
 
 

University of Birmingham

The role of the mobility law of dislocations in the
plastic response of shock loaded pure metals
Gurrutxaga-Lerma, Beñat

DOI:
10.1088/0965-0393/24/6/065006

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Gurrutxaga-Lerma, B 2016, 'The role of the mobility law of dislocations in the plastic response of shock loaded
pure metals', Modelling and Simulation in Materials Science and Engineering, vol. 24, no. 6, 065006.
https://doi.org/10.1088/0965-0393/24/6/065006

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1088/0965-0393/24/6/065006
https://doi.org/10.1088/0965-0393/24/6/065006
https://birmingham.elsevierpure.com/en/publications/17a4082d-b007-4d0d-ba68-bd6f5fa059bc


Modelling and Simulation in Materials Science and Engineering

PAPER • OPEN ACCESS

The role of the mobility law of dislocations in the
plastic response of shock loaded pure metals
To cite this article: Beñat Gurrutxaga-Lerma 2016 Modelling Simul. Mater. Sci. Eng. 24 065006

 

View the article online for updates and enhancements.

Related content
Dislocation mobilities in Al, Ni and Al/Mg
alloys
David L Olmsted, Louis G Hector Jr, W A
Curtin et al.

-

Analysis of nonlinear elastic aspects of
precursor attenuation in shock-
compressed metallic crystals
J D Clayton and J T Lloyd

-

Dislocations and stacking faults
J W Christian and V Vítek

-

Recent citations
Modeling the temperature and high strain
rate sensitivity in BCC iron: Atomistically
informed multiscale dislocation dynamics
simulations
Pascale El Ters and Mutasem A.
Shehadeh

-

Elastic precursor wave decay in shock-
compressed aluminum over a wide range
of temperature
Ryan A. Austin

-

Adiabatic shear banding and the
micromechanics of plastic flow in metals
B. Gurrutxaga-Lerma

-

This content was downloaded from IP address 147.188.108.179 on 08/10/2019 at 11:23

https://doi.org/10.1088/0965-0393/24/6/065006
http://iopscience.iop.org/article/10.1088/0965-0393/13/3/007
http://iopscience.iop.org/article/10.1088/0965-0393/13/3/007
http://iopscience.iop.org/article/10.1088/2399-6528/aabc43
http://iopscience.iop.org/article/10.1088/2399-6528/aabc43
http://iopscience.iop.org/article/10.1088/2399-6528/aabc43
http://iopscience.iop.org/article/10.1088/0034-4885/33/1/307
http://dx.doi.org/10.1016/j.ijplas.2018.09.002
http://dx.doi.org/10.1016/j.ijplas.2018.09.002
http://dx.doi.org/10.1016/j.ijplas.2018.09.002
http://dx.doi.org/10.1016/j.ijplas.2018.09.002
http://dx.doi.org/10.1063/1.5008280
http://dx.doi.org/10.1063/1.5008280
http://dx.doi.org/10.1063/1.5008280
http://dx.doi.org/10.1016/j.ijsolstr.2017.09.025
http://dx.doi.org/10.1016/j.ijsolstr.2017.09.025
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuvNL4lIeDRTN1UIqm0ptK1mU_PRDdLWbfE2zVrySerI0sSrPG1emWP8k0OPqyzU8dX4Jd2MRyN1wiZDaJKxGrsTmGrQbBNl_7-iQj7QpynkLoK-LHbUsL0z8KSnnZZY_xYLufnbWoP9iSuoj5AZU4J1j_qzu9T50elsyEij6cpRH7Oif3-uD7pFqAlV1Qu5qoydcO3XQUK6mhvnHs8zRBbEcyH1XZTLHJmF7TNGpGhp2d68vMK&sig=Cg0ArKJSzOyhyXEtaIrI&adurl=http://iopscience.org/books


1

Modelling and Simulation in Materials Science and Engineering

The role of the mobility law of dislocations 
in the plastic response of shock loaded 
pure metals

Beñat Gurrutxaga-Lerma1

Department of Mechanical Engineering, Imperial College London, Exhibition Rd, 
SW7 2AZ London, UK

E-mail: bg374@cam.ac.uk

Received 3 May 2016, revised 6 June 2016
Accepted for publication 21 June 2016
Published 11 July 2016

Abstract
This article examines the role that the choice of a dislocation mobility law 
has in the study of plastic relaxation at shock fronts. Five different mobility 
laws, two of them phenomenological fits to data, and three more based on 
physical models of dislocation inertia, are tested by employing dynamic 
discrete dislocation plasticity (D3P) simulations of a shock loaded aluminium 
thin foil. It is found that inertial laws invariably entail very short acceleration 
times for dislocations changing their kinematic state. As long as the mobility 
laws describe the same regime of terminal speeds, all mobility laws predict 
the same degree of plastic relaxation at the shock front. This is used to show 
that the main factor affecting plastic relaxation at the shock front is in fact the 
speed of dislocations.

Keywords: dislocations, plasticity, mobility law, shock loading, 
elastic precursor decay

(Some figures may appear in colour only in the online journal)

1.  Introduction

The plastic shielding of a shock front is the fundamental process behind the attenuation 
of the dynamic yield point. Gurrutxaga-Lerma et al (2015) [1] showed that attenuation of 
the dynamic yield point (otherwise known as the ‘elastic precursor decay’) is the result the 
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accumulated interference of elastic waves emanating from shielding dislocations that are gen-
erated at the shock front.

This phenomenon is greatly affected by the motion of these dislocations. Dislocations are 
generated in shielding and anti-shielding pairs. The shielding dislocations move frontward, 
and as their speed approaches the transverse speed of sound, the elastodynamic fields they radi-
ate are magnified ahead of the dislocation core in the direction of motion. The anti-shielding 
dislocations move in the direction opposite to the front, and as their speed approaches the 
transverse speed of sound, the magnitude of their elastodynamic fields behind the core in 
the direction of motion is weakened. This weakens the anti-shielding effect, and results in 
an enhanced plastic shielding of the shock front [1]. Thus, the plastic relaxation of the shock 
front appears to be greatly affected by the way in which dislocations move at the shock front.

In continuum elasticity descriptions of plasticity and dislocation dynamics, dislocation 
motion is described in terms of mobility laws [2]. Mobility laws express dislocation motion in 
their slip planes as a force or energy balance in which the action of an external stimulus (typi-
cally, an external stress) is balanced by the crystalline lattice’s natural resistance to its motion 
(the dislocation ‘drag’), and by the need to change the dislocation’s own elastic self-energy.

Since dislocations move to minimise the elastic free energy of the system [3], the mobility 
law usually expresses the effect of the external stimuli in terms of the Peach–Koehler force [4]:

σ ξ= εf Bi ijk lj l k� (1)

where ≡f fi PK is the Peach–Koehler force, εijk the Levi-Civita tensor, σlj the external stress 
tensor, Bl the Burgers vector, and ξk the direction of the dislocation line.

Equally, the effect of the lattice resistance is expressed as a drag force, the nature of which 
depends on the speed the dislocation is moving at. At low stresses and low strain rates, dislo-
cation motion is naturally impeded by the Peierls barrier, and the motion is governed by the 
thermally assisted probability of overcoming that barrier [5]. At higher stress levels, disloca-
tions are able to overcome the barrier and enter a free glide regime where the drag force is said 
to resemble a viscous drag force [5], where the glide speed is reported to be proportional to the 
applied resolved shear stress, τ:

τ
=v

B

d
glide� (2)

where d is a drag coefficient and =| |B B  the magnitude of the Burgers vector, both dependent 
on the material.

This ‘ free glide’ or ‘ pure drag’ regime and, consequently, equation (2), neglect the impor-
tance the dislocation’s self-energy may have in its own motion. It is known that the latter 
increases with the dislocation’s speed [5–7], and that according to first order linear elastic-
ity, it diverges at the transverse speed of sound, which has led the latter to be regarded as a 
limiting speed of dislocations [5]. This effect results in a well-attested [5, 6, 8, 9] saturation 
of the speed a dislocation may achieve with respect to increasing Peach–Koehler force; due 
to its similarity with the relativistic motion of electric charges, this regime is often referred 
to as relativistic regime. Additional likely effects resulting from the fast moving dislocations  
[8, 10], suggest that the intrinsic lattice resistance may be different from the viscous drag 
given by equation (2), which complicates the proposal of a univocally clear mobility law valid 
in the relativistic regime.

This is particularly relevant for shock loading, where due to the magnitude of the applied 
loads, most dislocations are believed to glide in either the pure drag regime or, more usually, 
in the relativistic regime (see [5, 8]). Most of the proposed dislocation mobility laws that can 
be employed in shock loading are therefore speculative at best. Nonetheless, there seems to be 
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a large consensus in that the dislocation’s speed should saturate as it approaches the transverse 
speed of sound [5, 6, 9, 11–14] or, in the presence of free surfaces, the Rayleigh wave speed 
[5, 15].

This article examines the role mobility laws may have in determining the plastic relaxation 
of a shock front propagating through FCC aluminium employing dynamic discrete dislocation 
plasticity (D3P). Therefore, all results presented here apply for the motion of pure edge dis-
locations in pure metals, thereby lacking impurities or any other such defects that may affect 
the dislocation’s drag. In section 2, the mobility laws that will be put to test are introduced. 
Section 3 presents the details of the D3P simulations where the mobility laws will be tested, as 
well as their significance to the study of plastic relaxation in shock loading. Section 4 presents 
the results of this study, and offers a physical interpretation of the latter. Section 5 summarises 
the main findings of this work.

2.  Mobility laws of high speed dislocations

The requirement that the dislocation’s speed saturates as it approaches the transverse speed of 
sound can be satisfied in a number of ways. On one hand, one can simply fit experimental or 
atomistic simulations data to mathematical functions that phenomenologically describe the speed 
of the dislocation as τ varies; hereafter, the resulting mobility laws are called phenomenological 
mobility laws. On the other hand, one can attempt to produce physically insightful models that 
attempt to capture, partially at least, the physical effects that fast moving dislocations encounter; 
the resulting laws, here termed inertial mobility laws, typically involve an inertia-like force.

This section will review a number of phenomenological and inertial models that have been 
suggested in the past; table 1 summarises the models to be studied. This work does not intend 
to be an exhaustive account of all the mobility laws that have been proposed in the past. 
Rather, it intends to showcase the most characteristic features of those that are deemed of 
relevance to shock physics simulations, where dislocations are often expected to move at 
significant fractions of the transverse speed of sound.

2.1.  Phenomenological laws

Phenomenological laws are fits to experimental or atomistic simulations data. They attempt 
to reproduce the observed relationship between the applied resolved shear stress, τ, and the 
glissile velocity of the dislocation, v, via a best fit equation. Most draw their data from exper
imental observations of dislocation mobility [9] or, more recently, from molecular dynamics 
simulations of the mobility of dislocations [22, 23]. They tend to describe only the terminal 
motion of dislocations, i.e. the stationary speed a dislocation reaches under the application of 
a constant resolved shear stress; any possible transient effect in the motion of the dislocation 
is generally missed.

2.1.1. Taylor’s model.  Gillis et al [16] found that the empirically observed relativistic behav-
iour of dislocations in many metals could be best described by modifying the linear drag 
coefficient in equation  (2). The model, apparently originally due to JW Taylor (vid. [11]), 
prescribes a drag coefficient of the form

/
=
−

d
d

v c1 t

0

2 2� (3)

where d0 is the low speed drag coefficient and ct the transverse speed of sound.
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Gillis and Kratochvil [17] and Gilman [11] further argued that although the model neglected 
the acceleration time of dislocations, it was broadly valid because the acceleration times of 
dislocations were invariably of the order of a few picoseconds. The value of d0 can be obtained 
from empirical data, and corresponds to the drag coefficient of dislocations moving in the pure 
drag regime, i.e. at small speeds compared to ct.

For historical limitations, most experimental data regarding the mobility of dislocations is 
available only for the pure drag regime; the lack of experimental data regarding dislocations 
moving at speeds close to the transverse speed of sound is remedied using data obtained from 
molecular dynamics simulations. For instance, for FCC aluminium, experimental data sug-
gests that = ⋅ −d 2 100

5 Pa·s [5, 9]; however, experimental data for dislocations moving faster 
than ≈ 100 m s−1 in aluminium seems unavailable [8], and one must look for it in molecu-
lar dynamics simulations [22]. Nevertheless, it is found that when fitting Taylor’s model to 
molecular dynamics data of the mobility of edge dislocations in aluminium (vid. [22]), the 
resulting = ⋅ −d 2.05 100

5Pa·s, showing good agreement between simulations and model. This 
value will be employed in the following.

Employing Taylor’s model, the mobility law takes the form

/
τ

−
⋅ =

d

v c
v B

1 t

0

2 2� (4)

whereby

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟τ

τ
= + −v

d c

B

B

d c2
1

4
1t

t

0
2 2 2

0
2 2� (5)

Equation (5) will be the one employed in the following discussion when referring to ‘Taylor’s 
model’.

2.1.2.  Power law.  Power law mobility laws have traditionally been favoured due to their sim-
plicity, and because they are related to the mobility laws obtained for the regime of thermal 
activation of motion [18]. They take the form

⎛
⎝
⎜

⎞
⎠
⎟τ
τ

=v v
m

0
0

� (6)

where m is the slope of the τ−vlog log  curve typically obtained from experimental data, and 
τ0 and v0 some reference values, the latter usually being assumed to be v0  =  1. The values of 
m for a number of materials can be found in Nix and Menezes [9].

The problem with power laws is that they fail to capture the existence of a limiting speed to 
the motion of dislocations. A solution to this limitation was given by Meyers [8], who argued 
that each mobility regime should be given a different m exponent. Accordingly, for the pure 

Table 1.  Summary of the mobility laws to be studied in this work.

Type Name Equations References

Phenomenological Taylor Equation (3) [11, 16, 17]
Phenomenological Power law Equation (6) [8, 9, 18]
Inertial HZL Equation (18)  

(with equation (16) or (17))
[19]

Inertial Pillon et al Equation (27) [20]
Inertial Pellegrini Equation (29) [21]
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drag regime =m 1drag , for the thermal activation of motion regime >m 1activation , and for the 
relativistic regime <m 1relativistic .

The material under consideration in this work is FCC aluminium. Using the MD data 
obtained by Olmsted et al [22] for FCC aluminium, one can produce a power law fit of the 
MD data to equation (6) where ≈m 1 up to τ = 120 MPa with τ = 0.0350  MPa. For values of 
τ> 120 MPa, two additional regions are defined: one for ⩽ ⩽τ120 400 MPa, with ≈m 0.85; 
and one for ⩽ ⩽τ400 2260 MPa, with ≈m 0.6. Further increases in τ are given a value of 
= =v c c0.98 t R (the Rayleigh wave speed), to prevent dislocations from becoming super-

sonic or resonating with the free surfaces [15].

2.2.  Inertial mobility laws

A moving dislocation radiates energy outwards from the core in the form of elastic waves that 
are emitted as the dislocation moves [24]. This is reflected in changes in the dislocation’s own 
self-energy, which is heavily dependent on the dislocation’s kinematic state: as the disloca-
tion’s speed increases towards the transverse speed of sound, ct, the elastic self-energy of the 
dislocation tends to increase, diverging at ct.

The aim of inertial mobility laws is to capture theoretically the energy penalty incurred 
in increasing (or decreasing) the dislocation’s speed in an elastic continuum. Still, unlike 
phenomenological laws, inertial mobility laws explicitly account for the change with speed of 
the elastic self-energy of the dislocation. This change is usually translated into an additional 
force, called the inertia force acting on the dislocation, the magnitude of which increases with 
the dislocation’s speed. The dislocation’s inertia force is not an inertia force in the Newtonian 
sense. However, as with true inertia forces, it can be shown [6, 19] that it is proportional to the 
dislocation’s acceleration (i.e. that it opposes to changes in v, the dislocation’s glide speed):

=f m
v

t

d

dinertia� (7)

The proportionality factor m is generally called the mass of the dislocation [19].
The inertia force of straight dislocation is obtained by considering the Hamiltonian (total 

energy) of an infinite elastic system:

= +H T V� (8)

where T is the kinetic energy of the dislocation, and V its elastic energy. If x is the canonical 
coordinate along which the dislocation glides, then Hamilton’s equations require that

= −
∂
∂

=
∂
∂

p

t

H

x

x

t

H

p

d

d
,

d

d
� (9)

The inertia force is then simply defined as

= = −
∂
∂

f
p

t

H

x

d

dinertia� (10)

If ≡v vglide is the dislocation’s speed, then it follows that

= =
∂
∂
=
∂
∂

=
∂
∂
=

∂
∂
∂
∂

v
x

t

H

p

H

t

t

p f

H

t f

H

v

v

t

d

d

d

d

1 1
,

inertia inertia
� (11)

whereby the dislocation’s mass can be identified as

=
∂
∂

m
v

H

v

1
,� (12)
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and the inertia force be

=
∂
∂

f m
v

tinertia� (13)

in direct analogy with Newton’s inertia.
The inertia force is a measure in changes in the self-energy of a dislocation. If the kinetic 

and potential energies of the dislocation are described in a linear elastic continuum, the inertia 
only measures changes in the energy of the system with respect to the speed of the disloca-
tion, and therefore disregards any effect that is not taken into consideration by linear elasticity, 
including phonon wind and diffraction, etc, which any inertial mobility law will still have to 
account for, often phenomenologically. Thus, within linear elasticity inertial mobility laws 
will usually take the form

=
∂
∂
+f m

v

t
fPK drag� (14)

where fdrag still needs to be obtained from elsewhere.
The key for finding finertia is therefore to find H, the system’s total energy, which is not a 

trivial task as it needs to account for the true kinematic state of the moving dislocation. In the 
following, an account of some of the main proposals for an inertial mass is given.

2.2.1.  Hirth–Zbib–Lothe (HZL) mass.  Following the pioneering works of Frank [25], Eshelby 
[26] and Weertman [27], Hirth, Zbib and Lothe [19] attempted to provide a consistent defini-
tion of the mass of a dislocation, hereafter referred to as the HZL mass.

They relied on Weertman’s work in deriving the elastic energy of a dislocation that has 
been moving with uniform speed v since →−∞t . This work reached an expression of the 
dislocation’s energy, which for edge dislocations is of the form [28],

µ
π

= − −
−

−

+
−

− +
−

+
−

+
−

/

( / )

⎛
⎝
⎜

⎞
⎠
⎟
⎡

⎣
⎢

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎤

⎦

⎥
⎥
⎥

H
b

M

R

r
M

M M

M

M
M

M M

M

M M

ln 4 1
2

4
1 2

1

1 2

2
1

6

1

1

1 2 1

t c
l

t t

t

t
t

t t

l

t l

2

4
2

2 2

2

2 2
2

2 2 3

6

2 2

�

(15)

where /=M v cl l and /=M v ct t are the longitudinal and transverse Mach numbers, cl and ct the 
longitudinal and transverse speeds of sound, μ the shear modulus, R and rc the dislocation’s 
outer and inner core width, respectively (see [5]). A similar, albeit simpler expression can be 
reached for screw dislocations (vid. [19, 27]). It is worth noticing that this energy is not time 
dependent, as it refers to a uniformly moving dislocation.

Using such elastic self-energy invariably gives rise to the paradox that a uniformly moving 
dislocation cannot experience an inertia force as specified by equation (13) [28, 29]. However, 
a mass and a pseudo-inertial force may be defined by applying equation  (13) to the elas-
tic energy given by equation (15); in that case, the inertia measures the energetic difference 
between two different steady states when the dislocation is in motion.

This forms the basis of the HZL mass, which provides an informed estimate of the amount 
the elastic self-energy of the dislocation must be increased when the latter is accelerated. 
Combining a Lagrangian formulation akin to the one leading to equation (11) above with the 
elastic energy of the uniformly moving dislocation (equation (15)), Hirth, Zbib and Lothe 
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[19] provided the following expressions for the mass of a dislocation, which depend on the 
character of the dislocation:

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

µ
π γ γ

= − +m
B R

r v4
ln

1 1 1

t t

screw

2

0
2 3� (16)

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

µ
π

γ
γ γ

γ
γ γ γ

= − − + + + − +m
B R

r

c

v4
ln 8

20 4
7

25 11 3t
l

l l
t

t t t

edge

2

0

2

2 3 3 5� (17)

where γ = −1l
v

cl

2

2 , γ = −1t
v

ct

2

2 .

The corresponding mobility law will then be

( )τ =
∂
∂
+B m

v

t
f vdrag� (18)

where ( )f vdrag  is the natural lattice resistance to the motion of dislocations (typically, 
= ⋅f d vdrag  from equation (2)), and m takes the forms given in equations (16) or (17) depend-

ing on whether the dislocation is of screw or edge character respectively.

2.2.2.  Fully time-dependent descriptions of the inertial force.  Although a good first step 
towards a physically motivated description of inertial effects, the HZL mass seems limited in 
that it relies on the kinetic energy of a dislocation that has been moving with uniform speed 
since →−∞t , which is an approximation for describing changes in the kinematic state of a 
dislocation.

Early models of fully time-dependent inertial forces.  As a first step towards a more complete 
description of inertial force, Markenscoff and Clifton [30] employed the fully elastodynamic 
description of the fields of dislocation initially derived by Markenscoff [31] and Markenscoff 
and Clifton [7] to obtain the inertia force of an elastodynamic Volterra dislocation which 
jumps from rest at time t  =  0 to a uniform speed v. They did so by calculating the energy radi-
ated by the dislocation through a surface Sd that encloses the dislocation core:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥∫ σ σ ρ= + +H n u u u u v S˙ ˙

1

2

1

2
˙ ˙ d

S
ij j i ij i j i j,

d

� (19)

where repeated index denotes summation, σij is the stress tensor, ui the displacement, ρ the 

density, u̇i the particle velocity, v the velocity of the dislocation, and ≡ ∂
∂

Ḣ H

t
 for brevity.

The integral in equation (19) is a general expression of the energy release rate of a disloca-
tion, but it seemingly depends on the choice of Sd. However, for the case of an initially quies-
cent dislocation that begins to move with uniform speed for t  >  0, Markenscoff and Clifton 
[30] showed that the integral is independent of the choice of surface Sd (i.e. path independent), 
and the energy flux is uniquely determined. By making the Sd surface infinitely small about 
the dislocation core2, i.e.

→
=H H˙ lim ˙ ,

S
0

0d
� (20)

2 N.B. This case differs from that of the uniformly moving dislocation analysed by Hirth, Zbib, and Lothe in that in 
the latter the dislocation has been moving uniformly since →−∞t , whilst in the latter the motion starts at t  =  0.
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they were able to derive an inertial force, defined as

= −f
H

v

˙
inertia

0� (21)

This expression is analogous to the one given in equation (11).
The expression for Ḣ0 depends on whether the dislocation is of screw or of edge character, 

and is obtained from the elastodynamic fields of uniformly moving edge and screw disloca-
tions that were quiescent for t  <  0 (see [7, 15, 28, 31]):

( )
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−
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edge

2 2

2 2 1 2

2 2
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2

2

�

(23)

The inertial expression given in equation (21) applies only for uniform motions, because 
for non-uniformly moving dislocations the energy release rate is strongly dependent on the 
past history of the dislocation [7, 32, 33] and, therefore, equation  (19) will depend on the 
choice of Sd surrounding the core (see [29]). However, unlike the HZL inertia, the one given in 
equations (21)–(23) is in fact a measure of the energy radiated by a moving dislocation—the  
uniformly moving, elastodynamic dislocation radiates energy, unlike the stationary one 
employed in the definition of the HZL mass.

More recently, employing a dynamic J-integral, Ni and Markenscoff [29], found an explicit 
form of the inertial force for a non-uniformly moving screw dislocation. In order to avoid the 
singularity at the dislocation core, they introduced a regularisation of the core employing a 
ramp-like core and, alternatively, a mollifier. This led to an expression of both the inertia and 
mass of a screw dislocation of considerable complexity. No analogous expression for edge 
dislocations is available.

Radiative expressions of the dislocation inertia.  Building on Clifton and Markenscoff’s iner-
tial force, Pillon et al (2007) [20] extended the inertial force to account for accelerated motion 
using a linear perturbative approach. Taking equation (21) as a departure point, they argued 
that if the dislocation’s speed were a function of time, v  =  v(t), then the differential force aris-
ing from a variation in speed δv at some time ϑ=t  should be of the form

( )
( )

( ) ( )
δ δ ϑ

ϑ
µ
π
δ ϑ

ϑ
=

∂
∂

=
−

f v
f

v

B
v

t

g v

v2

1 d

d
i

inertia
nertia

2

� (24)

where here the /( ) /ϑ− ∼t t1 1  simply accounts for a motion starting at a time ϑ other than 
t  =  0, and where

( ) π
µ

ϑ
=

−
g v

B
H

t

v

2 ˙
2 0

with Ḣ0 taking either form shown in equations (22) or (23) depending on whether the disloca-
tion is of screw or edge character, respectively.

With equation  (24) in mind, the total force experienced by the dislocation can then be 
obtained by summing over each past contribution to δfinertia:
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f
B g v

t

v

2
d

d

d
,

t

inertia

2

∫
µ
π

ϑ
ϑ
ϑ

ϑ
ϑ

=
−
′

−∞

[ ( )] ( )
� (25)

this has a /( )ϑ−t1  singularity they regularised by replacing it with /(( ) ) /ϑ− +t t1 2
0
2 1 2, where 

t0 is approximately the time it takes for an elastic wave to leave the core of the dislocation, to 
finally attain:

∫
µ
π

ϑ
ϑ

ϑ
=

− +

′ϑ
ϑ

−∞

[ ( )]

[( ) ]

( )

/f
B g v

t t2
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� (26)

This inertial force is then combined with a drag force to achieve the resulting mobility law:

B v g v

t t
f v t B

2
d

d

d

t2

2
0
2 1 2 drag∫

µ
π

ϑ
ϑ
ϑ

ϑ

ϑ
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− +
+ =

′
−∞

( ) [ ( )]
[( ) ]

( ( ))/� (27)

This defines a non-linear integral equation, which can be solved numerically via Galerkin’s 
method. The main limitation of this equation is that it implicitly assumes that the core struc-
ture remains unchanged with speed, which is an approximation that breaks down as the dislo-
cation’s speeds approach the transverse speed of sound [29, 33].

In order to better capture observed empirical behaviour, Pillon et  al invoked a semi-
phenomenological drag force produced by Rosakis [34]:

( )
( )
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η
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= ⋅

+
f v t
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� (28)
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and η = α
ζ

m c2 t0 0
0
, where ζ0 is the core width, and = µ

π
m B

c
0

4 t

2

2. This drag force has a phenom-

enological component—corresponding to the linear viscous drag, d—, and a radiative damp-
ing component which measures the energy loss due to the elastodynamic waves emitted by the 
moving dislocation (i.e. the long wavelength phonons radiated by the dislocation’s core); the 
latter can be verified to give the exact closed-form solution for steady-state motion.

A more complex mobility law, which naturally resolves the core’s contractions with 
increasing dislocation speed as well as radiative damping, was recently proposed by Pellegrini  
[21, 35] employing the dynamic Peierls–Nabarro formulation previously developed by 
Pellegrini [33]. In this case, the inertial term accounts for all radiated wave effects by a core of 
varying width. The resulting inertial force is given as a complex-valued equation,

( ¯) ¯ ¯
∫ ϑ

ϑ
ζ
ζ

=
∆

+
−∞

f
m v

t

v w

c
2 d

d

d

˙

Im

t

t
inertia

0� (29)

where z̄ denotes the complex conjugate of z, and ( ) Cζ ζ= ∈t  is a complex position-width 
collective coordinate given by

( ) ( ) ( )
ζ ξ= +t t

a t
i

2
� (30)
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with ( )ξ t  the coordinate describing the position of the dislocation, and a(t) the core width; 
where ¯( )v t  is a complex velocity defined as

¯( ) ( ) ¯( )
ϑ

ζ ζ ϑ
ϑ

=
−
−

v t
t

t
,� (31)

Pellegrini’s inertial model includes the radiative, long wavelength phonon damping effect by 
construction, and it indeed recovers Rosakis’s drag force (equation (28)) in the steady state 
[21]. Still, in order to account for the energy loss resulting from short wavelength phonon 
emission and any other damping effects, this formulation needs to invoke the viscous drag to 
capture the overdamped motion at low speeds. In this framework, the linear viscous drag force 
is written as

¯
α

ζ
ζ

=f
w

c

˙

Imt
drag

0� (32)

where /α µ= d c2 t0 , and /( )µ π=w B 20
2 , and d0 the drag coefficient.

The details to solve this equation numerically are non-trivial, and can be found in [21]. 
Within the limits of a linear elastic continuum, the inertial force provided by Pellegrini [21] 
is the most complete, physically insightful description of this effect. It must be mentioned 
that Rosakis’ drag and Pellegrini’s model allow for supersonic motion. This article shall only 
concern itself with subsonic dislocation motion.

2.3.  Comparison between mobility laws

The two sets of mobility laws under consideration here describe the motion of a dislocation 
in radically different ways. Phenomenological laws only describe the terminal speed, i.e. the 
final, steady-state speed that a dislocation acquires under the action of an external applied 
resolved shear stress τ. Phenomenological models implicitly assume that the terminal speed is 
reached instantaneously (i.e. with no acceleration). Figure 1 shows the two to be employed in 
the following; in either case the relativistic effects are captured as a saturation of the disloca-
tion speed with increasing τ as it approaches the limiting speed (ct in this work). In turn, in 
inertial laws the terminal speed is reached only after a finite, acceleration time. The specific 

Figure 1.  Phenomenological mobility laws.
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definition of the inertia force makes this time longer or shorter, and can potentially affect the 
dynamic behaviour of a shocked material by making fast moving dislocations more easily 
available to relax the structure.

In addition to the inertial force itself, all inertial mobility laws employed here require the 
presence of a drag force. This becomes clear at low speeds, when the inertial effects are negli-
gible: without the drag force, the dislocation motion would be unstable [5]. Since the physical 
basis for the drag force (phonon emission [5, 8]) arguably remains active at higher dislocation 
speeds, the presence of a drag force in the mobility law seems justified. The balance between 
the inertial, drag and applied (Peach–Koehler) force ought to lead to a stable solution, and fol-
lowing an acceleration time, the dislocation ought to reach a terminal speed.

Consider for instance equation (18) from the HZL model: it ascribes all inertial effects to 
changes in the velocity of the dislocation. As the dislocation approaches its terminal speed, the 
magnitude of the inertial force decreases, and the dislocation motion will increasingly be gov-
erned by the drag force alone. When the terminal speed is reached, the inertial force vanishes, 
so the terminal speed can be determined as a simple balance between the Peach–Koehler force 
and the drag force (i.e. =f fdrag PK when =v vterminal). This leads to two highly simplified 
regimes of motion for the terminal speeds of the dislocation: if the applied force is such that 
the speed resulting from balancing fdrag with fPK is lower than the transverse speed of sound, ct, 
then the terminal speed is determined by =f fdrag PK; however, if the resulting speed is higher 
than ct, the inertial force will diverge at the transverse speed of sound, and the only possible 
solution in equation (18) is for the speed of the dislocation plateau at ct.

Figure 2 shows these two regimes of terminal speeds for the case of FCC aluminium 
(ct  =  3237 m s−1, cl  =  6272 m s−1, ρ = 2700 kg m−3,  =B 2.85 Å [1]). Following Zbib 
and coworkers [36–38], the drag force is chosen to be viscous and linear, with = ⋅f d vdrag ,  
where d, the drag coefficient, is = ⋅ −d 2 10 5 Pa·s. Both the screw (figure 2(a)) and edge  
(figure 2(b)) cases are studied, for dislocations that are accelerated from rest under a given 
resolved shear stress τ. Over relatively short times the numerical solutions invariably converge 
to the situation described above, with a pure drag region and a region where dislocations move 
at the transverse speed of sound irrespective of the applied stress.

This two-regime motion seems different from the one observed both in experiments and 
molecular dynamics simulations of dislocation motion (vid. [8, 22]), and serves to highlight 

Figure 2.  Mobility laws for the HZL mass. All dislocations are accelerated from 
rest; as can be seen, they reach terminal speeds at a relatively fast rate. (a) Solution 
to equation  (18) for screw dislocations being accelerated from rest. (b) Solution to 
equation (18) for edge dislocations being accelerated from rest.

B Gurrutxaga-Lerma﻿Modelling Simul. Mater. Sci. Eng. 24 (2016) 065006



12

that the choice of the drag force in mobility laws is crucial. In the HZL model, the inertial 
force dominates the acceleration times, which are therefore related to the dislocation’s own 
self-energy. However, the terminal speed arises from the balance between the energy input 
(the Peach–Koehler force) and the energy dissipation within the lattice (the drag), which at 
high speeds is probably different from that at low speeds. Additional effects other than those 
causing the linear viscous drag behaviour at low speeds, such as the radiative damping dis-
cussed by Rosakis [34] and Pellegrini [21] are probably important in the relativistic regime, 
and should therefore be reflected in the drag force itself.

The situation in the HZL model is in a sense also reproduced by the inertial laws proposed 
by Pellegrini and coworkers (equations (27) and (29)): the magnitude of the inertial accel-
eration force tends to decrease as the dislocation approaches the terminal speed, so terminal 
speeds are dominated by drag effects. However, the drag force in these models is not entirely 
phenomenological or empirical any longer, and these models produce more informed esti-
mates of the acceleration times.

Aside from the improved physical motivation, these two laws invariably result in shorter 
acceleration times compared to the HZL model’s (vid. [20, 21]), so the terminal speed is 
reached faster; however, once the terminal speed has been reached, the behaviour of the three 

Figure 3.  Comparison of the behaviour of different inertial mobility laws with Rosakis’ 
and Taylor’s drag forces. The dislocation is always an edge accelerating from rest. At 
1 ps, the models of Pellegrini’s [21] and Pillon et al [20] have almost converged to the 
terminal speed, whilst the HZL model is observed to be slower to reach it. Pellegrini’s 
model is unmodified; the drag law is linear, but it recovers the Rosakis drag in the 
steady state. It is not combined with Taylor’s drag force to avoid double counting 
the drag contributions. (a) 1 ps, Rosakis’ drag force. (b) 10 ps, Rosakis’ drag force.  
(c) 1 ps, Taylor’s drag force. (d) 10 ps, Taylor’s drag force.
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models (HZL, Pillon et al and Pellegrini) is the same when employing Rosakis’ drag force. 
Figures 3(a) and (b) compare the behaviour of the HZL, Pillon’s and Pellegrini’s models when 
employing the Rosakis drag force; as stated above, Pillon and Pellegrini’s models tend to 
converge to the terminal speed faster than the HZL model, but once reached, the three models 
display the same behaviour.

Unlike the HZL and Pillon’s model, Pellegrini’s model fully accounts for radiative damp-
ing by construction, and converges to the Rosakis’ drag [21], so it should not be combined 
with a Taylor style drag force to prevent counting the same effect twice. However, the HZL 
and Pillon’s models can be adapted to account for relativistic drag employing Taylor’s drag 
force rather than Rosakis’. Thus, figures 3(c) and (d) compare the behaviour of Pillon et al’s 
and the HZL model when using Taylor’s drag force rather than Rosakis’. As can be seen in 
figures 3(c) and (d), the overall behaviour of the HZL and Pillon models is similar to that 
observed when using Rosakis’ drag, with Pillon’s model converging quicker to the termi-
nal speeds prescribed by Rosakis’s drag force (this was in fact noted by Pillon et al [20]). 
However, it must be noted that Rosakis’ drag law increases faster towards the limiting speed 
than Taylor’s; as commented in section  2.1.1; the differences are likely caused because 
Rosakis’s drag law constrains more parameters to be physically motivated variables, rather 
than to fitting parameters as does Taylor’s model.

Nevertheless, employing Rosakis’ and Taylor’s phenomenological drag force instead of the 
linear viscous drag leads to very similar behaviour. In both cases, all inertial models reach the 
terminal speed determined by the corresponding drag forces in under 10 ps: for dislocations 
accelerating from rest to a terminal speed in excess of Mt  =  0.8, typical acceleration times are 
of the order of picoseconds. If these acceleration times are compared to those obtained for the 
case shown in figure 2, where the HZL model was combined with a linear drag force, a con-
siderable difference in the acceleration times is observed; these are ascribed to the magnitude 
of the drag force itself, which in the case of the Rosakis or Taylor drag is considerably weaker 
for the same applied stress than the linear drag, so the inertia force dissipates more energy.

This highlights that the role of the inertial force is to impose an acceleration time in achiev-
ing the terminal speed; however, the terminal speed itself is governed by drag, be it phenom-
enologically described or via more physically insightful mobility laws such as Pellegrini’s. 
The HZL models offers the slowest acceleration path; the acceleration times of Pillon and 
Pellegrini’s models are shorter, and relatively similar to each other, at least for low speeds. 
However, in all cases the acceleration times are below  ≈10 ps, and that applies for disloca-
tions being accelerated from rest to speeds close to the transverse speed of sound; dislocations 
accelerated from a given high speed to another will invariably accelerate within shorter time 
scales. This result is comparable to the one found by Gillis and Kratchovil [17] for mobility 
laws employing the inertial mass defined by Frank [25]: the acceleration times prescribed by 
inertial forces are very small compared with the rise time of most shock loads. It remains to 
be seen what differences each of these models may entail in the plastic response of a shock 
loaded material.

3.  A D3P study of the effect of dislocation mobility in shock loading

Dynamic discrete dislocation plasticity (D3P) was originally proposed by Gurrutxaga-Lerma 
et al [32] as the elastodynamic extension to discrete dislocation plasticity (DDP) (vid. [39]). 
As in DDP, dislocations are treated as Volterra discontinuities in an elastic continuum; only 
edge dislocations are considered, which are assumed to move under plane strain conditions 
along preferential slip systems, which in the plane behave like point-like particles gliding 
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along preferential directions (the traces of those plane strain slip planes with the planar 
system). Unlike DDP however, D3P describes dislocation activity in an elastodynamic con-
tinuum, meaning that dislocation-dislocation and dislocation-medium interactions satisfy the 
conservation of linear momentum equation i.e. the Navier–Lamé equation for a linear elastic 
isotropic solid (see [40]). Time is a true field variable, and all inertial effects are accounted 
for [32]. As in DDP, long range interactions between dislocations are accounted for via the 
elastodynamic fields of dislocations; short range interactions are accounted for via constitu-
tive laws defined in [28]. The details of D3P simulations are given in [28]. Of relevance here 
is that dislocations move according to the mobility laws described in table 1.

In the present study, a system of size    µ µ×1 m 10 m is subjected to a sudden distributed 
load of P  =  20 GPa on its left side (see figure 4) with a strain rate of 1010 s−1. The opposite 
right side surface is subjected to a reflective boundary condition, whilst all the rest of sur-
faces are left traction free. The simulated material is FCC aluminium, with Young’s modulus 
E  =  63.2 GPa, shear modulus µ = 28.3 GPa, density ρ = 2700 kg m−3, and Burgers vector 

 2.85 Å. Following [41], the plane strain slip planes for an FCC crystal are localised at ± �57.6  
and �0  with respect to the shock front’s direction of propagation.

As a result of the application of a sudden distributed load, a shock wave is launched propa-
gating at the longitudinal speed of sound. The shock wave triggers dislocation activity. The 
sample is assumed to be initially free of any dislocations other than those forming Frank-Read 
sources, which in this case are treated as point-like sources (vid. [39]), and randomly distrib-
uted throughout the sample with a density of 100 sources per μm2. Frank-Read sources are 
activated when a given threshold stress, the source strength, τFR, is overcome for a specific 
period of time, the source activation time, tnuc. The source strength is inversely proportional 
to the length of the pinned dislocation segment lFR [42], and directly proportional to the strain 
rate, ε̇  [43, 44]:

τ τ µ= + εB t˙FR 0 nuc� (33)

where /τ ∝ l10 FR is the quasi-static source strength, inversely proportional to the source length, 
which is assumed to follow a log-normal distribution [42] such that in the D3P τ0 follows a 
corresponding gaussian distribution of mean 100 MPa and standard deviation 10 MPa. The 
nucleation time tnuc is computed as described in [43], by solving the following equation:

( ) ( )
( )

τ
µ

⋅ =
−

+
+

B
d h

t

B

1

d

d
c

h

t

h t l

h t

0

1 d

d

2

2

2 8t
2

FR
2� (34)

which is a line tension model that tracks the outermost segment of the bowing out Frank-
Read source segment via h(t), it’s height relative to the equilibrium unbowed position. 
Equation (34) is a force balance between the applied resolved shear stress, τB, that is equated 
to the drag force, 
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, which accounts for relativistic saturation as the dislocation’s 

Figure 4.  Schematic of the physical system to be simulated using D3P.
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speed approaches the transverse speed of sound (see [5]), the line tension, 
( )

( )

µ

+

b

h t l

h t

2

2
FR
2

8

, which 

accounts for changes in the dislocation’s elastic self-energy as the Frank-Read source seg-
ment acquires curvature. The nucleation is obtained when ( ) /=h t l 2FR , which assumes that 
the Frank-Read source segment takes a semicircular shape in its unstable position; this is an 
ansatz that Gurrutxaga-Lerma et al [43] showed not to prejudice the accuracy of the nucle-
ation time, which was found to be too large for Frank-Read sources to dominate the plastic 
response of the material at strain rates higher than ≈ 107 s−1.

Once activated, the Frank-Read source injects a dipole of edge dislocations, spaced a dis-
tance LFR which is the minimum separation distance such that the mutual attraction between 
the dislocations is balanced by the applied resolved shear stress. In D3P, it is given by [43]:
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(35)

where a  =  1/cl, b  =  1/ct, d  =  1/v with v the dislocation speed, and τ the applied resolved shear 
stress.

Homogeneous nucleation follows the rules laid out in [45]. Any point along a slip plane 
is allowed to be a homogenous nucleation site, albeit these are spaced a distance of 10B 
to prevent newly injected dipoles from overlapping each other. Homogenous nucleation is 

allowed to happen if the local shear stress is greater than the lattice shear resistance, τ = µ
πhom 4
. 

Homogeneous nucleation is assumed to be instantaneous with respect to the simulation time 
step (∆ =t 1 ps). Newly nucleated dislocations will be spaced following a Poisson distribution 
of λ = B5  [45].

The aim of the present study is to find the different response a D3P simulation may display 
depending on the choice of a mobility law, following the four alternatives presented in sec-
tion 2. Unless otherwise stated, the value of the model constants are those that have already 
been specified above.

4.  Results and discussion

The data obtained from the D3P simulations is analysed by computing the stress field comp
onents due to the dislocations over sections perpendicular to the shock front. The stress pro-
file over a given section  is then averaged to reduce localisation effects, and enable easier 
comparison between different simulations. In this study, the principal averaging section  is 
chosen to match the position of the elastic precursor peak, which is then tracked throughout 
the simulation. Thus, the results presented here correspond to the Lagrangian relaxation val-
ues over the precursor peak.

The simulation results are shown in figure 5, which compares the plastic relaxation at the 
precursor peak attained in the simulation of aluminium for each mobility law described in 
table 1. As can be seen, the degree of relaxation for each of the mobility laws tested here is 
remarkably similar; the main differences are found in the internal statistical variance of the 
results (i.e. the internal noise of the simulations), rather than in the averaged trends, which 
are similar enough that the differences between mobility models can be attributed primarily 
to the natural statistical deviations to be expected in this kind of simulations, rather than to 
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intrinsic differences in the mobility laws. The following is devoted to explore the reasons for 
this response.

The lack of significant variation in the results suggests that the choice of a mobility law 
over another might be less important than other factors affecting the simulations. In part
icular, the results of this work show that phenomenological laws, where acceleration times are 
instantaneous (i.e. where dislocations go from one terminal speed to another instantaneously) 
successfully track the more accurate inertial models, where acceleration times are finite albeit 
brief. The fact that irrespective of the acceleration times the results are broadly the same could 
lead one to conclude that in the shock front dislocation motion is in fact dominated, within the 
timescales involved, by terminal speeds, rather than by the transient motion of dislocations.

Although this is partially correct, the picture is more complex, as this effect is directly 
related to the way the elastic precursor decay occurs. As was shown in [1], the attenuation of 
the elastic precursor occurs as the result of the destructive interference of the elastodynamic 
waves radiated by the dislocations that are generated at the front, and that therefore act as 
shielding dislocations of the shock front. The magnitude of the resulting plastic attenuation is 
sensitive to the speed at which the relevant plastic contribution was radiated from the disloca-
tion core. This is because as shown in [32], the Doppler-like contractions displayed by the 
elastodynamic fields of dislocations with increasing speed entail strong variations in the mag-
nitude of the elastic precursor: the faster the dislocations move in the shock front, the stronger 
the destructive interference will be, leading to larger plastic relaxation of the shock front.

However, in the current simulations these destructive interferences are radiated at similar 
speeds irrespective of the chosen mobility law. This is because the simulations reported here, 
the dislocations at the shock front are observed to move with speeds in excess of Mt  =  0.8 for 
all the mobility laws tested. Any variation in the dislocation’s speed, be it an acceleration or 
a deceleration, is bound to make an already fast dislocation move slightly faster or slightly 
slower; the corresponding acceleration times (if any) are small (of the order of picoseconds), 
and even if the dislocation’s speed varies slightly differently depending on each mobility law, 

Figure 5.  Comparison of the behaviour of different inertial mobility laws with Rosakis’ 
and Taylor’s drag forces. The dislocation is always an edge accelerating from rest. At 
1 ps, the models of Pellegrini’s [21] and Pillon et al [20] have almost converged to the 
terminal speed, whilst the HZL model is observed to be slower to reach it.
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the external applied stress is large enough that, irrespective of the mobility law chosen, this 
variation will be too small to lead to significant variations in the magnitude of the Doppler 
contractions of the dislocation’s elastodynamic fields. As a result, plastic shielding remains 
largely unaffected.

This occurs irrespective of whether the dislocation has in fact achieved a terminal speed 
(as would invariably be the case for phenomenological laws) or is experiencing a transient 
acceleration or deceleration from one terminal speed to another (as would happen for inertial 
laws). In either case the dislocation will move within a range of speeds such that the resulting 
elastodynamic fields of the dislocations, and therefore the amount of plastic relaxation, do 
not see their intensity significantly affected by the nature of the current kinematic state of the 
dislocation.

This also suggests that the choice of a mobility law could be of relevance in situations 
where dislocations move at lower speeds, where finite acceleration times take place over 
longer timescales or widespread variations in the applied stress level occur. Such situations 
might be encountered in the shocked state of the material (i.e. well behind the shock front), or 
in the plastic shielding of dynamic cracks.

This result also shows that the attenuation of the elastic precursor is dominated mainly by 
fast moving dislocations at the front, since all mobility laws tested here lead to similarly fast 
moving dislocations for the same range of applied stresses. This could be further confirmed if 
the mobility laws were to provide radically different terminal speeds in the high speed ‘relativ-
istic’ regime; this is not the case for the mobility laws employed in this work, as they all either 
quickly converge to the terminal speed, or phenomenologically match the latter. In either case 
the dislocations achieve speeds very close to the limiting speed in the region surrounding 
the elastic precursor wave’s peak, so the impact these high speed dislocations have on the 
attenuation of the elastic precursor can be tested by artificially varying the limiting speed of 
the dislocations themselves. Here, this was done by capping the maximum speed dislocations 
might achieve to 1000 m s−1 (around Mt  =  0.3). In all models the behaviour under 1000 m s−1 
is almost linear, so a simple linear viscous drag mobility law (τ =B dv), capped at 1000 m s−1, 
was employed to simplify the D3P calculations.

Figure 6.  Degree of relaxation at the front due with different limiting speeds. The HZL 
model is employed as a reference.
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Figure 6 compares the capped mobility law’s results with the usual ones. As can be 
observed, a significant drop in the amount of plastic relaxation achieved at the front when the 
speed of dislocations is capped at 1000 m s−1. This is a consequence of the weaker contrac-
tions that the elastodynamic fields of the shielding dislocations experience ahead of the core; 
these contractions would have magnified the elastodynamic relaxation of the elastic precur-
sor, but since here the maximum speed of dislocations has been limited to a value too low for 
the Doppler contractions to be significant, the resulting attenuation is weaker. Further effects, 
such as an increased homogeneous nucleation rate at the front to compensate the weaker plas-
tic relaxation, might play a role as the simulation advances, but it does not seem sufficient to 
offset the results presented here.

In the D3P simulations reported here, the capping of the terminal speed affects primarily 
the dislocations at the shock front itself; dislocations well behind the front are unaffected 
by this change in the mobility law because they move at speeds below 1000 m s−1. In fact, 
the population of dislocations in all D3P simulations reported here is divided between fast 
moving dislocations at the front, which as said above reach speeds very close to the terminal 
speed itself; and slow moving or effectively locked dislocations behind the front, where the 
speeds range in between 100–500 m s−1, and with a significant part of dislocations effec-
tively stopped (i.e. with speeds lower than 100 m s−1). This region of slow dislocations arises 
because their density is so high that they hinder each other’s motion in a way similar to soft 
pile-ups. By virtue of causality, the relaxation at the front is produced solely by dislocations 
that have been generated at the front itself, so it is reasonable to argue that if the terminal speed 
of those dislocations is decreased, then as a result of a lessened dynamic magnification, the 
magnitude of the relaxation at the front will decrease as well.

In light of this, and as can be observed in the figures, the effect choosing a specific mobility 
law over another is found to be small, and in the simulations reported here, statistically insig-
nificant. The main difference in the models employed here is not in the terminal speeds disloca-
tion reach for a given applied stress, but on the acceleration path, i.e. the time it takes and the 
way they reach the final speed. For the phenomenological mobility laws, the acceleration time 
is instantaneous. For the inertial laws, the acceleration time is finite but very small3 compared 
to the rise time of the shock front. Most dislocations subjected to a given stress reach their ter-
minal speed almost instantaneously, and the role of the mobility law is limited to determining 
the 3 terminal speeds, which are governed by the semi-phenomenological drag forces alone.

Thus, the results presented here suggest that when studying the attenuation of an elastic 
precursor in a shock front, the role of inertial forces in dislocations is dual. On one hand, dislo-
cation inertia introduces finite acceleration times, which in the previous discussion, and for the 
strain rate and stress levels tested, was found to be too short to impart significant differences 
between the response of inertial and phenomenological mobility laws; however, these effects 
could be of relevance for later stages of the shock front, where interlocking dislocations might 
lead to a regime where the applied stress varies in magnitude significantly over short periods 
of time. On the other hand, as done by Pellegrini [21] and Rosakis [34], dislocation inertia 
can be shown to explain the radiative damping contribution which, added to the viscous drag, 
leads to the well-known saturation of the dislocation’s terminal speeds as they approach the 
Rayleigh wave speed (or the transverse speed of sound); phenomenological laws can only 
capture these effects ad hoc. In this sense, the results presented here suggest that the role 
of dislocation drag at high speeds, seen to dominate the plastic response of the shock front, 
merits further studies.

3 Of the order of  <10 ps for accelerations from rest, but generally much shorter in the D3P simulations, because 
dislocations transition between terminal speeds of similar magnitude, rather than experience wide changes in speed.
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5.  Conclusions

This article has tested the role the choice of a mobility law may have in the plastic relaxation 
of a shock front employing elastodynamic D3P simulations of dislocation dynamics in alu-
minium. Five different mobility laws have been tested: two phenomenological laws, based 
on data directly extracted from molecular dynamics simulations, and three inertial laws, that 
combine a phenomenological drag force with an inertial force measuring changes in the elas-
tic self-energy of the dislocation as its speed varies.

The main finding of this work is that the choice of a mobility law does not significantly 
affect the decay of the elastic precursor, which is primarily influenced by the fastest moving 
dislocations. It was found that the main factor contributing to the decay is the presence of a 
limiting speed in the mobility law; unlike with changes of mobility law, the moment the limit-
ing speed was reduced from the transverse speed of sound (3237 m s−1 in the simulations) to 
1000 m s−1, the decay rate diminished considerably. This highlights that the elastic precursor 
decay is caused by the shielding effect of fast moving dislocations, and that this shielding is 
all the more effective the faster the dislocations move, because the elastodynamic fields of 
dislocations display a Doppler contraction (magnification) ahead of themselves as they move 
towards the front. A decrease in the dislocation speed, as artificially imposed when capping 
the maximum speed to 1000 m s−1, decreases this Doppler magnification.

The similarities in the result displayed by the different mobility laws are attributed to the 
terminal speeds each mobility law prescribes for the range of applied stress. The terminal 
speed is reached either instantaneously for phenomenological laws; or, for inertial laws, over 
a period of time too short to entail a substantial difference in the mechanical response of the 
shocked material. In either case, the terminal speed is determined by the drag force, which is 
a phenomenological component in every mobility law explored here. As a result, all models 
display behaviours with little statistically significant deviations. It is nonetheless likely that 
the finite acceleration time would become relevant for establishing the shocked state; equally, 
inertial laws shed light on fundamental questions such as the limiting speeds of dislocations, 
core effects and the possibility of supersonic dislocations. Still, the fundamental role of the 
drag force over the inertial force in determining the global behaviour of the shocked material 
highlights that experimental and atomistic observations of a saturation in the dislocation speed 
towards the transverse speed of sound must be attributed primarily to drag effects (be them 
viscous or radiative) in the motion of the dislocation through the crystalline lattice.
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