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McAllister3, Cynthia Bosquillon1, and Martin C Garnett1*
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Abstract
Poly(glycerol adipate) (PGA) is a biodegradable, biocompatible, polymer with a great deal of 

potential in the field of drug delivery. Active drug molecules can be conjugated to the 

polymer backbone or encapsulated in self-assembled nanoparticles for targeted and systemic 

delivery. Here, a range of techniques have been used to characterise the enzymatic 

degradation of PGA extensively for the first time and to provide an indication of the way the 

polymer will behave and release drug payloads in vivo. Dynamic Light Scattering was used to 

monitor change in nanoparticle size, indicative of degradation. The release of a fluorescent 

dye, coupled to PGA, upon incubation with enzymes was measured over a 96 hour period as 

a model of drug release from polymer drug conjugates. The changes to the chemical structure 

and molecular weight of PGA following enzyme exposure were characterised using FTIR, 

NMR and GPC. These techniques provided evidence of the biodegradability of PGA, its 

susceptibility to degradation by a range of enzymes commonly found in the human body and 

the polymer’s potential as a drug delivery platform.

Key Words: Poly(Glycerol Adipate), Enzymatic Degradation, Polyester, Biodegradable, 

Polymer Modification, Breakdown

1. Introduction
Poly(glycerol adipate) (PGA) is synthesised by enzymatic polymerisation from glycerol and 

either divinyl adipate, dimethyl adipate or adipic acid, using Novozym 435 lipase as the 

catalyst, allowing a high degree of control over the final product.[1–4] Enzymatic 

polymerisation is an emerging area of research which provides several benefits as a method 
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for producing materials for drug delivery compared with more traditional synthesis methods. 

The avoidance of metal catalysts removes the risk of toxic metals in the final product, while 

the use of an enzyme catalyst enables high levels of enantio-, chemo- and regioselectivity 

using mild reaction conditions.[1] PGA self-assembles to form nanoparticles[5] which, with 

varying levels of stearic acid modification, have been shown to have low cytotoxicity in HL-

60 and HepG2 cells.[6,7] Unmodified PGA and PGA with a range of amino acid 

modifications have also been shown to have negligible lytic activity in a haemolytic assay.[8] 

The presence of the pendant –OH group in the polymer backbone allows for the conjugation 

of molecules with a variety of functional groups through simple coupling reactions, 

influencing the physicochemical properties of PGA and its ability to encapsulate a variety of 

drugs.[6,8–10] These changes to the polymer as a result of the modifications suggest the 

enzymatic degradation will be affected due to the enhanced stability, altered hydrophobicity 

and increased steric hindrance, leading to a potential for tunable breakdown and release in 

vivo. Previously, this has been demonstrated through functionalisation of PGA with N-acyl 

amino acids via Steglich Esterification.[8] Additionally, the drug molecules 

indomethacin,[11] methotrexate[12] and ibuprofen[13] have been successfully coupled to the 

polymer backbone. The low toxicity of PGA coupled with the ease with which it can be 

synthesised, functionalised with drug molecules and formulated into nanoparticles means it 

shows great potential as a polymeric platform for both targeted and systemic drug delivery.

It is important to understand the degradation properties of polymers for a number of reasons. 

From a safety point of view, an awareness of likely breakdown products facilitates the 

prediction of potential in vivo toxicity. Taking PGA as an example, the breakdown products 

would be expected to be the starting materials, glycerol and adipic acid, as the ester bond 

represents a fairly weak and susceptible point of cleavage;[1,6,14–17] however without 

investigation into these breakdown products it is not possible to guarantee the 

biocompatibility of this polymer. Furthermore, knowledge of the cleavage of the pendant side 

chains, and the resultant breakdown products, will enable prediction of the likely in vivo 

safety profile, prior to cytotoxicity testing of the breakdown products themselves. Secondly, 

polymers can be formulated into nano- and microparticles; the breakdown of these particles 

will affect the mechanisms by which they are cleared from the body[18] and the release of 

drug payloads. In terms of efficacy, any drug coupled to or encapsulated within a polymer 

tends to require release in order to achieve therapeutic efficacy.[14,15,19] Consequently, 
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understanding the way in which this release takes place will inform the design of dosage 

regimens and subsequent pharmacokinetic experiments. Additionally, susceptibility or indeed 

a resistance to particular enzymes may impact on the suitability of a specific polymer for 

different routes of administration and disease targets.[15] Understanding the enzymatic 

breakdown of PGA and consequently the way it will behave in vivo will help to inform any 

future dosage form design and provide an indication of the safety and efficacy of 

formulations prior to costly in vitro and in vivo experiments.

Previously, the release of methotrexate from a PGA-drug conjugate has been studied in the 

presence of porcine carboxylesterase. The enzyme was seen to increase the release of 

methotrexate compared with buffer alone over a period of seven days.[12] This work 

suggested the polymer was susceptible to enzymatic but did not focus on the nature of this 

degradation in detail or examine the degradation products. Additionally, the degradation of 

poly(glycerol sebacate) (PGS), a polymer with structural similarity to PGA, has been studied 

by several groups. However, it is worth noting that PGS is a cross-linked polymer, whereas 

the PGA in the present study is not cross-linked and largely linear.[20–22] PGS is an 

elastomer which may be of utility as a tissue scaffold and consequently degradation 

experiments have tended to focus on bulk characteristics such as the change in film weight 

and thickness over a period of hours or days. In the case of tissue scaffolds, degradation if too 

rapid, tends to be seen as a disadvantage. However, as previously mentioned, for drug 

delivery breakdown of the polymer at the target site is greatly advantageous.

The enzymatic degradation, in the presence of six enzymes, of PGA and a selection of amino 

acid modified polymers has been studied in detail here for the first time alongside two new 

modifications of PGA; PGA-Carboxyfluorescein, at two levels of substitution, and PGA-

poly(ethylene glycol) (PGA-PEG). Pancreatin, pepsin, lipase and trypsin were selected as 

examples of gastrointestinal enzymes in order to give an indication of the general degradation 

behaviour of the polymer and to assess the potential future suitability of PGA for 

encapsulation or coating of oral dosage forms. Esterase was selected as it can be detected in 

many areas of the body whereas elastase is associated with acute and chronic inflammation in 

many diseases.[23] A range of techniques has been employed to allow a comprehensive 

evaluation of the enzymatic degradation behaviour of PGA and relative susceptibility to 

different enzymes. Dynamic Light Scattering (DLS) was used as a rapid screening method to 

provide information about particle breakdown and to facilitate the selection of enzyme 
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concentrations and conditions. A fluorescent dye, carboxyfluorescein, coupled to the 

polymer, was used as a model of polymer drug conjugates, and as a model for other pendant 

groups esterified to the free hydroxyl group, in order to study release over time. Finally, 

Nuclear Magnetic Resonance (NMR), Fourier-Transform Infra-Red (FTIR) and Gel 

Permeation Chromatography (GPC) were combined to characterise the breakdown of the 

polymer and identify the breakdown products.

2. Materials & Methods

2.1 Materials

Tetrahydrofuran (THF, HPLC grade), petroleum ether (reagent grade), acetone (HPLC 

grade), dimethylformamide (DMF, HPLC grade), sodium hydroxide (NaOH, 2 M), HEPES 

and boric acid were purchased from Fisher Scientific (Loughborough, UK). Sodium Benzoate 

(0.1%) was purchased from Alfa Aesar (Heysham, UK). Divinyl adipate was purchased from 

Tokyo Chemical Industry (Oxford, UK). Acetone-d6 was purchased from Acros Organics 

(Geel, Belgium).Novozym 435 (immobilised on acrylic resin), glycerol, 5(6)-

carboxyfluorescein (CF), poly(ethylene glycol) (PEG) methyl ether, 4-

dimethylaminopyrridine (DMAP), N,N'-dicyclohexylcarbodiimide (DCC), phosphate 

buffered saline (PBS) tablets, Trizma base, potassium phosphate monobasic, hydrochloric 

acid (HCl, 5 M), sodium chloride, N-succinyl-L-Ala-Ala-Ala-p-nitroanilide, ethyl butyrate, 

4-methylumbellifyl butyrate, 4-methyl umbelliferone, Nα-benzoyl-L-arginine ethyl ester, 

deuterium oxide and sodium phosphate monobasic were purchased from Sigma-Aldrich 

(Poole, UK). Elastase from porcine pancreas Type I (≥4.0 units/mg protein), esterase from 

porcine liver (≥15 units/mg solid), lipase from porcine pancreas (Type II, 100-500 units/mg 

protein (using olive oil (30 min incubation)), 30-90 units/mg protein (using triacetin)), 

pancreatin from porcine pancreas (8x USP), pepsin from porcine gastric mucosa (≥250 

units/mg solid) and trypsin from porcine pancreas (lyophilized powder, 1,000-2,000 BAEE 

units/mg solid) were also purchased from Sigma-Aldrich (Poole, UK). 

2.2 PGA Synthesis

PGA was synthesised following the protocol detailed by Taresco et al.[1] Briefly, glycerol 

(125 mmol) and divinyl adipate (125 mmol) were placed in a three-necked round bottom 

flask with anhydrous tetrahydrofuran (THF, 50 ml). Novozym 435 (1.1 g) was added and the 
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resultant mixture stirred at 250 rpm with an overhead stirrer for 24 hours at 50 °C. After this 

time the immobilised enzyme was removed by filtration and the THF by rotary evaporation. 

The residue was heated at 90 - 95 °C for 1 hour to deactivate any residual enzyme. 

2.3 PGA Modifications

PGA-Carboxyfluorescein at two target substitution levels (1% mol/mol & 5% mol/mol, PGA-

CF and PGA-CF5, respectively) and PGA-PEG (2% mol/mol substitution) were synthesised 

using a Steglich Esterification, as previously detailed by Taresco et al.[8] This procedure was 

also used to synthesise PGA-Phe10, PGA-Phe50, PGA-Trp10 and PGA-Trp50; these 

modifications affect the physicochemical properties of the polymer. Phe refers to 

phenylalanine, Trp to tryptophan and the number reflects the molar percentage of 

substitution. The complete reaction scheme for both the production and modification of PGA 

is shown in Fig. 1. 1H NMR was used to characterise PGA-CF, PGA-CF5 and PGA-PEG and 

confirm the couplings were successful; this can be found in Appendix A1-A3 respectively, 

whereas the characterisation of the amino acid modified polymers has previously been 

discussed by Taresco et al.[8]

Fig. 1: Synthesis and Modification of PGA. The reaction scheme for the synthesis of PGA and subsequent 
modification by Steglich Esterification is shown here. Adapted from Taresco et al.[1,8]

2.4 Nanoparticle Preparation

Nanoparticles were prepared by nanoprecipitation to a final concentration of 1 mg/ml. 

Polymers were dissolved in acetone (1 ml) and added dropwise to ultrapure water under 

magnetic stirring. The solvent was then allowed to evaporate fully. All nanoparticles had a 

hydrodynamic diameter between 50-150 nm, measured by DLS (Zetasizer Nano ZS, Malvern 

Instruments, Malvern, Worcester).

2.5 Dynamic Light Scattering

Enzyme solutions (50 μl) were added to nanoparticle suspensions (250 μl) and the change in 

size over time at 25 °C was measured by DLS. The hydrodynamic diameter of the particles, 

henceforth referred to as the particle size, was measured at a scattering angle of 173°. Buffer 

controls, with no enzyme, were also studied to differentiate the effect of the enzyme from that 

of the buffer. The concentration of the enzyme solution was chosen based on examples from 

literature, where possible. Where this information was not available several concentrations 
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were trialled to find the optimum level. The assay was stopped when the polydispersity 

exceeded 0.8, insufficient sample remained for accurate measurement or after 6 hours. 

The degradation of PGA, PGA-CF and PGA-CF5 was monitored in the presence of elastase 

and esterase. Analysis of degradation by elastase was carried out in both Tris buffer (0.1 mM, 

pH 8.0) and Hepes buffer (0.5 M, pH 6.5). The enzyme solution was at a concentration of 

1.74 units/ml, assessed using the method provided by Sigma-Aldrich, [Appendix B.1 

Elastase] whereby one unit of elastase is defined as the amount that will hydrolyse 1.0 µmole 

of N-succinyl-L-Ala-Ala-Ala-p-nitroanilide per minute at pH 8.0 at 25 °C in Tris buffer (0.1 

mM).[24] For the experiments with esterase 75.3 units/ml of enzyme in borate buffer (10 

mM, pH 8.0) and 225.9 units/ml in phosphate buffered saline (PBS, pH 7.4) were used as the 

enzyme solutions. Activity was assessed using a method available from Sigma-Aldrich, 

[Appendix B.2 Esterase] with one unit defined as the amount that will hydrolyse 1.0 μmole of 

ethyl butyrate to butyric acid and ethanol per minute at pH 8.0 at 25 ºC in borate buffer (10 

mM).[25]

The degradation of PGA, PGA-PEG, PGA-Phe10 & 50 and PGA-Trp10 & 50 in the presence 

of lipase, pancreatin, pepsin and trypsin was studied. Lipase was prepared in PBS (pH 7.4) to 

a concentration of 10 mg/ml (215.4 units/ml). The novel method used for determining lipase 

activity can be found in Appendix B.3 Lipase; one unit was defined as the amount required to 

cleave 1.0 nmole of 4-methylumbellifyl butyrate (4-MUB) per minute in Tris buffer (pH 7.5, 

0.2 M) at room temperature and with a total reaction volume of 3 ml. The amount of 4-MUB 

cleaved was calculated using a calibration curve of the fluorescence intensity of the product, 

4-methylumbelliferone [Appendix B.3 Lipase, Fig. B.4]. Pancreatin was prepared in 

Simulated Intestinal Fluid (pH 7.5) according to United States Pharmacopeia (USP) 

specifications. Pepsin was prepared in Simulated Gastric Fluid (pH 1.2) according to USP 

specifications. For the experiments with trypsin, 15582 units/ml of enzyme in sodium 

phosphate buffer (1 mM, pH 7.6) was used as the enzyme solution. Trypsin activity was 

determined using a method available from Sigma-Aldrich, [Appendix B.4 Trypsin] and one 

unit was defined as the amount required to produce a change in absorbance at 253 nm of 

0.001 per minute with Nα-Benzoyl-L-arginine ethyl ester as the substrate with sodium 

phosphate monobasic buffer (67 mM, pH 7.6) at 25 °C in a reaction volume of 3.20 ml.[26]
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2.6 Release of Carboxyfluorescein by Dialysis

Regenerated Cellulose Dialysis Tubing with a 3.5 kDa MWCO (Type T1, Fisherbrand, 

Loughborough, UK) was washed in sterile water and stored in 0.1% sodium benzoate at 4 °C 

until use. The preparation and filling of the dialysis membranes took place in a Class II 

cabinet to minimise microbial contamination. Nanoparticles and buffer solutions were passed 

through a 0.22 μm filter before use.

PGA-CF5 nanoparticles (2 ml, 1 mg/ml) were placed in dialysis membranes along with 

enzyme solution and/or buffer up to a final volume of 5 ml. This was placed in buffer (195 

ml) and incubated at 37 °C in a shaking water bath. Samples were periodically removed and 

replaced with fresh buffer. Further aliquots of enzyme were added at 3, 6, 24, 48 and 72 

hours to maintain enzyme activity. Blank experiments were carried out with each buffer with 

no enzyme present to differentiate between hydrolytic and enzymatic degradation. 

Fluorescence Intensity was measured in triplicate at an excitation wavelength of 492 nm and 

an emission wavelength of 517 nm using a Cary Eclipse Fluorescence Spectrophotometer 

(Agilent Technologies, Santa Clara, CA). Calibration curves of carboxyfluorescein in each 

buffer were produced and used to calculate the concentration in each sample. This 

concentration was used to calculate the cumulative percentage molar release of 

carboxyfluorescein over time.

The effect of three enzymes, lipase, esterase and elastase, was studied. The amount of 

enzyme used here, and for each of the remaining experiments, was equivalent to that which 

was used in the DLS experiments, scaled up relative to the amount of polymer used. The 

lipase experiments were carried out in phosphate buffered saline (PBS) at pH 7.4 with 4 mg 

lipase used for each enzyme addition. Borate buffer (10 mM, pH 8.0) was used as the buffer 

with esterase, with 33 units of esterase used for each enzyme addition. For the elastase 

experiments 0.82 units were used for each enzyme addition, and Hepes buffer (0.1 M) was 

used at pH 6.5.

2.7 Characterisation of Degraded Polymer

The degradation of PGA-CF5 in the presence of lipase, esterase and elastase was 

characterised by GPC, FTIR and 1H NMR. The same incubation conditions and pattern of 

enzyme addition as in the release experiments were used. The ratio of polymer to enzyme 
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was maintained, however, the amount of polymer used was increased to facilitate analysis. 

Three incubation times, ranging from 24 - 96 hours, were used for GPC analysis and for the 

sample incubated with lipase analysed by NMR and FTIR. The esterase and elastase samples 

for NMR and FTIR analysis were incubated for 96 hours. After incubation samples were 

freeze-dried (Sentry 2.0, Virtis SP Scientific, Gardiner, NY) to remove the buffer. 

Gel Permeation Chromatography (GPC, PL50, Polymer Laboratories, Salop, UK) was carried 

out using dimethylformamide (DMF) + 0.1% LiBr as the mobile phase at a flow rate of 1 

ml/min. Two mixed bed D columns were employed, kept at a constant temperature of 50 °C. 

Poly(methyl methacrylate) standards (Mn range 1,810,000 – 505 g mol-1) were used to 

calibrate the size-exclusion chromatography system. The enzyme was precipitated with 

acetone (3 ml per sample) prior to analysis. In addition to the enzyme samples, controls were 

carried out using untreated PGA-CF5 and polymer which had been incubated at 37 °C 

without enzyme present to allow accurate interpretation of the effect of the enzymes.

FT-IR spectra were recorded with an Attenuated Total Reflection Cary 630 FTIR 

spectrophotometer (Agilent Technologies, Santa Clara, CA). 128 interferograms were 

recorded for each spectrum in the range 4000-650 cm-1. 

1H NMR spectra were recorded using acetone-d6 and deuterium oxide on a Bruker 400 MHz 

spectrophotometer (Billerica, MA). Chemical shifts were reported as parts per million (δ) 

downfield from an internal standard, tetramethylsilane. Acetone (1 ml per sample, unless 

stated) was used to precipitate the enzyme before analysis.

2.8 Statistical Analysis

Two-way ANOVA was performed on the results for the release of carboxyfluorescein in 

order to determine statistical significance. The percentage carboxyfluorescein release in the 

presence of each enzyme was compared with the relevant buffer without enzyme present. 

Following this f-tests were used to determine if the variance of the groups was significantly 

different. This information was used to select the appropriate two tailed unpaired t-test for 

each enzyme and buffer pair. A t-test was carried out at each time point to ascertain when 

there was a significant difference in release with and without enzyme present, with 

significance set at a p-value of 0.05.
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3. Results

3.1 Change in Particle Size by Dynamic Light Scattering

DLS was used as a rapid screening technique, monitoring the change in nanoparticle size and 

polydispersity following the addition of a small aliquot of enzyme. The purpose of these 

experiments was to gain an insight into how the polymeric nanoparticles may behave in vivo 

and to select appropriate conditions for future experiments. This experiment was intended to 

provide a binary prediction of whether or not a particular enzyme would degrade a particular 

polymer, rather than a quantitative measure of that degradation. It has been suggested that the 

increase in particle size represents swelling, followed by the collapse of the particle, which 

can be taken as an indication of degradation.[27]

3.1.1 Comparison of Different Enzymes

The effect of each of the different enzymes on PGA nanoparticles was studied to facilitate 

comparison. Additionally, two buffers were used with both esterase and elastase in order to 

explore the impact of pH. Together with buffers reflecting the optimum pH for activity, 

esterase was studied at pH 7.4 to reflect the environment of the blood and elastase was 

studied at pH 6.5. In the 1920s Warburg et al.[28,29] discovered that the tumour 

microenvironment tends to have a slightly acidic pH, consequently, understanding the effect 

of lowering the pH may be beneficial for future applications of this polymer in cancer drug 

delivery.

Simulated gastric fluid caused an increase in particle size exceeding that seen with pepsin. 

This is likely to be a result of the acidic pH of this buffer, 1.2, at which the nanoparticles do 

not appear to be stable. Consequently, the remainder of the results presented here exclude 

pepsin. The effect of the buffer was found to be negligible for all of the other conditions 

studied. 

A dramatic change in PGA nanoparticle size was seen with lipase, pancreatin and elastase in 

Hepes buffer, suggesting degradation was occurring. A change in nanoparticle size was also 

seen with elastase in Tris buffer [Fig 2]. The effect seen with trypsin was limited, with a 

small change in size in the region of 100 nm. Additionally, the effect of esterase on particle 

size was limited in borate buffer (pH 8) and in PBS (pH 7.4).
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3.1.2 Comparison of Different Polymer Modifications

Nanoparticles made using modified PGA were tested with each of the enzymes to investigate 

the effect of these structural changes on the extent of degradation. These modifications were 

the addition of PEG to the end of the polymer chain and the conjugation of 

carboxyfluorescein, at 2% & 5%, or the amino acids phenylalanine and tryptophan, at 10% 

and 50%, to the pendant hydroxyl group of the polymer backbone. The modified polymers 

were compared with the unmodified PGA. 

Interestingly, differences were observed between polymer modifications incubated with the 

same enzyme. For lipase, pancreatin and trypsin the change in size of PGA-PEG 

nanoparticles was an order of magnitude less than that seen for the unmodified PGA [Fig. 2]. 

The effect of the other modifications was less consistent. A change in size was seen for PGA 

and the carboxyfluorescein modified polymers upon incubation with elastase, with the extent 

of this change differing depending on the level of carboxyfluorescein modification. With 

esterase in both buffers there was no size change seen at all for the carboxyfluorescein 

modified polymers, and a limited effect on the size of PGA nanoparticles, meaning the 

differences between polymers may not be significant. For lipase and pancreatin the amino 

acid modifications appeared to reduce the effect of the enzymes, yet for trypsin the opposite 

was true. Furthermore, for all polymers with trypsin it took some time before any change in 

size was seen.

Fig. 2: Effect of Backbone Modifications on PGA Degradation. The colour of each bar here reflects the polymer 
under investigation. The results for pepsin have been omitted as it was not possible to differentiate the effect of 
the enzyme from that of the buffer.

3.2 Release of Coupled Carboxyfluorescein

PGA-CF5 was used here as a model of a low loading of drug coupled to PGA, allowing the 

release of carboxyfluorescein from the polymer to be monitored over time. This was to 

provide an indication of the way a drug would be released if coupled to the polymer 

backbone. 

Lipase was seen to significantly increase the release of carboxyfluorescein in comparison 

with the buffer alone [Fig. 3A]. Two-way ANOVA analysis suggested this difference was 

highly significant with a p-value of <0.0001. Furthermore, studying each time point 

individually suggested a significant difference between the release of carboxyfluorescein with 
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and without lipase present from 2 hours onwards. After 96 hours the release of 

carboxyfluorescein in the presence of lipase was calculated as 23% whereas in PBS alone it 

was 7%. Several distinct phases could be identified in the release of the carboxyfluorescein. 

There was an initial burst release over the first few hours; this is thought to be due to the ester 

bonds of carboxyfluorescein present in the surface layers of the nanoparticles being easily 

accessible to the enzyme and so rapidly cleaved, releasing the dye. Following this there was a 

more gradual release of the internal carboxyfluorescein before approaching a plateau from 24 

hours onwards. The release was not calculated to be 100%, however, no carboxyfluorescein 

could be detected within the dialysis membrane, suggesting a spectral shift may be occurring 

which reduces the apparent concentration of carboxyfluorescein. The release seen here is 

typical for many polymeric nanoparticle formulations.[30] 

The experiments investigating the effect of elastase were carried out in the presence of Hepes 

buffer at pH 6.5. These conditions were chosen as pH 6.5 saw a larger particle size increase 

by DLS than pH 8.0. Elastase caused a significant increase in carboxyfluorescein release 

when compared with the buffer alone from 48 hours onwards, with p-values < 0.05. The 

release was calculated as 5.6% with the buffer alone and 9.6% in the presence of elastase 

after 96 hours; this increase was less than that seen with lipase [Fig. 3B]. 

Since the DLS results for esterase at both pH values failed to show an effect, borate buffer 

(pH 8.0) was preferred for these experiments as it represents the optimum conditions for 

esterase action. The release of carboxyfluorescein was calculated to be 5.8% in the presence 

of esterase after 96 hours, compared with 1.8% with the borate buffer alone. Overall, this 

difference was not found to be significant. Examining each time point individually, there was 

a significant difference in the release at 6 hours (p-value = 0.005), however, this difference 

was not maintained. Furthermore, a high level of variability between samples was observed 

[Fig. 3C]. Any increase in release seen with esterase is, therefore, likely to be a result of 

hydrolytic degradation.

Fig.3 A-C: Release of Carboxyfluorescein in the Presence of Lipase, Elastase and Esterase. The release of 
carboxyfluorescein in the presence of lipase, elastase and esterase is shown in A, B & C, respectively and each 
graph also shows the relevant buffer control. The points used here are the average of three experiments whereas 
the error bars represent 1 standard deviation. Calculated p-values for each time point, comparing release with 
and without the enzyme are indicated by asterisks.
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3.3 Change in Polymer Molecular Weight Following Incubation 
with Enzymes

The release of carboxyfluorescein detailed in the previous section strongly suggests the 

polymer was breaking down in the presence of enzymes. In order to analyse this in a 

quantitative manner, GPC was used to monitor the effect of incubation with enzymes on the 

molecular weight of PGA-CF5. The chromatographs and distribution plots generated for each 

sample can be found in the Supplementary Information [Appendix C].

Where no enzyme was present there was relatively little change in the GPC traces compared 

with the untreated sample, suggesting PGA was stable at 37 °C for the duration of the time 

period studied [Fig. 4A].

Upon incubation with lipase, a dramatic decrease in molecular weight was observed at 24 

hours, with a similar result seen for the remaining time points [Fig. 4]. The peak representing 

the intact polymer as seen in the untreated sample was absent, suggesting no polymer 

remained. Only small molecular fragments were detected, however these could not be 

quantified as they approached the calibration limit of the instrument and the solvent peak.

At each studied time point two peaks were detected for those samples incubated with 

elastase; the first of these peaks represents a size consistent with untreated polymer whereas 

the second represents small breakdown products [Fig. 4]. Interestingly, with increasing 

incubation time, the size of the peak representing the intact polymer decreased relative to the 

peak of the small breakdown products. This suggests partial degradation occurs with elastase, 

with the amount of intact polymer decreasing over time as the degradation progresses.

The change seen following incubation with esterase was less dramatic than that observed 

with lipase and elastase, with a limited change in molecular weight [Fig. 4A]. However, the 

range of molecular weights appeared to narrow and the polydispersity (Ð) decreased relative 

to the untreated sample [Fig. 4B]. This change indicates the loss of small fractions from the 

end of the larger polymer chains, rather than breakages from the centre of the chain. 

The GPC analysis confirms that PGA-CF5 is entirely broken down in the presence of lipase, 

with no intact polymer chains remaining. Degradation also occurs to a lesser extent in the 

presence of elastase, with both degraded and intact chains present in each sample. Finally, 
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there is a change in the size distribution of PGA-CF5 incubated with esterase, suggesting 

minimal degradation is occurring.

Fig. 4 A & B: GPC Traces, Molecular Weight and Polydispersity of PGA-CF5 Following Enzyme Incubation. 
In A the traces for each sample are presented, grouped by enzyme. The large peaks seen in the region of 1000 
seconds represent the eluent. There is little difference between the untreated sample and the blank samples, 
incubated without enzyme, suggesting the changes seen upon incubation with enzymes are as a result of 
enzymatic degradation. In B the number average molecular weight (Mn) and Polydispersity (Ð) are listed.

3.4 Changes to Chemical Structure of PGA Following Enzyme 
Incubation

The changes to the structure of PGA following the addition of enzymes was investigated in 

order to confirm breakdown was occurring and to understand the spectral changes seen with 

the released carboxyfluorescein. 

3.4.1 FTIR

FTIR was used to provide a rapid indication of whether degradation had occurred. Several 

differences can be seen between the spectra of PGA-CF5 alone and those of the polymer 

incubated with lipase. The OH stretch between 3500-3000 cm-1 shifts to lower wavelengths 

with time, indicative of the presence of carboxylic acid groups, increased hydrogen bonding 

and the formation of dimers [Fig. 5A, peak I]. The peak representing the C=O ester bond at 

1750 cm-1, visible in the untreated sample, is not seen from 72 hours of incubation with lipase 

onwards. Instead, there is a broad area of peaks between 1700-1500 cm-1, representing 

overlapping vibrations from a range of different C=O carboxyl bonds [Fig 5A, peak II]. 

Finally, there are new peaks visible in the region of the spectra below 1000 cm-1 which are 

not seen with the untreated PGA-CF5; these peaks represent changes to the environment of 

the aromatic ring structure of carboxyfluorescein [Fig. 5A, peak III].These changes to the 

FTIR spectra appear likely to show the breakdown of the ester bond, and subsequently the 

polymer, on incubation with lipase. 

PGA-CF5 incubated with elastase, the untreated polymer and the enzyme alone were 

analysed by FTIR and the spectra compared; two main areas of difference were identified. As 

with the lipase samples, the peak at 1750 cm-1 [Fig. 5B, peak I], representing the C=O of the 

ester bond, reduced in intensity between the untreated and treated samples, suggesting a 

proportion of these bonds were broken. Additionally, three peaks appeared at 990, 1030 & 
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1160 cm-1 [Fig. 5B, peak II] in the sample incubated with enzyme, representing a C-O 

alcohol bond forming in place of the ester bond.

PGA-CF5 incubated with esterase, untreated PGA-CF5 and esterase alone were analysed by 

FTIR and the spectra compared to ascertain the effect of the enzyme. The enzyme alone 

produced two clear peaks at 1530 & 1640 cm-1 [Fig. 5C, peak III] which can also be seen for 

the incubated sample. The main difference between the spectra of the treated and untreated 

PGA-CF5 is the OH stretching area at 3500-3000 cm-1, the OH stretching area where the 

typical broad peak representative of alcohols, seen in the untreated sample, is replaced by a 

sharp acidic peak due to the formation of dimers [Fig. 5C, peak I]. Additionally, the peak at 

1720 cm-1 [Fig. 5C, peak II], resulting from the C=O ester bond, disappears following 

incubation with the enzyme, providing further suggestion of breakdown.

Fig. 5 A-C: FTIR Spectra of PGA-CF5 Before and After Incubation with Enzymes. Incubation with lipase is 
shown in A, elastase in B and esterase in C. The key differences in the spectra are highlighted with blue boxes 
and the peak allocation is discussed in the text. In all cases the spectrum for untreated PGA-CF5 is shown in 
black. For lipase (A) PGA-CF5 after 24 hours incubation with lipase is in red; 72 hours incubation is in green 
and 96 hours incubation is in dark blue. Lipase alone is shown in sky blue. For elastase and esterase (B & C), 
PGA-CF5 incubated with the respective enzyme is shown in red and the enzyme alone is shown in green.

3.4.2 1H NMR
1H NMR was used to provide a more detailed examination of the structural changes following 

incubation with the enzymes. Analysis was carried out in acetone-d6 and deuterium oxide. 

Any remaining polymer would be visible in the acetone but would not be present in the 

deuterium oxide, whereas the degradation products would be soluble in both acetone and 

deuterium oxide. Consequently, this allowed the degradation products to be identified more 

easily in deuterium oxide in the absence of the intact polymer peaks. Allocation of the peaks 

corresponding to PGA has been discussed previously in detail by Taresco et al.[1]

Following incubation with lipase, it was possible to observe peaks corresponding to 

carboxyfluorescein (6.5-8.0 ppm), glycerol (3.5-4.0 ppm), adipic acid (1.3 ppm) and the 

intact polymer (1.6, 2.3, 4.0 ppm) in acetone-d6 [Figs. 6 A & B]. Furthermore, a mixture of 

breakdown products could be observed in the region of 4.75-5.5 ppm, with peaks 

corresponding to a dimer of the repetitive unit of PGA and carboxyfluorescein coupled to one 

PGA monomer unit. This suggests that the breakdown is not always complete. 
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When analysed in deuterium oxide the peaks representing adipic acid (0.5-2.5 ppm) remain 

visible; there are many peaks suggesting a range of variations are present [Figs. 6 A & C]. It 

was possible to study the glycerol present in more detail; as well as free glycerol (3.6, 3.7, 

3.9, 5.1 ppm) there is also a conjugate of glycerol and carboxyfluorescein (4.4 ppm). 

Additionally, the peak labelled j (8.0-8.3 ppm), which represents the proton adjacent to the 

ester bond of carboxyfluorescein, shifts with increasing incubation time as the environment 

changes, confirming the breakdown of this bond.

The NMR spectra of PGA-CF5 incubated with elastase, recorded in acetone-d6 and deuterium 

oxide, do not differ significantly from those seen with lipase. The same breakdown products 

can be observed, with the polymer breaking down both partially and fully. As a result of this 

similarity the data is not presented here.

As with the lipase and elastase samples, esterase was precipitated from the incubated sample 

before 1H-NMR analysis in acetone-d6 and deuterium oxide. It proved difficult to precipitate 

the enzyme from the sample following freeze drying; a large amount of acetone was required 

and the enzyme was seen to be yellow in colour, suggesting carboxyfluorescein remained 

within the precipitate. The spectrum obtained when analysing the incubated sample in 

acetone-d6 appeared to be broadly similar to the spectra obtained for the lipase and elastase 

samples, albeit with less clarity [Fig. 6D]. The peaks for the polymer, adipic acid, glycerol 

and carboxyfluorescein remained visible. Again, breakdown products could be seen in the 

region of 5.0-5.5 ppm, however, there was no peak visible at 4.75 ppm as was seen for lipase 

[Fig. 6A, peak q]. This peak represents the proton adjacent to the secondary alcohol of 

glycerol found in the dimer [Fig. 6A]. The presence of a peak at 5.3 ppm suggests the dimer 

is produced, however, it is likely to be in a small amount. Otherwise, the same breakdown 

products were as seen with lipase and elastase.

When analysed in deuterium oxide, the spectrum for PGA-CF5 incubated with esterase 

lacked definition. Areas of the spectrum relating to carboxyfluorescein, glycerol and adipic 

acid could be identified, however, it was not possible to allocate specific peaks. 

Consequently, this spectrum has not been displayed here. This is likely to be a result of the 

difficulty precipitating the enzyme, however, this precipitation was essential to gain any level 

of spectral clarity. 
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Fig. 6 A-D: NMR Spectra of PGA-CF5 Incubated with Enzymes and Corresponding Labelled Structures: The 
labelled structures shown in A correspond with each of the following spectra examining degradation by lipase, 
elastase and esterase in acetone-d6 and deuterium oxide. The spectrum in B is PGA-CF5 after incubation for 24 
hours in lipase, analysed in acetone-d6. The spectra for 72 & 96 hours were very similar, and so are not shown 
here. In C analysis was carried out in deuterium oxide. The top spectrum is after 24 hours of incubation with 
lipase, the middle spectrum after 72 hours and the bottom spectrum after 96 hours. The spectrum in D is PGA-
CF5 following incubation with esterase, analysed in acetone-d6. The key difference between this spectrum and 
those for elastase and lipase is the absence of one peak from the area labelled ‘Polymer Breakdown Products’.

4. Discussion
DLS showed that the size of PGA nanoparticles increases after the addition of a range of 

enzymes, with the extent of this change differing depending on the enzyme and polymer 

modifications. Lipase and elastase were found to significantly increase the release of 

carboxyfluorescein, compared with buffer alone. The calculated release remained below 

100%, however, the presence of carboxyfluorescein-monomer and carboxyfluorescein-

glycerol conjugates, identified by NMR, in the polymer degradation products may provide an 

explanation for the observed spectral shift, and consequent underestimation of release. NMR, 

FTIR and GPC were also used to confirm the breakdown of the polymer in the presence of 

lipase, elastase and esterase; complete breakdown was seen with lipase whereas partial 

breakdown could be seen with the other two enzymes.

DLS was used here as a rapid screening method. The limitation of using DLS to explore 

enzyme degradation in more detail is that it can be difficult to understand exactly what is 

changing and why. Certainly, the fact that after a point it becomes impossible to gain 

meaningful results would support this hypothesis. Furthermore, in this study it was noted that 

the attenuator number, automatically selected by the Zetasizer ZS to provide the best 

measurements, increased over time. For example, the addition of elastase in Tris buffer to 

PGA nanoparticles caused the attenuator number to increase from 5 to 8, suggesting the 

concentration of nanoparticles in the sample was decreasing. It must also be noted that 

Malvern Panalytical suggest a maximum particle size of 10 μm, sample dependant, for the 

Zetasizer ZS [31] and the sizes seen here are approaching that point. Consequently, small 

nanometre size differences in the micrometre size range may be artefacts of the technique.

The results seen here strongly suggest PGA nanoparticles are susceptible to degradation by a 

number of enzymes and that modifications of the polymer backbone can influence this 

degradation. Further investigations were, however, required to provide a better understanding 

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944



17

of this. As the breakdown of the polymer and the release of any drug was considered to be 

more relevant from a drug delivery perspective than changes in particle morphology, 

analytical techniques were preferred to imaging techniques.

Generally, aliphatic polyesters with a short chain between ester groups, such as PGA, are 

found to undergo hydrolysis in a biologically relevant time frame.[9] The use of lipase in the 

synthesis of the polymer shows it is a viable substrate and so suggests PGA will be 

degradable by this enzyme. These features are also found in poly(caprolactone) (PCL) which 

can be synthesised by enzymatic ring opening polymerisation using lipase. This polymer 

features 5 carbons between the ester groups, however, PCL is not enzymatically degraded in 

vivo.[32] This may be as a result of the thermal properties; PCL is solid at both room 

temperature and 37 °C due to its crystalline nature,[32] and consequently access of the 

enzyme catalytic site to the ester group may be restricted. Conversely, PGA is a viscous 

liquid at 37 °C,[1] and this more fluid nature can be expected to allow easier access of the 

enzyme, suggesting why enzymatic degradation may be observed with PGA and not with 

PCL. These structural features and physical properties, combined with the use of enzymatic 

synthesis, indicate PGA may be similarly susceptible to degradation by other hydrolases to a 

greater extent than traditional polyesters. 

The DLS results gathered here suggest modifying the polymer backbone affects the 

susceptibility of PGA to enzymatic degradation. In the presence of lipase, pancreatin and 

trypsin PGA-PEG nanoparticles demonstrated a smaller change in size compared with 

unmodified PGA. This suggests PEG provides a protective role by forming a corona on the 

surface of the particles, sterically hindering enzyme access.[33] PGA-PEG could, therefore, 

be adopted should a slower breakdown and release profile be desired. With lipase and 

pancreatin the amino acid modifications appeared to reduce the effect of the enzymes. These 

modifications would be expected to increase the stability of the particles as a result of π-π 

stacking of the aromatic rings.[8] This was not seen with trypsin and may be because trypsin 

is a protease with high specificity for arginine and lysine residues,[34] rather than the ester 

bonds found in PGA.

The active site of porcine pancreatic lipase (PPL) comprises a catalytic triad, with lid domain 

loops providing steric hindrance. However, in aqueous environments hydrogen bonds 

between the lid and co-lipase tend to stabilise it in an open confirmation, allowing substrate 
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access,[35] and in this case the breakdown of PGA. Furthermore, the natural substrates of 

PPL are glycerol esters, which would explain why it works effectively on PGA resulting in 

the structural changes observed by NMR and FTIR and the absence of intact polymer by 

GPC. Pancreatin is a mixed enzyme preparation containing lipase, trypsin, amylase, 

ribonuclease and protease. Consequently, the effect of pancreatin would be expected to be a 

summation of the contribution of each of these enzymes, meaning the degradation of PGA by 

pancreatin would be expected to equal or exceed that seen with lipase alone. 

Porcine pancreatic elastase (PPE) is a serine protease with broad specificity[36] and 

crystalline PPE has been reported to have a relatively open active site.[37] While the 

specificity of elastase is generally discussed in terms of peptides, this open site and the noted 

broad specificity may suggest a reason why release was seen with this particular enzyme 

preparation. While breakdown is evident by NMR, FTIR and GPC, the results were less clear 

than those seen with lipase. This may be as a result of the reduced specificity of the enzyme, 

when compared with lipase, resulting in partial degradation. This finding is in agreement with 

the lower release of carboxyfluorescein and the presence of intact polymer following GC 

analysis of PGA-CF5 incubated with elatase.

The active site of esterase has been reported to be highly constrained as a result of the 

surrounding amino acids. The Jones Cubic Space model has been used to predict whether or 

not a molecule will be a substrate for carboxyesterase.[38] Carboxyfluorescein, PGA and 

PGA-CF5 are much larger than the active site defined by this model, and as a result would 

not be expected to be substrates for esterase. This suggests a reason why carboxyfluorescein 

release is limited and also why a high degree of variability was observed. Whilst there is clear 

evidence by NMR and FTIR that PGA-CF5 undergoes degradation in the presence of 

esterase, it was more difficult to ascertain the structure of the breakdown products than was 

the case with PGA-CF5 incubated with either lipase or elastase. The low level of 

carboxyfluorescein release, along with the constrained nature of the active site of the enzyme, 

means this difficulty was not unexpected. Furthermore, the small changes in molecular 

weight seen when PGA-CF5 was incubated with esterase, suggesting breakdown at the end of 

the polymer chains, would concur with the theory regarding the constrained nature of the 

active site of esterase,[38] as the steric hindrance would be greatly reduced at the chain ends.
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In general terms the breakdown of PGA seen here is of clinical importance as it suggests 

breakdown would also be observed in vivo. This is crucial from a safety point of view and 

justifies the label ‘biodegradable’. Furthermore, this breakdown, coupled with the effective 

release of coupled carboxyfluorescein suggests PGA would be viable as a drug delivery 

platform as active drug molecules could be expected to be released in a similar controlled 

manner. The differences seen with the various backbone modifications suggest the potential 

for tunable degradation which may be exploited for controlled release. Furthermore, the 

variable degradation and release seen with different enzymes could be used for targeting 

purposes; release can be expected to be higher in areas with high concentrations of lipase 

than where other enzymes prevail. The susceptibility of PGA to gastro-intestinal enzymes 

also opens the possibility for using the polymer for oral drug delivery in the future.

5. Conclusion
Pancreatin, lipase, elastase and trypsin were all found to cause a change in the size of PGA 

nanoparticles, indicative of degradation. Modifications of the polymer backbone altered the 

degree of size change seen; the effect was particularly pronounced for PGA-PEG, which 

consistently showed decreased degradation relative to unmodified PGA. Lipase, elastase and 

esterase were shown to increase the release of coupled carboxyfluorescein from the polymer; 

this increase was statistically significant with lipase and elastase. GPC analysis of the 

molecular weight of PGA-CF5 following incubation with lipase, elastase and esterase, 

provided evidence of polymer breakdown while illustrating the importance of the specificity 

of the enzymes on the extent of the degradation. Lipase was found to cause complete 

breakdown of PGA-CF5 by 24 hours, whereas elastase caused partial breakdown and the 

effect of esterase was limited. The structure of PGA-CF5 incubated with lipase, elastase and 

esterase was analysed to understand the way in which the polymer was breaking down. The 

breakdown of the ester bond in the PGA backbone could be seen along with the release of 

carboxyfluorescein, a carboxyfluorescein-monomer conjugate and a dimer of PGA. 

Taken together, these data demonstrate the high enzymatic degradability of PGA based 

polymers into non-toxic building blocks by a range of relevant enzymes. Interestingly, a low 

level of PEGylation or varying the nature of the free hydroxyl group in the polymer backbone 

by conjugation with amino acids has been shown to affect the susceptibility of the polymer to 

degradation. This phenomenon may be exploited to tune the degradation of PGA for specific 
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pharmaceutical or biomedical applications in order to achieve controlled release rates and 

breakdown profiles, thereby optimising dosage regimens and patient adherence.
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Figures

Figure 1

Fig. 1: Synthesis and Modification of PGA. The reaction scheme for the synthesis of PGA 
and subsequent modification by Steglich Esterification is shown here. Adapted from Taresco 
et al.[1,4]

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475



26

Figure 2

Fig. 2: Effect of Backbone Modifications on PGA Degradation. The colour of each bar here 
reflects the polymer under investigation. The results for pepsin have been omitted as it was 
not possible to differentiate the effect of the enzyme from that of the buffer.
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Figure 3 A-C

Fig.3 A-C: Release of Carboxyfluorescein in the Presence of Lipase, Elastase and Esterase. 
The release of carboxyfluorescein in the presence of lipase, elastase and esterase is shown in 
A, B & C, respectively and each graph also shows the relevant buffer control. The points 
used here are the average of three experiments whereas the error bars represent 1 standard 
deviation. Calculated p-values for each time point, comparing release with and without the 
enzyme are indicated by asterisks.
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Figure 4 A & B:

Fig. 4 A & B: GPC Traces, Molecular Weight and Polydispersity of PGA-CF5 Following 
Enzyme Incubation. In A the traces for each sample are presented, grouped by enzyme. The 
large peaks seen in the region of 1000 seconds represent the eluent. There is little difference 
between the untreated sample and the blank samples, incubated without enzyme, suggesting 
the changes seen upon incubation with enzymes are as a result of enzymatic degradation. In B 
the number average molecular weight (Mn) and Polydispersity (Ð) are listed.
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Figure 5 A-C

Fig. 5 A-C: FTIR Spectra of PGA-CF5 Before and After Incubation with Enzymes. Incubation 
with lipase is shown in A, elastase in B and esterase in C. The key differences in the spectra 
are highlighted with blue boxes and the peak allocation is discussed in the text. In all cases 
the spectrum for untreated PGA-CF5 is shown in black. For lipase (A) PGA-CF5 after 24 
hours incubation with lipase is in red; 72 hours incubation is in green and 96 hours incubation 
is in dark blue. Lipase alone is shown in sky blue. For elastase and esterase (B & C), PGA-
CF5 incubated with the respective enzyme is shown in red and the enzyme alone is shown in 
green.
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Figure 6 A-D

Fig. 6 A-D: NMR Spectra of PGA-CF5 Incubated with Enzymes and Corresponding Labelled 
Structures: The labelled structures shown in A correspond with each of the following spectra 
examining degradation by lipase, elastase and esterase in acetone-d6 and deuterium oxide. 
The spectrum in B is PGA-CF5 after incubation for 24 hours in lipase, analysed in acetone-
d6. The spectra for 72 & 96 hours were very similar, and so are not shown here. In C analysis 
was carried out in deuterium oxide. The top spectrum is after 24 hours of incubation with 
lipase, the middle spectrum after 72 hours and the bottom spectrum after 96 hours. The 
spectrum in D is PGA-CF5 following incubation with esterase, analysed in acetone-d6. The 
key difference between this spectrum and those for elastase and lipase is the absence of one 
peak from the area labelled ‘Polymer Breakdown Products’.
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Supplementary Information

Appendix A
1H NMR was used to confirm the success of the polymer couplings and to provide an 

estimate of the substitution ratio. The coupled polymer was dissolved in acetone-d6 and 

analysed by 1H NMR.

A.1 PGA-Carboxyfluorescein – Low Substitution

The presence of peaks at 6.5-7.0 ppm, 8.15 ppm and 9.75 ppm confirm the presence of 

carboxyfluorescein in the polymer and consequently the success of the coupling [Fig. A.1]. 

The aim was to achieve one dye molecule coupled to each polymer chain and 17% 

conversion was achieved, meaning a dye molecule was coupled to 17% of polymer chains.

Fig A.1: NMR Spectrum of PGA-Carboxyfluorescein at Low Substitution. The peaks relating to 
carboxyfluorescein can be seen on the left-hand side of the spectrum whereas those from PGA are on the right-
hand side. The integrals of the peaks labelled ‘b’, from the PGA, and ‘f, g, h’, from the carboxyfluorescein were 
used to calculate the substitution ratio.

A.2 PGA-Carboxyfluorescein 5%

The presence of the peaks representing carboxyfluorescein again confirm that the coupling 

was successful [Fig. A.2]. In this case the substitution ratio was found to be 1.7%, 

representing a conversion of 34%. PGA-CF5 was continued to be used to refer to this 

polymer as it represents the targeted substitution level.

Fig. A.2: NMR Spectrum of PGA-CF5. As with PGA-CF [Fig A.1] the integrals of the peaks labelled ‘f, g, h’ 
(carboxyfluorescein) were used to calculate the amount of carboxyfluorescein, relative to peak b (PGA). The 
substitution was estimated to be 1.7%.

A.3 PGA-PEG

The peak representing the protons of the repeating unit of PEG, labelled ‘e’, was used to 

confirm the coupling was successful and to provide an estimate of the substitution ratio; this 

was calculated to be 1 unit of PEG per PGA polymer chain, as was the target of the 

substitution [Fig. A.3].
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Fig. A.3: NMR Spectrum of PGA-PEG. The peak labelled ‘e’ represents the protons of PEG 
adjacent to the ester bond, and was consequently used to confirm the successful coupling and 
to predict the substitution ratio.
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Appendix B

B.1 Elastase

The method for this assay was taken from the technical documents and protocols section of 

the Sigma-Aldrich website.[1] One unit of elastase is defined as the amount that will 

hydrolyse 1.0 µmole of N-succinyl-L-Ala-Ala-Ala-p-nitroanilide per minute at pH 8.0 at 25 

°C in Tris buffer (0.1 mM). This was measured by following the increase in absorbance at 

410 nm over 6 minutes by UV Spectrophotometry (Beckman Coulter DU800, High 

Wycombe). Two blanks, with the substrate but no enzyme, and six enzyme samples were 

analysed.

This activity assay was carried out before each experiment involving elastase; an example of 

the results obtained is presented here. The activity appeared to be fairly consistent between 

samples [Fig B.1]. The average activity of the original preparation was calculated to be 8.97 

units/ml (SD=2.36).  

Fig. B.1: Elastase Activity Assay. The change in absorbance at 410 nm is plotted against the time in minutes. 
Although measurements were taken throughout the 6 minutes only the linear portions are shown here, as 
recommended in the method. The line of best fit was used to calculate the change in absorbance, and 
consequently the activity, for each sample. These lines all had a R2 value >0.985.

B.2 Esterase

This method was taken from Sigma-Aldrich[2], whereby one unit is defined as the amount 

that will hydrolyse 1.0 μmole of ethyl butyrate to butyric acid and ethanol per minute at pH 

8.0 at 25 ºC in borate buffer (10 mM). This is a titrimetric assay, based around the time taken 

for the pH to return to 8.0 following the addition of NaOH (0.01 N) (Jenway 3505 pH meter, 

Stone, Staffordshire). One blank, with the substrate but no enzyme, and three enzyme-

containing samples were analysed.

Again, one example of the activity assay, which was performed multiple times, is presented 

here. As with elastase, the activity appeared to be relatively constant between samples [Fig. 

B.2]. The average activity of the original preparation was calculated to be 15.06 units/mg 

(SD=1.25).
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Fig. B.2: Esterase Activity Assay. This graph charts the additions of NaOH made and the time points at which 
this occurred. As with the elastase activity assay, only the linear portions are shown here to aid clarity. The lines 
of best fit all had R2 values >0.99. The blank is not shown as the pH did not return to 8.0 for the duration of the 
assay. The gradient of the line was taken as the rate of change and then corrected for the blank; this figure was 
used to calculate the activity.

B.3 Lipase

A suitable, pre-determined, method could not be found for the lipase activity assay. The 

reagents required for those that were available and commercially available kits were 

considered to be prohibitively expensive for the intended use. Therefore, a novel method was 

devised based on several pre-existing literature methods.[3–5]

4-methylumbellifyl butyrate (4-MUB) was used as the substrate; lipase cleaves the butyrate 

group to produce 4-methyl umbelliferone (4-MU) which is fluorescently active. 4-MUB (6.2 

mg) was dissolved in DMSO (1.5 ml) before diluting to a concentration of 1 mM with 

ultrapure water (25 ml). It has been noted that 4-MUB will slowly crystallise out of this 

solution,[5] and so this was prepared immediately prior to use and shaken vigorously before 

each 300 µl aliquot was added to the reaction. The reaction was performed in Tris buffer (pH 

7.5, 0.2 M) with a total reaction volume of 3 ml per assay. Enzyme solution (50 µl, 1 mg/ml 

in buffer) was added immediately before commencing measurement of the fluorescence 

intensity (Excitation 365 nm, Emission 445 nm). The intensity was measured every 15 

seconds for at least 5 minutes using a Cary Eclipse Fluorescence Spectrophotometer (Agilent 

Technologies, Santa Clara, CA). Five enzyme samples were tested along with two blank 

samples containing the substrate but no enzyme.

R2 values of >0.98 were achieved for each of the five enzyme assays, suggesting good 

linearity [Fig. B.3]. The average change in intensity per minute was calculated to be 113.64 

AU/min.

Fig B.3: Lipase Activity Assay. In this graph the linear portions are highlighted by black borders around the 
markers; these points were used to calculate the lines of best fit. At least five linear points were used for each 
sample. Whilst there is quite a difference in the intensities measured this was mainly a result of the time taken to 
begin the assay; the gradients of the lines for the enzyme samples are relatively similar.
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In order to quantify the results obtained a calibration of 4-MU fluorescence was performed. 

4-MU (23.5 mg) was initially dissolved in DMSO (5 ml), and then 6 dilutions in ultrapure 

water were prepared and analysed [Fig. B.4]. The equation of the line of best fit was used to 

calculate the equivalent concentration of the change in intensity measured in the activity 

assay, giving a value of 21.54 nM/min. One unit was subsequently defined as the amount 

required to cleave 1.0 nmole of 4-MUB per minute in Tris buffer (pH 7.5, 0.2 M) at room 

temperature and with a total reaction volume of 3 ml.

Fig. B.4: Calibration of 4-Methyl Umbelliferone Fluorescence. The graph shows the calibration curve obtained 
for the fluorescence of 4-MU. The samples tested cover the full range of detectable intensities and a good R2 
value was obtained. Three readings were taken for each concentration; mean values are displayed on this graph. 
The equation of the line is displayed on the graph.

B.4 Trypsin

The method for this assay was taken from Sigma-Aldrich.[6] One unit was defined as the 

amount required to produce a change in absorbance at 253 nm of 0.001 per minute with Nα-

Benzoyl-L-arginine ethyl ester as the substrate with sodium phosphate monobasic buffer (67 

mM, pH 7.6) at 25 °C in a reaction volume of 3.20 ml. The absorbance was measured by UV 

Spectrophotometry. Three enzyme samples were tested along with a blank with no enzyme.

The three results for enzyme activity were found to be particularly close, with the average 

activity calculated as 1558.2 units/mg with a standard deviation of 22.66 [Fig. B.5].

Fig. B.5: Trypsin Activity Assay. The absorbance at 253 nm is plotted against the time in minutes. As with the 
previous figures, only the linear portion is shown here. The absorbance values for the enzyme samples quickly 
exceeded 1, however, as the trend showed good linearity and all the lines of best fit had R2 values >0.99 it was 
decided it would not be necessary to repeat the measurements.
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Appendix C
The GPC chromatograms and distribution plots for untreated PGA-CF5, polymer incubated 

without enzyme and polymer incubated with lipase, elastase or esterase follow. These results 

are discussed in detail in Section 3.3, p.15.
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Blank 24 hours
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Lipase 24 hours
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Lipase 72 hours
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Elastase 24 hours
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Elastase 96 hours

2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655



46

Esterase 24 hours

2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714



47

Esterase 72 hours

2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773



48

Esterase 96 hours

2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832



49

References
[1] Sigma-Aldrich, Elastase (EC 3.4.21.36) continuous spectrophotometric rate assay, 

(n.d.). http://www.sigmaaldrich.com/technical-

documents/protocols/biology/enzymatic-assay-of-elastase.html (accessed March 7, 

2017).

[2] Sigma-Aldrich, Enzymatic Assay of Esterase, (n.d.). 

http://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-

assay-of-esterase.html (accessed March 7, 2017).

[3] T.J. Jacks, H.W. Kircher, Fluorometric Assay for the Hydrolytic Activity of Lipase 

Using Fatty Acyl Esters of 4-Methylumbelliferone, Anal. Biochem. 21 (1967) 279–

285. doi:10.1016/0003-2697(67)90190-X.

[4] W. Andlauer, P. Prunier, D. Prim, Fluorometric Method to Assess Lipase Inhibition 

Activity, Chim. Int. J. Chem. 63 (2009) 695–697. doi:10.2533/chimia.2009.695.

[5] R.N. Roy, Fluorimetric Assay of the Activity of Extracellular Lipases of Pseudomonas 

fluorescens and Serratia marcescens, J. Appl. Bacteriol. 49 (1980) 265–271. 

doi:10.1111/j.1365-2672.1980.tb05124.x.

[6] Sigma-Aldrich, Procedure for Enzymatic Assay of Trypsin (EC 3.4.21.4), (n.d.). 

http://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-

assay-of-trypsin.html (accessed March 7, 2017).

2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891



50

Figures for Supplementary Information – Appendices A & B

Figure A.1

Fig A.1: NMR Spectrum of PGA-Carboxyfluorescein at Low Substitution. The peaks relating 
to carboxyfluorescein can be seen on the left-hand side of the spectrum whereas those from 
PGA are on the right-hand side. The integrals of the peaks labelled ‘b’, from the PGA, and ‘f, 
g, h’, from the carboxyfluorescein were used to calculate the substitution ratio.
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Figure A.2

Fig. A.2: NMR Spectrum of PGA-CF5. As with PGA-CF [Fig A.1] the integrals of the peaks 
labelled ‘f, g, h’ (carboxyfluorescein) were used to calculate the amount of 
carboxyfluorescein, relative to peak b (PGA). The substitution was estimated to be 1.7%.
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Figure A.3

Fig. A.3: NMR Spectrum of PGA-PEG. The peak labelled ‘e’ represents the protons of PEG 
adjacent to the ester bond, and was consequently used to confirm the successful coupling and 
to predict the substitution ratio.

3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068



53

Figure B.1

Fig. B.1: Elastase Activity Assay. The change in absorbance at 410 nm is plotted against the 
time in minutes. Although measurements were taken throughout the 6 minutes only the linear 
portions are shown here, as recommended in the method. The line of best fit was used to 
calculate the change in absorbance, and consequently the activity, for each sample. These 
lines all had a R2 value >0.985.
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Figure B.2

Fig. B.2: Esterase Activity Assay. This graph charts the additions of NaOH made and the time 
points at which this occurred. As with the elastase activity assay, only the linear portions are 
shown here to aid clarity. The lines of best fit all had R2 values >0.99. The blank is not shown 
as the pH did not return to 8.0 for the duration of the assay. The gradient of the line was taken 
as the rate of change and then corrected for the blank; this figure was used to calculate the 
activity.
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Figure B.3

Fig. B.3: Lipase Activity Assay. In this graph the linear portions are highlighted by black 
borders around the markers; these points were used to calculate the lines of best fit. At least 
five linear points were used for each sample. Whilst there is quite a difference in the 
intensities measured this was mainly a result of the time taken to begin the assay; the 
gradients of the lines for the enzyme samples are relatively similar.
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Figure B.4

Fig. B.4: Calibration of 4-Methyl Umbelliferone Fluorescence. The graph shows the 
calibration curve obtained for the fluorescence of 4-MU. The samples tested cover the full 
range of detectable intensities and a good R2 value was obtained. Three readings were taken 
for each concentration; mean values are displayed on this graph. The equation of the line is 
displayed on the graph.
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Figure B.5

Fig. B.5: Trypsin Activity Assay. The absorbance at 253 nm is plotted against the time in 
minutes. As with the previous figures, only the linear portion is shown here. The absorbance 
values for the enzyme samples quickly exceeded 1, however, as the trend showed good 
linearity and all the lines of best fit had R2 values >0.99 it was decided it would not be 
necessary to repeat the measurements.
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