achieves the highest AUC and accuracy
value compared with the other methods on these data streams.
As the class imbalance ratio increases, the AUC value
decreases because of the growing classification difficulty
on the minority class. However, the classification accuracy
on Agrawaljg is higher than that on Agrawalz;, Agrawal,g
or Agrawalgs. This phenomenon agrees with the previous
analysis of class imbalance learning, as even when the overall
classification accuracy is high, the classification performance
on the minority class could be poor. The AUC indicator,
however, can reflect the real classification performance on the
minority class.

Figure 2 shows the average AUC curve and average accu-
racy curve of Agrawalz; and the dotted lines divide the
concepts and imbalance ratios at different stages in the data
stream. When concept drift occurs, the AUC curve of RE-DI
first decreases and then tends to be stable or rise. When the
learning procedure ends, RE-DI has a clear lead over the
other algorithms. Additionally, when the learning procedure
begins, RE-DI and PAUC-UOB show a high initial AUC
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values, reflecting the fast adaptability of the algorithms. How-
ever, the AUC value of PAUC-UOB rapidly decreases at the
first and second concept drifts, and it performs the worst at
the end. Conversely, PAUC-ARF and PAUC-LB have better
drift adaptive capacities than PAUC-UOB. Therefore, they
perform better than PAUC-UOB at the end. In general, it can
be concluded from the analysis of the curve that RE-DI has
the best overall adaptability among all the algorithms.

Then, the performance of the data streams with grad-
ual concept drift and class imbalance that are generated by
HYP are analyzed (HYP37, HYP23, HYP 9, HYPRG). RE-DI
achieves the best classification AUC and classification accu-
racy on all data streams. For the data streams with a fixed class
imbalance ratio, the classification AUC decreases as the class
imbalance ratio increases.

Figure 3 shows the average AUC curve and average accu-
racy curve on HYPgg. RE-DI obtains the best performance
on both the classification AUC and classification accuracy
during the whole learning process. As opposed to with the
data stream with sudden concept drift, there is no upward or
downward trend on the data stream with gradual concept drift.
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FIGURE 2. Classification AUC (%) and Accuracy (%) on Agrawals;.

The classification AUC curves of most algorithms except for
PAUC-UOB keep rising since the beginning of the learning
procedure and remain stable in the second half of the learning
process.

At last, a comparative experiment is performed on
real-world data streams whose concept drift condition is
unknown.RE-DI achieves the best AUC performance on most
of the real-world data streams. For poker23, RE-DI takes
the second place on the AUC and accuracy indicators and
PAUC-LB achieves the first place. Although accuracy of
RE-DI is 1.6% lower than that of PAUC-LB, the difference
in AUC value is only 0.1%. It can be concluded that RE-DI
has better classification capacity on the minority class than
PAUC-LB. Figure 4 shows the average AUC curve and aver-
age accuracy curve of the real-word data stream PAKDD.
Although the classification accuracies of RE-DI, PAUC-LB
and PAUC-ARF are approximatively equal, the AUC of
RE-DI is higher than that of PAUC- LB or PAUC- ARF. The
accuracy of PAUC-OOB is much lower than that of PAUC-LB
or PAUC-AREF, but it still has a higher AUC value because of
the better performance on the minority class.

In addition, a statistical test [29] on the classification AUC
and accuracy of different methods on all the data streams is
carried out. Concretely, the statistical test is conducted on
both real-world data streams (Line 6 in Table 3) and synthetic
data streams (Line 16 in Table 3). And the overall results on
both synthetic and real-world data streams are shown in Line
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FIGURE 3. Classification AUC (%) and Accuracy (%) on HYPgg.

18 in Table 3. RE-DI achieves the first place in the ranking
for both AUC and accuracy indicators. Then, the Nemenyi
post-hoc test is used to identify the difference between
the algorithms, and the results are plotted in Figure 5 and
Figure 6. The statistical test on the accuracy value indicates
that there is no significant difference between RE-DI, PAUC-
LB, and PAUC-ARF. However, in the statistical tests on the
AUC indicator, RE-DI is better than the other methods.

E. RESOURCES COMPARISON

In this section, the average memory and processing time of
the comparative algorithms on all data streams are compared.
Table 4 shows the average time (CPU-seconds) and RAM
(RAM-hours) cost of the algorithms on all data streams. And
the statistical test is also carried out.

In general, RE-DI gets the second place and PAUC-
UOB performs best. Compared with PAUC-LB and PAUC-
ARF, RE-DI, PAUC-OOB and PAUC-UOB significantly cost
less time and memory. Analysis from the algorithm level,
PAUC-OOB resample the instances of the minority class
but PAUC-UOB undersampling the instances of the majority
class. As the class imbalance ratio increases, PAUC-UOB
will cost less resource on instances of the majority class
and PAUC-OOB will cost more resource on instances of the
minority class. RE-DI solves the class imbalance problem by
supplying limited number of the minority instances, so the
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TABLE 4. Average time (cpu-seconds) and ram (ram-hours) of different algorithms.

Data stream RE-DI PAUC-O0OB PAUC-UOB PAUC-LB PAUC-ARF
Time RAM Time RAM Time RAM Time RAM Time RAM
1 covtype36 16.9 4.9E-06 4.7 3.1E-07 3.9 2.6E-07 43.4 1.1E-04 11.3 4.4E-06
2 PAKDD 9.2 2.0E-06 6.5 4.0E-06 2.7 1.3E-07 102.7 1.4E-03 28.9 1.3E-04
3 poker23 44.1 3.0E-06 21.7 7.0E-07 17.0 5.5E-07 132.7 2.0E-04 60.5 2.2E-05
4 GMSC 13.2 1.3E-06 14.6 1.1E-05 4.9 1.6E-07 157.9 1.3E-03 68.7 3.4E-04
5 Real Avg 20.9 2.8E-06 11.9 4.0E-06 7.7 2.8E-07 109.2 7.5E-04 42.4 1.3E-04
6 Real Avg Rank 3.00 2.75 2.25 2.50 1.00 1.00 5.00 5.00 3.75 3.75
7 Agrawaly; 11.5 2.2E-06 22.1 5.1E-05 3.4 1.1E-07 61.9 2.4E-04 56.7 2.4E-04
8 Agrawalyg 10.9 1.9E-06 27.5 7.9E-05 3.2 9.8E-08 67.3 2.9E-04 49.0 1.8E-04
9 Agrawal;y 9.9 1.6E-06 25.4 6.0E-05 3.1 9.3E-08 55.4 1.8E-04 65.1 3.5E-04
10 Agrawalgs 11.1 2.1E-06 24.5 6.3E-05 33 1.0E-07 71.2 3.4E-04 53.8 2.2E-04
11 HYPs; 6.3 3.8E-07 54 1.3E-06 2.6 6.7E-08 37.9 1.0E-04 13.9 1.2E-05
12 HYPy 6.9 4.4E-07 7.7 3.5E-06 2.6 6.5E-08 433 1.4E-04 17.5 2.0E-05
13 HYPo 6.4 3.7E-07 6.9 2.6E-06 24 6.1E-08 25.8 4.3E-05 15.6 1.8E-05
14 HYPxo 6.8 4.2E-07 7.2 2.8E-06 2.5 6.4E-08 36.5 8.7E-05 16.2 1.6E-05
15 Synthetic Avg 8.7 1.2E-06 15.9 3.3E-05 2.9 8.2E-08 49.9 1.8E-04 36.0 1.3E-04
16 Synthetic Avg Rank 2.12 2.00 2.88 3.00 1.00 1.00 4.88 4.75 4.12 4.25
17 Overall Avg 12.8 1.7E-06 14.5 2.3E-05 4.3 1.5E-07 69.7 3.7E-04 38.1 1.3E-04
18 Overall Avg Rank 2.42 2.25 2.67 2.83 1.00 1.00 4.92 4.83 4.00 4.08
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FIGURE 4. Classification AUC (%) and Accuracy (%) on PAKDD.

changing in class imbalance ratio will not obviously influence
its resource consuming.

F. VERIFICATION OF THE PROPOSED FRAMEWORK

To deal with different types of concept drift, RE-DI includes
a static classifier and multiple dynamic classifiers. The static
classifier learns the entire data stream throughout the learning
process, which is more suitable for handing gradual drift.
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FIGURE 5. Nemenyi test with 95% confidence level on AUC.
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FIGURE 6. Nemenyi test with 95% confidence level on accuracy.

However, dynamic classifiers only exist for a certain period
and learn only part of the data stream. If sudden drift occurs,
the dynamic classifiers can more easily adapt to the changes.
In addition, the static classifier contains more historical
knowledge of the data stream compared with the dynamic
classifier. For data streams with a cyclic concept drift in
which an old concept shows up again, the static classifier
with historical knowledge will easily adapt to the reoccurring
concept.

In this section, to verify the rationality and necessity of
the static classifier, comparative experiments between the
original RE-DI and RE-DIys are carried out. RE-DIys only
has dynamic classifiers in the ensemble framework. The
Agrawal generator is used to generate four types of data
streams Agrawalsydden, Agrawalsuddencycle, AgrawalGradual,
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FIGURE 7. AUC curves of RE-DI and RE-Dlyg on comparative data streams.

TABLE 5. Average auc (%) and accuracy (%) of RE-DI and RE-Dls.

RE-DI RE-DIys
Data stream AUC___ Acc. AUC___ Acc.
Agrawalsygaen 86.5 91.4 83.9 91.1
Agrawalgggencycle 86.7 91.0 82.4 90.6
Agrawal Gragual 81.7 90.8 78.3 90.7
Agrawal G adguaicycte 82.0 90.5 76.0 90.3
Avg 84.5 90.9 80.2 90.7

AgrawalGraquaicycie- All these data streams have concept
drifts that occur at the 1/4, 2/4 and 3/4 positions of the data
stream. For the data stream with subscript Sudden, the width
of concept change is set to 1, while the width of Gradual
stream is 10000. The Agrawal generator has ten functions
for producing instances and each function is used to rep-
resent a concept. Concretely, the data streams with sub-
script Cycleuse two functions and have cyclic concept drift
(Functions: 1/2/1/2), while the data streams without subscript
Cycle use four functions (Functions: 1/2/3/4). Table 5 shows
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the experimental results of RE-DI and RE-DIyg. On all the
data streams, RE-DI is better than RE-DIyg. Furthermore,
to reflect the adaptive ability of the static classifier to the
cyclic concept drift and gradual concept drift, the types
of concept drift are used as the control variables to paint
Figure 7.

In Figure 7, each color represents the result on a data
stream (red: Agrawalgydgen, blue: Agrawalsudgencycie, gold:
AgrawalGradual, green: AgrawalGraduaicycle)- The solid lines
represent the results of RE-DI, and the dotted lines rep-
resent the results of RE-Dlyg. First, a comparison using
the cyclic concept drift as the control variable is conducted
to determine how the cyclic concept influences the per-
formance of RE-DI and RE-DIys. Figure 7(A) shows the
AUC curves of Agrawalg,ggen and Agrawalg,gdencycle, and
Figure 7 (B) presents the AUC curves of Agrawalgqduq; and
AgrawalGradualCycle- It can be concluded that the cyclic con-
cept drift will improve the performance of RE-DI but damage
the performance of RE-DIys. Taking Figure 7 (A) as an exam-
ple, RE-DI attains a higher AUC value on Agrawalsyddencycie
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(blue solid line) than on Agrawalg,qge, (red solid line). How-
ever, the AUC value of RE-Dlyg on Agrawalg,ggencycle (blue
dotted line) is lower than that on Agrawalg,gqen (red dotted
line). Therefore, we can say that the ensemble framework
with a static classifier can handle the cyclic concept drift
better.

Then, the concept drift altering speed is used as the control
variable. Figure 7(C) shows the AUC curves of Agrawalg,dgen
and Agrawalgugual, and Figure 7 (D) presents the AUC
curves of Agrawals,gdencycle and AgrawalGraduaicycle- In gen-
eral, both RE-DI and RE-DIys perform worse on the grad-
ual drift data stream than on the sudden drift data stream,
but the falling range of RE-DIyg is larger. As shown in
Figure 7 (D), the difference of RE-DI in AUC value between
Agrawalsuddencycle (blue solid line) and AgrawalGudualCycle
(green solid line) is 4.7%, and the difference of RE-
Dlys between Agrawalsyddencycle (blue dotted line) and
AgrawalGraquaicycie (green dotted line) is 6.4%. In conclu-
sion, the static classifier can improve the performance of the
ensemble framework on a data stream with gradual concept
drift.

IV. CONCLUSION

In this paper, we proposed a resample-based ensemble frame-
work for data stream learning with concept drift and class
imbalance. The ensemble classifier consists of a static clas-
sifier and multiple dynamic classifiers sliding window. The
weights of the classifiers are dynamically adjusted by a
novel reinforcement weight adjustment mechanism and a
time-decay method. Then, a novel resample-based initializa-
tion process for base classifiers is proposed to tackle the class
imbalance. The experimental results show that the proposed
method can handle concept drift and class imbalance well
and obtains the best classification performance on both AUC
and accuracy among compared approaches. For future work,
we plan to improve the performance of the base classifiers.
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