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CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM\ast 

ALEX BESPALOV\dagger , DIRK PRAETORIUS\ddagger , LEONARDO ROCCHI\dagger , AND

MICHELE RUGGERI\S 

Abstract. We propose and analyze novel adaptive algorithms for the numerical solution of
elliptic partial differential equations with parametric uncertainty. Four different marking strategies
are employed for refinement of stochastic Galerkin finite element approximations. The algorithms are
driven by the energy error reduction estimates derived from two-level a posteriori error indicators for
spatial approximations and hierarchical a posteriori error indicators for parametric approximations.
The focus of this work is on the mathematical foundation of the adaptive algorithms in the sense
of rigorous convergence analysis. In particular, we prove that the proposed algorithms drive the
underlying energy error estimates to zero.

Key words. adaptive methods, a posteriori error analysis, two-level error estimate, stochastic
Galerkin methods, finite element methods, parametric PDEs

AMS subject classifications. 35R60, 65C20, 65N12, 65N15, 65N30
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1. Introduction. The design and analysis of adaptive algorithms for the nu-
merical solution of partial differential equations (PDEs) with parametric or uncertain
inputs have been active research themes in the last decade. Adaptive algorithms are
indispensable when solving a particularly challenging class of parametric problems
represented by PDEs whose inputs depend on infinitely many uncertain parameters.
For this class of problems, adaptive algorithms have been shown, on the one hand,
to yield approximations that are immune to the curse of dimensionality and, on the
other hand, to outperform standard sampling methods (see [11, 12]).

It is well known in the finite element community that adaptive strategies based on
rigorous a posteriori error analysis of computed solutions provide an effective mecha-
nism for building approximation spaces and accelerating convergence. Several adap-
tive strategies of this type have been proposed in the context of stochastic Galerkin
finite element method (sGFEM) for PDE problems with parametric or uncertain in-
puts. Typically, they are developed by extending the a posteriori error estimation
techniques commonly used for deterministic problems to parametric settings. For
example, dual-based a posteriori error estimates are employed in [27]; implicit er-
ror estimators (in the spirit of [1]) are used in [32] for the sGFEM based on multi-
element generalized polynomial chaos expansions; explicit residual-based a posteriori
error estimators provide spatial and stochastic error indicators for adaptive refinement
in [24, 15, 16]; local equilibration error estimators are utilized in [17]; and hierarchi-
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cal error estimators and the associated estimates of error reduction drive adaptive
algorithms proposed in [8, 6, 5, 13, 26].

In contrast to the design of algorithms, convergence analysis of adaptive sGFEM
is much less developed. In [16], convergence of the adaptive algorithm driven by
residual-based error estimators is proved in the spirit of the convergence analysis for
deterministic FEM in [10]; moreover, the quasi-optimality of the generated sequence of
meshes, in a suitable sense, is established. The analysis in [16], however, requires that
the adaptive algorithm enforces additional spatial refinements during the iterations
where parametric enrichment is performed (see [16, section 6]). This is caused by
a purely theoretical artifact associated with using inverse estimates for the residual-
based error estimators (see [16, section 6.1]).

In this paper, we study convergence of adaptive algorithms which are driven by the
energy error reduction estimates derived from two-level a posteriori error indicators
for spatial approximations and hierarchical a posteriori error indicators for parametric
approximations. The underlying a posteriori error estimate that combines these two
types of indicators has been recently introduced and analyzed in [5]. We employ four
practical marking criteria which are combinations of D\"orfler [14] and maximum [2]
marking strategies. At each step, the algorithm performs either solely mesh refinement
or solely polynomial enrichment. Our central result in Theorem 5 shows that each
proposed adaptive algorithm generates a sequence of Galerkin approximations such
that the corresponding sequence of energy error estimates converges to zero. There-
fore, this result provides a theoretical guarantee that, for any given positive tolerance,
the algorithms stop after a finite number of iterations. We note in Remark 6 that the
proof of Theorem 5 is given for more general marking strategies, which are inspired
by [29, section 2.2]. As an immediate consequence of Theorem 5, we show that, under
the saturation assumption, the Galerkin approximations generated by the algorithms
converge to the true parametric solution (Corollary 7). Additionally, in the case of
D\"orfler marking, we prove linear convergence of the energy error in Theorem 8.

We note that, although the results in this paper are presented for a simple model
problem---steady-state diffusion equation whose coefficient has affine dependence on
infinitely many parameters---our analysis will apply to more general elliptic linear
problems with affine-parametric inputs (e.g., to linear elasticity models; see [26]).
Furthermore, in practical applications, the goal of the simulation can be a specific
quantity of interest, represented by a (non)linear functional of the solution to a PDE
problem. In these cases, it is important to design adaptive strategies that directly
reduce errors in the goal functional---the so-called goal-oriented adaptivity (see, e.g.,
[20, 21, 19] for a sampling-based approach to adaptive computation of empirical dis-
tribution functions and [27, 9, 5] for adaptive goal-oriented sGFEMs). While the
present work focuses on approximating solutions in the energy norm, we expect that
the main ideas will apply in the context of goal-oriented adaptivity (see, e.g., [23, 22]
for the deterministic case).

The paper is organized as follows. Section 2 introduces the parametric model
problem and its weak formulation. In section 3, we introduce the approximation
spaces, define sGFEM formulations, and recall the a posteriori error estimates derived
in [5]. In section 4, we present adaptive algorithms with four different marking criteria
and formulate the main results of this work. The results of numerical experiments
are reported in section 5, where, in particular, we compare the computational cost
associated with employing different marking criteria. Technical details and the proofs
of theorems are given in sections 6--8.

D
ow

nl
oa

de
d 

10
/1

0/
19

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM 2361

2. Parametric model problem. LetD \subset \BbbR d (d = 2, 3) be a bounded Lipschitz
domain with polytopal boundary \partial D and let \Gamma :=

\prod \infty 
m=1[ - 1, 1] denote the infinitely

dimensional hypercube. We consider the elliptic boundary value problem

(2.1)
 - \nabla \cdot (a\nabla u) = f in D \times \Gamma ,

u = 0 on \partial D \times \Gamma ,

where the scalar coefficient a and the right-hand side function f (and, hence, the
solution u) depend on a countably infinite number of scalar parameters, i.e., a =
a(x,y), f = f(x,y), and u = u(x,y) with x \in D and y \in \Gamma . For the coefficient a, we
assume linear dependence on the parameters, i.e.,

(2.2) a(x,y) = a0(x) +

\infty \sum 
m=1

ymam(x) for x \in D and y = (ym)m\in \BbbN \in \Gamma ,

whereas for the right-hand side of (2.1) we assume that f \in L2
\pi (\Gamma ;H

 - 1(D)). Here,
\pi =\pi (y) is a probability measure on (\Gamma ,\scrB (\Gamma )) with \scrB (\Gamma ) being the Borel \sigma -algebra on
\Gamma , and we assume that \pi (y) is the product of symmetric Borel probability measures
\pi m on [ - 1, 1], i.e., \pi (y) =

\prod \infty 
m=1 \pi m(ym). The scalar functions am \in W 1,\infty (D)

(m \in \BbbN 0) in (2.2) are required to satisfy the following inequalities

0 < amin
0 \leq a0(x) \leq amax

0 < \infty for almost all x \in D(2.3)

and \tau :=
1

amin
0

\infty \sum 
m=1

\| am\| L\infty (D) < 1.(2.4)

With the Sobolev space \BbbX := H1
0 (D), consider the Bochner space \BbbV := L2

\pi (\Gamma ;\BbbX ). On
\BbbV , define the bilinear forms

B0(u, v) :=

\int 
\Gamma 

\int 
D

a0(x)\nabla u(x,y) \cdot \nabla v(x,y) dxd\pi (y),

B(u, v) := B0(u, v) +

\infty \sum 
m=1

\int 
\Gamma 

\int 
D

ymam(x)\nabla u(x,y) \cdot \nabla v(x,y) dx d\pi (y).

An elementary computation shows that assumptions (2.2)--(2.4) ensure that the bi-
linear forms B0(\cdot , \cdot ) and B(\cdot , \cdot ) are symmetric, continuous, and elliptic on \BbbV . Let | | | \cdot | | | 
(resp., | | | \cdot | | | 0) denote the norm induced by B(\cdot , \cdot ) (resp., B0(\cdot , \cdot )). Then, there holds

(2.5) \lambda | | | v| | | 2 \leq | | | v| | | 20 \leq \Lambda | | | v| | | 2 for all v \in \BbbV ,

where 0 < \lambda :=
amin
0

amax
0 (1+\tau ) < 1 < \Lambda :=

amax
0

amin
0 (1 - \tau )

< \infty .

The parametric problem (2.1) is understood in the weak sense: Given f \in 
L2
\pi (\Gamma ;H

 - 1(D)), find u \in \BbbV such that

(2.6) B(u, v) = F (v) :=

\int 
\Gamma 

\int 
D

f(x,y)v(x,y) dx d\pi (y) for all v \in \BbbV .

The well-posedness of (2.6) follows by the Riesz theorem.
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3. Finite element discretization and a posteriori error analysis.

3.1. Approximation spaces. Let \scrT \bullet be a mesh, i.e., a conforming triangulation
of D into compact nondegenerate simplices T \in \scrT \bullet . Let \scrE \bullet be the corresponding set
of facets. Let \scrE int

\bullet \subset \scrE \bullet be the set of interior facets, i.e., for each E \in \scrE int
\bullet , there exist

unique T, T \prime \in \scrT \bullet such that E = T \cap T \prime . Let \scrN \bullet be the set of vertices of \scrT \bullet . For
z \in \scrN \bullet , let \varphi \bullet ,z be the associated hat function, i.e., \varphi \bullet ,z is piecewise affine, globally
continuous, and satisfies the Kronecker property \varphi \bullet ,z(z

\prime ) = \delta zz\prime for all z\prime \in \scrN \bullet . We
consider the space of continuous piecewise linear finite elements

\BbbX \bullet := \scrS 1
0 (\scrT \bullet ) := \{ v\bullet \in \BbbX : v\bullet | T is affine for all T \in \scrT \bullet \} \subset \BbbX = H1

0 (D).

Recall that \{ \varphi \bullet ,z : z \in \scrN \bullet \setminus \partial D\} is the standard basis of \BbbX \bullet .
Let us now introduce the polynomial spaces on \Gamma . For each m \in \BbbN , let (Pm

n )n\in \BbbN 0

denote the sequence of univariate polynomials which are orthogonal with respect to \pi m

such that Pm
n is a polynomial of degree n \in \BbbN 0 with \| Pm

n \| L2
\pi m

( - 1,1) = 1 and Pm
0 \equiv 1.

It is well known that \{ Pm
n : n \in \BbbN 0\} is an orthonormal basis of L2

\pi m
( - 1, 1). With

\BbbN \BbbN 
0 := \{ \nu = (\nu m)m\in \BbbN : \nu m \in \BbbN 0 for all m \in \BbbN \} and supp(\nu ) := \{ m \in \BbbN : \nu m \not = 0\} , let

\frakI := \{ \nu \in \BbbN \BbbN 
0 : \# supp(\nu ) < \infty \} be the set of finitely supported multi-indices. Note

that \frakI is countable. With

P\nu (y) :=
\prod 
m\in \BbbN 

Pm
\nu m

(ym) =
\prod 

m\in supp(\nu )

Pm
\nu m

(ym) for all \nu \in \frakI and all y \in \Gamma ,

the set \{ P\nu : \nu \in \frakI \} is an orthonormal basis of \BbbP := L2
\pi (\Gamma ); see [30, Theorem 2.12].

The Bochner space \BbbV = L2
\pi (\Gamma ;\BbbX ) is isometrically isomorphic to \BbbX \otimes \BbbP and each

function v \in \BbbV can be represented in the form

(3.1) v(x,y) =
\sum 
\nu \in \frakI 

v\nu (x)P\nu (y) with unique coefficients v\nu \in \BbbX .

Moreover, there holds (see [5, Lemma 2.1])

(3.2) B0(v, w) =
\sum 
\nu \in \frakI 

\int 
D

a0(x)\nabla v\nu (x) \cdot \nabla w\nu (x) dx for all v, w \in \BbbV 

and, in particular,

(3.3) | | | v| | | 20 =
\sum 
\nu \in \frakI 

\| a1/20 \nabla v\nu \| 2L2(D) =
\sum 
\nu \in \frakI 

| | | v\nu P\nu | | | 20 for all v \in \BbbV .

Let 0 = (0, 0, . . . ) and consider a finite index set \frakP \bullet \subset \frakI with 0 \in \frakP \bullet . We denote
by supp(\frakP \bullet ) :=

\bigcup 
\nu \in \frakP \bullet 

supp(\nu ) the set of active parameters in \frakP \bullet .
Our discretization of (2.6) is based on the finite-dimensional tensor-product space

\BbbV \bullet := \BbbX \bullet \otimes \BbbP \bullet \subset \BbbX \otimes \BbbP = \BbbV with \BbbP \bullet := span\{ P\nu : \nu \in \frakP \bullet \} \subset \BbbP = L2
\pi (\Gamma ).

The Galerkin discretization of (2.6) reads as follows: Find u\bullet \in \BbbV \bullet such that

(3.4) B(u\bullet , v\bullet ) = F (v\bullet ) for all v\bullet \in \BbbV \bullet .
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Fig. 1. For NVB in two dimensions (2D), each triangle T \in \scrT \bullet has one reference edge,
indicated by the double line (left). Bisection of T is achieved by halving the reference edge. The
reference edges of the sons are always opposite to the new vertex (middle). Recursive application
of this rule leads to conforming meshes. After three bisections per element all edges of a triangle
are halved (right). If all elements T \in \scrT \bullet are refined by three bisections, the resulting uniform
refinement is conforming.

3.2. Mesh refinement and parametric enrichment. For mesh refinement,
we employ newest vertex bisection (NVB); see Figure 1 for d = 2 and, e.g., [18,
Figure 2] for d = 3 as well as [31, 25]. We assume that any mesh \scrT \bullet employed for the
spatial discretization can be obtained by applying NVB refinement(s) to a given initial

mesh \scrT 0. For a given mesh \scrT \bullet , let \widehat \scrT \bullet be the coarsest mesh obtained from \scrT \bullet such
that: (i) for d = 2, all edges of \scrT \bullet have been bisected once (i.e., uniform refinement
of all elements by three bisections; see Figure 1); (ii) for d = 3, all faces contain an

interior vertex (see [18, Figure 3] and the associated discussion therein). Then \widehat \scrN \bullet 
denotes the set of vertices of \widehat \scrT \bullet and \{ \widehat \varphi \bullet ,z : z \in \widehat \scrN \bullet \} is the corresponding set of hat

functions. The finite element space associated with \widehat \scrT \bullet is denoted by \widehat \BbbX \bullet := \scrS 1
0 (
\widehat \scrT \bullet ).

With \scrN +
\bullet := ( \widehat \scrN \bullet \setminus \scrN \bullet ) \setminus \partial D being the set of new interior vertices created by uniform

refinement of \scrT \bullet , one has \widehat \BbbX \bullet = \BbbX \bullet \oplus span\{ \widehat \varphi \bullet ,z : z \in \scrN +
\bullet \} . For a later use, we note

that there exists a constant K \geq 1 depending only on the initial mesh \scrT 0 such that

(3.5) \#\{ z \in \scrN +
\bullet : | T \cap supp(\widehat \varphi \bullet ,z)| > 0\} \leq K < \infty for all T \in \scrT \bullet .

For a set of marked vertices \scrM \bullet \subseteq \scrN +
\bullet , let \scrT \circ := refine(\scrT \bullet ,\scrM \bullet ) be the coarsest

mesh such that \scrM \bullet \subseteq \scrN \circ , i.e., all marked vertices are vertices of \scrT \circ . Since NVB is a
binary refinement rule, this implies that \scrN \circ \subseteq \widehat \scrN \bullet and (\scrN \circ \setminus \scrN \bullet ) \setminus \partial D = \scrN +

\bullet \cap \scrN \circ . In
particular, the choices \scrM \bullet = \emptyset and \scrM \bullet = \scrN +

\bullet lead to the meshes \scrT \bullet = refine(\scrT \bullet , \emptyset )
and \widehat \scrT \bullet = refine(\scrT \bullet ,\scrN +

\bullet ), respectively.
For parametric enrichment, we follow [8, 6, 5] and consider the detail index set

(3.6) Q\bullet := \{ \mu \in \frakI \setminus \frakP \bullet : \mu = \nu \pm \varepsilon m for all \nu \in \frakP \bullet and all m = 1, . . . ,M\frakP \bullet + 1\} ,

where \varepsilon m \in \frakI denotes the mth unit sequence, i.e., (\varepsilon m)i = \delta mi for all i \in \BbbN , and
M\frakP \bullet \in \BbbN is given by

M\frakP \bullet :=

\Biggl\{ 
0 if \frakP \bullet = \{ 0\} ,
max\{ max(supp(\nu )) : \nu \in \frakP \bullet \setminus \{ 0\} \} otherwise.

Then an enriched polynomial space \BbbP \circ with \BbbP \bullet \subset \BbbP \circ \subset \BbbP can be obtained by
adding some marked indices \frakM \bullet \subseteq Q\bullet to the current index set \frakP \bullet , i.e., \BbbP \circ :=
span\{ P\nu : \nu \in \frakP \circ \} with \frakP \circ := \frakP \bullet \cup \frakM \bullet . We denote by \widehat \BbbP \bullet \subset \BbbP the polynomial

space obtained by adding to \frakP \bullet all indices of Q\bullet , i.e., \widehat \BbbP \bullet := span\{ P\nu : \nu \in \widehat \frakP \bullet \} with\widehat \frakP \bullet := \frakP \bullet \cup Q\bullet .
The analysis of the forthcoming adaptive algorithm will also rely on the spaces

(3.7) \widehat \BbbV \bullet := (\widehat \BbbX \bullet \otimes \BbbP \bullet ) + (\BbbX \bullet \otimes \widehat \BbbP \bullet ) and \widehat \BbbV \prime 
\bullet := \BbbX \bullet \otimes \widehat \BbbP \bullet .

D
ow

nl
oa

de
d 

10
/1

0/
19

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2364 BESPALOV, PRAETORIUS, ROCCHI, AND RUGGERI

3.3. A posteriori error estimation. In order to estimate the error due to
spatial discretization, we employ the two-level error estimation strategy from [5].
Specifically, our spatial error estimate is given by
(3.8)

\eta \bullet (\scrN +
\bullet )2 :=

\sum 
z\in \scrN +

\bullet 

\eta \bullet (z)
2 with \eta \bullet (z)

2 :=
\sum 
\nu \in \frakP \bullet 

| F (\widehat \varphi \bullet ,zP\nu ) - B(u\bullet , \widehat \varphi \bullet ,zP\nu )| 2

\| a1/20 \nabla \widehat \varphi \bullet ,z\| 2L2(D)

.

Remark 1. For d = 2, we have \#\scrN +
\bullet = \#\scrE int

\bullet , and the new degrees of freedom
correspond to the midpoints of interior edges. Then, the spatial error estimate can
be indexed by E \in \scrE int

\bullet rather than by z \in \scrN +
\bullet ; see [5]. Furthermore, in this case,

one has K = 3 in (3.5).

In order to estimate the error due to polynomial approximation on the parameter
domain \Gamma , we employ the hierarchical error estimator from [3, 8]. First, for each
\nu \in Q\bullet , we define the estimator e\nu \bullet \in \BbbX \bullet satisfying

(3.9) B0(e
\nu 
\bullet P\nu , v\bullet P\nu ) = F (v\bullet P\nu ) - B(u\bullet , v\bullet P\nu ) for all v\bullet \in \BbbX \bullet .

Then, the parametric error estimate is defined as follows:

(3.10) \eta \bullet (Q\bullet )
2 :=

\sum 
\nu \in Q\bullet 

\eta \bullet (\nu )
2 with \eta \bullet (\nu ) := \| a1/20 \nabla e\nu \bullet \| L2(D).

From now on, for any \scrM \bullet \subseteq \scrN +
\bullet and \frakM \bullet \subseteq Q\bullet , we use the following notation:

\eta \bullet (\scrM \bullet )
2 :=

\sum 
z\in \scrM \bullet 

\eta \bullet (z)
2, \eta \bullet (\frakM \bullet )

2 :=
\sum 

\nu \in \frakM \bullet 

\eta \bullet (\nu )
2,

\eta \bullet (\scrM \bullet , \frakM \bullet )
2 := \eta \bullet (\scrM \bullet )

2 + \eta \bullet (\frakM \bullet )
2.

We define the overall error estimate as follows:

(3.11) \eta 2\bullet := \eta \bullet (\scrN +
\bullet , Q\bullet )

2 = \eta \bullet (\scrN +
\bullet )2 + \eta \bullet (Q\bullet )

2.

Let us now consider the enriched space \widehat \BbbV \bullet defined in (3.7). According to the Riesz

theorem, there exists a unique \widehat u\bullet \in \widehat \BbbV \bullet such that

(3.12) B(\widehat u\bullet , \widehat v\bullet ) = F (\widehat v\bullet ) for all \widehat v\bullet \in \widehat \BbbV \bullet .

Since \BbbV \bullet \subset \widehat \BbbV \bullet , the Galerkin orthogonality implies that

(3.13) | | | u - \widehat u\bullet | | | 2 + | | | \widehat u\bullet  - u\bullet | | | 2 = | | | u - u\bullet | | | 2.

In [5, Theorem 3.1], we prove the following theorem for the overall error estimate \eta \bullet .
The main result is the estimate (3.14), while efficiency (3.15) and reliability (3.17)
then follow easily from (3.13).

Theorem 2. There exists a constant Cthm \geq 1, which depends only on the initial
mesh \scrT 0 and the mean field a0, such that

(3.14)
\lambda 

K
\eta 2\bullet \leq | | | \widehat u\bullet  - u\bullet | | | 2 \leq \Lambda Cthm \eta 2\bullet ,

where \lambda , \Lambda are the constants in (2.5) and K is the constant in (3.5). In particular,
there holds efficiency

(3.15)
\lambda 

K
\eta 2\bullet \leq | | | \widehat u\bullet  - u\bullet | | | 2

(3.13)

\leq | | | u - u\bullet | | | 2.
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Moreover, under the saturation assumption

(3.16) | | | u - \widehat u\bullet | | | \leq qsat | | | u - u\bullet | | | with some constant 0 < qsat < 1,

there holds reliability

(3.17) | | | u - u\bullet | | | 2
(3.13)

\leq 1

1 - q2sat
| | | \widehat u\bullet  - u\bullet | | | 2 \leq \Lambda Cthm

1 - q2sat
\eta 2\bullet .

The proof of Theorem 2 given in [5] relies on the stable subspace decompositions

\widehat \BbbX \bullet = \BbbX \bullet \oplus 
\bigoplus 

z\in \scrN +
\bullet 

span \{ \widehat \varphi \bullet ,z\} and \widehat \BbbP \bullet = \BbbP \bullet \oplus 
\bigoplus 
\nu \in Q\bullet 

span \{ P\nu \} .

For d = 2, the analysis in [5], in fact, proves a more general result than estimate (3.14).
Let \scrT \circ = refine(\scrT \bullet ,\scrM \bullet ) and consider z \in (\scrN \circ \setminus \scrN \bullet ) \setminus \partial D = \scrN +

\bullet \cap \scrN \circ \subseteq \scrN +
\bullet . Let

\varphi \circ ,z \in \BbbX \circ and \widehat \varphi \bullet ,z \in \widehat \BbbX \bullet be the corresponding hat functions. Then, two-dimensional
NVB refinement ensures that \varphi \circ ,z = \widehat \varphi \bullet ,z, which yields the stable decomposition

\BbbX \circ = \BbbX \bullet \oplus 
\bigoplus 

z\in \scrN +
\bullet \cap \scrN \circ 

span \{ \varphi \circ ,z\} = \BbbX \bullet \oplus 
\bigoplus 

z\in \scrN +
\bullet \cap \scrN \circ 

span \{ \widehat \varphi \bullet ,z\} .

As a consequence, the analysis from [5] also proves the following result that allows
one to control the error reduction due to adaptive enrichment of both components of
the approximation space \BbbV \bullet = \BbbX \bullet \otimes \BbbP \bullet .

Corollary 3. Let d = 2. Let Cthm \geq 1 be the constant from Theorem 2.
Suppose that \scrT \circ = refine(\scrT \bullet ,\scrM \bullet ) and \widehat \scrT \bullet = refine(\scrT \bullet ,\scrN +

\bullet ) are obtained by two-
dimensional NVB refinement and \frakP \circ = \frakP \bullet \cup \frakM \bullet for an index set \frakM \bullet \subseteq Q\bullet . If
u\bullet \in \BbbV \bullet and u\circ \in \BbbV \circ are two Galerkin approximations, then there holds

(3.18)
\lambda 

K
\eta \bullet 
\bigl( 
\scrN +

\bullet \cap \scrN \circ , \frakM \bullet 
\bigr) 2 \leq | | | u\circ  - u\bullet | | | 2 \leq \Lambda Cthm \eta \bullet 

\bigl( 
\scrN +

\bullet \cap \scrN \circ , \frakM \bullet 
\bigr) 2
.

4. Main results.

4.1. Adaptive algorithms. Let \scrT 0 be the initial mesh and let the initial index
set \frakP 0 contain only the zero index, i.e., \frakP 0 := \{ 0\} . The adaptive algorithm below
generates a sequence (\scrT \ell )\ell \in \BbbN 0 of adaptively refined meshes and a sequence (\frakP \ell )\ell \in \BbbN 0

of adaptively enriched index sets such that, for all \ell \in \BbbN 0, there holds

\scrT \ell +1 = refine(\scrT \ell ,\scrM \ell ) for some \scrM \ell \subseteq \scrN +
\ell and \frakP \ell \subseteq \frakP \ell +1 \subseteq \widehat \frakP \ell = \frakP \ell \cup Q\ell .

In particular, by the definition of the detail index set (3.6), one has Q\ell \setminus \frakP \ell +1 \subseteq Q\ell +1

and \widehat \frakP \ell \subseteq \widehat \frakP \ell +1. Thus, the following inclusions hold:

\BbbX \ell \subseteq \BbbX \ell +1 \subseteq \widehat \BbbX \ell \subset \BbbX and \BbbP \ell \subseteq \BbbP \ell +1 \subseteq \widehat \BbbP \ell \subseteq \widehat \BbbP \ell +1 \subset \BbbP .

Furthermore, since the adaptive algorithm presented below performs either mesh re-
finement or parametric enrichment at each iteration \ell \in \BbbN 0, one of the inclusions
\BbbX \ell \subseteq \BbbX \ell +1 or \BbbP \ell \subseteq \BbbP \ell +1 is strict. Therefore, recalling the definition of the enriched

spaces \widehat \BbbV \ell and \widehat \BbbV \prime 
\ell (see (3.7)), we conclude that

\BbbV \ell \subset \widehat \BbbV \prime 
\ell \subset \widehat \BbbV \ell \subset \BbbV , \BbbV \ell \subset \BbbV \ell +1, \widehat \BbbV \prime 

\ell \subset \widehat \BbbV \prime 
\ell +1, and \widehat \BbbV \ell \subset \widehat \BbbV \ell +1 for all \ell \in \BbbN 0.
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We consider the following basic loop of an adaptive algorithm, where the precise
marking strategy is still left open, but will be specified subsequently.

Algorithm 4. Input: \scrT 0, \frakP 0 = \{ 0\} , marking criterion. Set \ell = 0.
(i) Compute discrete solution u\ell \in \BbbV \ell .
(ii) Compute error indicators \eta \ell (z) and \eta \ell (\nu ) for all z \in \scrN +

\ell and all \nu \in Q\ell .
(iii) Use marking criterion to obtain \scrM \ell \subseteq \scrN +

\ell and \frakM \ell \subseteq Q\ell .
(iv) Set \frakP \ell +1 = \frakP \ell \cup \frakM \ell and \scrT \ell +1 = refine(\scrT \ell ,\scrM \ell ).
(v) Increase the counter \ell \mapsto \rightarrow \ell + 1 and continue with (i).
Output: (\scrT \ell ,\frakP \ell , u\ell , \eta \ell )\ell \in \BbbN 0

.

The criteria below specify four different marking strategies for step (iii) of Al-
gorithm 4 and, at the same time, determine the type of enrichment for the next
iteration of the algorithm. Each strategy comes with three parameters: \vargamma > 0 is a
weight modulating the choice between mesh refinement and parametric enrichment
(with parametric enrichment being favored for \vargamma > 1), 0 < \theta \BbbX \leq 1 controls the mark-
ing of nodes in \scrN +

\ell (always based on the D\"orfler criterion), whereas 0 < \theta \BbbP \leq 1
controls the marking of indices in Q\ell (based on either the D\"orfler criterion or the
maximum criterion).

The first criterion enforces spatial refinement if the spatial error estimate is com-
parably large; otherwise, parametric enrichment is chosen for the next iteration. The
marked facets (resp., marked indices) are obtained via D\"orfler marking.

Criterion A (see [15, 6]).
Input: error indicators \{ \eta \ell (z) : z \in \scrN +

\ell \} , \{ \eta \ell (\nu ) : \nu \in Q\ell \} ; marking parameters
0 < \theta \BbbX , \theta \BbbP \leq 1, and \vargamma > 0.

Case (a): \vargamma \eta \ell (Q\ell ) \leq \eta \ell (\scrN +
\ell ).

 - Set \frakM \ell = \emptyset .
 - Find \scrM \ell \subseteq \scrN +

\ell with minimal cardinality such that \theta \BbbX \eta \ell (\scrN +
\ell ) \leq \eta \ell (\scrM \ell ).

Case (b): \vargamma \eta \ell (Q\ell ) > \eta \ell (\scrN +
\ell ).

 - Find \frakM \ell \subseteq Q\ell with minimal cardinality such that \theta \BbbP \eta \ell (Q\ell ) \leq \eta \ell (\frakM \ell ).
 - Set \scrM \ell = \emptyset .

Output: \scrM \ell \subseteq \scrN +
\ell and \frakM \ell \subseteq Q\ell , where one of the subsets is empty.

Criterion B is based on the idea that the error estimate \eta \ell on the refined elements
(resp., added indices) provides information about the associated error reduction (see
Corollary 3). This criterion enforces either spatial refinement (if the error reduction for
spatial mesh refinement is comparably large) or parametric enrichment (otherwise).

Criterion B (see [6]).
Input: error indicators \{ \eta \ell (z) : z \in \scrN +

\ell \} , \{ \eta \ell (\nu ) : \nu \in Q\ell \} ; marking parameters
0 < \theta \BbbX , \theta \BbbP \leq 1, and \vargamma > 0.

 - Find \widetilde \frakM \ell \subseteq Q\ell with minimal cardinality such that \theta \BbbP \eta \ell (Q\ell ) \leq \eta \ell (\widetilde \frakM \ell ).

 - Find \widetilde \scrM \ell \subseteq \scrN +
\ell with minimal cardinality such that \theta \BbbX \eta \ell (\scrN +

\ell ) \leq \eta \ell (\widetilde \scrM \ell ).

 - Define \widetilde \scrR \ell := \scrN +
\ell \cap \widetilde \scrN \ell , where \widetilde \scrN \ell is associated with \widetilde \scrT \ell = refine(\scrT \ell , \widetilde \scrM \ell ).

Case (a): \vargamma \eta \ell (\widetilde \frakM \ell ) \leq \eta \ell ( \widetilde \scrR \ell ). Set \frakM \ell = \emptyset and \scrM \ell = \widetilde \scrM \ell .

Case (b): \vargamma \eta \ell (\widetilde \frakM \ell ) > \eta \ell ( \widetilde \scrR \ell ). Set \frakM \ell = \widetilde \frakM \ell and \scrM \ell = \emptyset .
Output: \scrM \ell \subseteq \scrN +

\ell and \frakM \ell \subseteq Q\ell , where one of the subsets is empty.

Criterion C is a modification of Criterion A. It employs a maximum criterion in
the parameter domain, while using D\"orfler marking in the physical domain. As in
Criterion A, the enrichment type is determined by the dominant contributing error
estimate.
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Criterion C.
Input: error indicators \{ \eta \ell (z) : z \in \scrN +

\ell \} , \{ \eta \ell (\nu ) : \nu \in Q\ell \} ; marking parameters
0 < \theta \BbbX \leq 1, 0 \leq \theta \BbbP \leq 1, and \vargamma > 0.

Case (a): \vargamma \eta \ell (Q\ell ) \leq \eta \ell (\scrN +
\ell ).

 - Set \frakM \ell = \emptyset .
 - Find \scrM \ell \subseteq \scrN +

\ell with minimal cardinality such that \theta \BbbX \eta \ell (\scrN +
\ell ) \leq \eta \ell (\scrM \ell ).

Case (b): \vargamma \eta \ell (Q\ell ) > \eta \ell (\scrN +
\ell ).

 - Define \frakM \ell := \{ \mu \in Q\ell : \eta \ell (\mu ) \geq (1 - \theta \BbbP ) max\nu \in Q\ell 
\eta \ell (\nu )\} .

 - Set \scrM \ell = \emptyset .
Output: \scrM \ell \subseteq \scrN +

\ell and \frakM \ell \subseteq Q\ell , where one of the subsets is empty.

Finally, Criterion D is a modification of Criterion B in the same way as Criterion C
is a modification of Criterion A. Namely, we employ D\"orfler marking in the physical
domain and use a maximum criterion in the parameter domain, while the refinement
type for the next iteration is determined by the dominant error reduction.

Criterion D.
Input: error indicators \{ \eta \ell (z) : z \in \scrN +

\ell \} , \{ \eta \ell (\nu ) : \nu \in Q\ell \} ; marking parameters
0 < \theta \BbbX \leq 1, 0 \leq \theta \BbbP \leq 1, and \vargamma > 0.

 - Define \widetilde \frakM \ell := \{ \mu \in Q\ell : \eta \ell (\mu ) \geq (1 - \theta \BbbP ) max\nu \in Q\ell 
\eta \ell (\nu )\} .

 - Find \widetilde \scrM \ell \subseteq \scrN +
\ell with minimal cardinality such that \theta \BbbX \eta \ell (\scrN +

\ell ) \leq \eta \ell (\widetilde \scrM \ell ).

 - Define \widetilde \scrR \ell := \scrN +
\ell \cap \widetilde \scrN \ell , where \widetilde \scrN \ell is associated with \widetilde \scrT \ell = refine(\scrT \ell , \widetilde \scrM \ell ).

Case (a): \vargamma \eta \ell (\widetilde \frakM \ell ) \leq \eta \ell ( \widetilde \scrR \ell ). Set \frakM \ell = \emptyset and \scrM \ell = \widetilde \scrM \ell .

Case (b): \vargamma \eta \ell (\widetilde \frakM \ell )>\eta \ell ( \widetilde \scrR \ell ). Set \frakM \ell = \widetilde \frakM \ell and \scrM \ell = \emptyset .
Output: \scrM \ell \subseteq \scrN +

\ell and \frakM \ell \subseteq Q\ell , where one of the subsets is empty.

In what follows we will write, e.g., Algorithm 4.A to refer to the algorithm ob-
tained by employing Criterion A in step (iii) of Algorithm 4. When we refer to Algo-
rithm 4 without specifying the marking criterion, this will mean that the statement
holds for any of the four proposed marking strategies.

4.2. Convergence results. The following theorem is the first main result of
the present work. Its proof is postponed to section 6. It shows that Algorithm 4
ensures convergence of the underlying error estimates to zero. We emphasize that it
is valid independently of the saturation assumption (3.16).

Theorem 5. For any choice of the marking parameters \theta \BbbX , \theta \BbbP , and \vargamma , Algo-
rithm 4 yields a convergent sequence of error estimates, i.e., \eta \ell \rightarrow 0 as \ell \rightarrow \infty .

Remark 6. The proof of Theorem 5 allows for more general marking strategies
than those proposed in subsection 4.1 above (see Propositions 10 and 11 in section 6).
However, we believe that the marking strategies proposed in Criteria A--D are natural
candidates for the present setting.

The following result is an immediate consequence of Theorem 5 and the reliabil-
ity (3.17) from Theorem 2.

Corollary 7. Let (u\ell )\ell \in \BbbN 0 be the sequence of Galerkin solutions generated by
Algorithm 4. Denote by (\widehat u\ell )\ell \in \BbbN 0

the associated sequence of Galerkin solutions satisfy-
ing (3.12) and suppose that the saturation assumption (3.16) holds for each pair u\ell , \widehat u\ell 

(\ell \in \BbbN 0). Then, for any choice of marking parameters \theta \BbbX , \theta \BbbP , and \vargamma , Algorithm 4
yields convergence, i.e., | | | u - u\ell | | | \rightarrow 0 as \ell \rightarrow \infty .
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In 2D and under the saturation assumption (3.16), Algorithm 4.A and Algo-
rithm 4.B allow for a stronger convergence result than Corollary 7. The following
theorem states linear convergence of the energy error. The proof is given in section 8.

Theorem 8. Let d = 2 and let (u\ell )\ell \in \BbbN 0 be the sequence of Galerkin solutions
generated by either Algorithm 4.A or Algorithm 4.B with arbitrary 0 < \theta \BbbX , \theta \BbbP \leq 
1, and \vargamma > 0. Denote by (\widehat u\ell )\ell \in \BbbN 0

the associated sequence of Galerkin solutions
satisfying (3.12) and suppose that the saturation assumption (3.16) holds for each
pair u\ell , \widehat u\ell (\ell \in \BbbN 0). Then, there exists a constant 0 < qlin < 1 such that

| | | u - u\ell +1| | | \leq qlin | | | u - u\ell | | | for all \ell \in \BbbN 0.

The constant qlin depends only on the mean field a0, the constant \tau in (2.4), the
saturation constant qsat in (3.16), the coarse mesh \scrT 0, and the marking parameters
\theta \BbbX , \theta \BbbP , \vargamma .

5. Numerical results. In this section, we report the results of numerical ex-
periments aiming to underpin our theoretical findings and compare the performance
of Algorithms 4.A--4.D for a range of marking parameters. The experiments were
performed using the open source MATLAB toolbox Stochastic T-IFISS [7].

We consider the parametric model problem (2.1) posed on the L-shaped domain
D = ( - 1, 1)2 \setminus ( - 1, 0]2 \subset \BbbR 2 and set f \equiv 1. Following [15, section 11.1], we choose
the expansion coefficients am (m \in \BbbN 0) in (2.2) to represent planar Fourier modes of
increasing total order, i.e.,

a0(x) := 1, am(x) := \alpha m cos(2\pi \beta 1(m)x1) cos(2\pi \beta 2(m)x2), x = (x1, x2) \in D.

Here, for all m \in \BbbN , \alpha m := Am - \sigma is the amplitude of the coefficient, where \sigma > 1
and 0 < A < 1/\zeta (\sigma ), with \zeta denoting the Riemann zeta function, while \beta 1 and \beta 2 are
defined as \beta 1(m) := m - k(m)(k(m)+1)/2 and \beta 2(m) := k(m) - \beta 1(m) with k(m) :=
\lfloor  - 1/2+

\sqrt{} 
1/4 + 2m\rfloor . Note that under these assumptions, both conditions (2.3) and

(2.4) are satisfied with amin
0 = amax

0 = 1 and \tau = A\zeta (\sigma ), respectively. We consider
the case of \sigma = 2, which corresponds to a slow decay of the coefficients; fixing \tau =
A\zeta (\sigma ) = 0.9, this results in A \approx 0.547. Furthermore, we assume that the parameters
ym (m \in \BbbN ) in (2.2) are the images of uniformly distributed independent mean-zero
random variables on [ - 1, 1]. In this case, d\pi m(ym) = dym/2 and the orthonormal
polynomial basis of L2

\pi m
( - 1, 1) consists of scaled Legendre polynomials. Note that

the same model problem was used in numerical experiments in, e.g., [15, 16, 17, 6, 5].
We compare the performance of Algorithms 4.A--4.D with respect to a measure

of the total amount of work needed to reach a prescribed tolerance \sanst \sanso \sansl . Let L =
L(\sanst \sanso \sansl ) \in \BbbN be the smallest integer such that \eta L \leq \sanst \sanso \sansl , and let N\ell := dim(\BbbV \ell ) =
dim(\BbbX \ell ) dim(\BbbP \ell ) be the total number of degrees of freedom at the \ell th iteration. We
define the computational cost of Algorithm 4 as the cumulative number of degrees of
freedom for all iterations of the adaptive loop, i.e.,

(5.1) \sansc \sanso \sanss \sanst = \sansc \sanso \sanss \sanst (L) :=
L\sum 

\ell =0

N\ell .

We set \sanst \sanso \sansl = 5e-03 and run Algorithms 4.A--4.D with marking parameters \theta \BbbX , \theta \BbbP \in 
\Theta := \{ 0.1, 0.2, . . . , 0.9\} (we set \vargamma = 1 in all Criteria A--D). The computational costs
and the empirical convergence rates for each algorithm with 81 pairs (\theta \BbbX , \theta \BbbP ) \in \Theta \times \Theta 
of marking parameters are shown in [4, Tables 2--5]. A snapshot of these results
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Table 1
Computational cost (5.1) (shown here in units of 106) for Algorithms 4.A--4.D. For each al-

gorithm, we choose the spatial marking parameter \theta \BbbX \in \Theta for which the smallest cost is incurred
(see [4, Tables 2--5]) and show the computational cost for all \theta \BbbP \in \Theta . The smallest cost for each
algorithm is highlighted in boldface in the corresponding row. The boldface starred value shows the
overall smallest cost, i.e., the smallest cost among all computations with 81 pairs (\theta \BbbX , \theta \BbbP ) \in \Theta \times \Theta 
for all four algorithms.

\theta \BbbP 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Algorithm 4.A
(\theta \BbbX = 0.8)

2.454 2.454 2.454 2.454 2.454 2.403 1.628 1.560 1.731

Algorithm 4.B
(\theta \BbbX = 0.7)

3.157 3.157 3.157 3.157 3.157 2.146 1.973 1.966 1.488

Algorithm 4.C
(\theta \BbbX = 0.7)

2.094 1.891 1.970 2.014 1.496 1.710 1.793 2.185 1.837

Algorithm 4.D
(\theta \BbbX = 0.7)

2.146 1.952 2.000 1.966 1.460 \star 1.604 1.740 2.050 1.855

is presented in Table 1. We see that the overall smallest cost is achieved by Algo-
rithm 4.D for the values \theta \BbbX = 0.7 and \theta \BbbP = 0.5. These values of marking parameters
are the ones for which Algorithm 4.C also yields the smallest cost among all pairs
(\theta \BbbX , \theta \BbbP ) \in \Theta \times \Theta . This similarity does not hold for Algorithms 4.A--4.B, for which the
smallest cost is achieved with \theta \BbbX = \theta \BbbP = 0.8 for Algorithm 4.A and with \theta \BbbX = 0.7 and
\theta \BbbP = 0.9 for Algorithm 4.B. Thus, we conclude that, for the above values of mark-
ing parameters, the adaptive algorithms with refinements driven by dominant error
reduction estimates (Algorithms 4.B and 4.D) incur less computational costs than
their counterparts driven by dominant contributing error estimates (Algorithms 4.A
and 4.C). On the other hand, the algorithms that employ the maximum criterion for
parametric refinement (Algorithms 4.C and 4.D) incur less computational costs than
their counterparts that use D\"orfler marking (Algorithms 4.A and 4.B). Overall, the
smallest computational cost is incurred by the algorithm that combines these two
winning strategies---Algorithm 4.D.

Figure 2 shows the decay of the overall error estimate \eta \ell versus the number of
degrees of freedom N\ell for different values of \theta \BbbP \in \Theta with \theta \BbbX = 0.8 in Algorithm 4.A
and \theta \BbbX = 0.7 in Algorithms 4.B--4.D. The aim of these plots is to show that the
adaptive algorithm converges regardless of the marking criterion and the value of
\theta \BbbP used (similar decay rates are obtained for other values of \theta \BbbX , \theta \BbbP \in \Theta ; see [4,
Appendix A]). Observe that \eta \ell decays also in the case \theta \BbbP = 1 /\in \Theta for all algorithms.
However, in this case, significantly more degrees of freedom are needed to reach the
prescribed tolerance, compared to the cases of \theta \BbbP \in \Theta . This is because, for \theta \BbbP = 1,
each parametric enrichment is performed by augmenting the index set \frakP \ell with the
whole detail index set Q\ell .

To conclude, we test the effectiveness of our error estimation strategy by com-
puting a reference energy error as follows. We first compute an accurate solution
uref \in \BbbV ref := \BbbX ref \otimes \BbbP ref using quadratic (P2) finite element approximations over a
fine mesh \scrT ref and employing a large index set \frakP ref. Then, we define the effectivity
indices

\zeta \ell :=
\eta \ell 

| | | uref  - u\ell | | | 
=

\eta \ell 
(| | | uref| | | 2  - | | | u\ell | | | 2)1/2

for all \ell = 0, . . . , L,

where the equality holds due to Galerkin orthogonality and the symmetry of the
bilinear form B(\cdot , \cdot ). In this experiment, we choose \scrT ref to be the uniform refinement
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Fig. 2. Decay of the overall error estimates \eta \ell computed at each iteration of Algorithm 4.A
with \theta \BbbX = 0.8 and Algorithms 4.B--4.D with \theta \BbbX = 0.7 for \theta \BbbP \in \{ 0.1, 0.3, 0.5, 0.7, 0.9, 1\} .

of the mesh \scrT L generated by Algorithm 4.B with \theta \BbbP = 0.5 (i.e., one of the final meshes
with the largest number of elements) and \frakP ref to be the final index set \frakP L produced
by Algorithm 4.D with \theta \BbbP = 0.8 (i.e., one of the largest index sets generated).

Figure 3 shows the effectivity indices \zeta \ell obtained for Algorithms 4.A--4.B (left) and
Algorithms 4.C--4.D (right) with the pairs of parameters (\theta \BbbX , \theta \BbbP ) for which the smallest
cost is attained. We observe that in all cases the error is slightly underestimated, as
the effectivity indices vary in a range between 0.7 and 0.82 throughout all iterations.

6. Proof of Theorem 5 (plain convergence). We start with stating three
propositions which address convergence of either the spatial component or the para-
metric component of the error estimate given by (3.11). To ease the readability, the
proofs of propositions are postponed to section 7. The first proposition proves that
each parametric error indicator converges to some limiting error indicator.

Proposition 9. For \nu \in Q\ell , let \eta \ell (\nu ) \geq 0 be the parametric error indicator
from (3.10). For \nu \in \frakI \setminus Q\ell , define \eta \ell (\nu ) := 0. Then, for each \nu \in \frakI , there exists
\eta \infty (\nu ) \geq 0 such that

(6.1)
\sum 
\nu \in \frakI 

\eta \infty (\nu )2 < \infty and
\sum 
\nu \in \frakI 

| \eta \infty (\nu ) - \eta \ell (\nu )| 2 \rightarrow 0 as \ell \rightarrow \infty .
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Fig. 3. The effectivity indices \zeta \ell for the sGFEM solutions at each iteration of Algorithms
4.A--4.B (left) and Algorithms 4.C--4.D (right) with the marking parameters \theta \BbbX , \theta \BbbP \in \Theta that yield
smallest cost (see Table 1).

The second proposition states that the parametric enrichment satisfying a certain
weak marking criterion along a subsequence guarantees convergence of the whole
sequence of parametric error estimates.

Proposition 10. Let g\BbbP : \BbbR \geq 0 \rightarrow \BbbR \geq 0 be a continuous function with g\BbbP (0) = 0.
Suppose that Algorithm 4 yields a subsequence (\frakP \ell k)k\in \BbbN 0

\subset (\frakP \ell )\ell \in \BbbN 0
satisfying the

following property:

(6.2) \eta \ell k(\mu ) \leq g\BbbP 
\bigl( 
\eta \ell k(\frakM \ell k)

\bigr) 
for all k \in \BbbN 0 and all \mu \in Q\ell k \setminus \frakM \ell k ,

i.e., the nonmarked multi-indices are controlled by the marked ones. Then, the se-
quence of parametric error estimates converges to zero, i.e., \eta \ell (Q\ell ) \rightarrow 0 as \ell \rightarrow \infty .

The third proposition addresses convergence of spatial error estimates. Unlike in
Proposition 10 for parametric estimates, the convergence here is only shown along the
subsequence for which spatial refinement takes place.

Proposition 11. Let g\BbbX : \BbbR \geq 0 \rightarrow \BbbR \geq 0 be a continuous function with g\BbbX (0) = 0.
Suppose that Algorithm 4 yields a subsequence (\scrT \ell k)k\in \BbbN 0

\subset (\scrT \ell )\ell \in \BbbN 0
satisfying the

following property:

(6.3) \eta \ell k(z) \leq g\BbbX 
\bigl( 
\eta \ell k(\scrM \ell k)

\bigr) 
for all k \in \BbbN 0 and all z \in \scrN +

\ell k
\setminus \scrM \ell k ,

i.e., the nonmarked vertices are controlled by the marked ones. Then, the correspond-
ing subsequence of spatial error estimates converges to zero, i.e., \eta \ell k(\scrN 

+
\ell k
) \rightarrow 0 as

k \rightarrow \infty .

Remark 12. The marking strategies employed in Criteria A--D, i.e., the D\"orfler
marking strategy and the maximum criterion, satisfy the properties (6.2)--(6.3) as-
sumed in Propositions 10 and 11. For example, let us show that (6.2) holds for
parametric error indicators (the same arguments will apply to spatial error indica-
tors). Suppose that the \ell kth step of the adaptive algorithm employs the maximum
criterion, i.e., \frakM \ell k := \{ \mu \in Q\ell k : \eta \ell k(\mu ) \geq (1  - \theta \BbbP ) max\nu \in Q\ell k

\eta \ell k(\nu )\} . Then, for
\mu \in Q\ell k \setminus \frakM \ell k , there holds

\eta \ell k(\mu ) < (1 - \theta \BbbP ) max
\nu \in Q\ell k

\eta \ell k(\nu ) \leq (1 - \theta \BbbP ) \eta \ell k(\frakM \ell k),
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which is (6.2) with g\BbbP (s) := (1  - \theta \BbbP )s. Similarly, suppose that the \ell kth step of the
algorithm employs D\"orfler marking, i.e., \frakM \ell k \subseteq Q\ell k satisfies \theta \BbbP \eta \ell k(Q\ell k) \leq \eta \ell k(\frakM \ell k).
Then, for \mu \in Q\ell k \setminus \frakM \ell k , one has

\eta \ell k(\mu ) \leq \eta \ell k(Q\ell k \setminus \frakM \ell k) =
\bigl( 
\eta \ell k(Q\ell k)

2  - \eta \ell k(\frakM \ell k)
2
\bigr) 1/2 \leq (1 - \theta 2\BbbP )

1/2 \theta  - 1
\BbbP \eta \ell k(\frakM \ell k),

which is (6.2) with g\BbbP (s) := (1 - \theta 2\BbbP )
1/2 \theta  - 1

\BbbP s.

With the aforegoing propositions, we can proceed to the proof of Theorem 5.

Proof of Theorem 5. We divide the proof into three steps.
Step 1. Consider Algorithms 4.A and 4.C. If case (a) in the corresponding marking

strategies occurs only finitely many times, then there exists \ell 0 \in \BbbN such that case (b)
(i.e., parametric enrichment) occurs for all \ell \geq \ell 0. Then, according to the criterion
used to decide on the type of enrichment, one has 0 \leq \eta \ell (\scrN +

\ell ) < \vargamma \eta \ell (Q\ell ) for all
\ell \geq \ell 0. Since \eta \ell (Q\ell ) \rightarrow 0 as \ell \rightarrow \infty by Proposition 10, we conclude that \eta \ell \rightarrow 0 as
\ell \rightarrow \infty . If case (b) in Criteria A and C occurs finitely many times, then there exists
\ell 0 \in \BbbN such that only case (a) (i.e., spatial refinement) occurs for all \ell \geq \ell 0. Hence,
0 \leq \vargamma \eta \ell (Q\ell ) \leq \eta \ell (\scrN +

\ell ) for all \ell \geq \ell 0. Since \eta \ell (\scrN +
\ell ) \rightarrow 0 as \ell \rightarrow \infty by Proposition 11,

we conclude that \eta \ell \rightarrow 0 as \ell \rightarrow \infty . Finally, if both cases (a) and (b) happen infinitely
often, we split the sequence (\eta \ell )\ell \in \BbbN 0 into two disjoint subsequences: (\eta 

\ell 
(a)
k

)k\in \BbbN , where

only case (a) occurs, and (\eta 
\ell 
(b)
k

)k\in \BbbN , where only case (b) occurs. With the preceding

argument, it follows that \eta 
\ell 
(a)
k

, \eta 
\ell 
(b)
k

\rightarrow 0 as k \rightarrow \infty . This implies the convergence of

the sequence \eta \ell \rightarrow 0 as \ell \rightarrow \infty .
Step 2. Let us now consider Algorithm 4.B. We argue as in Step 1. If case (a)

in Criterion B occurs only finitely many times, then there exists \ell 0 \in \BbbN such that
case (b) (i.e., parametric enrichment) occurs for all \ell \geq \ell 0. Then, according to the
criterion used to decide on the type of enrichment, one has

0 \leq \theta \BbbX \eta \ell (\scrN +
\ell ) \leq \eta \ell (\widetilde \scrM \ell ) \leq \eta \ell ( \widetilde \scrR \ell ) < \vargamma \eta \ell (\frakM \ell ) \leq \vargamma \eta \ell (Q\ell ) for all \ell \geq \ell 0.

Since \eta \ell (Q\ell ) \rightarrow 0 as \ell \rightarrow \infty by Proposition 10, we conclude that \eta \ell \rightarrow 0 as \ell \rightarrow \infty . If
case (b) in Criterion B occurs finitely many times, then there exists \ell 0 \in \BbbN such that
only case (a) (i.e., spatial refinement) occurs for all \ell \geq \ell 0 and hence

0 \leq \theta \BbbP \eta \ell (Q\ell ) \leq \eta \ell (\widetilde \frakM \ell ) < \vargamma  - 1 \eta \ell ( \widetilde \scrR \ell ) \leq \vargamma  - 1 \eta \ell (\scrN +
\ell ) for all \ell \geq \ell 0.

Since \eta \ell (\scrN +
\ell ) \rightarrow 0 as \ell \rightarrow \infty by Proposition 11, we conclude that \eta \ell \rightarrow 0 as \ell \rightarrow \infty .

If both cases (a) and (b) occur infinitely often, then we proceed as in Step 1 to show
that \eta \ell \rightarrow 0 as \ell \rightarrow \infty .

Step 3. Finally, consider Algorithm 4.D. Arguing as for Algorithm 4.B in Step 2,
we prove that

(6.4) \eta \ell (\scrN +
\ell ) \rightarrow 0 as well as \eta \ell (\widetilde \frakM \ell ) \rightarrow 0 as \ell \rightarrow \infty .

It remains to show that \eta \ell (Q\ell ) \rightarrow 0 as \ell \rightarrow \infty . By Proposition 9, there exists a
sequence (\eta \infty (\nu ))\nu \in \frakI satisfying (6.1). In particular, sup\nu \in \frakI \eta \infty (\nu ) < \infty . Let \varepsilon > 0
and choose \mu \in \frakI such that sup\nu \in \frakI \eta \infty (\nu ) \leq \eta \infty (\mu )+\varepsilon . Together with (6.1) and (6.4),
the triangle inequality yields that

0 \leq \eta \infty (\mu )+ \varepsilon \leq | \eta \infty (\mu ) - \eta \ell (\mu )| + \eta \ell (\mu )+ \varepsilon \leq | \eta \infty (\mu ) - \eta \ell (\mu )| + \eta \ell (\widetilde \frakM \ell )+ \varepsilon 
\ell \rightarrow \infty  -  -  - \rightarrow \varepsilon .

Since \varepsilon > 0 is arbitrary, we conclude that \eta \infty (\nu ) = 0 for all \nu \in \frakI . With (6.1), this
proves that \eta \ell (Q\ell )

2 =
\sum 

\nu \in \frakI \eta \ell (\nu )
2 \rightarrow 0 as \ell \rightarrow \infty .

D
ow

nl
oa

de
d 

10
/1

0/
19

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM 2373

7. Proof of Propositions 9, 10, and 11. In this section, we collect some
auxiliary results and prove Propositions 9, 10, and 11.

7.1. A priori convergence of adaptive algorithms. The following lemma is
an early result from [2] which proves that adaptive algorithms (without coarsening)
always lead to convergence of the discrete solutions.

Lemma 13 (a priori convergence). Let V be a Hilbert space. Let a : V \times V \rightarrow \BbbR 
be an elliptic and continuous bilinear form. Let F \in V \ast be a linear and continuous
functional. For each \ell \in \BbbN 0, let V\ell \subseteq V be a closed subspace such that V\ell \subseteq V\ell +1.

Furthermore, define the limiting space V\infty :=
\bigcup \infty 

\ell =0 V\ell \subseteq V . Then, for all \ell \in \BbbN 0 \cup 
\{ \infty \} , there exists a unique Galerkin solution u\ell \in V\ell satisfying

(7.1) a(u\ell , v\ell ) = F (v\ell ) for all v\ell \in V\ell .

Moreover, there holds \| u\infty  - u\ell \| V
\ell \rightarrow \infty  -  -  - \rightarrow 0.

Proof. For each \ell \in \BbbN 0 \cup \{ \infty \} , the existence and uniqueness of the Galerkin
solution u\ell \in V\ell satisfying (7.1) follow from the Lax--Milgram theorem. Moreover,
since V\ell \subseteq V\infty , u\ell is also a Galerkin approximation to u\infty . Therefore, by the definition

of V\infty , the C\'ea lemma proves that \| u\infty  - u\ell \| V \lesssim minv\ell \in V\ell 
\| u\infty  - v\ell \| V

\ell \rightarrow \infty  -  -  - \rightarrow 0.

7.2. Proof of Proposition 9. For \nu \in Q\ell , recall the functions e
\nu 
\ell \in \BbbX \ell in (3.9).

Define \widehat e\prime \ell :=\sum \nu \in \frakI e
\nu 
\ell P\nu \in \BbbX \ell \otimes \widehat \BbbP \ell 

(3.7)
= \widehat \BbbV \prime 

\ell , where e
\nu 
\ell := 0 for all \nu \in \frakI \setminus Q\ell . Note that

\eta \ell (\nu ) = | | | e\nu \ell P\nu | | | 0 for all \nu \in Q\ell and define \eta \ell (\nu ) := | | | e\nu \ell P\nu | | | 0 = 0 for all \nu \in \frakI \setminus Q\ell .
The next lemma shows that the sequence \widehat e\prime \ell converges to some limit \widehat e\prime \infty in \BbbV .

Lemma 14. There exists a sequence (e\nu \infty )\nu \in \frakI \subset \BbbX such that \widehat e\prime \infty :=
\sum 

\nu \in \frakI e
\nu 
\infty P\nu \in 

\BbbV satisfies

(7.2) | | | \widehat e\prime \infty | | | 20 =
\sum 
\nu \in \frakI 

| | | e\nu \infty P\nu | | | 20 < \infty and | | | \widehat e\prime \infty  - \widehat e\prime \ell | | | 20 =
\sum 
\nu \in \frakI 

| | | (e\nu \infty  - e\nu \ell )P\nu | | | 20
\ell \rightarrow \infty  -  -  - \rightarrow 0.

Proof. The tensor-product structure of \widehat \BbbV \prime 
\ell = \BbbX \ell \otimes \widehat \BbbP \ell and pairwise orthogonality

of subspaces X\ell \otimes span\{ P\nu \} (\nu \in \frakI ) with respect to B0(\cdot , \cdot ) imply that

B0(\widehat e\prime \ell , v\ell P\nu )
(3.2)
= B0(e

\nu 
\ell P\nu , v\ell P\nu )

(3.9)
= F (v\ell P\nu ) - B(u\ell , v\ell P\nu )

for all \nu \in Q\ell and v\ell \in \BbbX \ell . Moreover, there holds

B0(\widehat e\prime \ell , v\ell P\nu )
(3.2)
= B0(e

\nu 
\ell P\nu , v\ell P\nu ) = 0

(3.4)
= F (v\ell P\nu ) - B(u\ell , v\ell P\nu )

for all \nu \in \frakP \ell and v\ell \in \BbbX \ell . Hence, \widehat e\prime \ell \in \widehat \BbbV \prime 
\ell is the unique solution of the problem

(7.3) B0(\widehat e\prime \ell , \widehat v\prime \ell ) = F (\widehat v\prime \ell ) - B(u\ell , \widehat v\prime \ell ) for all \widehat v\prime \ell \in \widehat \BbbV \prime 
\ell .

Lemma 13 proves that | | | u\infty  - u\ell | | | \rightarrow 0 as \ell \rightarrow \infty for some u\infty \in \BbbV . Consider the

unique solution \widehat e\prime \prime \ell \in \widehat \BbbV \prime 
\ell of the auxiliary problem

(7.4) B0(\widehat e\prime \prime \ell , \widehat v\prime \ell ) = F (\widehat v\prime \ell ) - B(u\infty , \widehat v\prime \ell ) for all \widehat v\prime \ell \in \widehat \BbbV \prime 
\ell .

Since \widehat \BbbV \prime 
\ell \subseteq \widehat \BbbV \prime 

\ell +1, Lemma 13 also proves that | | | \widehat e\prime \infty  - \widehat e\prime \prime \ell | | | \rightarrow 0 as \ell \rightarrow \infty for some\widehat e\prime \infty \in \BbbV . Exploiting (7.3) and (7.4) for \widehat v\prime \ell = \widehat e\prime \prime \ell  - \widehat e\prime \ell \in \widehat \BbbV \prime 
\ell , we see that

| | | \widehat e\prime \prime \ell  - \widehat e\prime \ell | | | 20 = B0(\widehat e\prime \prime \ell  - \widehat e\prime \ell , \widehat e\prime \prime \ell  - \widehat e\prime \ell ) =  - B(u\infty  - u\ell , \widehat e\prime \prime \ell  - \widehat e\prime \ell ) \leq | | | u\infty  - u\ell | | | | | | \widehat e\prime \prime \ell  - \widehat e\prime \ell | | | .
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With the norm equivalence | | | \cdot | | | 0 \simeq | | | \cdot | | | , the triangle inequality thus proves that

| | | \widehat e\prime \infty  - \widehat e\prime \ell | | | 0 \leq | | | \widehat e\prime \infty  - \widehat e\prime \prime \ell | | | 0 + | | | \widehat e\prime \prime \ell  - \widehat e\prime \ell | | | 0 \lesssim | | | \widehat e\prime \infty  - \widehat e\prime \prime \ell | | | 0 + | | | u\infty  - u\ell | | | 
\ell \rightarrow \infty  -  -  - \rightarrow 0.

Hence, the proof is concluded by noticing that the existence of (e\nu \infty )\nu \in \frakI \subset \BbbX is a conse-
quence of the representation in (3.1) and that the equalities in (7.2) then immediately
follow from (3.3).

With the above result, we can proceed to the proof of Proposition 9.

Proof of Proposition 9. Lemma 14 provides a sequence (e\nu \infty )\nu \in \frakI \subset \BbbX satisfy-
ing (7.2). For \nu \in \frakI , we define \eta \infty (\nu ) := | | | e\nu \infty P\nu | | | 0. From (7.2) it follows that\sum 

\nu \in \frakI 

\eta \infty (\nu )2 =
\sum 
\nu \in \frakI 

| | | e\nu \infty P\nu | | | 20 < \infty ,

and using (7.2) together with the definition of \eta \ell (\nu ) in (3.10) we find that\sum 
\nu \in \frakI 

| \eta \infty (\nu ) - \eta \ell (\nu )| 2 =
\sum 
\nu \in \frakI 

\bigl( 
| | | e\nu \infty P\nu | | | 0  - | | | e\nu \ell P\nu | | | 0

\bigr) 2 \leq 
\sum 
\nu \in \frakI 

| | | e\nu \infty P\nu  - e\nu \ell P\nu | | | 20
\ell \rightarrow \infty  -  -  - \rightarrow 0.

This yields (6.1) and concludes the proof.

7.3. Proof of Proposition 10. We first state an auxiliary result for square
summable sequences.

Lemma 15. Let g : \BbbR \geq 0 \rightarrow \BbbR \geq 0 be a continuous function with g(0) = 0. Let

(xn)n\in \BbbN \subset \BbbR \geq 0 with
\sum \infty 

n=1 x
2
n < \infty . For k \in \BbbN 0, let (x

(k)
n )n\in \BbbN \subset \BbbR \geq 0 with\sum \infty 

n=1(xn  - x
(k)
n )2 \rightarrow 0 as k \rightarrow \infty . In addition, let (\scrP k)k\in \BbbN 0

be a sequence of nested
subsets of \BbbN (i.e., \scrP k \subseteq \scrP k+1 for all k \in \BbbN 0) satisfying the following property:

(7.5) x(k)
m \leq g

\Biggl( \sum 
n\in \scrP k+1\setminus \scrP k

(x(k)
n )2

\Biggr) 
for all k \in \BbbN 0 and m \in \BbbN \setminus \scrP k+1.

Then
\sum 

n\in \BbbN \setminus \scrP k
x2
n \rightarrow 0 as k \rightarrow \infty .

Proof. We divide the proof into 3 steps.
Step 1. First, we show that min(\scrP k+1 \setminus \scrP k) \rightarrow \infty as k \rightarrow \infty , where min(\emptyset ) := \infty .

This statement is trivial if there exists K \in \BbbN such that \scrP k = \scrP k+1 for all k \geq K.
Therefore, without loss of generality, we can consider a sequence of strictly nested sets,
i.e., \scrP k \subset \scrP k+1 for all k \in \BbbN 0. We argue by contradiction and assume the existence of
C > 0 such that, for all k0 \in \BbbN 0, there exists k \geq k0 such thatMk := min(\scrP k+1\setminus \scrP k) \leq 
C. In particular, we can construct a monotonic increasing sequence (kj)j\in \BbbN 0

\subset \BbbN 0,
i.e., kj \leq kj+1 for all j \in \BbbN 0, and consider the corresponding bounded sequence
(Mkj

)j\in \BbbN 0
. Since this sequence is bounded, we can extract a convergent subsequence

(not relabeled) and denote its limit by m := limj\rightarrow \infty Mkj
. Since (Mkj

)j\in \BbbN 0
\subset \BbbN ,

it follows that there exists i \in \BbbN 0 such that m = Mkj for all j \geq i. In particular,
m = Mki and m = Mki+1 , so that m \in \scrP ki+1 \cap \scrP ki+1+1 = \scrP ki+1. On the other hand,
since the sets are nested and ki + 1 \leq ki+1, we conclude that \scrP ki+1 \subseteq \scrP ki+1

. This
leads to a contradiction:

m = Mki+1
= min(\scrP ki+1+1 \setminus \scrP ki+1

) \in \scrP ki+1+1 \setminus \scrP ki+1
\subseteq \scrP ki+1+1 \setminus \scrP ki+1 \not \ni m.
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Step 2. Next, let us establish some auxiliary convergence statements. Using the

summability assumption on (xn)n\in \BbbN and the convergence assumption on (x
(k)
n )n\in \BbbN 

(k \in \BbbN 0), it follows from Step 1 that\Biggl( \sum 
n\in \scrP k+1\setminus \scrP k

(x(k)
n )2

\Biggr) 1/2

\leq 

\Biggl( \infty \sum 
n=1

(xn  - x(k)
n )2

\Biggr) 1/2

+

\Biggl( \infty \sum 
n=min(\scrP k+1\setminus \scrP k)

x2
n

\Biggr) 1/2

k\rightarrow \infty  -  -  -  - \rightarrow 0.

Therefore, considering the set \scrP c
\infty := \{ n \in \BbbN : n \not \in \scrP k for all k \in \BbbN 0\} , we deduce

from (7.5) that

(7.6) 0 \leq x(k)
m \leq g

\Biggl( \sum 
n\in \scrP k+1\setminus \scrP k

(x(k)
n )2

\Biggr) 
k\rightarrow \infty  -  -  -  - \rightarrow 0 for all m \in \scrP c

\infty .

To conclude this step, let us show that

(7.7) min((\BbbN \setminus \scrP k+1) \setminus \scrP c
\infty ) \rightarrow \infty as k \rightarrow \infty , where min(\emptyset ) := \infty .

Let mk := min((\BbbN \setminus \scrP k+1) \setminus \scrP c
\infty ) for all k \in \BbbN 0. Note that the sequence (mk)k\in \BbbN 0

is
monotonic increasing, because the sets are nested. Since mk \in (\BbbN \setminus \scrP k+1) \setminus \scrP c

\infty , there
exists j0 \in \BbbN 0 with j0 > k+1 such thatmk \in \scrP j0 . Therefore, since the sets are nested,
we conclude that mk \in \scrP j for all j \geq j0. In particular, mj \geq mk + 1 for all j \geq j0.
Together with the monotonicity of (mk)k\in \BbbN 0 , this implies that limk\rightarrow \infty mk = \infty ,
which yields (7.7).

Step 3. Finally, let us show that
\sum 

n\in \BbbN \setminus \scrP k
x2
n \rightarrow 0 as k \rightarrow \infty . Let N \in \BbbN be an

arbitrary free parameter and consider the following sets:

\scrA 1
k[N ] := (\BbbN \setminus \scrP k) \cap \{ n \in \BbbN : n \geq N\} ,

\scrA 2
k[N ] := (\BbbN \setminus \scrP k+1) \cap \{ n \in \BbbN : n < N\} \cap \scrP c

\infty ,

\scrA 3
k[N ] := (\BbbN \setminus \scrP k+1) \cap \{ n \in \BbbN : n < N\} \setminus \scrP c

\infty ,

\scrA 4
k[N ] := (\scrP k+1 \setminus \scrP k) \cap \{ n \in \BbbN : n < N\} .

Note that this defines a disjoint partition of \BbbN \setminus \scrP k, i.e.,

\BbbN \setminus \scrP k = \scrA 1
k[N ] \cup \scrA 2

k[N ] \cup \scrA 3
k[N ] \cup \scrA 4

k[N ] and \scrA i
k[N ] \cap \scrA j

k[N ] = \emptyset for i \not = j.

For the sum over the set \scrA 2
k[N ], we have\sum 

n\in \scrA 2
k[N ]

x2
n \lesssim 

\sum 
n\in \scrA 2

k[N ]

(x(k)
n )2+

\sum 
n\in \scrA 2

k[N ]

\bigl( 
xn - x(k)

n

\bigr) 2 \leq 
\sum 

n\in \scrA 2
k[N ]

(x(k)
n )2+

\sum 
n\in \BbbN 

\bigl( 
xn - x(k)

n

\bigr) 2
.

The second sum on the right-hand side of this estimate converges to 0 as k \rightarrow \infty 
by assumption, whereas the first sum is finite, and therefore also converges to 0 as
k \rightarrow \infty because of (7.6).

For the sums over the sets\scrA 3
k[N ] and\scrA 4

k[N ], we use the convergence result in (7.7)
and the result of Step 1, respectively. Along with the summability assumption on
(xn)n\in \BbbN , this proves that\sum 

n\in \scrA 3
k[N ]

x2
n \leq 

\sum 
n\in (\BbbN \setminus \scrP k+1)\setminus \scrP c

\infty 

x2
n \leq 

\infty \sum 
n=min((\BbbN \setminus \scrP k+1)\setminus \scrP c

\infty )

x2
n

k\rightarrow \infty  -  -  -  - \rightarrow 0
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and

\sum 
n\in \scrA 4

k[N ]

x2
n \leq 

\sum 
n\in \scrP k+1\setminus \scrP k

x2
n \leq 

\infty \sum 
n=min(\scrP k+1\setminus \scrP k)

x2
n

k\rightarrow \infty  -  -  -  - \rightarrow 0.

We have thus shown that\sum 
n\in \scrA 2

k[N ]

x2
n +

\sum 
n\in \scrA 3

k[N ]

x2
n +

\sum 
n\in \scrA 4

k[N ]

x2
n

k\rightarrow \infty  -  -  -  - \rightarrow 0 for all N \in \BbbN .

In particular, for all N \in \BbbN , one has

0 \leq lim inf
k\rightarrow \infty 

\Biggl( \sum 
n\in \BbbN \setminus \scrP k

x2
n

\Biggr) 
\leq lim sup

k\rightarrow \infty 

\Biggl( \sum 
n\in \BbbN \setminus \scrP k

x2
n

\Biggr) 
= lim sup

k\rightarrow \infty 

\Biggl( \sum 
n\in \scrA 1

k[N ]

x2
n

\Biggr) 
\leq 

\infty \sum 
n=N

x2
n.

Thus, the limit inferior and the limit superior of
\sum 

n\in \BbbN \setminus \scrP k
x2
n are nonnegative and

bounded from above by a tail of the convergent series. Since N is arbitrary, this leads
to the desired convergence

\sum 
n\in \BbbN \setminus \scrP k

x2
n \rightarrow 0 as k \rightarrow \infty . This concludes the proof.

With this lemma, we can proceed to the proof of Proposition 10.

Proof of Proposition 10. Proposition 9 yields a sequence (\eta \infty (\nu ))\nu \in \frakI such that\sum 
\nu \in \frakI 

\eta \infty (\nu )2 < \infty and
\sum 
\nu \in \frakI 

\bigl( 
\eta \infty (\nu ) - \eta \ell k(\nu )

\bigr) 2 k\rightarrow \infty  -  -  -  - \rightarrow 0.

Let g : \BbbR \geq 0 \rightarrow \BbbR \geq 0 be a continuous function defined by g(s) := g\BbbP (
\surd 
s) for all

s \in \BbbR \geq 0. Setting \eta \ell k(\mu ) = 0 for \mu \in \frakI \setminus Q\ell k , we deduce from (6.2) that

\eta \ell k(\mu ) \leq g\BbbP 
\bigl( 
\eta \ell k(\frakM \ell k)

\bigr) 
= g
\bigl( 
\eta \ell k(\frakM \ell k)

2
\bigr) 

for all k \in \BbbN 0 and \mu \in \frakI \setminus \frakM \ell k .

Note that the index set \frakI is countable, since it can be understood as a countable union
of countable sets, and that \frakP \ell n \subseteq \frakP \ell n+1 \subseteq \frakP \ell n+1 , since \ell n + 1 \leq \ell n+1. Therefore,
we can establish a one-to-one map between \frakI and \BbbN , which allows us to identify each
index set \frakP \ell k \subset \frakI (k \in \BbbN 0) with a set \scrP k \subset \BbbN . Then \scrP k \subseteq \scrP k+1 and applying

Lemma 15 to the sequences (xn)n\in \BbbN := (\eta \infty (\nu ))\nu \in \frakI , (x
(k)
n )n\in \BbbN := (\eta \ell k(\nu ))\nu \in \frakI , we

prove that \sum 
\nu \in \frakI \setminus \frakP \ell k

\eta \infty (\nu )2
k\rightarrow \infty  -  -  -  - \rightarrow 0.

Note that the sequence (z\ell )\ell \in \BbbN 0
:=
\bigl( \sum 

\nu \in \frakI \setminus \frakP \ell 
\eta \infty (\nu )2

\bigr) 
\ell \in \BbbN 0

is monotonic decreasing
and bounded from below. Hence, it is convergent. Moreover, it has a subsequence
that converges to zero. We therefore conclude that\sum 

\nu \in Q\ell 

\eta \infty (\nu )2 \leq 
\sum 

\nu \in \frakI \setminus \frakP \ell 

\eta \infty (\nu )2
\ell \rightarrow \infty  -  -  - \rightarrow 0.

Overall, we derive that

\eta \ell (Q\ell )
2 =

\sum 
\nu \in Q\ell 

\eta \ell (\nu )
2 \lesssim 

\sum 
\nu \in Q\ell 

\eta \infty (\nu )2 +
\sum 
\nu \in \frakI 

\bigl( 
\eta \infty (\nu ) - \eta \ell (\nu )

\bigr) 2 \ell \rightarrow \infty  -  -  - \rightarrow 0.

This concludes the proof.
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7.4. Proof of Proposition 11. The proof of Proposition 11 essentially follows
the same lines as that of [29, Theorem 2.1]. Therefore, here we only sketch the proof
by demonstrating how the results of [29] for deterministic problems can be extended
to the parametric setting in the present paper.

We start by observing that the variational problem (2.6), its discretization, and
the proposed adaptive algorithm satisfy the general framework described in [29, sec-
tion 2]: The variational formulation (2.6) clearly fits into the class of problems con-
sidered in [29, section 2.1]; Our Galerkin discretization (3.4) satisfies the assumptions
in [29, eqs. (2.6)--(2.8)]; The spatial NVB refinement considered in the present paper
satisfies the assumptions on the mesh refinement in [29, eqs. (2.5) and (2.14)]; The
weak marking condition (6.3) in Proposition 11 is the same as the marking condition
in [29, eq. (2.13)]. Finally, we prove in Lemma 16 below that the local discrete effi-
ciency estimate holds in the parametric setting (cf. [29, eq. (2.9b)]). Note that the
global reliability of the estimator (see (3.17) and [29, eq. (2.9a)]) is not exploited in
this section (and, hence, not needed for the proof of Theorem 5). The reliability is
only needed to establish convergence of the true error, i.e., | | | u  - u\ell | | | \rightarrow 0 as \ell \rightarrow \infty 
(see Corollary 7).

We will use the following notation: For \omega \subset D, we define

B\omega (v, w) :=

\int 
\Gamma 

\int 
\omega 

a0\nabla u\cdot \nabla v dx d\pi (y)+

\infty \sum 
m=1

\int 
\Gamma 

\int 
\omega 

ymam\nabla u\cdot \nabla v dx d\pi (y) for v, w \in \BbbV .

Note that B\omega (\cdot , \cdot ) is symmetric, bilinear, and positive semidefinite. We denote by
| | | v| | | \omega := B\omega (v, v)

1/2 the corresponding induced seminorm. Furthermore, in addition
to the limiting space \BbbV \infty introduced in Lemma 13, we define the spatial limiting space
\BbbX \infty :=

\bigcup \infty 
\ell =0 \BbbX \ell .

Lemma 16. Let z \in \scrN +
\ell and denote by \omega \ell (z) :=

\bigcup 
\{ T \in \scrT \ell : z \in T\} the associated

vertex patch. Then the following estimate holds:

(7.8a) \eta \ell (z) \leq C| | | u - u\ell | | | \omega \ell (z).

Furthermore, let u\infty \in \BbbV be the limit of (u\ell )\ell \in \BbbN 0
guaranteed by Lemma 13. If \widehat \varphi \ell ,z \in 

\BbbX \infty , then there holds

(7.8b) \eta \ell (z) \leq C| | | u\infty  - u\ell | | | \omega \ell (z).

The constant C > 0 in (7.8a) and (7.8b) depends only on a0 and \tau .

Proof. We recall the definition of the spatial error indicators in (3.8):

\eta \ell (z)
2 =

\sum 
\nu \in \frakP \ell 

| F (\widehat \varphi \ell ,zP\nu ) - B(u\ell , \widehat \varphi \ell ,zP\nu )| 2

\| a1/20 \nabla \widehat \varphi \ell ,z\| 2L2(D)

=
\sum 
\nu \in \frakP \ell 

| | | \scrG \ell ,z,\nu e\ell | | | 20 for all z \in \scrN +
\ell ,

where \scrG \ell ,z,\nu : \BbbV \rightarrow span\{ \widehat \varphi \ell ,zP\nu \} is the orthogonal projection onto span\{ \widehat \varphi \ell ,zP\nu \} with

respect to B0(\cdot , \cdot ), and e\ell \in \widehat \BbbX \otimes \BbbP \ell solves

B0(e\ell , v\ell ) = F (v\ell ) - B(u\ell , v\ell ) for all v\ell \in \widehat \BbbX \otimes \BbbP \ell .

Note that the functions \{ \widehat \varphi \ell ,zP\nu : \nu \in \frakP \ell \} are orthogonal with respect to B0(\cdot , \cdot ).
Hence,

\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu : \BbbV \rightarrow span\{ \widehat \varphi \ell ,zP\nu : \nu \in \frakP \ell \} \subset \widehat \BbbX \otimes \BbbP \ell is an orthogonal projec-
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tion with respect to B0(\cdot , \cdot ) as well. This yields that

\eta \ell (z)
2 =

\sum 
\nu \in \frakP \ell 

| | | \scrG \ell ,z,\nu e\ell | | | 20 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
0

= B0

\biggl( 
e\ell ,
\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\biggr) 

= F

\biggl( \sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\biggr) 
 - B

\biggl( 
u\ell ,

\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\biggr) 
= B

\biggl( 
u - u\ell ,

\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\biggr) 
.

Note that the spatial support of
\sum 

\nu \in \frakP \ell 
\scrG \ell ,z,\nu e\ell lies in \omega := supp(\widehat \varphi \ell ,z). Then, the

Cauchy--Schwarz inequality shows that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
0

= B

\biggl( 
u - u\ell ,

\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\biggr) 
= B\omega 

\biggl( 
u - u\ell ,

\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\biggr) 

\leq | | | u - u\ell | | | \omega 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum 

\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\omega 

\leq | | | u - u\ell | | | \omega 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum 

\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
(2.5)
\simeq | | | u - u\ell | | | \omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
0

.

We have thus shown that

\eta \ell (z)
2 = B

\biggl( 
u - u\ell ,

\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\biggr) 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2
0

\lesssim | | | u - u\ell | | | 2\omega .

Since \omega = supp(\widehat \varphi \ell ,z) \subseteq \omega \ell (z), this proves (7.8a).
Finally, if \widehat \varphi \ell ,z \in \BbbX \infty , then

\sum 
\nu \in \frakP \ell 

\scrG \ell ,z,\nu e\ell \in \BbbV \infty . Therefore, the same arguments
as above yield (7.8b).

Note that in the present setting, the estimates (7.8a) and (7.8b) from Lemma 16
replace [29, eq. (2.9b)] and [29, eq. (4.11)], respectively. Having these estimates, we
can now proceed to the proof of Proposition 11.

Proof of Proposition 11. Let \scrT \infty :=
\bigcup 

k\geq 0

\bigcap 
\ell \geq k \scrT \ell be the set of all elements which

remain unrefined after finitely many steps of refinement. Following [29, eqs. (4.10)],

for all \ell \in \BbbN 0, we consider the decomposition \scrT \ell = \scrT good
\ell \cup \scrT bad

\ell \cup \scrT neither
\ell , where

\scrT good
\ell := \{ T \in \scrT \ell : \widehat \varphi \ell ,z \in \BbbX \infty for all z \in \scrN +

\ell \cap T\} ,
\scrT bad
\ell := \{ T \in \scrT \ell : T \prime \in \scrT \infty for all T \prime \in \scrT \ell with T \cap T \prime \not = \emptyset \} ,

\scrT neither
\ell := \scrT \ell \setminus (\scrT good

\ell \cup \scrT bad
\ell ).

The elements in \scrT good
\ell are refined sufficiently many times in order to guarantee (7.8b).

The set \scrT bad
\ell consists of all elements such that the whole element patch remains

unrefined. The remaining elements are collected in the set \scrT neither
\ell . We note that

\scrT good
\ell is slightly larger than the corresponding set \scrG 0

\ell in [29, eq. (4.10a)], while \scrT bad
\ell 

coincides with the corresponding set \scrG +
\ell in [29, eq. (4.10b)]. As a consequence, \scrT neither

\ell 

is smaller than the corresponding set \scrG \ast 
\ell in [29, eq. (4.10c)].

By arguing as in the proof of [29, Propostion 4.1], we exploit the uniform shape
regularity of \scrT \ell guaranteed by NVB and use Lemmas 13 and 16 to prove that
(7.9)\sum 
T\in \scrT good

\ell 

\sum 
z\in \scrN +

\ell \cap T

\eta \ell (z)
2

(7.8b)

\lesssim 
\sum 

T\in \scrT good
\ell 

\sum 
z\in \scrN +

\ell \cap T

| | | u\infty  - u\ell | | | 2\omega \ell (z)
\lesssim | | | u\infty  - u\ell | | | 2

\ell \rightarrow \infty  -  -  - \rightarrow 0.
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Let Dneither
\ell :=

\bigcup 
\{ T \prime \in \scrT \ell : T \cap T \prime \not = \emptyset for some T \in \scrT neither

\ell \} . Since \scrT neither
\ell 

is contained in the corresponding set \scrG \ast 
\ell in [29, eq. (4.10c)], arguing as in Step 1 of

the proof of [29, Proposition 4.2], we show that | Dneither
\ell | \rightarrow 0 as \ell \rightarrow \infty . Hence,

Lemma 16, uniform shape regularity, and the fact that the local energy seminorm is
absolutely continuous with respect to the Lebesgue measure, i.e., | | | v| | | \omega \rightarrow 0 as | \omega | \rightarrow 0
for all v \in \BbbV , lead to
(7.10)\sum 
T\in \scrT neither

\ell 

\sum 
z\in \scrN +

\ell \cap T

\eta \ell (z)
2

(7.8a)

\lesssim 
\sum 

T\in \scrT neither
\ell 

\sum 
z\in \scrN +

\ell \cap T

| | | u - u\ell | | | 2\omega \ell (z)
\lesssim | | | u - u\ell | | | 2Dneither

\ell 
\rightarrow 0

as \ell \rightarrow \infty . We note that (7.9) and (7.10) hold independently of the marking prop-
erty (6.3), but rely only on the nestedness of the finite-dimensional subspaces \BbbX \ell \subseteq 
\BbbX \ell +1 and \BbbV \ell \subseteq \BbbV \ell +1 for all \ell \in \BbbN 0.

To conclude the proof, it remains to consider the set \scrT bad
\ell . Let (\scrT \ell k)k\in \BbbN 0

be the
subsequence of (\scrT \ell )\ell \in \BbbN 0

satisfying (6.3). If z \in \scrM \ell k and T \in \scrT \ell k with z \in T , then

T \in \scrT \ell k \setminus \scrT bad
\ell k

= \scrT good
\ell k

\cup \scrT neither
\ell k

. Therefore, it follows from (7.9)--(7.10) that\sum 
z\in \scrM \ell k

\eta \ell k(z)
2 \leq 

\sum 
T\in \scrT good

\ell k

\sum 
z\in \scrN +

\ell k
\cap T

\eta \ell k(z)
2 +

\sum 
T\in \scrT neither

\ell k

\sum 
z\in \scrN +

\ell k
\cap T

\eta \ell k(z)
2 k\rightarrow \infty  -  -  -  - \rightarrow 0.

This implies that

0 \leq \eta \ell k(z)
(6.3)

\leq g\BbbX 
\bigl( 
\eta \ell k(\scrM \ell k)

\bigr) k\rightarrow \infty  -  -  -  - \rightarrow 0 for all z \in \scrN +
\ell k

\setminus \scrM \ell k .

Hence, recalling the definition of \scrT bad
\bullet , we obtain (cf., [29, eq. (4.17)])

(7.11)
\sum 

z\in \scrN +
\ell k

\cap T

\eta \ell k(z)
2 k\rightarrow \infty  -  -  -  - \rightarrow 0 for all T \in \scrT bad

\ell k
.

Finally, arguing as in Steps 2--5 of the proof of [29, Proposition 4.3], we use (7.11)
and apply the Lebesgue dominated convergence theorem to derive that

(7.12)
\sum 

T\in \scrT bad
\ell k

\sum 
z\in \scrN +

\ell k
\cap T

\eta \ell k(z)
2 k\rightarrow \infty  -  -  -  - \rightarrow 0.

Combining now (7.9)--(7.12), we find that

\eta \ell k(\scrN 
+
\ell k
)2 =

\sum 
z\in \scrN +

\ell k

\eta \ell k(z)
2

\leq 
\sum 

T\in \scrT good
\ell k

\sum 
z\in \scrN +

\ell k
\cap T

\eta \ell k(z)
2 +

\sum 
T\in \scrT neither

\ell k

\sum 
z\in \scrN +

\ell k
\cap T

\eta \ell k(z)
2 +

\sum 
T\in \scrT bad

\ell k

\sum 
z\in \scrN +

\ell k
\cap T

\eta \ell k(z)
2 \rightarrow 0

as k \rightarrow \infty . This concludes the proof.

8. Proof of Theorem 8 (linear convergence). In this section, we prove that
in 2D the saturation assumption yields contraction of the energy error at each iteration
of Algorithms 4.A and 4.B. In the proof, we adapt the arguments of [14, 28]. In
particular, the following result holds for iterations where the spatial refinement is
performed.
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Lemma 17. Let \ell \in \BbbN 0. Suppose that the saturation assumption (3.16) holds for
two Galerkin solutions u\ell and \widehat u\ell satisfying (3.4) and (3.12), respectively. Suppose
that

(8.1) \eta \ell (Q\ell ) \leq C\vargamma \eta \ell (\scrN +
\ell ) with C\vargamma > 0

and let \scrM \ell \subseteq \scrN +
\ell \cap \scrN \ell +1 be such that

(8.2) \theta \eta \ell (\scrN +
\ell ) \leq \eta \ell (\scrM \ell ) with 0 < \theta \leq 1.

Then, for the enhanced Galerkin solution u\ell +1 \in \BbbX \ell +1 \otimes \BbbP \ell , there holds

| | | u - u\ell +1| | | 2 \leq (1 - q) | | | u - u\ell | | | 2,

where 0 < q < 1 depends only on a0, C\vargamma , qsat, \scrT 0, \tau , and \theta .

Proof. Using reliability (3.17), the refinement criterion (8.1), and the marking
criterion (8.2), we obtain

1 - q2sat
\Lambda Cthm

| | | u - u\ell | | | 2 \leq \eta \ell (\scrN +
\ell )2 + \eta \ell (Q\ell )

2 \leq (1 +C2
\vargamma ) \eta \ell (\scrN +

\ell )2 \leq (1 +C2
\vargamma )\theta 

 - 2 \eta \ell (\scrM \ell )
2.

Hence, using Corollary 3 and the fact that \scrM \ell \subseteq \scrN +
\ell \cap \scrN \ell +1, we derive that

| | | u - u\ell +1| | | 2 = | | | u - u\ell | | | 2  - | | | u\ell +1  - u\ell | | | 2 \leq | | | u - u\ell | | | 2  - 
\lambda 

K
\eta \ell (\scrN +

\ell \cap \scrN \ell +1)
2

\leq | | | u - u\ell | | | 2  - 
\lambda 

K
\eta \ell (\scrM \ell )

2 \leq 

\Biggl( 
1 - \lambda 

\Lambda 
\cdot \theta 2(1 - q2sat)

Cthm(1 + C2
\vargamma )K

\Biggr) 
| | | u - u\ell | | | 2.

This concludes the proof.

The next lemma concerns iterations where parametric enrichment is performed.
The proof is similar to that of Lemma 17.

Lemma 18. Let \ell \in \BbbN 0. Suppose that the saturation assumption (3.16) holds for
two Galerkin solutions u\ell and \widehat u\ell satisfying (3.4) and (3.12), respectively. Suppose
that \eta \ell (\scrN +

\ell ) \leq C\vargamma \eta \ell (Q\ell ) with C\vargamma > 0 and let \frakM \ell \subseteq Q\ell \cap \frakP \ell +1 be such that \theta \eta \ell (Q\ell ) \leq 
\eta \ell (\frakM \ell ) with 0 < \theta \leq 1. Then, for the enhanced Galerkin solution u\ell +1 \in \BbbX \ell \otimes \BbbP \ell +1,
there holds

| | | u - u\ell +1| | | 2 \leq (1 - q) | | | u - u\ell | | | 2,

where 0 < q < 1 depends only on a0, C\vargamma , qsat, \scrT 0, \tau , and \theta .

With these results, we can prove Theorem 8.

Proof of Theorem 8. We divide the proof into two steps.
Step 1. Consider Algorithm 4.A. In case (a) of Criterion A, we apply Lemma 17

with C\vargamma = \vargamma  - 1 and \theta = \theta \BbbX , whereas in case (b) of this marking criterion, we use
Lemma 18 with C\vargamma = \vargamma and \theta = \theta \BbbP . In both cases, this proves contraction of the
energy error | | | u - u\ell +1| | | \leq qlin | | | u - u\ell | | | with qlin \in (0, 1).

Step 2. Consider now Algorithm 4.B. In case (a) of Criterion B one has

\theta \BbbP \eta \ell (Q\ell ) \leq \eta \ell (\widetilde \frakM \ell ) \leq \vargamma  - 1\eta \ell ( \widetilde \scrR \ell ) \leq \vargamma  - 1\eta \ell (\scrN +
\ell ).
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Hence, Lemma 17 applies to this case with C\vargamma = \theta  - 1
\BbbP \vargamma  - 1 and \theta = \theta \BbbX . Similarly, in

case (b) of Criterion B, one has

\theta \BbbX \eta \ell (\scrN +
\ell ) \leq \eta \ell (\widetilde \scrM \ell ) \leq \eta \ell ( \widetilde \scrR \ell ) < \vargamma \eta \ell (\widetilde \frakM \ell ) \leq \vargamma \eta \ell (Q\ell ).

Hence, in this case, Lemma 18 applies with C\vargamma = \theta  - 1
\BbbX \vargamma and \theta = \theta \BbbP . Thus, in both

cases, we obtain contraction of the energy error | | | u  - u\ell +1| | | \leq qlin | | | u  - u\ell | | | with
qlin \in (0, 1).
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