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a b s t r a c t 

This article calculates the temperature increase resulting from the motion of a dislocation. The tempera- 

ture rise is ascribed to two separate effects, both of which are calculated: the dissipative effect resulting 

from the energy lost by the dislocation as it overcomes the intrinsic lattice resistance to its motion; and 

the thermomechanical effect arising from the constrained changes in volume the dilatational field of a 

moving dislocation may entail. The dissipative effect is studied in an uncoupled continuum solid, whilst 

the thermomechanical effect is studied in a fully coupled thermo-elastodynamic continuum. Explicit so- 

lutions are provided, as well as asymptotic estimates of the temperature field in the immediacy of the 

dislocation core. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fast moving dislocations are usually associated with an increase

n the temperature of the surrounding medium because the motion

f a dislocation is overdamped ( Hirth and Lothe, 1982 ): a disloca-

ion will not move unless an external stimulus is applied to it, and

ny energy spent in moving a dislocation will eventually be dis-

ipated as heat ( Eshelby and Pratt, 1956 ). The energy required to

ove a dislocation increases with its speed ( Weertman, 1961 ); but,

t the same time, the ability of the medium to dissipate heat away

rom the dislocation’s core is limited by its thermal conductivity.

hus, one ought to expect increased localised heating around the

islocation as its moves with increasing speeds. 

In addition to this ‘ dissipative ’ heating effect, edge disloca-

ions carry a dilatational 1 field about their core. Since constrained

hanges in volume are associated with an increase in tempera-

ure ( Callen, 1985 ), one ought to expect an increase in tempera-

ure associated with the dilatational field of the dislocation. This

emperature increase would be caused by thermomechanical ef-

ects alone (see Chadwick, 1960; Nowacki, 1962 ), which are sepa-

ate from (albeit sometimes accounted for by) the dissipative heat-

ng described above, but that could prove to be equally relevant

or high speed dislocations, because an edge dislocation’s dilata-

ional fields are known to contract and magnify with increasing

peed (see Gurrutxaga-Lerma et al., 2013 ). Because of their inher-

nt cylindrical symmetry, the stress tensor of a screw dislocations
E-mail address: bg374@cam.ac.uk 
1 Equivalent to a hydrostatic or pressure field. 
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s traceless, so unlike the dissipative effect, the thermomechanical

eating effect can only be associated with edge dislocations. 

Based on the asymptotic behaviour of the stationary tempera-

ure field radiated by a steady point source in a cylinder, Eshelby

nd Pratt (1956) suggested that a distribution of moving disloca-

ions could explain localised thermal stresses leading to micro-

racks. Similar models were subsequently used to argue that, for

nstance, adiabatic shear band formation could be explained by

n avalanche of dislocations suddenly released from a pile-up

 Armstrong et al., 1982; Armstrong and Elban, 1989 ). De Hosson

t al. (2001) , employing arguments in line with Eshelby and Pratt’s,

ent further to produce a numerical model that coupled the to-

al energy radiated by a planar distribution of dislocation with

ourier’s law applied in a periodic planar system constricted by

diabatic walls. Their model suggested that the heating resulting

rom moving dislocations could be considerable, and associated the

atter with the appearance of thermomechanical effects affecting

he plastic deformation of the solid. Brock (1992) employed a cou-

led thermomechanical model of a crack with an injected dislo-

ation to determine the temperature rise around a loaded crack

ip. Experimental studies have associated such effects with plas-

ic deformation ( Ravichandran et al., 2001 ), adiabatic shear band

ormation ( Armstrong and Zerilli, 1994; Zhou et al., 1996; Guduru

t al., 2001 ), flash heating in earthquakes ( Spagnuolo et al., 2016 ),

nd microcrack formation under fatigue loading ( Dowling and Be-

ley, 1976; Guo et al., 2015 ), amongst many others. Thus, the

emperature increases resulting from the activity of fast moving

islocations appears to have a definite impact in the local tem-

erature distribution in a crystalline solid and in its mechanical

esponse. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.12.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.12.026&domain=pdf
mailto:bg374@cam.ac.uk
http://dx.doi.org/10.1016/j.ijsolstr.2016.12.026
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The aim of this article is to study the localised increase in tem-

perature that may be induced by a moving dislocation in a crys-

talline medium, developing models able to estimate the transient

heating effects induced by a dislocation in its motion. To this end,

Section 2 introduces an analytical model to estimate, on energetic

grounds alone, the dissipative temperature increase by a moving

dislocation modelled as a point heat source. Since the point source

model neglects thermomechanical transport, Section 3 will be de-

voted to the thermomechanical dislocation, deriving the field equa-

tions for a dislocation moving in a dynamic thermomechanical

medium; these solutions will be approximated in Section 4 . Finally,

Section 5 will summarise the main findings of this article. 

2. Analytical estimates of the dissipative temperature increase 

induced by a moving dislocation 

The simplest way to study the temperature increase induced

by a moving dislocation is to revisit Eshelby and Pratt’s sugges-

tion that all the work exerted to make a dislocation move must

eventually be dissipated as heat ( Eshelby and Pratt, 1956 ). 

The value of the physical constants involved is assumed to re-

main independent of temperature; as will be seen, this is a rea-

sonable approximation. In that case, an infinite straight dislocation

of either edge or screw character can be modelled as a heat source

moving in a planar medium, in which case the temperature field

will be governed by Fourier’s law: 

K∇ 

2 θ (x, y, t) = ρc v ˙ θ (x, y, t) − q v (x, y, t) (1)

where hereafter θ = T − T 0 is the temperature field relative to

some reference value T 0 , K the thermal conductivity, ρ the ma-

terial’s density, c v the specific heat at constant deformation, and

q v ( x, y, t ) a heat source term. 

Although the dislocation will have some spatial width ( Hirth

and Lothe, 1982 ), it can be modelled as a point heat source. In

the following, the dislocation will be gliding along the x axis with

speed v . As said, the motion of a dislocation is overdamped, any

work exerted to move it will eventually be released and dissipated

in the form of heat. Thus, one may estimate the heat radiated by

the dislocation in terms of the work exerted to move the disloca-

tion (see Eshelby and Pratt, 1956 ): 

q v = Bτv δ(x − v t) δ(y ) (2)

where τ is the resolved shear stress applied over the dislocation, B

the magnitude of the Burgers vector, and v the dislocation’s glide

speed; the δ(x − v t) δ(y ) factor accounts for the fact that the heat

source moves along the x axis, and is concentrated on the y = 0

plane. 

The glide speed v is related to the resolved shear stress τ via

the dislocation’s mobility law. Generally, the mobility law may be

written as 

τ = τ (v ) (3)

where τ ( v ) appropriately captures the different microscopic dis-

sipative effects (phonon wind Nabarro, 1967; De Hosson et al.,

2001 , phonon scattering Hirth and Lothe, 1982 , radiative damping

Pellegrini, 2014 , etc.) that contribute to the crystalline lattice’s in-

trinsic resistance to the motion of the dislocation. The specific form

of the mobility law is a matter of choice; here the main require-

ment is that for low speeds the slope of τ ( v ) matches the observed

linear viscous drag coefficient (see Hirth and Lothe, 1982 ), and that

it saturates as the speed approaches the transverse speed. Here,

as a first approach one can assume a relationship of the following

kind ( Gurrutxaga-Lerma, 2016 ): 

Bτ = v 
d 0 

1 − v 2 
c 2 

(4)
t 
here d 0 is the low speed drag coefficient, and c t the transverse

peed of sound. This mobility law accounts, phenomenologically,

or the relativistic effects that drive the dislocation’s elastic (and

inetic) energy towards infinity as its speed approaches the trans-

erse speed of sound, c t . 

This enables the writing of Eq. (1) as 

v ∇ 

2 θ = 

˙ θ + qδ(x − v t) δ(y ) (5)

here κv = K/ (ρc v ) is the material’s thermal diffusivity at constant

eformation, and where q = 

1 
ρc v 

v 2 d 0 
1 −b 2 v 2 is the source’s energy re-

ease rate. 

For simplicity, assume that v is independent of t (i.e., that the

pplied resolved shear stress τ is kept constant throughout the

otion of the source). In that case, the problem is reduced to that

f a moving heat source that releases energy at a constant rate q .

s an initial condition, it is assumed that at t = 0 the temperature

f the system is undisturbed, i.e., θ (x, y, 0) = 0 . The solution to this

roblem is derived in the following. 

Define the following Fourier transform for the two spatial vari-

bles x and y : 

( k , t) = 

∫ 
R ×R 

θ ( r , t) e i k r d r (6)

here k = (k x , k y ) T and r = (x, y ) T . 

Applying it to Eq. (5) 

v �| k | 2 = 

∂�

∂t 
− Q( k , t) (7)

here 

( k , t) = 

∫ 
R ×R 

q · δ(x − v t) δ(y ) e i (k x x + k y y ) d x d y = qe ik x v t (8)

The solution to the equation provided that initially θ (x, y, 0) = 0

hroughout the infinite domain, will be ( Hobson et al., 2006 ) 

( k , t) = 

∫ t 

0 

e −κv | k | 2 (t −t ′ ) Q( k , t ′ ) d t ′ (9)

or later convenience, call: 

 ( k , t, t ′ ) = e −κv | k | 2 (t −t ′ ) , (10)

The inverse Fourier transform will be 

(x, y, t) = 

1 

2 π

∫ 
R ×R 

�( k , t ′ ) e −i k r d k 

= 

1 

2 π

∫ t 

0 

d t ′ 
∫ 
R ×R 

d k G ( k , t, t ′ ) Q( k , t) e −i k r d k (11)

Invoking the convolution theorem for Fourier transforms, 
 

R ×R 

G ( k , t, t ′ ) · Q( k , t, t ′ ) e i k r d k = 

∫ 
R ×R 

g( r − r ′ , t) q ( r ′ , t) d r ′ (12)

t follows that 

(x, y, t ) = 

1 

2 π

∫ t 

0 

d t ′ 
∫ 
R 

g( r − r ′ , t , t ′ ) q ( r ′ , t , t ′ ) d r ′ , (13)

here the inverse Fourier transform of the function G is in fact

nown: 

( r , t, t ′ ) = 

1 

2 π

∫ 
R ×R 

e −κv | k | 2 (t −t ′ ) e −i k r d k = 

1 

2 κv (t − t ′ ) e 
− | r | 2 

4 κv (t −t ′ ) 

(14)

From this, it immediately follows that 

(x, y, t ) = 

1 

2 π

∫ t 

0 

1 

2 κv (t − t ′ ) 

∫ 
R ×R 

e 
− (x −x ′ ) 2 +(y −y ′ ) 2 

4 κv (t −t ′ ) qδ( x ′ − v t ) δ( y ′ ) d r ′ 

(15)
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Resolving the spatial integral is immediate, and substituting the

alue of q , one finally obtains: 

(x, y, t ) = 

1 

4 πK 

v 2 d 0 
1 − v 2 

c 2 t 

∫ t 

0 

e 
− (x −v t ′ ) 2 + y 2 

4 κv (t −t ′ ) 

t − t ′ d t ′ , (16)

hich provides a simple estimate of the temperature field sur-

ounding a dislocation moving with uniform speed v . 

This procedure could also be used to derive a more general ex-

ression relevant for the case in which the dislocation moves non-

niformly with speed v = v (t) . In that case, one would find that 2 

(x, y, t ) = 

1 

4 πK 

∫ t 

0 

v 2 (t ′ ) d 0 
1 − v (t ′ ) 2 

c 2 t 

e 
− (x −v (t ′ ) t ′ ) 2 + y 2 

4 κv (t −t ′ ) 

t − t ′ d t ′ , (18)

Eq. (16) describes the temperature field around the dislocation

n terms of a quasi-exponential integral function (cf. Gradshteyn

nd Ryzhik, 2007 ), which is easily solved numerically. It also allows

or a number of asymptotic expressions outlined in the following.

or values of x close to the core’s position at vt , the integral in Eq.

16) may be asymptotically approximated to first order 3 as: 

(x, y, t ) ≈ 1 

4 πK 

v 2 d 0 
1 − v 2 

c 2 t 

∫ t 

0 

e 
− y 2 

4 κv (t −t ′ ) 

t − t ′ d t ′ , (19)

hich entails that about the dislocation’s core and in the direction

f slip ( y = 0 ), the dissipative temperature field ought to scale with

he prefactor alone, i.e., that the dependence of the temperature

eld around a dislocation’s core with respect to the dislocation’s

peed is, to a good approximation, of the form 

(v ) ≈ 1 

4 πK 

v 2 d 0 
1 − v 2 

c 2 t 

(20) 

or v = 0 . 99 c t , using the material properties of FCC aluminium,

( v ) has a magnitude of ≈ 15K; for v = 0 . 01 c t , it has gone down

o 10 −5 K. One should expect that a dislocation moving at speeds

lose to the shear wave speed would heat up the surrounding ma-

erial with an intensity about 5 order of magnitudes higher than at

ow speeds. The evolution of Eq. (20) with increasing v is depicted

n Fig. 2 . 

This is confirmed in Fig. 1 , which shows the temperature dis-

ributions arising from Eq. (16) for dislocations moving at differ-

nt speeds. As can be seen, at a distance roughly ≈ 0 . 5 μm away

rom the dislocation core, the temperature increase this model en-

ails ranges from 10 −5 K at v = 0 . 01 c t ( Fig. 1 a) through to 10 −1 K at

 = 0 . 66 c t ( Fig. 1 c) all the way up to temperature increases in ex-

ess of 5K for dislocations moving with v = 0 . 99 c t ( Fig. 1 d). 

More generally, one may expand Eq. (16) in series of v about 0,

n which case, 

(x, y, t ) ≈ 1 

4 πK 

v 2 d 0 
1 − v 2 

c 2 t 

∫ t 

0 

e 
− x 2 + y 2 

4 κv (t −t ′ ) 

t − t ′ d t ′ , (21)

he integral is a pure exponential integral function. For values of

 = 

√ 

x 2 + y 2 very close to the dislocation core (i.e., r → 0), the

symptotic behaviour of the exponential integral is dominated by
2 More generally, for any one form of q such that q ( t ) is integrable and spatially 

ocalised in the bulk (i.e., not a boundary), Eq. (15) may be written as 

(x, y, t ) = 

1 

4 πK 

∫ t 

0 

q (t ′ ) e 
− (x −v (t ′ ) t ′ ) 2 + y 2 

4 κv (t −t ′ ) 

t − t ′ d t ′ , (17) 

hich holds for any one q = Bτv so long as these variables are integrable. 
3 By expanding the integrand in Taylor series of v about x / t . 

θ

 

ε  

i

σ  
n ( r 2 /(4 t κv )) (see Gradshteyn and Ryzhik, 2007 ), so that 

(x, y, t) ≈ 1 

4 πK 

v 2 d 0 
1 − v 2 

c 2 t 

ln 

(
x 2 + y 2 

4 κv t 

)
(22) 

hich, excluding dimensionality, 4 may be compared to the asymp-

otic expression achieved by Eshelby and Pratt (1956) when t = r/ v
or the quasi-stationary case: 

(x, y, t) ≈ 1 

2 πK 

v 2 d 0 
1 − v 2 

c 2 t 

ln 

( 

v 
√ 

x 2 + y 2 

2 κv 

) 

(23) 

The energy dissipated in this way by a single dislocation will

e superimposed to that of others; for dense distributions of fast

oving dislocations such as those that may be encountered at high

train rates, the increase in temperature can therefore be substan-

ial. Still, the temperature increase predicted by this simple model

s modest enough to justify the constant value of the material con-

tants in this analysis, as well as the invariance with temperature

f the dislocation’s phonon drag coefficient (here, d 0 ). 

The model above is fully uncoupled from the elastic fields of

he dislocation; however, increased temperature ought to entail

he appearance of thermal stresses about the dislocation core and,

ice versa, the mechanical fields of the dislocation ought to entail

hanges in the temperature about the core. In fact, since the pri-

ary mode of energy radiation away from the core is through elas-

ic waves (acoustic phonons) ( Pellegrini, 2014 ), it seems necessary

o modify the account given above to relate the increase in tem-

erature driven by the dislocation with the thermal stresses these

ay produce. This is done in the following section. 

. Thermomechanical effects on dislocation motion 

In thermodynamical systems, constrained changes of volume

ntail variations of temperature, and vice versa ( Callen, 1985 ). The

lastic field of an edge dislocation carries a hydrostatic compo-

ent around the dislocation’s core ( Hirth and Lothe, 1982 ), so it

s to be expected that the dislocation will act as a source of

hermal stress. Since the moving dislocation is known to experi-

nce contractions as it speeds up towards the transverse speed

f sound ( Gurrutxaga-Lerma et al., 2014 ), the thermal distribution

nd thermomechanical effects surrounding the dislocation core are

xpected to be modified. Here the way in which this process hap-

ens is explored. 

.1. Governing equations of the dynamic thermoelastic problem 

The way temperature affects volumetric changes may be ex-

ressed via following eigenstrain (cf. Mura, 1982 ): 

∗
i j = αL (T − T 0 ) δi j (24) 

here αL is the linear thermal expansion coefficient, T 0 some ref-

rence temperature, and ε ij denotes the first order strain tensor.

his eigenstrain associates a dilatational strain with a change of

emperature from a reference value T 0 ; as a first approach approx-

mation, the dilatation strain is made to be linearly dependent with

emperature. As in Section 2 for brevity, hereafter 

≡ T − T 0 (25) 

The eigenstrain will modify the general elastic strain tensor as

i j − ε∗
i j 

(see Mura, 1982 ). Accordingly, Hooke’s law for a linear

sotropic solid is modified into ( Chadwick, 1960 ) 

i j = εkk δi j + 2 μεi j − αL (3 + 2 μ) θδi j (26)
4 The solution employed by Eshelby and Pratt applies to axisymmetric systems. 
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Fig. 1. Temperature fields for a uniformly moving dislocation, relative to a base temperature T 0 = 298 K. The parameters of pure aluminium have been used, with K = 

205 W/m K, c t = 2980 m/s, κv = 9 . 7 × 10 −5 m 

2 /s, d 0 = 2 × 10 −5 Pas. The initial position of the dislocation is marked with a green circle, and it moves in the x direction 

at the specified uniform speed. The plots display the resulting temperature field at instant t = 1 ns. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 2. Evolution of the temperature field of a moving dislocation in the immediacy 

of the core of the dislocation. 
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where σ ij is the Cauchy stress tensor, and  and μ are respectively

Lamé’s first and second constants. 5 

Conservation of linear momentum is enforced by invoking New-

ton’s second law, which in this case takes the form ( Mura, 1982 ):

σi j, j + f i = ρü i (27)
5 Thus, μ is the shear modulus. 

u  

w  

m  
here f i is any one body force, here assumed to not be present

or simplicity, ρ is the material’s density, and u i denotes the dis-

lacement field components, so that ( x 1 , x 2 , x 3 ) ≡ ( x, y, z ). Here

epeated index denotes summation, and f , j = 

∂ f 
∂x j 

; time derivatives

re denoted using Newton’s dot notation, i.e., ˙ f = 

∂ f 
∂t 

. 

Substituting the modified Hooke’s law ( Eq. (26) ) over the equa-

ion of conservation of linear momentum ( Eq. (27) ) leads to the

hermoelastic Navier-Lamé equation 

( + μ) u j, ji + μu i, j j − αL (3 + 2 μ) θ,i = ρü i (28)

In the thermoelastic system, heat transport is allowed to oc-

ur. It is assumed that heat flow is governed by Fourier’s law

i.e., Eq. (1) ), which in the thermoelastic problem must be modi-

ed to account for heat sources driven by volumetric changes (see

hadwick, 1960; Sneddon, 1972 ): 

θ,kk = ρc v ˙ θ + (3 + 2 μ) αL T 0 ˙ εkk (29)

Eqs. (28) and (29) conform the coupled thermo-elastodynamic

ystem of equations that govern the system’s heat and momentum

ransport. 

.1.1. Uncoupling of the dynamic thermoelastic problem 

The general uncoupling of the system of equations defined by

qs. (28) and (29) is possible by invoking the Kelvin potentials,

hich requires expressing the displacement as the sum of a di-

atational and an equivoluminal potential: 

 i = φ,i + εi jk ψ k, j (30)

here φ is the dilatational potential (a scalar) and ψ the equivolu-

inal potential (a vector). In index notation, and where ε ijk is the
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Fig. 3. Thermoelastic system. The dislocation of Burgers vector B is injected at the 

origin, and glides along the x axis following a certain x = l(t) history. The system’s 

material properties are its two elastic Lamé constants  and μ, its density ρ , its 

linear expansion coefficient α and its thermal conductivity K . 
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evi-Civita symbol. For the 2D case under consideration here, the

dge dislocation is assumed to be moving along the x axis in the

 − y plane, so that the equivoluminal potential can be reduced to

 single component, i.e. ψ ≡ (0, ψ y , 0) T . For simplicity, hereafter

 y ≡ ψ . 

In that case, the displacement field components may be ex-

ressed as: 

 x = 

∂φ

∂x 
− ∂ψ 

∂y 
, u y = 

∂φ

∂y 
+ 

∂ψ 

∂x 
, u z = 0 (31)

Substituting Eq. (31) into the thermo-elastic governing equa-

ions ( Eqs. (28) and (29) ), it is found that 

( + 2 μ) ∇ 

2 φ − αL (3 + 2 μ) θ = ρφ̈ (32)

∂ 2 ψ 

∂t 2 
= μ∇ 

2 ψ (33) 

c v ˙ θ + αT 0 (3 + 2 μ) 
∂ 

∂t 
∇ 

2 φ = K∇ 

2 θ (34)

The temperature field can be further uncoupled from the dilata-

ional potential by extracting it from Eq. (32) , so that: 

= 

1 

αL (3 + 2 μ) 

(
( + 2 μ) ∇ 

2 φ − ρφ̈
)

(35) 

ubstituting Eq. (38) into Eq. (34) , the following fully uncoupled

hermo-elastodynamic problem is reached: 

∇ 

2 − ℵ 

∂ 

∂t 

][∇ 

2 φ − a 2 φ̈
]

= Q∇ 

2 
(

˙ φ
)

(36) 

 

2 ψ = b 2 ψ̈ (37) 

= ( + 2 μ) M T 

(∇ 

2 φ − a 2 φ̈
)
, (38)

here 

a 2 = 

ρ

 + 2 μ
, b 2 = 

ρ

μ
, M T = 

1 

αL (3 + 2 μ) 
, 

ℵ = 

ρc v 

K 

, Q = 

T 0 

KM 

2 
T 
( + 2 μ) 

(39) 

ere, a and b are the athermal longitudinal and transverse slow-

esses of sound, respectively; ℵ the inverse of the material’s ther-

al diffusivity at constant deformation; Q is a heat source rate

erm, and M T a coupling term. Notice that 

= 

Q 

ℵ 

(40) 

s the (dimensionless) thermoelastic coupling constant (see

hadwick, 1960 ), which serves as a measure of the strength of

he coupling between the elastodynamic and thermal fields. When

= 0 , the dilatational field in Eq. (36) is unaffected by the temper-

ture field, and in the case of the injected, moving dislocation the

roblem reverts to the classical elastodynamic problem solved in

arkenscoff and Clifton, 1981 and Gurrutxaga-Lerma et al., 2013 . 

or most metals, ε ≈ O (−2) − O (−3) , meaning that the coupling is

enerally weak ( Chadwick, 1960 ). 

It is important to notice that the equivoluminal field equa-

ion ( Eq. (37) ) is fully uncoupled and does not directly impart on

he temperature field ( Eq. (38) ). Thus, in the thermoelastic prob-

em under consideration here, temperature changes will drive and

e driven by dilatational changes in volume alone; further heat

elease via phonon dispersion will not be accounted for in this

odel. 
.2. Boundary conditions 

The boundary conditions of interest here are those describing

he injection and motion of a straight edge dislocation along the x -

xis. As is depicted in Fig. 3 , x is assumed to be the glide direction.

s discussed in Markenscoff and Clifton (1981) and Gurrutxaga-

erma et al. (2013) , this process can be modelled as: 

 x (x, y = 0 , t) = 

B 

2 

H(l(t) − x ) H(t) (41)

here l ( t ) is the past history function that stores the position of

he dislocation relative to the origin of coordinates over each in-

tant t , and B the magnitude of the Burgers vector. For mathemat-

cal convenience (see Gurrutxaga-Lerma et al., 2013 ), this problem

ay be divided into the superposition of the following two: 

1. An injected, quiescent dislocation, described by 

u x (x, y = 0 , t) = 

B 

2 

H (−x ) H (t) (42)

2. An injected dipole, one of which dislocations remains quiescent

while the other glides according to l ( t ): 

u x (x, y = 0 , t) = 

B 

2 

( H(l(t) − x ) − H(−x ) ) H(t) (43)

Two additional boundary conditions have to be enforced. First

f all, in order to ensure that the normal stress is zero on the slip

lane as a result of the injection and motion of the dislocation, it

s specified that 

yy (x, y = 0 , t) = 0 (44)

qually, in order to ensure the symmetry of the thermal field about

he glide plane, 

∂θ (x, y = 0 , t) 

∂y 
= 0 (45) 

ll boundary conditions apply for t > 0; for t < 0 the system is

ssumed to be undisturbed, i.e., u i = 0 and θ = 0 ∀ (x, y ) ∈ R 

2 . 

.3. Solution in the Laplace domain for the injected, quiescent 

islocation 

The quiescent dislocation problem, i.e., the problem when

(t) = 0 , is studied first. This describes the creation (injection) of

 new dislocation that does not move afterwards. The relevant dis-

lacement boundary condition is given by Eq. (42) , i.e., 

 x (x, y = 0 , t) = 

B 

2 

H (−x ) H (t) 

In order to solve this problem, one may define the following

equence of unilateral and bilateral Laplace transforms: 

ˆ f (x, y, s ) = 

∫ ∞ 

f (x, y, t ) e −st d t , (46)

0 
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F (λ, y, s ) = 

∫ ∞ 

−∞ 

ˆ f (x, y, s ) e −λsx d x, (47)

and apply them over both the governing equations (Eqs. (36) and

(37) ), which respectively leads to the following equations 

∂ 4 �

∂y 4 
+ (2 λ2 s 2 − a 2 s 2 − ℵ s − Qs ) 

∂ 2 �

∂y 2 

+ (−α2 λ2 s 4 + ℵ s 3 α2 − Qs 3 λ2 )� = 0 (48)

∂ 2 �

∂y 2 
= β2 s 2 � (49)

where α2 = a 2 − λ2 and β2 = b 2 − λ2 . 

The solution to both equations is immediate: 

� = C φ+ e 
−p + y + C φ− e −p −y + C φ1 

e p + y + C φ2 
e p −y (50)

and 

� = C ψ 

e −sβy + C ′ ψ 

e sβy (51)

Here p ± are the positive values of the solutions to equation 

p 4 + (2 λ2 s 2 − a 2 s 2 −ℵ s − Qs ) p 2 + (ℵ s 3 α2 −λ2 s 4 α2 − Qλ2 s 3 ) = 0 , 

(52)

which can be expressed as 

p ± = 

+1 √ 

2 

√ 

−A ±
√ 

A 

2 − 4 B (53)

with 

A = 2 λ2 s 2 − a 2 s 2 − ℵ s − Qs, B = ℵ s 3 α2 − λ2 s 4 α2 − Qλ2 s 3 (54)

Crucially, it must be noted that p ± = p ±(λ, s ) . 

In order to ensure the stability of the solutions, the latter must

vanish as y → ∞ . Invoking the Laplace transform’s final value the-

orem, this renders C φ1 
= C φ2 

= C ′ 
ψ 

= 0 . Thus, the solutions are re-

duced to 

�(λ, y, s ) = C φ+ (λ, s ) e −p + y + C φ− (λ, s ) e −p −y , 

�(λ, y, s ) = C ψ 

(λ, s ) e −sβy (55)

The values of the integration constants C φ+ , C φ− , and C ψ 

can be

obtained from the boundary conditions. 

The σ yy stress component in this case is of the form 

σyy (x, y, t) = (u y,y + u x,x ) + 2 μu y,y − (3 + 2 μ) αL θ

= ( + 2 μ)(φ,yy + ψ ,xy ) + λ(φ,xx − ψ ,xy ) 

− (3 + 2 μ) αL θ (56)

After some manipulations, this can be reduced to 

σyy (x, y, t) = 2 μ(ψ ,xy − φ,xx ) + ρφ̈ (57)

Applying the sequential Laplace transforms, one obtains the follow-

ing boundary condition 

�yy (λ, 0 , t) = 2 λs 

(
∂�

∂y 
− λs �

)
+ b 2 s 2 � = 0 (58)

Substituting the solutions in, 

(b 2 − 2 λ2 ) s 2 C φ+ + (b 2 − 2 λ2 ) s 2 C φ− − 2 λβs 2 C ψ 

= 0 (59)

Equally, the other two field variables giving a boundary condi-

tion can be expressed in terms of the dilatational and equivolumi-

nal potentials. The displacement boundary condition is 

u x (x, y = 0 , t) = φ,x − ψ ,y = 

B 

H (−x ) H (t) (60)

2 
hich leads to 

sC φ+ + λsC φ− + βsC ψ 

= 

B 

2 λs 2 
(61)

he temperature boundary condition is 

∂θ (x, y = 0 , t) 

∂y 
= ( + 2 μ) M T 

∂ 

∂y 

(∇ 

2 φ − a 2 φ̈
)

= 0 (62)

hich leads to 

p + (p 2 + − α2 s 2 ) C φ+ + p −(p 2 − − α2 s 2 ) C φ− = 0 (63)

Eqs. (59) , (61) and (63) form a linear system of equations 
 

 

(b 2 − 2 λ2 ) s 2 (b 2 − 2 λ2 ) s 2 −2 λβs 2 

λs λs βs 

p + (p 2 + − α2 s 2 ) p −(p 2 − − α2 s 2 ) 0 

⎤ 

⎦ ·

⎡ 

⎣ 

C φ+ 

C φ−

C ψ 

⎤ 

⎦ 

= 

⎡ 

⎢ ⎣ 

0 

B 

2 λs 2 

0 

⎤ 

⎥ ⎦ 

, (64)

he solution of which is the following: 

 φ+ (λ, s ) = 

Bp −
(

p 2 − − α2 s 2 
)

b 2 s 3 (p − − p + ) 
(

p 2 − + p − p + + p 2 + − α2 s 2 
) (65)

 φ− (λ, s ) = −
Bp + 

(
p 2 + − α2 s 2 

)
b 2 s 3 (p − − p + ) 

(
p 2 − + p − p + + p 2 + − α2 s 2 

) (66)

 ψ 

(λ, s ) = 

B (2 λ2 − b 2 ) 

2 b 2 βλs 3 
(67)

he inversion of the equivoluminal potential is immediate employ-

ng the Cagniard-de Hoop technique, and leads to the solutions for

he shear wave component of the injected dislocation provided by

urrutxaga-Lerma et al. (2013) . As expected, it does not affect the

ilatational and temperature fields. 

.3.1. The temperature field 

Consider the thermal field in the Laplace domain 

(λ, y, s ) = 

1 

s 3 
F (λ, s ) 

(
p + e −p + y − p −e −p −y 

)
(68)

here 

 (λ, s ) = 

BM T ( + 2 μ) 

b 2 

(
p 2 − − α2 s 2 

)(
p 2 + − α2 s 2 

)
(p − − p + ) 

(
p 2 − + p − p + + p 2 + − α2 s 2 

)
(69)

he spatial inversion will be: 

ˆ (x, y, s ) = 

1 

2 π i 

∫ i ∞ 

−i ∞ 

1 

s 2 
F (λ, s ) 

(
p + e −p + y − p −e −p −y 

)
e sλx d λ (70)

In the expression above, the integrand has exponential factors

hat may be expressed as 

 

−s (q ±y −λx ) , (71)

here for convenience, p ± = sq ±, i.e., 

 ± = 

√ 

−λ2 + 

a 2 s + ℵ + Q ±
√ 

2 ℵ 

(
Q − a 2 s 

)
+ 

(
a 2 s + Q 

)2 + ℵ 

2 

2 s 

(72)

This is reminiscent of a Cagniard-de Hoop kernel (see De Hoop,

960 ). However, q ± is dependent on both s and λ, so the inversion

annot be directly performed over a conventional Cagniard path. 
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Fig. 4. Inversion paths. 
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Still, one can define a contour along which the exponential fac-

or takes the form 

 

−sτ (73) 

here 

= q ±y − λx (74) 

hus, the integration variable can be expressed in terms of τ by

aking the following change of variable: 

= 

−τx ± iy 

√ 

τ 2 − R 

2 
a 2 s + ℵ + Q ±

√ 

2 ℵ ( Q −a 2 s ) + ( a 2 s + Q ) 2 + ℵ 2 
2 s 

R 

2 
(75) 

here R 2 = x 2 + y 2 . 

For convenience however, it is best to regroup variables as fol-

ows 

= 

−τx ± iy 
√ 

τ 2 − κ2 ±R 

2 

R 

2 
(76) 

here 

2 
± = 

a 2 s + ℵ + Q ±
√ 

2 ℵ 

(
Q − a 2 s 

)
+ 

(
a 2 s + Q 

)2 + ℵ 

2 

2 s 
(77) 

t is easy to check that for s > 0, κ+ > κ−. In the following, when

nvoking λ, κ+ will be applied for the e −p + y integral, and κ− for

he e −p −y integral. This means that for each of those two branch,

 ± takes different values, since p ± = s 
√ 

κ2 ± − λ explicitly depends

n λ. 

For clarity, here the case of e −p + y will be discussed; analogous

easoning can be extended to the case of e −p −y . Thus, here the fol-

owing λ will be considered: 

± = 

−τx ± iy 
√ 

τ 2 − κ2 + R 

2 

R 

2 
(78) 

As in the standard Cagniard-de Hoop path (see Gurrutxaga-

erma et al., 2013 ), Eq. (78) describes a parametrised hyperbola in

he complex λ plane. The following convention will be used here.

or y > 0, the λ+ branch is in the upper half plane (Im[ λ] > 0),

nd the λ− branch in the lower half plane (Im[ λ] < 0). In this same

onvention, the x < 0 branches are the branches in the right half

lane (for which Re[ λ] > 0); for x > 0, the branches are in the left

alf plane. This is shown in Fig. 4 a. 

The intersection of the hyperbola with the real axis will define

ts vertex, which is found when Im [ λ±] = 0 . At that point, the vari-

ble τ takes the value + κ+ R, whilst the real part of λ± is −τx/R .

his defines a vertex ‘A’ at 

A = −xκ+ 
(79) 
R 
s λ+ moves from λA towards the asymptote of the corresponding

+ branch, the value of τ goes from + κ+ R at the vertex to τ →
 at the asymptotic limit. This remains analogous for the y < 0

ranches. 

Thus, the hyperbolic path in the λ plane is mapped onto a path

long the real axis of the τ plane, with τ ∈ [+ κ+ R, ∞ ) . In this

ense, the present integration path mirrors a Cagniard-de Hoop in-

ersion path. 

Particularly care must be taken to avoid branch cuts and poles

n the integrand, which is of the form 

p + 

(
p 2 − − α2 s 2 

)(
p 2 + − α2 s 2 

)
(p − − p + ) 

(
p 2 − + p − p + + p 2 + − α2 s 2 

)
he integrand has poles when its denominator cancels, which oc-

urs for 

1 , 2 = ±

√ 

2 a 2 
(
κ2 − + κ2 + 

)
− a 4 − κ4 − − κ2 −κ2 + − κ4 + √ 

2 a 2 − κ2 − − κ2 + 

n principle, | λ1, 2 | > λA for κ+ > κ−, which means the poles leave

o residue. 

In addition, the integrand has branch cuts defined for Im [ λ] =
 , Re [ λ] ∈ (−κ−, κ−) ∩ (−κ+ , κ+ ) . The branch cut may therefore be

rossed for values of x such that | λA | = 

κ+ | x | 
R > κ−. When this oc-

urs, λ has only a real part, defined by 

∗ = 

−τx + y 
√ 

κ2 + R 

2 − τ 2 

R 

2 
(80) 

ecessarily, this specifies that κ2 + R 2 > τ 2 , and since κ+ | x | 
R > κ−, the

alues τ may take here can be parametrised as 

∈ 

(
κ−x + y 

√ 

κ2 + − κ2 −, + κ+ R 

)
(81) 

his entails that when 

κ+ | x | 
R > κ− (in general, for very small values

f x and y in close proximity to the dislocation’s injection site), the

ontour defined by the λ± hyperbola branch must be extended to

nclude the values defined in Eq. (80) . 

With this in place, the contour along the imaginary axis defined

n Eq. (70) can be distorted in a way akin to the Cagniard-de Hoop

echnique. The complete contour is shown in Fig. 4 a. For either x

 0 or x < 0, a closed contour of integration in the λ plane will be

efined, formed by the corresponding side of the imaginary axis,

he λ− and λ+ hyperbola branches that meet at λA (correspond-

ng, respectively, to the lower and upper half planes); the asymp-

otes of the hyperbola branches are joined together with the imag-

nary axis via a circular contour at infinity. The latter’s contribu-

ion to the value of the closed contour integral is zero by proper-
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ties of the Laplace transform. Thus, as in Cagniard’s method, invok-

ing Cauchy’s integral theorem the integral along the imaginary axis

(the one in Eq. (70)) will be of the same value as the one along

the hyperbola branches, which in turn describes an integration

along the real axis of the τ plane in the interval τ ∈ [+ κ+ R, ∞ ) . If
κ+ | x | 

R > κ−, then the contour must be modified to avoid the branch

cut in the way described in Fig. 4 b, and outlined above in Eq. (80) .

The case of x < 0 is entirely analogous, and so is the case of e −p −y ,

with the exception that in the latter κ− must be used where κ+ 
was used here. 

Although agreeable to be written in Cagniard form, the contour

defined above is not a classical Cagniard path because q ± and by

extension, κ±, depend on s . One can still write the inversion inte-

gral in time as a single integral 

ˆ θ (x, y, s ) = 

1 

π
Im 

[ ∫ ∞ 

Rκ+ 

[
∂λ+ 
∂τ

1 

s 2 
F (λ+ , s ) p + e −sτ+ 

]
λ+ ,κ+ 

d τ

−
∫ ∞ 

Rκ−

[
∂λ+ 
∂τ

1 

s 2 
F (λ+ , s ) p −e −sτ−

]
λ+ ,κ−

d τ

] 

(82)

The case when 

κ+ | x | 
R > κ− only affects the first integral (for the

second, κ−| x | /R < κ+ always). In that case, following Eq. (81) the

first integral must be extended as follows: 

ˆ θ ∗(x, y, s ) = 

1 

π
Im 

∫ Rκ+ 

κ−x + y 
√ 

κ2 + −κ2 −

[
∂λ∗

∂τ

1 

s 2 
F (λ∗, s ) p + e −sτ+ 

]
λ∗,κ+ 

d τ

× H 

(
κ+ | x | 

R 

− κ−

)
where λ∗ is given by Eq. (80) . 

The inversion of this integral is challenging because s cannot

be extracted from the integrand (nor from the integration limits),

and therefore the latter cannot be written in a Cagniard form. In

general, the inversion would be 

θ (x, y, t) = 

1 

2 π i 

∫ 
Br 

[ 

ˆ θ ∗+ 

1 

π
Im 

[ ∫ ∞ 

Rκ+ 

[
∂λ+ 
∂τ

1 

s 2 
F (λ+ , s ) p + e −sτ+ 

]
λ+ ,κ+ 

d τ −
∫ ∞ 

Rκ−

[
∂λ+ 
∂τ

1 

s 2 
F (λ+ , s ) p −e −sτ−

]
λ+ ,κ−

d τ

] ] 

e st ds 

(83)

The general, closed form solution to Eq. (83) is probably un-

achievable in view of the fact that κ± is a function of the trans-

formed parameter s . However, one can still achieve asymptotic so-

lutions to the temperature field by invoking the Abelian–Tauberian

theorems of the Laplace transform (see Feller, 1968 ). 

The small times behaviour of the temperature field can be de-

duced as follows. According to the Abelian theorem, 

lim 

t→ 0 
θ (t; x, y ) = lim 

s →∞ 

s ̂  θ (s ; x, y ) (84)

It is easy to check that in that limit, the integrands in Eq. (83) tend

to 0, which simply guarantees that the temperature field is initially

undisturbed. The converse Tauberian theorem can also be applied

to check the stability of the solution given by Eq. (83) at t → ∞ ,

which guarantees that lim t→∞ 

θ (t; x, y ) = 0 as well. Since the ther-

mal field is diffusive in nature, this means that after a transient,

the temperature in the system will return to its initial values. 

Asymptotic expansions employing the Abelian theorem enable

us to estimate the magnitude of the early temperature transients.

In the limit of s → ∞ , κ+ → a and κ− → 0 , so the integral be-

comes 

i  
lim 

s →∞ 

s ̂  θ (x, y, s ) = lim 

s →∞ 

1 

π
Im 

[ ∫ ∞ 

+ Ra 

[
∂λ+ 
∂τ

1 

s 
F (λ+ , s ) p + e −sτ+ 

]
λ+ ,κ+ 

d τ−

−
∫ ∞ 

0 

[
∂λ+ 
∂τ

1 

s 
F (λ+ , s ) p −e −sτ−

]
λ+ ,κ−

d τ

] 

(85)

The variables p ± are expanded in Taylor series of 1/ s about

 /s = 0 + (i.e., about s → ∞ ) (cf. Chadwick, 1960 ) which yields (to

rst order) 

p + ≈ αs + 

Q 

2 α
+ O (s −1 ) (86)

p − ≈ −iλs − i 
ℵ 

2 λ
+ O (s −1 ) (87)

Substituting in the integrands in the Abelian limit, one can

each an asymptotic expression to first order in t of the form 

≈ BM T ( + 2 μ) a 2 

πb 2 
y 

R 

2 

√ 

t 2 − a 2 R 

2 H (t − Ra ) (88)

he y 

R 2 
factor corresponds with the geometric factor that governs

he hydrostatic pressure field around the core of a dislocation (see

irth and Lothe, 1982 ). Thus, Eq. (88) shows that in the immedi-

cy of the core, the temperature field around is homologous to the

ydrostatic pressure field that, in fact, causes it. 

The magnitude of the initial temperature field around the dislo-

ation can therefore be estimated from Eq. (88) . For aluminium, at

 distance of about 100 B from the core over very short timescales

 t ≈ 1 ps), the temperature increase may be estimated at around

K, for a previously undeformed unbounded solid where a dislo-

ation has just been injected. This transient heating effect is of-

en observed in molecular dynamics simulations of dislocations: in

he equilibration of an atomistic system with a dislocation, one of-

en observes an initial transient heating that quickly dies out (cf.

ilbert et al., 2011 ). 

The small magnitude of the thermomechanical heating is in

greement with previous estimates of this effect, such as those

y Lothe (1962) , and must be attributed to the weak coupling be-

ween the thermal and mechanical fields, which is conventionally

easured via ε. 

Lessen (1956) proposed that any thermoelastic problem may be

tudied perturbatively by expanding the Kelvin potentials in series

f the coupling constant about ε = 0 . Albeit this approach hardly

ver leads to a practical solution of the problem at hand, it enables

he study the effect of the weakness of the coupling in the current

ituation. Accordingly, the solutions p ± are expanded in terms of

he ε, which leads to 

p + ≈
√ 

s 
(ℵ − l 2 s 

)
+ 

ℵ 

2 s 

2 

(ℵ − a 2 s 
)√ 

s 
(ℵ − l 2 s 

)ε

−
(ℵ 

3 s 2 
(
3 a 2 ℵ s − 4 a 2 l 2 s 2 + ℵ 

2 
))

8 

((ℵ − a 2 s 
)3 (

s 
(ℵ − l 2 s 

))3 / 2 
) ε2 + O (ε3 ) 

p − ≈ αs − a 2 ℵ s 

2 α(ℵ − a 2 s ) 
ε + 

a 2 ℵ 

2 s (3 a 2 ℵ − 4 ℵ λ2 + a 4 s ) 

8 α3 / 2 (ℵ − a 2 s ) 3 
ε2 

+ O (ε3 ) 

aking this onto Eq. (55) , it will be found that the dilatational po-

ential in the Laplace domain may be written as 

= �0 + �1 ε + O (ε2 ) 

here �0 is � for the case when ε = 0 . In that case, the solutions

n the Laplace domain ( Eq. (55) ) undergo heavy simplifications; in
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articular 

ε→ 0 = 

B 

b 2 s 3 
e −sαy 

ecause C φ+ = 0 when ε = 0 . This �0 happens to be the solu-

ion for the dilatational potential in the uncoupled problem (see

urrutxaga-Lerma et al., 2013 ), which is discussed in detail in

ection 4 . The form of �1 is lengthy and protracted, and does not

llow for a direct inversion. Still, it can be approximated as a se-

ies expansion in time, the first order term of which is O (t −1 / 2 ) ;

his entails that the ratio ψ 1 /ψ 0 ≈ t −3 / 2 , which indicates that the

rst order perturbation will be very small compared with the un-

oupled solution ψ 0 , and therefore that the influence of the ther-

oelastic coupling will be small. As remarked by Boley and Weiner

1960) , the relative weakness of the coupling is consistent with the

ature of the loading rate, which in the present case, and at a suffi-

ient distance away from the dislocation core (where the elastody-

amic solution itself becomes invalid ( Hirth and Lothe, 1982 )) and

way from the injection fronts (where, again, a weak divergence

akes place ( Gurrutxaga-Lerma et al., 2014 )), is going to be very

imilar to that of the temperature, so that the coupling is going to

e weak. This is driven by the fact that the thermal perturbations

re brought about by the dilatational fields. 

.4. Solution in Laplace domain for the injected, moving dislocation 

The moving dislocation is modelled via the appropriate bound-

ry condition, 

 x (x, y = 0 , t) = 

B 

2 

H(l(t) − x ) H(t) (89)

here as mentioned above l ( t ) is the past history function. Follow-

ng Markenscoff (1980) , it is more convenient to rewrite this as 

 x (x, 0 , t ) = 

B 

2 

( H(η(x ) − t) − H(−x ) ) H(t ) + 

B 

2 

H (−x ) H (t) (90)

here l −1 (t) ≡ η(x ) is the inverse past history function, i.e., the

unction that returns the instant in time when the dislocation core

eaches position x . The second summing term on the right hand

ide correspond with the injection of a quiescent dislocation which

as solved before; here only the problem associated with the first

umming term in Eq. (90) will be solved, i.e., 

 x (x, 0 , t ) = 

B 

2 

( H(η(x ) − t) − H(−x ) ) H(t ) (91)

Upon transforming u x to the Laplace domain, one can construct

he following system of equations and associated solutions to the

overning equations: 

 

(b 2 − 2 λ2 ) s 2 (b 2 − 2 λ2 ) s 2 −2 λβs 2 

λs λs βs 

p + (p 2 + − α2 s 2 ) p −(p 2 − − α2 s 2 ) 0 

] 

·
[ 

C φ+ 
C φ−
C ψ 

] 

= 

⎡ 

⎢ ⎣ 

0 

B 

2 s 

∫ ∞ 

0 

e −s (η(ξ )+ λξ ) d ξ

0 

⎤ 

⎥ ⎦ 

, (92) 

he solution of which is the following: 

 φ+ (λ, s ) = 

Bλp −
(

p 2 − − α2 s 2 
)

b 2 s 2 (p − − p + ) 
(

p 2 − + p − p + + p 2 + − α2 s 2 
)

×
∫ ∞ 

0 

e −s (η(ξ )+ λξ ) d ξ (93) 
 φ− (λ, s ) = −
Bλp + 

(
p 2 + − α2 s 2 

)
b 2 s 2 (p − − p + ) 

(
p 2 − + p − p + + p 2 + − α2 s 2 

)
×

∫ ∞ 

0 

e −s (η(ξ )+ λξ ) d ξ (94) 

 ψ 

(λ, s ) = 

B (2 λ2 − b 2 ) 

2 b 2 βs 2 

∫ ∞ 

0 

e −s (η(ξ )+ λξ ) d ξ (95)

In the particular case when l(t) = v · t, i.e., when the dislocation

lides with uniform speed v , the system is amenable to a more

xplicit solution. In that case, η(x ) = x/ v = dx, for d = 1 / v the dis-

ocation’s glide slowness, whereby the coefficients of the solution

re 

 φ+ (λ, s ) = 

Bλp −
(

p 2 − − α2 s 2 
)

b 2 s 3 (λ + d)(p − − p + ) 
(

p 2 − + p − p + + p 2 + − α2 s 2 
) (96)

 φ− (λ, s ) = −
Bλp + 

(
p 2 + − α2 s 2 

)
b 2 s 3 (λ + d)(p − − p + ) 

(
p 2 − + p − p + + p 2 + − α2 s 2 

)
(97) 

 ψ 

(λ, s ) = 

B (2 λ2 − b 2 ) 

2 b 2 β(λ + d) s 3 
(98)

The inversion follows same procedure outlined for the quies-

ent case, mimicking the Cagniard-de Hoop technique along the

ath defined by τ = q ± − λx . The same considerations related to

he branch cuts in Fig. 4 apply; so long as d > a , the additional

ole at λ = d is never encountered along the integration path, so

t will leave no residue. After careful manipulations, one reaches

he following expression for the temperature field 

ˆ = 

ˆ θ ∗ + 

1 

π
Im 

[ ∫ ∞ 

τκ+ 

[
∂λ+ 
∂τ

λ+ 
(λ+ + d) 

1 

s 3 
F (λ+ , s ) p + e −sτ

]
λ+ ,κ+ 

d τ−

−
∫ ∞ 

τκ−

[
∂λ+ 
∂τ

λ+ 
(λ+ + d) 

1 

s 2 
F (λ+ , s ) p −e −sτ

]
λ+ ,κ−

d τ

] 

(99) 

here 

 ±(s ) = 

BM T ( + 2 μ) 

b 2 

(
p 2 − − α2 s 2 

)(
p 2 + − α2 s 2 

)
(p − − p + ) 

(
p 2 − + p − p + + p 2 + − α2 s 2 

)
nd 

ˆ ∗(x, y, s ) = 

1 

π
Im 

∫ Rκ+ 

κ−x + y 
√ 

κ2 + −κ2 −

×
[
∂λ∗

∂τ

λ+ 
(λ+ + d) 

1 

s 2 
F (λ∗, s ) p + e −sτ+ 

]
λ∗,κ+ 

d τ

× H 

(
κ+ | x | 

R 

− κ−

)
(100) 

As in the case of the injected dislocation, the greatest problem

ere is that τ = τ (s ) . The inverted temperature field will be 

= 

1 

2 π i 

∫ 
Br 

[ 

ˆ θ ∗+ Im 

∫ ∞ 

τκ+ 

[
∂λ+ 
∂τ

λ+ 
(λ+ + d) 

1 

s 2 
F (λ+ , s ) p + e −sτ

]
λ+ ,κ+ 

d τ−

−
∫ ∞ 

τκ−

[
∂λ+ 
∂τ

λ+ 
(λ+ + d) 

1 

s 2 
F (λ+ , s ) p −e −sτ

]
λ+ ,κ−

d τ

] 

e st d t (101) 
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×H (t − Ra ) e d τ (112) 
One may again invoke the Abelian theorem and perform an

asymptotic expansion about s → ∞ to find the small times be-

haviour of the solution. Using the same procedure as in the case

of the injected, quiescent dislocation, one finds that 

θ (v ) ≈ −BM T ( + 2 μ) Q 

πb 2 
y 

R 

2 

×
(

t − sign (y ) 

√ 

d 2 − a 2 

a 
arctan 

(
t − dx 

y 
√ 

d 2 − a 2 

))
(102)

Using the same approach the behaviour about the core ( R → 0)

may also be inferred. If R is small, one may estimate ˆ θ to be 

ˆ θ (x, y, s ) ≈ BM T ( + 2 μ) 

πb 2 s 2 

∫ ∞ 

0 

−a 2 s 2 y (τ − 2 dx ) 

R 

2 τ
(
d 2 R 

2 − 2 dτx + τ 2 
)e −sτ d τ, 

(103)

which is in Cagniard form, so that the time inversion can be per-

formed by inspection: 

θ (x, y, t ) ≈ Ba 2 M T ( + 2 μ) 

πb 2 
y 

R 

2 

−t (t − 2 dx ) (
d 2 R 

2 − 2 dt x + t 2 
) (104)

In this case, the magnitude of the temperature field increases

with the dislocation’s glide speed in an almost quadratic fashion

To a good approximation, for slow moving dislocations 

θ (x, y, t ) ≈ Ba 2 M T ( + 2 μ) 

πb 2 
yt v 
R 

2 

( 

t v 
(
R 

2 − 4 x 2 
)

R 

4 
− 2 x 

R 

2 

) 

(105)

For slow moving dislocations, the thermomechanical tempera-

ture increase due to a moving dislocation will therefore approxi-

mately scale quadratically relative to the dislocation’s speed. 

One may again estimate the magnitude of the thermomechan-

ical effect about the dislocation core, in this case motivated by a

moving dislocation. The prefactor is in this case the same as in the

injected case, so for Al it will be of the order of 10 −6 Km; for a

dislocation moving at low speeds ( v = 0 . 01 c t ), this entails a tem-

perature rise at a distance of 100B about the core of about 1K

for times of t = 1 ps; for a dislocation moving at v = 0 . 99 c t , the

temperature raise is about 3.8K. This temperature increase might

seem unexpectedly small; however, it must be born in mind that

whilst the limiting speed of the dislocation is the transverse speed

of sound c t , the representative speed of the dilatational field is the

longitudinal speed of sound c l , which is about twice as large: even

a dislocation moving at the transverse speed of sound will still

be moving at half the longitudinal speed of sound, which entails

that the dilatational fields will hardly experience a Doppler-like

contraction and, therefore, that the ensuing thermal field remains

largely undisturbed by the dilatational field of the moving disloca-

tion. 

4. Approximating the thermomechanical field of a dislocation 

as an the uncoupled thermoelastic problem 

As was found by Hetnarski (1964b ; 1964a ) and Nowacki

(1975) for line sources, in the current study the strength of the

coupling between the elastodynamic and the thermal fields is

weak enough that the thermal field arising from the dilatational

radiation of a moving source may be approximated by simply con-

sidering uncoupling the elastodynamic and the thermal fields in

such a way that the latter remains excited by the dilatational field.

This means that the elastodynamic field will be fully uncou-

pled from the thermal field, so that the injection and motion of

the edge dislocation may be described as done by Markenscoff and

Clifton (1981) and Gurrutxaga-Lerma et al. (2013) for the case, re-

spectively, of a non-uniformly moving edge dislocation and an in-

jected edge dislocation. 
In turn, the thermal field will be excited by the dilatational

eld (i.e., φ( x, y, t )) the elastodynamic dislocation described

n Markenscoff and Clifton (1981) and Gurrutxaga-Lerma et al.

2013) entail. This dilatational excitation φ triggers heating in the

hermal field, which is simply governed by Eq. (38) 

= 

1 

α(3 + 2 μ) 

(
( + 2 μ) ∇ 

2 φ − ρφ̈
)

otice that unlike in the fully coupled problem, here θ will not ap-

ear in the modified Hooke’s law, and will therefore not contribute

o the Navier–Lamé equation. 

Specifically, the dilatational excitations of concern here may be

ound, in the Laplace domain, in Gurrutxaga-Lerma et al. (2013) .

or the injected dislocation, they are of the form 

(λ, y, s ) = 

B 

b 2 s 3 
e −sαy , (106)

or the non-uniformly moving dislocation, they are given by

urrutxaga-Lerma et al. (2013) , 

(λ, y, s ) = 

Bλ

b 2 s 2 

[ ∫ ∞ 

0 

e −s (η(ξ )+ λξ ) d ξ
] 

e −sαy , (107)

or the special case of a uniformly moving dislocation with speed

 = 1 /d, the dilatational potential in the Laplace domain takes the

orm ( Gurrutxaga-Lerma et al., 2014 ) 

(λ, y, s ) = 

B 

b 2 s 3 
λ

λ + d 
e −sαy (108)

hroughout here, the same spatial variables and kinematic nota-

ion as in previous sections has been employed. Note that α2 =
 

2 − λ2 . 

This dilatational excitation, φ, triggers heating in the thermal

eld, which is simply governed by Eq. (38) 

= M T 

(
( + 2 μ) ∇ 

2 φ − ρφ̈
)

hereupon in the Laplace domain, 

= M T ( + 2 μ) 

[
α2 s 2 � + 

∂ 2 �

∂y 2 

]

ubstituting the expressions above, Eqs. (106) , (107) , and (108) , one

btains respectively, 

(λ, y, s ) = M T ( + 2 μ) 
2 B 

b 2 s 
α2 e −sαy , (109)

(λ, y, s ) = M T ( + 2 μ) 
2 B 

b 2 s 
α2 λ

[ ∫ ∞ 

0 

e −s (η(ξ )+ λξ ) d ξ
] 

e −sαy (110)

(λ, y, s ) = M T ( + 2 μ) 
2 B 

b 2 s 
α2 λ

λ + d 
e −sαy (111)

These expressions can be inverted immediately using Cagniard-

e Hoop; no poles or extraneous branch cuts are observed, so the

nversion follows the same integration contour as in Gurrutxaga-

erma et al. (2013) . 

It is found that, for the case of the injected and uniformly mov-

ng dislocations, the Cagniard form is, respectively, 

ˆ 
injected (x, y, s ) = 

2 BM T ( + 2 μ) 

πb 2 
1 

s 

×
∫ ∞ 

0 

τy (3 a 2 R 

2 x 2 + τ 2 (y 2 − 3 x 2 )) 

R 

6 
√ 

τ 2 − a 2 R 

2 

−sτ
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Fig. 5. Uncoupled temperature field for an injected edge dislocation. The disloca- 

tion was injected at the origin, and the instant in time represented is 0.1 ns; the 

material constants of FCC Al have been used. 
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a  

T

nd 

ˆ 
uniform 

( x, y, s ) = 

2 BM T (  + 2 μ) 

πb 2 
1 

s 

×
∫ ∞ 

0 

yd 

R 

4 
√ 

τ 2 − a 2 R 

2 
(
d 2 R 

2 − 2 dτx + τ 2 − a 2 y 2 
)

×
(
a 4 x 3 R 

2 − 3 a 2 dτx 2 R 

2 + a 2 τ 2 x 
(
x 2 + 3 y 2 

)
+ dτ 3 

(
3 x 2 − y 2 

)
− 2 τ 4 x 

)
H ( τ − Ra ) e −sτ d τ (113) 

The final inversion in these two cases is immediate by in-

oking Laplace transform properties, which for the injected case

ender 

(x, y, t) injected = 

2 BM T ( + 2 μ) 

πb 2 

×y 
√ 

t 2 − a 2 R 

2 (a 2 R 

2 (3 x 2 + 2 y 2 ) + t 2 (y 2 − 3 x 2 )) 

3 R 

6 

×H (t − aR ) (114) 

For the uniformly moving case, the resulting expression is

oo long to be contained in here, and is provided in the

ppendix. 

The generally non-uniformly moving dislocation’s case leads to 

(x, y, t ) non-uniform 

= 

2 BM T ( + 2 μ) 

πb 2 
F T (t ) 

here 

 T (t) = 

∫ ∞ 

0 

H ( ̃ t − ˜ R a ) G ( ̃ t , ξ ) d ξ

here ˜ t = t − η(ξ ) , ˜ R 2 = ˜ x 2 + y 2 , ˜ x = x − ξ and 

 ( ̃ t , ξ ) = 

y 
√ 

˜ t 2 − a 2 ˜ R 

2 
(
a 2 ˜ R 

2 
(
3 ̃

 x 2 + 2 y 2 
)

+ ̃

 t 2 
(
y 2 − 3 ̃

 x 2 
))

3 ̃

 R 

3 

The resulting temperature fields can readily be evaluated. For

istances far away from the core which are thermally excited at

imescales of the order of 1 ns, the thermomechanical heating re-

ulting from the dilatational fields of the dislocations is yet again

bserved to be of very small magnitude, irrespective of the speed

f the dislocation. Fig. 5 shows the temperature field at a distance

f ≈ 1 μm away from the core of an edge dislocation injected

n FCC Al; as can be observed, at time 0.1 ns after the injection,

he underlying rise in temperature as a result of the injection itself

s entirely negligible (O( −11)K). The predicted heating only seems
o exceed O(1)K for extremely short timescales (i.e., < 1 ps), and

nly for positions of the order of 1 Å (i.e., over one atomic distance

way from the core, where the whole continuum treatment of the

islocation is invalid anyway). The magnitude of θuniform 

is directly

roportional to the dislocation speed, and may be expanded to first

rder as 

(v ) ≈ BM T ( + 2 μ) 

πb 2 
v 

×
(

−2 t xy 
√ 

t 2 − a 2 R 

2 

R 

4 
− a 2 arctan 

(
2 t xy 

√ 

t 2 − a 2 R 

2 

R 

2 (t 2 + a 2 y 2 ) 

))

or the same distances and timescales, one expects temperature

ises of O (−3) as v → c t . These estimates agree well the results de-

ived from the fully coupled problem, and confirms that the ther-

omechanical heating due to the injection and motion of a dislo-

ation can safely be neglected in comparison with the dissipative

eating effect described in Section 2 . 

. Conclusions 

This article has examined the temperature increase in a crys-

alline solid resulting from a moving dislocation. Two separate ef-

ects have been studied: the dissipative effect associated with the

iscous and radiative drag effects, and the thermomechanical tem-

erature rise resulting from the dilatational fields radiated away

rom the core of edge dislocations. 

Simple expressions for the temperature increase associated

ith the dissipative heating effect have been provided. It has been

ound that the temperature rise associated with this effect is only

onsiderable for dislocations moving with speeds a significant frac-

ion of the speed of sound, but still insufficient on its own to pro-

uce large amounts of localised heating unless large densities of

ast moving dislocations are present (cf. Armstrong et al., 1982 ).

he thermomechanical effect has initially been studied both for a

oupled thermal and elastodynamic continuum, providing expres-

ions for the temperature field surrounding the core of an injected

nd moving edge dislocation. The resulting temperature fields have

een shown to be very weak, both in terms of the strength of the

oupling between the thermal and elastodynamic continua, and

n terms of the actual temperature rise. In the coupled problem,

symptotic expressions for the temperature fields have been pro-

ided. Based on the weakness of the coupling between the ther-

al and elastodynamic continua, the uncoupled problem has also

een solved, leading to closed-form solutions of the temperature

eld which may be added to the growing corpus of closed-form

olutions of the time-dependent continuum fields of dislocations.

n the uncoupled case the magnitude of the thermomechanical ef-

ect has also been seen to be small in comparison with the dissi-

ative heating effect. 

This study has therefore shown that in the motion of disloca-

ions, the single most important thermal effect is dissipative heat-

ng resulting from the overdamped nature of dislocation motion.

ffects associated with the presence of dilatational radiation ema-

ating from the core (i.e., thermomechanical heating) may be ne-

lected. 
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Appendix 

The uncoupled temperature field due to the dilatational fields

of the uniformly moving dislocation is 

θuniform 

(x, y, t) 

= 

BM T (3 + 2 μ) 

πb 2 
dy 

2 R 

4 

×

⎛ 

⎝ 

√ 

d 2 − a 2 R 

4 
(
d 
(
y 
√ 

a 2 − d 2 + dx 
)

− a 2 x 
)

y 

√ 

d 
(
d 
(
y 2 − x 2 

)
− 2 xy 

√ 

a 2 − d 2 
)

+ a 2 x 2 

× ln 

(
K 1 

K 2 

)
+ 

√ 

d 2 − a 2 R 

4 
(
d 
(
y 
√ 

a 2 − d 2 − dx 
)

+ a 2 x 
)

y 

√ 

d 
(
2 xy 

√ 

a 2 − d 2 + d 
(
y 2 − x 2 

))
+ a 2 x 2 

× ln 

(
K 3 

K 2 

)
− 2 

√ 

t 2 − a 2 R 

2 
(
dR 

2 + tx 
))

(115)

where 

K 1 = 2 y 

( √ 

d 

(
−2 xy 

√ 

a 2 − d 2 − dx 2 + dy 2 
)

+ a 2 x 2 
√ 

t 2 − a 2 R 

2 

+ ty 
√ 

d 2 − a 2 − ia 2 R 

2 + idtx 

)
(116)

K 2 = 

√ 

a 2 − d 2 R 

4 
(

d 

(
y 
√ 

a 2 − d 2 + dx 

)
− a 2 x 

)
×
√ 

d 

(
d 
(
y 2 − x 2 

)
− 2 xy 

√ 

a 2 − d 2 
)

+ a 2 x 2 

×
(

y 
√ 

a 2 − d 2 + dx − t 

)
(117)

K 3 = 2 iy 

( 

i 

√ 

d 

(
2 xy 

√ 

a 2 − d 2 − dx 2 + dy 2 
)

+ a 2 x 2 
√ 

t 2 − a 2 R 

2 

+ ity 
√ 

d 2 − a 2 + a 2 x 2 + a 2 y 2 − dtx 

)
(118)
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