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MUMI: Multitask module identification for
biological networks
Weiqi Chen, Zexuan Zhu, and Shan He

Abstract—Identifying modules from biological networks
is important since modules reveal essential mechanisms
and dynamic processes in biological systems. Existing algo-
rithms focus on identifying either active modules or topo-
logical modules (communities), which represent dynamic
and topological units in the network, respectively. However,
high-level biological phenomena, e.g., functions are emer-
gent properties from the interplay between network topol-
ogy and dynamics. Therefore, to fully explain the mech-
anisms underlying the high-level biological phenomena, it
is important to identify the overlaps between communities
and active modules, which indicate the topological units
with significant changes of dynamics. However, despite the
importance, there are no existing methods to do so. In
this paper, we propose MUMI (MUltitask Module Identi-
fication) algorithm to detect the overlaps between active
modules and communities simultaneously. Experimental
results show that our method provides new insights into
biological mechanisms by combining information from ac-
tive modules and communities. By formulating the problem
as a multitasking learning problem which searches for
these two types of modules simultaneously, the algorithm
can exploit their latent complementarities to obtain better
search performance in terms of accuracy and convergence.
Our MATLAB implementation of MUMI is available
at https://github.com/WeiqiChen/Mumi-multitask-module-
identification.

Index Terms—Active Module, Community Detection,
Multifactorial Evolution.

I. INTRODUCTION

NETWORK biology [1] or recently network
medicine [2] have gained more attention due to

its ability of gaining insights about the mechanisms of
complex biological phenomena such as disease. These
approaches first model a complex biological system, e.g.,
a cell, as a complex network. Then network (graph)
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analytic algorithms are applied to characterise the topo-
logical structure of the network [1], [2]. These structural
characteristics are then related to biological functions
to understand the underlying biological mechanisms.
Among these structural characteristics, modules receive
most attention due to the inherited modular structure of
biological systems.

Currently, there are two kinds of modules, topologi-
cal modules and active modules. Topological modules,
also known as communities, are topological units in
a network. A community is defined as locally dense
neighbourhood with more inner interactions than outside
interactions. In biological networks, communities are
used to approximate the functional units of cellular pro-
cess and organisation [3], [2]. This is because biological
components exert functions by interacting with each
other, forming various functional units, and functional
units tend to form densely connected area in network,
i.e. communities.

Active modules, on the other hand, are dynamic units
in a networks that consider network dynamics [4]. They
are conceived as the approximation of the dynamic
mechanisms of biological systems [4]. An active module
is a region (sub-network) in a biological network that
show striking changes in molecular activity, e.g., gene
expression. Active module is often associated with a
given cellular response [4].

However, these two kinds of modules cannot fully
depict the underlying mechanisms of a biological system.
This is because high-level biological phenomena, e.g.,
functions, emerge from the interplay between network
topology and dynamics [5], [6]. From this perspective,
communities (topological units) and active modules (dy-
namic units), can only partially explain the underlying
mechanisms of the emergent phenomena. However, by
detecting the overlaps between communities and active
modules, we can find out the topological (functional)
units with significant change of dynamics. These over-
laps might be more informative in terms of revealing the
mechanisms underlying the emergent biological phenom-
ena.

From the discussion above, we propose the follow-
ing overarching hypothesis: by identifying the overlaps
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between communities and active modules, we can re-
veal the mechanisms of high-level biological phenom-
ena that cannot be achieved through identifying them 
separately. We also hypothesise that we can gain better 
module identification p erformance i n t erms o f accuracy 
and convergence by searching communities and active 
modules simultaneously. The reason is, as mentioned 
previously, network topology and dynamics complement 
each other to give rise to the high-level biological phe-
nomena. Therefore, these two modules, i.e., communities 
(topological units) and active modules (dynamic units) 
complement each other and might have a similar problem 
structure. Therefore, by searching them simultaneously, 
we can exploit their latent complementarities, which lead 
to better search performance.

To test our hypotheses, we propose a novel multitask 
module identification a lgorithm (MUMI) based on mul-
tifactorial evolution, which is a evolutionary algorithm 
that simultaneously solves multiple tasks that may or 
may not be interdependent [7]. We have also designed a 
novel unified g enetic r epresentation f or m ultiple tasks, 
problem-specific d ecoding s cheme, a nd t ask specific 
genetic operators. We design experiments based on a set 
of benchmark networks and two real-world biological 
networks to validate our two hypotheses.

The rest of this paper is organised as follows. Section 
II introduces the related work on areas of evolutionary 
multitasking and module identification. Section III gives 
a formal definition of problems and a detailed description 
of MUMI. Experimental studies of applying MUMI 
and other algorithms on various networks are shown 
in Section IV, and discussed further in Section V. Sec-
tion VI concludes this paper. Supplementary materials 
including supplementary table, MATLAB source code, 
formatted input data and experimental results are avail-
able at https://github.com/WeiqiChen/Mumi-multitask-
module-identification .

II. RELATED WORK

A. Evolutionary Multitasking

Evolutionary multitasking investigates into the im-
plicit parallelism of evolutionary optimisation problems.
An introductory study [7] on evolutionary multitasking
shows that it allows for implicit transfer of genetically
encoded information across multiple optimisation tasks.
This process, also known as transfer learning, improves
the efficiency and convergence speed of evolutionary
multitasking on computationally expensive problems.

The idea of accelerating convergence via information
transfer between objectives is not newly invented by
multitasking. Previous researches on multi co-objective

evolution [8] and memetic search [9], [10] have already
shown that the knowledge transfer and reuse across
objectives is able to improve search performance of
evolutionary algorithm on computationally expensive
problems. In the context of computational intelligence,
memes are referred to as recurring patterns or knowledge
embedded in computational representations [11]. In an
early study [10] that formulates transfer learning as
computational operators, knowledge learned in previous
problem-solving process is transferred in the form of
memes as building blocks, and helps accelerate future
search. A similar study [12] on re-usable knowledge
extraction proposes the concept of simultaneous problem
learning that emphasises on the interaction between
optimiser and problem learning.

Research on evolutionary multitasking is strongly trig-
gered by the need in fast developing cloud computing
industry where cross-domain optimisation must be han-
dled with high efficiency. Different to traditional multi-
objective optimisation that has one single search space,
multitask optimisation is capable of dealing with multi-
ple search spaces, each corresponding to an individual
optimisation task [13]. Dependency among tasks are not
required for multitasking. The essential point is that
it handles cross-domain optimisation through a unified
solution representation scheme [7], [13] for objectives
across domain. Research [13] has shown that genetic
operator applied to the unified genetic space is able to
drive knowledge transfer between different optimisation
tasks across domain, thus proven that evolutionary mul-
titasking indeed works.

Evolutionary multitasking has a broad range of ap-
plication that are not restricted to cloud computing or
solely cross-domain multitasking. It has been applied to
a series of classic combinatorial optimisation problems
[14] as well as real world problems like manufacturing
process design [15], neural network training [16], bi-
level optimisation [17], etc. Nevertheless, it is still a new
emerging field that has far not been fully explored. The
development of more efficient evolutionary multitasking
algorithms and further application to numerous compli-
cated real world problems are promising and attractive
future directions in this field.

B. Module Identification

Topological module, also known as community is
one of the most studied network features [18], [19].
Identification of community structures have been studied
for many decades under different terminologies such as
graph partitioning, network division, hierarchical cluster-
ing, or block modelling [20]. One of the most success-
ful methods is modularity optimisation [21] proposed
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by Newman and Girvan. The modularity optimisation 
method consists of a scalar measurement called mod-
ularity. This modularity can assess the quality of a 
given division of an undirected network. Several algo-
rithms have been developed to identify communities by 
maximising the modularity measure, denoted as Q, by 
dividing a network into communities, e.g., removing 
edge in remaining network iteratively [21]. Although 
there have been researches showing that community 
detection by modularity optimisation may suffer from 
resolution limit and thus fail to identify communities 
that are smaller than a scale depending on some network 
parameters [22], optimisation of modularity Q is still 
one of the most successful and widely used community 
detection methods.

Active module [23] reveals dynamic and process-
specific i nformation t hat i s c orrelated w ith c ellular or 
disease states. In a general procedure for active module 
identification, molecular profiles are incorporated to pro-
vide quantified i nformation o f m olecular a ctivities that 
can be converted into scores for network annotation. Af-
ter network activity is annotated, algorithms are applied 
to the network for the identification o f a ctive modules 
based on a variety of strategies. The extracted modules 
are tested for statistical significance. M ethod validation 
and improvement is also performed in this step. As 
the problem of finding t he m aximal-scoring connected 
module has proven to be NP-hard [23], heuristic algo-
rithms are broadly used to approximately search for high 
scoring modules. Commonly used heuristic approaches 
are simulated annealing [23], greedy search [24], and 
evolutionary algorithm [25], [26], [27], [28].

III. A NOVEL MULTITASK MODULE IDENTIFICATION 
ALGORITHM BASED ON MULTIFACTORIAL

EVOLUTION

In this section describe a novel multitask algorithm for 
identifying active modules and communities simultane-
ously in a biological network. It is the first formulation 
of the two widely studied problems into the multifac-
torial evolution paradigm. We have designed a unified 
genetic representation for the two different tasks and 
corresponding task-specific d ecoding m ethod. We have 
also designed task-specific m utation a nd l ocal search 
operators in order to improve the algorithm performance. 
A solution repairing operator has been developed to 
improve the module identification results.

A. Multifactorial Evolution

We first give a brief introduction to Multifactorial
Evolution proposed in reference [7] to make this paper
self-contained.

In the initialisation stage of Multifactorial Evolution,
every individual in the population is evaluated with
respect to every optimisation task in the multitasking
environment. For each task Tj , an individual Li has
a factorial rank rij corresponding to the rank of the
individual’s objective fitness for this task in the whole
population. The lower number the rank is, the better
performance individual shows in specified task. For K
number of tasks an individual Li is assigned with a list
of K factorial ranks {ri1, ri2, ..., riK}. The scalar fitness
ϕi of individual Li is based on its best rank among all
the tasks, given by

ϕi =
1

minj∈{1,...,K}{rij}
(1)

The scalar fitness ϕ can be considered as best ever
performance one individual is able to achieve across all
tasks.

The skill factor τi of individual Li is then given by

τi = argminj{rij}, j ∈ {1, 2, ...,K} (2)

meaning the task individual Li is most effective. A
basic structure of multifactorial evolutionary algorithm
is described in Algorithm 1. Important steps such as line
2 and 5 are explained as sub-algorithms (Algorithms 2
- 5) in following sections.

Similar to all evolutionary algorithms, multifactorial
evolution starts with population initialisation and eval-
uation, then repeatedly applies crossover and mutation
on current population to generate offspring population,
mixes parental and offspring population together, and
selects the fittest individuals as next generation until a
stopping criterion is satisfied. The difference is that in
general evolutionary algorithms fitness can be calculated
by individual itself while in multifactorial evolutionary
algorithm fitness relates to the rank of individual in the
whole population. More details on concept definition
and multifactorial evolutionary algorithm scheme can be
found in reference [7].

B. Definition of Tasks

This multitasking problem contains two tasks: identi-
fication of active modules and division of network into
structural communities.

1) Task 1: Community detection: To detect commu-
nities in a network, we adopt modularity maximisation.
For a given division on network with adjacency matrix
Aij , the modularity defined by Newman and Girvan [21]
and modified to be suitable for edge weighted network
is calculated as

Q =
1

2m

∑
(Aij −

kikj
2m

)δ(ci, cj) (3)
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Algorithm 1: Basic Structure of Multifactorial Evo-
lutionary Algorithm

1 Population initialisation as current-pop ;
2 Evaluate every individual with respect to every

optimisation task (Algorithm 2 and 3);
3 Compute the skill factor τ of every individual ;
4 while stopping criteria not satisfied do
5 Apply Crossover and Mutation on current-pop

to generate offspring-pop (Algorithm 4 and 5);
6 Evaluate offspring individuals for selected

optimisation tasks ;
7 intermediate-pop ← Union(current-pop,

offspring-pop);
8 Update the scalar fitness ϕ and skill factor τ for

every individual in intermediate-pop ;
9 current-pop ← fittest individuals in

intermediate-pop
10 end

where
m =

1

2

∑
ij

Aij (4)

is the number of edges in the network, and the δ function
δ(u, v) is 1 if u = v and 0 otherwise. ci is the label of
community to which node i is assigned in this division.
ki denotes the degree of the i-th node. The intuition of
modularity Q is to measure the difference between edge
density inside communities given a community division
in the network and the same quantity for a network with
the same community division but randomly distributed
edges.

The community detection problem through modularity
maximisation is formulated as following.

Problem 1 (Community Detection Problem): Given a
network G = {V,E} where V denotes for the set of
nodes and E for the set of edges, divide the set of nodes
V into m mutually exclusive subsets {V1, V 2, ..., Vm},
Vi ∈ V, Vi 6= ∅ for i = 1, 2, ...,m, and ∪mi=1Vi = V, Vi ∩
Vj = ∅ for i 6= j, so that the value of modularity Q is
maximised.

2) Task 2: Active module identification: For a given
protein-protein interaction network with p-values indicat-
ing the gene differential expression level assigned to each
node v, an additive score SFDR(v) can be formulated
using a beta-uniform mixture model.

Microarray analysis studies showed that expression
data can be effectively estimated by many mixture-model
methods that divide genes into two or more groups, one
group contains genes that are differentially expressed,
and other(s) not differentially expressed. Among those

many methods, Pounds and Morris proposed a beta-
uniform mixture (BUM) model that very accurately
describes the distribution of a large set of p-values
produced from an microarray experiment [29]. The BUM
model considers the distribution of p-values as a mixture
of a special case of beta distribution (b = 1) and a
uniform(0, 1) distribution, with a mixture parameter λ.
The p-values under the null hypothesis are assumed
to have a uniform distribution. Under the alternative
hypothesis the distribution of p-values will have a high
density for small p-values and can be described by
B(a, 1).

A general beta distribution B(a, b) is given by

(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 (5)

where Γ(.) denotes the gamma function. As Γ(1) = 1,
the probability density function of BUM model is then
reduced to

f(x|a, λ) = λ+ (1− λ)axa−1 (6)

for 0 < x ≤ 1, 0 < λ < 1 and 0 < a < 1. Given a set of
p-values the two parameters of BUM distribution λ and
a can be calculated by maximum likelihood estimation.

Following the idea of Dittrich and Klau [30] to
decompose signal component from background noise,
an additive score to measure the significance of gene’s
differential expression is calculated as

SFDR(x) = log
B(a, 1)(x)

B(a, 1)(τ)

= log
axa−1

aτa−1

= (a− 1)(log x− log τ) (7)

where τ is a threshold to determine the significance
of a p-value. In order to control the estimated upper
bound of the false discovery rate (FDR) introduced by
Benjamini and Hochberg [31], τ could then be selected
to ensure that FDR ≤ α for some predefined α using
the following equation

τ = (
π̂ − αλ
α(1− λ)

)
1

(a−1) (8)

where π̂ = λ + (1 − λ)a, meaning the maximum
proportion of the set of p-values that could arise from
the null hypothesis.

After assigning score to each of the genes, the overall
score for a given module A is then the summation of all
genes’ scores in it, given by

SA =
∑
x∈A

SFDR(x) (9)
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The active module identification p roblem i s t hen for-
mulated as following.

Problem 2 (Active Module Identification Problem): 
Given a network G = {V, E} where V denotes for the 
set of nodes, E denotes for the set of edges, n = |V | is 
the number of nodes and each node vi ∈ V, i = 1, 2, ..., n 
is assigned with node weight SFDR(vi), find a connected
subgraph S = {VS , ES}, VS ∈ V,ES ∈ E so that∑

vi∈VS
SFDR(vi) is maximised.

In the previous work [28], we have already shown
how to solve problem 2 through a binary vector encoding
scheme constrained by algebraic connectivity in a multi-
objective evolutionary algorithm. In order to include
problem 1 in an environment of evolutionary multitask-
ing, we propose a new unified genetic representation as
detailed below.

C. A Unified Genetic Representation for Multiple Tasks
and Problem-Specific Decoding Scheme

For a network G = V,E of size n = |V |, an individual
solution is encoded as an integer vector of length n,
each integer representing the label of community to
which corresponding node is assigned, i.e. for the i-th
individual Li in population, we have

Li = {l1i , l2i , ..., lni } (10)

where lji ∈ {0, 1, ..., n − 1} for j = 1, 2, ..., n, meaning
the available label of communities ranges from 0 to n−1.

There have been other genetic representation methods
for community detection, such as the locus-based ad-
jacency representation used by Clara Pizutti [32]. The
advantage of our representation is that network division
can be easily interpreted from reading community labels
for each node in chromosome, and that it allows for a
second decoding scheme. During the whole evolution-
ary algorithm, connectivity for each community is not
explicitly required in algorithm implementation, how-
ever the process of modularity maximisation implicitly
drives the network division towards densely connected
solutions. A detailed chromosome decoding scheme for
community detection task is described in Algorithm 2.

In our previous work of active module identification,
we used algebraic connectivity as a constraint to ensure
the connectivity of detected active module [28]. In this
algorithm algebraic connectivity is no longer used, in-
stead the collection of positions assigned with positive
integers is interpreted as a subgraph whose connected
component S with highest

∑
v∈VS

SFDR(v) is identified
as the active module this individual represents. This
connected components finding based decoding scheme
is inspired by the work of Li et al. [27]. Details of

Algorithm 2: Chromosome Decoding Scheme For
Task 1 (Community detection)
Input: Individual Li, adjacency matrix A of the

whole network
Output: Network Division {V1, V 2, ..., Vm},

Modularity Q

// get labels of communities
1 labels ← unique elements of Li ;
2 m← length(labels) ;
3 for j ← 1 to m do
4 label ← labels(j) ;
5 Vj ← ∅ ;
6 for k ← 1 to n do

// get all the nodes in j-th
community

7 if Lk
i == label then

8 Vj = Vj ∪ vk
9 end

10 end
11 end

// Now network division represented
by Li is decoded

12 calculate modularity Q for given network division
{V1, V 2, ..., Vm} ;

13 return {V1, V 2, ..., Vm}, Q

the chromosome decoding scheme for active module
identification task is described in Algorithm 3.

Figure 1 gives a simple example of how to decode
given chromosome representation for two tasks. In a
network with 12 nodes and 13 edges (Figure 1a), the
chromosome is encoded as [1, 1, 1, 1, 2, 2, 2, 0, 3, 0, 3, 3]
(Figure 1b). Visualisation of decoding scheme under two
tasks can be seen in Figure 1c and 1d.

D. Task-Specific Mutation Operator

In order to improve the performance of the algorithm
and provide better guidance in searching the solution
space, we have mutation and local search operators spe-
cially designed for the two different tasks. Upon taking
in an individual, the mutation operator first checks its
skill factor to decide the task in which this individual is
more effective, then it applies different mutation strategy
accordingly.

Individual specialised in active module identification
goes through a subgraph expanding stage and a node
deletion stage. In the first stage, neighbouring nodes
with positive weight are added to the subgraph while
those with negative weight also have probabilities to be
included. In the second stage, negative weighted nodes
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(a) Sample network

(b) Genetic representation

(c) Decoding for network division

(d) Decoding for active module identifica-
tion

Fig. 1: A simple example of the chromosome encoding
and decoding scheme for two tasks. Figure 1a: Visualisa-
tion of the sample network with 12 nodes and 13 edges.
Figure 1b: The genetic representation of one individual,
an integer vector of length 12, each integer representing
the community label of corresponding node. The vector
S(FDR) gives the active node score. Figure 1c: Net-
work is divided into 4 communities labelled from 0 to 3
according to the individual. Figure 1d: Subgraph formed
by all nodes with non-zero labels. Nodes are labelled by
active score S(FDR). Module score S(A) is calculated
for each connected component in the subgraph. In this
example, connected component 2 with a higher active
module score S(A) = 2.3 is selected as the decoded
active module.

Algorithm 3: Chromosome Decoding Scheme for
Task 2 (Active module identification)
Input: Individual Li, adjacency matrix A of the

whole network, a list of SFDR(v) assigned
to each node

Output: Connected node set of active module VS ,
active module score

∑
v∈VS

SFDR(v)

1 binary vector l← Li > 0 ;
2 subgraph Al ← A(l, l) ;
3 get all the k connected components {V1, V 2, ..., Vk}

in Al ;
4 Smax ← negative infinity ;
5 VS ← ∅ ;
6 for j ← 1 to k do
7 Sj ←

∑
v∈Vj

SFDR(v) ;
// get the active module score Sj

of the j-th connected
components Vj

8 if Sj > Smax then
9 Smax = Sj ;

10 VS ← Vj ;
11 end
12 end
13 return VS , Smax

in subgraph go through a similar probabilistic deletion
process. A detailed description is shown in Algorithm 4.

Individual specialised in network division is applied
with a completely different mutation strategy called
random community merging. This mutation is an im-
itation of bottom-up merging strategy in quite a few
community detection algorithms. In initialisation stage,
every individual is assigned with a random permutation
of integers 0 to n − 1, meaning that every node is the
sole member of one of n communities. When such mu-
tation strategy is applied to an individual, two connected
communities are randomly selected to be joined together
to form a new larger community. As evolution goes
on, small communities are gradually merged into large
communities, accompanied with a significant increase in
modularity Q. In the late stage of evolution the value of
Q becomes stable, indicating the algorithm has reached
the optima in modularity maximisation task. A detailed
description of community merging mutation is shown in
Algorithm 5.

E. Uniform Crossover Operator

This algorithm uses uniform crossover to generate two
child individuals from two parent individuals. Although
uniform crossover has a higher probability to destroy
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Algorithm 4: Apply mutation with local search steps
to chromosomes specialised in task 1 ( skill factor
τ == 1)
Input: Individual Li, adjacency matrix A of the

whole network, a list of SFDR(v) assigned
to each node

Output: Individual Li after mutation

// individual Li is more effective
in task 1

1 node set of subgraph S is given by
VS ← {Vj |Lj

i > 0}, j = 1, 2, ..., n ;
2 Vneighbours ← all neighbouring nodes of VS ;
// get labels of communities

3 labels ← unique elements of Li ;
// Stage 1: probabilistic subgraph

expanding
4 for every node vj in Vneighbours do
5 if SFDR(vj) ≥ 0 then

// if the neighbour vj is
assigned with positive
SFDR(vj), include it

6 Lj
i ← randomly select one label from labels
(cannot be 0)

7 else
// if the neighbour vj is

assigned with negative
SFDR(vj), include it with
probability exp(SFDR(vj))

8 if exp(SFDR(vj)) > random() then
9 Lj

i ← randomly select one label from
labels (cannot be 0)

10 end
11 end
12 end

// Stage 2: probabilistic negative
weighted node deletion

13 update node set of subgraph S by
VS ← {Vj |Lj

i > 0}, j = 1, 2, ..., n ;
14 for every node vj in VS do

// if the node vj is assigned
with negative SFDR(vj), delete
it with probability
1− exp(SFDR(vj))

15 if exp(SFDR(vj)) < random() then
16 Lj

i ← 0
17 end
18 end
19 return Li

Algorithm 5: Apply mutation with random commu-
nity merging to chromosomes specialised in task 2 (
skill factor τ == 2)
Input: Individual Li, adjacency matrix A of the

whole network
Output: Individual Li after mutation

// individual Li is more effective
in task 2

1 randomly select one community label c1 in Li ;
2 node set of community c1 is given by

Vc1 ← {vk|Lk
i == c1}, k = 1, 2, ..., n ;

3 Vneighbours ← all neighbouring nodes of Vc1;
4 if Vneighbours contains community label different

from c1 then
5 randomly select another community label c2 in

Vneighbours;
// merge all nodes in community

c1 into community c2
6 Li(Li == c1)← c2
7 end
8 return Li

community structures that are already detected than
simple one-point or two-points crossover, in practise it is
proven to be an effective way to preserve the diversity of
population, help explore solution space, and avoid being
stuck in local optima.

F. Repair operator for community detection

The multifactorial evolutionary algorithm scheme we
used for solving Problems 2 and 1 is already able to
provide satisfactory results in terms of objective evalua-
tion. However, because the connectivity of communities
is not explicitly required in the design of genetic rep-
resentation, interpretation or algorithm implementation,
the output solutions directly generated from the evolu-
tionary algorithm sometimes still contain communities
that are not connected. In a typical solution that fails
to ensure connectivity there is one sole node separated
from other community members. To solve this issue we
designed an extra solution improvement step containing
two stages. In the first stage, community with more
than one connected components is assigned with new
community labels for each of the extra components.
This often results in small communities with one sole
node or two nodes. Then in the second stage, this small
community is merged to its most frequent neighbouring
community. Details of this repair operator is shown in
Algorithm 6.
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Algorithm 6: Repair operator
Input: Individual Li, adjacency matrix A of the

whole network
Output: Individual Li after improvement

// Stage 1: assign disconnected
community with different labels
for each connected component

1 labels ← unique elements of Li ;
// new label starts from n+ 1 to

avoid overlap with all original
labels

2 newLabel ← n+ 1 ;
3 for j ← 1 to length(labels) do
4 get subgraph Aj of the j-th community

labels(j) ;
5 get all the k connected components

{V1, V 2, ..., Vk} in Aj ;
6 if k > 1 then
7 for ii← 2 to k do
8 Li(Vk)← newLabel ;
9 newLabel ++ ;

10 end
11 end
12 end

// Stage 2: merge one-node or
two-nodes community to
neighbouring community

13 labels ← unique elements of Li ;
14 for j ← 1 to length(labels) do
15 if size of j-th community is no larger than two

then
16 find community labels of all neighbouring

nodes ;
17 reassign j-th community with the most

frequent neighbouring community label ;
18 end
19 end
20 return Li

IV. EXPERIMENTAL STUDIES

We implemented MUMI using MATLAB V9.2. We
evaluated the algorithm on a set of benchmarks networks,
and then applied it to two real-world biological networks.
All experiments were executed on a laptop with Intel
Core i5-6200U CPU@2.30GHz and 8GB RAM.

A. MUMI can identify accurate community structure

To evaluate the performance of our algorithm on the
community detection task, we used some social networks

as benchmark networks which includes Zachary’s karate
club network, [33], Dophins network [34], [35], poli-
tics books network [36] and football network [37]. We
compared the value of modularity Q from this algorithm
and other classic modularity optimisation algorithms. To
perform active module identification tasks in our MUMI
algorithm, we need to calculate the active module scores.
To the end, we randomly assigned random values as node
weights. Since networks have difference size, we need
to adopt different algorithm parameters, which are listed
in Table I.

TABLE I: Algorithm parameters

Karate Dolphins Politics Books Football
population 100 200 20 20
generation 100 150 20 20

Experimental results of the community structure de-
tection task are shown in Table II and Figure 2. Our
results have shown that the performance of MUMI
on these networks is comparable to classic modularity
optimisation algorithms.

Fig. 2: Boxplot of modularity by MUMI on 4 networks
in 50 independent runs. Due to the stochastic nature
of evolutionary algorithm, results slightly vary for each
run except for the Politic Books network and Football
network, both of whom have strong community structure
that can be precisely discovered every time.

B. MUMI can identify informative biological modules

We then applied MUMI to two real-world biological
networks where the node activity are measured. The aim
is to show that MUMI can provide more informative bi-
ological interpretation by combining the active modules
with communities.
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network size GN MNC Louvain spectral MUMI (50 runs)
min max average

Karate 34 0.4013 0.3807 0.4188 0.3934 0.3431 0.4198 0.3876
Dolphins 62 0.5194 0.4955 0.5158 0.4912 0.3910 0.5265 0.4849

Politics Books 105 0.9977 0.9977 0.9977 0.9977 0.9977 0.9977 0.9977
Football 613 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984

TABLE II: Comparison of modularity score obtained by MUMI over 50 independent runs with those from
several published algorithms. All the results for published algorithms are from running corresponding functions
implemented in igraph package in R. References and the function names of these algorithms are: GN [21],
cluster edge betweenness; MNC [38], cluster fast greedy; Louvain [39], cluster louvain; spectral [40], clus-
ter leading eigen.

1) Yeast galactose utilization pathway (YGUP): We
used the small Yease PPI interaction network used in
[23]. The network consists of 330 genes (nodes) which
represents the galactose utilization pathway in yeast.
Each node score is calculated from a gene expression
experimental data which describes the significance of
each observed change in expression of the 330 genes.
We run MUMI with 100 individuals and maximum 1000
generations. We also executed 50 independent runs.

Figure 3 visualises the modules identified by MUMI,
which are overlaps between an active module, i.e., the
giant connected components whose nodes in diamond
shape and with black border and small communities
denoted with different colours. The active module is
the one with the highest active module score from
the 50 runs of MUMI. This figure shows the overlaps
between active modules and communities essentially are
the fractions or sub-modules of the large active module.

Our GO analysis shows that, of all the 13 sub-
modules, 10 have significant functional enrichment (See
Table III). Every fraction has only one top level GO
term or a small set of closely related terms, which
show each fraction has specific biological interpretation.
For example, the fraction 63 is specialised in glycolytic
process, fraction 126 is targeted in galactose catabolic
process via UDP-galactose, and fraction 54 in glutamine
family amino acid metabolic process, all of those are
highly relevant to galactose metabolic process. Other
sub-modules might not be directly related to the process,
but serve as an assistance or as essential cellular activ-
ities, such as vesicle fusion from fraction 77, response
to heat from fraction 348, and regulation of reproductive
process from fraction 355.

To investigate whether structure information, i.e., com-
munities alone can provide the same accurate interpre-
tation, we performed GO analysis on each of the 42
communities (Results are listed in supplementary table).
Of all the 42 communities, 20 have no significant annota-
tion. We selected three representative communities with
significant annotations in Table IV. The results show

that the annotations for each community are too general
or ambiguous due to many mixed function terms. As
a comparison, the active module sub-modules from our
algorithm with the same labels have only one annotated
function each as shown in Table III. It is clear that
communities cannot reflect the biological activity the
system is going through accurately. The main reason
is that communities fail to incorporate activities, e.g.,
differential expression information to reveal the essential
function changes of the system.

Furthermore, to investigate whether active modules
alone can provide the same accurate interpretation, we
performed Gene Ontology (GO) analysis [41] on the
active modules identified by our methods and jActive-
Module, respectively. The results are shown in V and VI.
As gene ontology (GO) terms are given in a hierarchical
structure, we selected the top level of GO terms to
display. From these two tables, both algorithms identified
modules relevant to the yeast galactose utilisation activ-
ities in the experiments. However, because the whole
modules from both algorithms consist large number of
genes, the GO annotation terms are too general, which
cannot provide specific interpretation for the active mod-
ules.

2) Yeast drug reaction network (YDRN): To further
test the performance of propose algorithm on real world
biological networks, we applied it to another yeast drug
reaction network which we have used in our previous
work [28]. It was constructed from differential analysis
and interactome mapping, containing 1803 nodes and
3356 edges. This network reflects reaction of yeast to
diclofenac, a widely used analgesic drug that can cause
serious adverse drug reactions. As this is a relatively
large scale network, algorithm parameters are set to
be 300 individuals and 3000 generations, allowing for
enough generation towards convergence.

MUMI has identified an active module with module
score 91.80 and a network division with modularity
0.5636. As a comparison, the highest active module
score our previous algorithm was 91.01 [28], and the
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Fig. 3: Visualisation of modules identified by MUMI on the Yeast galactose utilization pathway (YGUP). The
overlaps between active modules and communities essentially are the fractions or sub-modules of the large active
module. The active module is shown by nodes in diamond shape and with black border, which is further divided
into sub-modules according to topological community information. Two circles accompanied with arrows show two
representative sub-modules. Gene ontology analysis show that these sub-modules, or active sub-modules, have more
precise annotations than the whole active module (See the main text). The active module has a score of 549.9, and
the modularity Q of this division is 0.8708. Due to the large number of communities generated in this network,
node colouring is based on the rule that nodes in neighbouring communities are filled with different colours while
disconnected communities may share the same colour. As a result, this network division with 42 communities is
labelled by 4 colours.

modularity given by the Lovain algorithm in R igraph
package ranges from 0.5148 to 0.5941.

We performed GO analysis for biological process on
the sub-modules identified by MUMI. Supplementary
table III shows the 7 sub-modules that have GO anno-
tations. Sub-modules 4 is annotated with ”drug export”
and ”plasma membrane acetate transport”, and fraction
5 with ”drug export” and ”positive regulation of cellular
response to drug”. In comparison with the GO results
on the whole active modules (supplementary table II and
III), the active module, with 51 nodes, has more than 30
terms covering a broad range of essential activities in

cell. Again we show that the sub-modules identified by
MUMI have more precise biological meaning.

C. Multitasking is better than single tasking in terms of
accuracy and convergence

To validate our hypothesis that our multitasking for-
mulation can gain better module identification perfor-
mance in terms of accuracy and convergence, we com-
pare the results from MUMI with the single tasking
algorithm with the same genetic operators and parame-
ters. The single tasking algorithm essentially solve each
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TABLE III: Gene ontology annotations of the sub-modules in active module divided by community structure in the
Yeast galactose utilization pathway (YGUP). It uses the label set generated directly form original results which can
be looked up through GitHub repository given in the introduction. Size gives the number of nodes in each fraction.
From this table we can see that the functional annotation becomes more specific and clear, i.e., every fraction has
only one top level GO term or a small set of closely related terms.

label size Typical GO terms p-value
126 11 galactose catabolic process via UDP-galactose 1.11× 10−04

335 8 regulation of protein dephosphorylation 5.67× 10−04

glycogen metabolic process 6.91× 10−03

regulation of mitotic sister chromatid segregation 4.68× 10−02

77 11 vesicle fusion 5.93× 10−04

54 7 glutamine family amino acid metabolic process 5.95× 10−04

348 5 response to heat 2.88× 10−03

332 3 romatic amino acid family catabolic process to alcohol via Ehrlich pathway 3.74× 10−03

L-phenylalanine catabolic process 5.38× 10−03

glycolytic fermentation to ethanol 5.38× 10−03

tryptophan catabolic process 1.49× 10−02

branched-chain amino acid catabolic process 1.81× 10−02

355 13 regulation of reproductive process 4.21× 10−03

271 4 negative regulation of macroautophagy 4.74× 10−03

negative regulation of glycogen biosynthetic process 4.74× 10−03

negative regulation of sequence-specific DNA binding transcription factor activity 7.47× 10−03

63 14 glycolytic process 2.20× 10−02

201 6 box C/D snoRNP assembly 4.77× 10−02

TABLE IV: Gene ontology annotations of 3 representative communities alone in the Yeast galactose utilization
pathway (YGUP). It also uses the label set generated directly form original results. Size gives the number of nodes
in each fraction. As a contrast, the three sub-modules labelled as 54, 63 and 77 contain only one precisely described
ontology term in Table III. GO terms for all communities are shown in supplementary table.

label size Typical GO terms p-value
54 15 urea cycle 3.14× 10−02

heteroduplex formation 4.61× 10−02

telomere maintenance via recombination 1.58× 10−02

glutamine family amino acid metabolic process 6.34× 10−03

alpha-amino acid biosynthetic process 2.99× 10−03

aromatic compound biosynthetic process 1.35× 10−02

heterocycle biosynthetic process 1.26× 10−02

organic cyclic compound biosynthetic process 1.56× 10−02

63 28 cellular response to phosphate starvation 1.01× 10−02

egulation of glycolytic process by positive regulation of transcription from RNA polymerase II promoter 1.72× 10−02

gluconeogenesis 1.62× 10−04

glycolytic process 1.95× 10−05

cytoplasmic translation 2.23× 10−04

77 14 urea cycle 1.99× 10−02

’de novo’ pyrimidine nucleobase biosynthetic process 1.31× 10−02

arginine biosynthetic process 1.39× 10−02

individual tasks as a single objective optimisation (SOO)
problem. We select two networks for testing, Karate net-
work, where the node activities are randomly initialised
regardless the topological structure. The convergence
trends are shown in Figure 4. From Figures 4a and 4b,
we can see MUMI and SOO performed similarly on the
Karate network. This is because node activities in the
network are randomly generated independent to com-
munities. Therefore, multitasking formulation does not
provide and benefits. However, from Figures 4c and 4d,

compared to SOO, MUMI quickly converged to much
higher modularity and active module scores on Yeast
galactose utilization pathway (YGUP). Such results not
only confirmed our hypotheses but also indicated that
the two tasks might share similarity and complement
each other. Therefore, our multitasking formulation can
exploit the latent complementaries of the two tasks,
which might be the reason for the superior performance
of MUMI.
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TABLE V: Gene ontolog annotations of the whole active module identified by MUMI from the Yeast galactose
utilization pathway (YGUP). This module has 93 nodes with a active module score (SA) of 549.9. p-value gives
the statistical significance of corresponding GO term’s enrichment in the gene set.

Typical GO terms p-value
galactose metabolic process 3.64× 10−05

ATP metabolic process 3.78× 10−03

energy derivation by oxidation of organic compounds 4.41× 10−03

ADP metabolic process 5.62× 10−03

carbohydrate catabolic process 1.48× 10−02

pyruvate metabolic process 2.73× 10−02

response to abiotic stimulus 2.78× 10−02

small molecule catabolic process 3.29× 10−02

regulation of generation of precursor metabolites and energy 4.15× 10−02

cellular carbohydrate metabolic process 4.26× 10−02

TABLE VI: Active module score and gene ontology annotations of the modules detected by jActiveModule from
the Yeast galactose utilization pathway (YGUP). By default 5 active modules are identified by jActiveModule
Cytoscape plugin. The highest active module score SA is 270.79. As a comparison, SA of active modules detected
by MUMI ranges from 529.8 to 549.9.

module SA typical GO terms p-value
1 270.79 galactose catabolic process via UDP-galactose 4.85× 10−05

2 169.89 galactose catabolic process via UDP-galactose 1.15× 10−04

cellular carbohydrate metabolic process 3.27× 10−02

3 250.39 galactose catabolic process via UDP-galactose 3.42× 10−04

glycolytic fermentation to ethanol 2.72× 10−03

amino acid catabolic process to alcohol via Ehrlich pathway 1.25× 10−02

4 58.21 response to heat 2.16× 10−03

5 37.05 None Not available

V. DISCUSSION

To confirm our hypothesis we have developed a novel
algorithm MUMI and evaluate it on two real-world
biological networks. The experimental results on two
Yeast molecular networks have confirmed our hypoth-
esis, i.e., the modules identified by MUMI provides
new insights into the underlying biological mechanisms
that otherwise cannot be discovered through separately
identifying each kind of modules. The main reason for
the success is MUMI identifies modules by exploiting
the complementarities between communities and active
modules.

One interesting result is that, compared to the al-
gorithms solving the two tasks individually, our mul-
titasking MUMI algorithm provides better results in
terms of accuracy and convergence (see Section IV-C).
The main reason is that the two tasks, i.e., identifying
communities and active modules, have similar problem
structures and hence similar search spaces. Therefore, by
unifying the search spaces, we can use genetic operators
such as uniform crossover to drive knowledge transfer
between the two tasks, which ultimately improve their
performance.

However, as the first multitasking module identifi-
cation algorithm, there is room for improvement. One

direction is to improve the efficiency of MUMI to handle
large-scale biological networks. Using the parameters
and hardware setup specified above, MUMI took a total
of 2467 seconds to execute 20 independent runs on the
YGUP network with 330 nodes, on average 123 seconds
each run. However, it took more than four hours to
tackle the YDRN network with 1803 nodes. It is obvious
MUMI algorithm does not scale up linearly with the
problem size.

To understand the bottlenecks that reduce MUMI’s
scalability, we profiled the execution time of 20 runs
of the MUMI on the YDRN and YGUP networks.
For YGUP with 330 nodes, the biggest bottleneck was
the objective function evaluation of the active module
identification task, which consumed 47.5% of the total
execution time. Further investigation of the objective
function showed that, the main reason is the connected
components identification algorithm (we used a MAT-
LAB built-in function conncomp()), which consumed
46.0% of the overall execution time. The algorithm is
based on Depth First Search with a time complexity
of O(N + E), where N and E are the number of
nodes and edges, respectively. Therefore, to address
this bottleneck, one possible solution is to implement a
parallel connected components identification algorithm
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(a) Karate, active module score optimisation

(b) Karate, modularity optimisation

(c) YGUP, active module score optimisation

(d) YGUP, modularity optimisation

Fig. 4: Comparison of convergence trends for two objec-
tives in multitasking optimisation and single objective
optimisation. Blue curves correspond to MUMI and
red curves represent the results from the single tasking
algorithm based on single objective optimisation (SOO).

such as [42] .
For the YDRN network with 1803 nodes, the main

bottleneck was the objective function evaluation of the
module identification task, which consumed 88.4% of
the execution time. The reason is that the modularity
Q calculation involves large scale element-wise matrix
multiplications, (also known as the Hadamard product),
which have the time complexity of O(N2). Therefore, to
tackle this bottleneck, the simplest way is to parallelise
the calculation of the Hadamard product. However, we
could also follow the idea of the Louvain algorithm
[39], i.e., to calculate the modularity change ∆Q that
is caused by mutation and crossover of each individual,
then update Q using ∆Q and the previously calculated
Q. This will be our future work to improve the scalability
of our MATLAB implementation.

VI. CONCLUSION

In this article, we proposed the first multitask module
identification (MUMI) algorithmic framework, which
provides a new way of using both topological structure
and activity information to reveal new insights in biolog-
ical systems. In addition to this novel framework, we also
designed a novel unified genetic encoding and decoding
scheme for the multitasks, and task specific genetic
operators to improve the performance. Using several
benchmark social networks, we have demonstrated the
capabilities of MUMI in identifying topological modules.
Using two real-world biological networks, we then have
showed how MUMI can exploit the latent complemen-
tarities of topological and active modules to obtain new
insights into the dynamic biological mechanisms.

We expect our MUMI algorithm provides not only
a new tool to study biological networks but also new
thinkings of studying different aspects of biological net-
works, which is helpful for understanding the complex
and dynamic mechanisms underlying biological systems.
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