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ADAPTIVE THERMOSTATS FOR NOISY GRADIENT SYSTEMS

BENEDICT LEIMKUHLER†§ AND XIAOCHENG SHANG‡§

Abstract. We study numerical methods for sampling probability measures in high dimension where the underlying
model is only approximately identified with a gradient system. Extended stochastic dynamical methods are discussed
which have application to multiscale models, nonequilibrium molecular dynamics and Bayesian sampling techniques
arising in emerging machine learning applications. In addition to providing a more comprehensive discussion of the
foundations of these methods, we propose a new numerical method for the Adaptive Langevin/Stochastic Gradient
Nosé-Hoover Thermostat that achieves a dramatic improvement in numerical efficiency over the most popular stochas-
tic gradient methods reported in the literature. We also demonstrate that the newly-established method inherits a
superconvergence property (fourth order convergence to the invariant measure for configurational quantities) recently
demonstrated in the setting of Langevin dynamics. Our findings are verified by numerical experiments.

Key words. stochastic differential equations, adaptive thermostat, Bayesian sampling, machine learning, invariant
measure, ergodicity

AMS subject classifications. 65C30, 60H35, 37M25

1. Introduction. Stochastic thermostats [37, 55, 56] are powerful tools for sampling probability
measures on high dimensional spaces. These methods combine an extended dynamics with degenerate
stochastic perturbation to ensure ergodicity. The traditional use of thermostats in molecular dynamics
is to sample a well specified equilibrium system involving a known force field which is the gradient of
a potential energy function. Recently, however, these techniques have become increasingly popular for
problems of more general form, including the following:

• multiscale models in which the forces are obtained by approximate sampling in another scale
regime [17,21,40,44,48,49];

• nonequilibrium physical models in which the potential energy function is either evolving or
does not completely specify the system [27,41,45,47,58,59];

• Bayesian machine learning applications in which a dataset defines an objective function which
leads to an effective force law [3, 11,14,46,57,62,63].

In this article, we consider thermostats and numerical methods for sampling an underlying probability
measure in the presence of error, under the assumption that the errors are random with a simple
distributional form and unknown, but constant or slowly varying, parameters. In the cases considered,
these methods are simple to implement, robust, and efficient.

1.1. Thermostats. The main tool that we employ in this article is the general concept of a
thermostat as a (stochastic) distributional control for a dynamical system. These methods originate in
molecular dynamics and it is simplest to explain them in that context. Classical molecular dynamics
(MD) tracks the motion of individual atoms determined by Newton’s law in the microcanonical (NV E)
ensemble, where energy (i.e. the Hamiltonian of the system) is always conserved [4,18,20,38]. However
constant energy is not the appropriate setting of a real-world laboratory environment. In most cases,
one wishes instead to sample the canonical (NV T ) ensemble, where temperature, as an intensive
variable, is conserved, by using thermostat techniques [18,25].

The idea of a thermostat is to modify dynamics so that a prescribed invariant measure is sampled.
There are competing aims in this type of work. For example, one may wish to perturb the underlying
Newtonian dynamics minimally, so that temporal correlations are preserved, or one may be interested
in sampling rare events in a system with metastable states, thus a variety of methods have been
developed. The most obvious proposals, and also the oldest, are Brownian and Langevin dynamics.
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2 ADAPTIVE THERMOSTATS

In Brownian (sometimes called “overdamped Langevin”) dynamics, the system is

(1.1) dq = −λ∇U(q)dt+
√
2β−1λdW ,

where q represents a 3N -dimensional vector of time-dependent random variables, dW represents a
vector of infinitesimal Wiener increments, β is a positive parameter (proportional to the recipro-
cal temperature), U is the potential energy function and λ is a free parameter which represents a
time-rescaling. It can be shown [9] that this system (1.1) ergodically samples the Gibbs-Boltzmann
probability distribution ρ̄β ∝ exp(−βU). For simplicity, we assume that the configurations q are
restricted to a compact and simply connected domain Ωq. In molecular dynamics applications, the
starting point is the potential energy function which is usually assumed to be a semi-empirical formula
constructed from primitive functions via an a priori parameter fitting procedure. Alternatively, one
may assume that it is the probability distribution that is specified and that the potential energy is
constructed from it via

U = −β−1 ln ρ ,

which of course requires that ρ > 0. In many applications it is found that the use of a first order
dynamics such as (1.1) is inefficient or introduces unphysical dynamical properties and one employs,
instead, the Langevin dynamics method:

dq = M−1pdt ,(1.2)

dp = −∇U(q)dt− γpdt+
√
2β−1γM1/2dW .(1.3)

Again, γ in these equations is a free parameter, termed the “friction constant”. It is related to
the timescale on which the variables of the system interact with particles of a fictitious extended
“bath”, but it cannot be associated with a simple time-rescaling of the equations of motion and is
thus different from λ in (1.1). It is a little more involved to show that (1.2)-(1.3) ergodically [42]
samples the distribution with density ρβ ∝ exp(−βH(q,p)), where H(q,p) = pTM−1p/2 + U(q). In
molecular dynamics, the 3N × 3N matrix M is typically diagonal and contains the masses of atoms,
p represents the momentum vector, and H is the Hamiltonian or energy function. In more general
settings, the masses and friction coefficient may be treated as free parameters and by computing long
trajectories of (1.2)-(1.3) one may obtain averages with respect to ρ̄β(q), i.e., if {(q(τ),p(τ)) : τ ≥ 0}
is a path generated by solving the SDE system (1.2)-(1.3), one has, for suitable test functions ϕ(q),
and under certain conditions on the potential energy function U [42],

lim
τ→∞

τ−1

∫ τ

0

ϕ(q(τ)) dτ =

∫
Ωq

ϕ(q)ρ̄β(q) dωq ,

where dωq = dq1dq2 . . . dqN . In other words, the projected path defines a sampler for the density ρ̄β .
Langevin dynamics can thus be seen as an extended system which allows sampling to be per-

formed in a reduced cross section of phase space by marginalization over long trajectories; this is the
essential property of a thermostat. Other types of thermostats include Nosé-Hoover-Langevin (NHL)
dynamics [37,55] and various generalized schemes (see e.g. [32]). In these methods, one adds additional
auxiliary variables which are meant to control the dynamics (via a negative feedback loop), and the
auxiliary variables are then further coupled to stochastic processes of Ornstein-Uhlenbeck type which
can provide ergodicity [37]. (Note that the use of purely deterministic approaches, such as Nosé-
Hoover, results in ergodicity issues [30, 31].) The use of auxiliary variables can provide a degree of
flexibility in the design of the thermostat, for example allowing the treatment of systems arising in fluid
dynamics [16], or imposing an isokinetic constraint [33]. Very recently, we have further generalized the
NHL method to obtain Pairwise Nosé-Hoover-Langevin (PNHL), which is a momentum-conserving
thermostat and thus applicable to the simulation of hydrodynamic behavior in complex fluids and
polymers in mesoscales [39].
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1.2. Noisy Gradients. The gradient (or Hamiltonian) structure is essential to the nature of all
the methods described above since it is only by use of this feature that the underlying Fokker-Planck
equation can be shown to have the desired steady state solution. However, in many applications, in
particular multiscale modelling, the force is corrupted by significant approximation error and cannot
be viewed as the gradient of a single global potential function. One imagines a large extended sys-
tem involving configurational variables q and y, with (q,y) ∈ Ωq × Ωy (compact), and an overall
distribution described by a Gibbs-Boltzmann density

ρ̃(q,y) = Z−1exp
(
−βŨ(q,y)

)
,

where Z is a normalizing constant so that ρ̃ is a probability density. One calculates the mean force
acting on q, f̂(q), by averaging the forces in the extended Gibbsian system, f̃(q,y), as

f̂(q) =

∫
Ωy

f̃(q,y)ρ̃(q,y) dωy .

If, as would typically be assumed, f̃(q,y) = −∇qŨ(q,y), i.e. the force in the extended system is

conservative, then we may interpret f̂ as a conservative force, as well, specifically the gradient of the
potential of mean force, which is given by

Û(q) = −β−1 ln

∫
Ωy

exp
(
−βŨ(q,y)

)
dωy .

The challenge arises when this integral must be approximated. For example, if this is done by
Monte Carlo integration, for fixed q, one generates samples y1,y2, . . . ,yk from the distribution with
density ρ̃(q,y) and thus approximates the mean force by

f̄k(q) = k−1
k∑

i=1

f̃
(
q,yi

)
.

In practice most systems constructed in this way, for example those arising in mixed quantum and
classical molecular models [7], will admit very substantial errors in the forces, that is

f̄k(q) = f̂(q) + ∆k(q) .

Depending on the method of computation, it may be reasonable to assume that the errors ∆k are
normally distributed with zero mean, which is justified by the central limit theorem [5], but the
variance of the errors is generally not known and will be dependent on the location q where they are
computed, thus we would expect

(1.4) ∆k(q) ∼ N
(
0,Σk(q)

)
,

where Σk(q) is an unknown covariance matrix. It should be noted that the assumption of the errors
being Gaussian distributed is also often adopted in Bayesian inverse problems [12] and elsewhere.

The most straightforward approach to the problem is to first treat the estimation problem for Σk

separately, by some means, and then to use this within a standard Brownian or Langevin dynamics
algorithm. The difficulty is that this requires a high level of local accuracy in the calculations, which is
likely to be burdensome and involve redundant computation. What we would prefer to do is to resolve
the correct target distribution by a global calculation.

This problem has recently been encountered in the data science community where it has attracted
considerable attention [3, 11, 14, 46, 57, 62, 63]. To illustrate, we consider the problem of Bayesian
sampling [8,51], where one is interested in correctly drawing states from a posterior probability density
defined as

(1.5) π(θ|X) ∝ π(X|θ)π(θ) ,
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where θ is the parameter vector of interest, X represents the entire dataset, and, π(X|θ) and π(θ)
represent the likelihood and prior distributions, respectively. In these applications, the distribution
parameters are interpreted as the configuration variables (θ ≡ q). We introduce a potential energy
U(θ) by defining π(θ|X) ∝ exp(−βU(θ)), thus taking the logarithm of (1.5) gives

(1.6) U(θ) = − log π(X|θ)− log π(θ) .

Assuming the data are independent and identically distributed (i.i.d.), the logarithm of the likelihood
distribution can then be calculated as

(1.7) log π(X|θ) =
N∑
i=1

log π(xi|θ) ,

where N is the size of the entire dataset.
However, in machine learning applications, one often finds that directly sampling with the entire

large-scale dataset is computationally infeasible. For instance, standard Markov Chain Monte Car-
lo (MCMC) methods [43] require the calculation of the acceptance probability and the creation of
informed proposals based on the whole dataset, while the gradient is evaluated through the whole
dataset in the Hybrid Monte Carlo (HMC) method [8,15,23], again resulting in severe computational
complexity.

In order to improve the efficiency of simulation, the so-called Stochastic Gradient Langevin Dy-
namics (SGLD) was recently proposed [63] based on using a random (and much smaller, ñ ≪ N)
subset to approximate the likelihood of the dataset for given parameters,

(1.8) log π(X|θ) ≈ N

ñ

ñ∑
i=1

log π(xri |θ) ,

where {xri}ñi=1 represents a random subset of X. Overall, the “noisy” potential energy now can be
written as

(1.9) Ũ(θ) = −N
ñ

ñ∑
i=1

log π(xri |θ)− log π(θ) ,

with “noisy” force F̃(θ) = −∇Ũ(θ).

1.3. Sampling Methods for Noisy Gradients. The challenge is to identify a method to
compute samples distributed according to the Gibbs distribution ρ(q) = Z−1 exp(−βU(q)) where the
only available information is a stochastically perturbed force F̃(q) defined in the previous section.

In the original SGLD method, samples are generated by Brownian dynamics,

(1.10) qn+1 = qn +∆tnF̃(qn) +
√

2β−1∆tnRn ,

where Rn is a vector of i.i.d. standard normal random variables. It should be emphasized that ∆tn is
a sequence of stepsizes decreasing to zero [63]. Although a central limit theorem associated with the
decreasing stepsize sequence was established by Teh et al. [61], a fixed stepsize is often preferred in
practice which is the choice in this article as in Vollmer et al. [62], where a modified SGLD (mSGLD)
is introduced:

(1.11) qn+1 = qn +∆tF̃(qn) +
√
2β−1∆t

(
I− ∆t

4
CovF̃(qn)

)
Rn ,

where

(1.12) CovF̃ij = E
[(

F̃i − E(F̃i)
)(

F̃j − E(F̃j)
)T]
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is the covariance matrix of the noisy force.
A Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) method was also proposed very re-

cently by Chen et al. [11], which incorporates a parameter-dependent diffusion matrix Σ(q) (i.e. the
covariance matrix of the noisy force). Σ(q) is intended to effectively offset the stochastic perturbation
of the gradient. However, it is very difficult to accommodate Σ(q) in practice, moreover, as pointed
out in [14] poor estimation of it may have a significant adverse influence in correctly sampling the
target distribution unless the stepsize is small enough.

These problems challenge the conventional mechanism of thermostats. An article of Jones and
Leimkuhler [26] provides an alternative means of tackling this problem by showing that Nosé-Hoover
dynamics is able to adaptively dissipate excess heat pumped into the system while maintaining the
Gibbs (canonical) distribution. In the setting of systems involving a driving stochastic perturbation,
the Nosé-Hoover method is referred to as Ad-NH, with similar generalizations of Nosé-Hoover-Langevin
(Ad-NHL) and Langevin dynamics (Ad-Langevin) available. An idea equivalent to Ad-Langevin was
very recently applied in the setting of Bayesian sampling for use in data science calculations by Ding
et al. [14], which they referred to as the Stochastic Gradient Nosé-Hoover Thermostat (SGNHT). It
showed significant advantages over alternative techniques such as Stochastic Gradient Hamiltonian
Monte Carlo [11]. However, the numerical method used by Ding et al. [14] is not optimal, either
in terms of its accuracy (measured per unit work) or its stability (measured by the largest usable
stepsize).

Although extended systems have been increasingly popular in molecular simulations, the math-
ematical analysis of the order of convergence, specifically in terms of the bias in averaged quantities
computed using numerical trajectories, is not fully understood. Using a splitting approach, we propose
in this article an alternative numerical method for Adaptive Langevin simulation that substantially im-
proves on the existing schemes in the literature in terms of accuracy, robustness and overall numerical
efficiency.

The rest of the article is organized as follows. In Section 2, we describe the construction of adaptive
formulations for noisy gradients including the Adaptive Langevin (SGNHT) method. Section 3 consid-
ers the construction of numerical methods for solving the stochastic differential equations. Numerical
experiments are performed in Section 4. Our experiments are of a more limited nature in comparison
with those of Ding et al. [14], but we believe them to be representative of performance on a significant
class of problems. Finally, we summarize our findings in Section 5.

2. Adaptive Thermostats for Noisy Gradients. In this section, we discuss the construction
of thermostats to approximate samples with respect to the target measure (i.e. the correct marginalized
Gibbs density), if the covariance matrix of the noisy force is constant, i.e. Σ(q) = σ2I (σ is a constant
positive quantity). The procedure was outlined in the paper of Jones and Leimkuhler [26] and relies
on the fact that a fixed amplitude noise perturbation engenders a shift of the auxiliary variable in the
extended stationary distribution associated with the Nosé-Hoover thermostat.

If the system is not coming from a Newtonian dynamics model, then it is unclear that we need
to rely on second order dynamics for this purpose. To see why this is the case, we explain what goes
wrong if we try to use first order dynamics. In what follows, we assume that the covariance matrix
of the noisy force is constant, although we intend ultimately to apply the method more generally (see
recent work on a novel covariance-controlled adaptive Langevin thermostat that can handle parameter-
dependent noise in [57]). Even in the constant σ case it is a nontrivial problem to extract statistics
related to a particular target temperature, since we do not assume that σ is known.

For σ constant, let us first consider the SDE

dq = −ξ∇U(q)dt+ σdW ,(2.1)

dξ = χ(q)dt ,(2.2)

and seek χ(·) so that an extended Gibbs distribution with density of the form ψ(q, ξ) = ρ̄β(q)φ(ξ)
is (ergodically) preserved. The variable ξ is an auxiliary variable. We do not generally care what its
distribution is, but it is crucial that
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(i) the overall density is in product form, and
(ii) φ(ξ) ≥ 0 is normalizable and of a simple, easily sampled form.

These conditions ensure that we can easily average out over the auxiliary variable to compute the
averages of functions of q which are of greatest interest.

Proposition 1: Let χ(q) = −β−1∆U(q) + ∥∇U(q)∥2, then (2.1)-(2.2) preserves the modified Gibbs
distribution

ρ̃(q, ξ) = ρ̄β(q)e
−β(ξ−γ̂)2/2 ,

where γ̂ = βσ2/2.
Proof: The Fokker-Planck equation corresponding to (2.1)-(2.2) is

ρt = L†ρ := ξ∇ · (∇U(q)ρ(q, ξ)) +
σ2

2
∆ρ− ∂

∂ξ
(χ(q)ρ) .

Just insert ρ̃ into the operator L† to see that it vanishes. �.

Proposition 1 tells us that if we can solve the system (2.1)-(2.2), under an assumption of ergodicity,
we can compute averages with respect to the target Gibbs distribution without actually knowing
the value of σ. σ could be observed retrospectively by simply averaging ξ during simulation, since
⟨ξ⟩ = βσ2/2.

The problem is that the dynamics (2.1)-(2.2) is not quite what we want. A typical numerical
method for this system might be constructed based on modification of the Euler-Maruyama method:

qn+1 = qn −∆tξn∇U(qn) + σ
√
∆tRn ,(2.3)

ξn+1 = ξn +∆tχ(qn) ,(2.4)

however, observe that this method requires separate knowledge of ∇U(q) and σ, which is generally
impossible a priori, as we assume that the force is polluted by unknown noise. The form of the
equations means that we evaluate the product of ξ and the deterministic force on the one hand, and
the random perturbation separately, and these contributions are independently scaled by ∆t and

√
∆t,

respectively.

2.1. The Adaptive Langevin Thermostat (Ad-Langevin). To adaptively control the in-
variant distribution, we consider the following second order formulation, which was first introduced in
the paper of Jones and Leimkuhler [26]:

(2.5)

dq = M−1pdt ,

dp = F̃(q)dt− ξpdt+ σAM
1/2dWA ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt ,

In these equations, F̃(q) is meant to represent a noisy gradient which may be thought of as being
defined by the relation

(2.6) F̃(q) = −∇U(q) + σM1/2R ,

where R = R(t) is a collection of independent Gaussian white noise processes, i.e. ⟨Ri(t)Rj(s)⟩ =
δijδ(t − s) where δij is the Kronecker delta and δ(t − s) is the Dirac delta function. σAM

1/2dWA

indicates the artificial noise added into the system to enhance the ergodicity, i.e. the constant σA is
known a priori. All the components of the Wiener process WA(t) are assumed to be independent. Nd

denotes the number of degrees of freedom of the system. µ is a coupling parameter which is referred
to as the “thermal mass”. kB and T , satisfying the relation β−1 = kBT , represent the Boltzmann
constant and system temperature, respectively.
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A similar system was used by Ding et al. [14] (SGNHT), who also explored its application to three
examples from machine learning. These experiments demonstrated that Ad-Langevin has superior
performance compared to SGHMC in various applications, confirming the importance of adaptively
dissipating additional noise in sampling. However, there remain two important issues that we wish to
address in this article: (1) the underlying dynamics of the Ad-Langevin method is not clear due to the
presence of the stochastically perturbed gradient; (2) little attention has been paid to the design of
optimal numerical methods for implementing Ad-Langevin with attention to stability and numerical
efficiency.

One may wonder why the artificial noise is needed (i.e. σA ̸= 0), since we are assuming the
presence of noise in the gradient itself. The reason is as follows: in defining a numerical method for
the noisy gradient system, the force (including the random perturbation) will in general be multiplied
by ∆t, where ∆t is the timestep. On the other hand, the Itō rule implies that the scaling of random
perturbations in an SDE should be by a factor proportional to

√
∆t, thus effectively, if we are to

relate the thermostatted method to a standard SDE, the standard deviation of the noise is reduced
by multiplication by the factor

√
∆t. The noise perturbation introduced at each timestep (and the

effective diffusion) is thus reduced for small stepsizes and it is therefore important to inject an additional
artificial noise in order to stabilize the invariant distribution. A rewriting of the Ad-Langevin system
as a standard Itō SDE system makes clear the relation between the different terms

(2.7)

dq = M−1pdt ,

dp = −∇U(q)dt+ σ
√
∆tM1/2dW − ξpdt+ σAM

1/2dWA ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt ,

where W = W(t) is an additional vector of standard Wiener processes.
Let us note the main features of the dynamics (2.7):
(i) The equations are a combination of Langevin dynamics and Nosé-Hoover dynamics. If ξ is

constant in the equation for the momentum, then the system reduces to Langevin dynamics.
In the absence of noise σA = 0 (and σ = 0) then the system reduces to Nosé-Hoover. The
system (2.7) may be regarded as a sort of Langevin dynamics where the friction coefficient,
rather than being fixed a priori, is automatically and adaptively determined in order to achieve
the desired temperature (which is specified in the control law defining the evolution of ξ).

(ii) The invariant distribution for the given system may be directly obtained by study of its Fokker-
Planck equation. Following [26], it is straightforward to show that (2.7) has the following
invariant distribution,

(2.8) ρ̃β(q,p, ξ) =
1

Z
exp (−βH(q,p)) exp

(
−βµ

2
(ξ − γ̂)2

)
,

where Z is the normalizing constant and

(2.9) γ̂ =
β
(
σ2
F + σ2

A

)
2

,

where σF = σ
√
∆t. Observe that this means that if σA = 0, then, as lim∆t→0σF = 0, we

find that ξ tends to a variable which is normally distributed with mean zero. Alternatively, if
σA ̸= 0, one would obtain

ξ
L→ N

(
βσ2

A

2
, β−1µ−1

)
, t→ ∞ , ∆t→ 0 ,

where β−1µ−1 is the variance and the symbol
L→ indicates that ξ converges in probability law

to a normally distributed random variable with the indicated parameters. The order of the
limits here is important: t→ ∞ first (to reach the invariant distribution), then ∆t→ 0.
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(iii) The ergodicity of (2.7) with respect to the distribution indicated above can easily be demon-
strated by reference to Hörmander’s condition for hypoellipticity following the method in [42],
as for Langevin dynamics. The only additional step is to verify that the noise propagates into
the ξ variable, which follows due to its strong coupling to the momenta.

(iv) This dynamics is a bit unusual in that it must be viewed as stepsize-dependent, although we
mention that such mixed systems are used in the study of backward error analysis [38]. One
simply thinks of the characteristics of stochastic paths associated with (2.7) as being stepsize
dependent. Although (2.7) takes on the appearance of a standard Itō SDE system, we must
bear in mind that in discretizing these equations the conservative force F(q) and the associated
noise term σ

√
∆tM1/2dW must be evaluated together at every stage, since the formulation

(2.7) is a notational device to make clear the properties of the system.

3. Numerical Methods for Adaptive Thermostats. Since stochastic systems in most of the
cases cannot be solved “exactly”, splitting methods are often adopted in practice. For instance here,
the vector field of the Ad-Langevin/SGNHT (2.5) can be split into four pieces which are denoted as
“A”, “B”, “O” and “D”, in such a way that each piece can be solved “exactly”,

d

 q
p
ξ

 =

 M−1p
0
0

dt

︸ ︷︷ ︸
A

+

 0
−∇U(q) + σM1/2R

0

dt

︸ ︷︷ ︸
B

+

 0
−ξpdt+ σAM

1/2dWA

0


︸ ︷︷ ︸

O

+

 0
0

G(p)

dt

︸ ︷︷ ︸
D

,

where G(p) = µ−1
[
pTM−1p−NdkBT

]
.

Clearly parts “A” and “D” can be solved “exactly”. As mentioned previously, the underlying
dynamics for “B” is

(3.1) dp = −∇U(q)dt+ σFM
1/2dW ,

where q is fixed and σF = σ
√
∆t. Integrating (3.1) from 0 to ∆t gives the exact solution in distribution

of this part as:

p(∆t) = p(0)−∆t∇U(q) +
√
∆tσFM

1/2R ,(3.2)

= p(0) + ∆t[−∇U(q) + σM1/2R] = p(0) + ∆tF̃(q) ,(3.3)

where R is a vector of i.i.d. standard normal random variables. It should be noted that applying the
Euler-Maruyama method to (3.1) gives the same result, thus, for constant force, Euler-Maruyama is
“exact”.

The “O” or “Ornstein-Uhlenbeck” part is usually stated with ξ a positive constant, in which case
the solution is found to be [29]

(3.4) p(∆t) = e−ξ∆tp(0) + σA

√
1− e−2ξ∆t

2ξ
M1/2R ,

where p(0) is the initial value of the variable and R is a vector of i.i.d. standard normal random
variables. However, the same formula (3.4) is easily seen to be valid for ξ < 0, since the quantity
(1 − e−2ξ∆t)/(2ξ) is strictly greater than zero unless ξ = 0. (The proof is obtained by following the
standard procedure [29].) When ξ = 0, one can simply replace (1 − e−2ξ∆t)/(2ξ) by its well-defined
asymptotic limit,

(3.5) p(∆t) = p(0) +
√
∆tσAM

1/2R .
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The generators associated with each piece are defined, respectively, as

LA = M−1p · ∇q ,

LB = −∇U(q) · ∇p +
σ2
F

2
Tr
(
M∇2

p

)
,

LO = −ξp · ∇p +
σ2
A

2
Tr
(
M∇2

p

)
,

LD = G(p)
∂

∂ξ
,

where σF = σ
√
∆t in part “B” is stepsize dependent.

Overall, the generator of the Ad-Langevin/SGNHT (2.5) system can be written as

(3.6) L = LA + LB + LO + LD .

The flow map (or phase space propagator) of the system can be written in the shorthand notation

Ft = etL ,

where the exponential map here denotes the solution operator. Approximations of Ft can be obtained
as products (taken in different arrangements) of exponentials of the splitting terms. For example, the
phase space propagation of the method proposed by Ding et al. [14] for the Ad-Langevin/SGNHT (2.5)
system (denoted as “SGNHT-N”) can be written as

(3.7) exp
(
∆tL̂SGNHT−N

)
= exp (∆tLP) exp (∆tLA) exp (∆tLD) ,

where

(3.8) LP = LB + LO ,

and exp (∆tLf ) represents the phase space propagator associated with the corresponding vector field
f . Because of its nonsymmetric structure, one anticipates first order convergence to the invariant
measure (for any choice of σ). Due to the naming of the component parts, the SGNHT-N method may
be denoted by “PAD”.

Overall, the SGNHT-N/PAD integration method is as follows:

pn+1 = pn +∆t
(
−∇U(qn) + σM1/2R′

n

)
−∆tξnpn +

√
∆tσAM

1/2Rn ,

qn+1 = qn +∆tM−1pn+1 ,

ξn+1 = ξn +∆tµ−1
(
pT
n+1M

−1pn+1 −NdkBT
)
,

where R′
n and Rn, respectively, are vectors of i.i.d. standard normal random variables.

We propose symmetric alternative methods, such as the following symmetric Ad-Langevin/SGNHT
(SGNHT-S) splitting method

(3.9) e∆tL̂SGNHT−S = e
∆t
2 LBe

∆t
2 LAe

∆t
2 LDe∆tLOe

∆t
2 LDe

∆t
2 LAe

∆t
2 LB ,

where exact solvers for parts “B” and “O” derived above are applied. The SGNHT-S method may be
referred to as “BADODAB” where it should be noted that the various operations are symmetrically
applied and the steplengths are uniform and span the interval ∆t. Other symmetric splittings are
considered below.
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The SGNHT-S numerical integration method may be written:

pn+1/3 = pn + (∆t/2)
(
−∇U(qn) + σM1/2R′

n

)
,

qn+1/2 = qn + (∆t/2)M−1pn+1/3 ,

ξn+1/2 = ξn + (∆t/2)µ−1
(
pT
n+1/3M

−1pn+1/3 −NdkBT
)
,

if (ξn+1/2 ̸= 0) : pn+2/3 = e−ξn+1/2∆tpn+1/3 + σA

√
(1− e−2ξn+1/2∆t)/(2ξn+1/2)M

1/2Rn ,

else : pn+2/3 = pn+1/3 +
√
∆tσAM

1/2Rn ,

ξn+1 = ξn+1/2 + (∆t/2)µ−1
(
pT
n+2/3M

−1pn+2/3 −NdkBT
)
,

qn+1 = qn+1/2 + (∆t/2)M−1pn+2/3 ,

pn+1 = pn+2/3 + (∆t/2)
(
−∇U(qn+1) + σM1/2R′

n+1

)
.

The force computed at the end of each timestep can be reused at the start of the next step, thus only
one force calculation is needed in SGNHT-S at each timestep, the same as for SGNHT-N. In practice,
one could replace the exponential and square root operations in the exact solver of the ”O” part by
their respective well-defined asymptotic expansions to reduce the computational cost.

3.1. Order of Convergence of Ad-Langevin/SGNHT. The analysis of the accuracy of er-
godic averages (averages with respect to the invariant measure) in stochastic numerical methods can be
performed using the framework of long-time Talay-Tubaro expansion, as developed in [1,2,13,34–36,60].
In what follows we compare the order of convergence of the two Ad-Langevin/SGNHT methods with
a clean gradient.

For a splitting method described by L = Lα + Lβ + . . . + Lζ , we define the effective operator L̂†

associated with the perturbed system obtained using the numerical method with stepsize ∆t by the
relation

exp
(
∆tL̂†

)
= exp

(
∆tL†

α

)
exp

(
∆tL†

β

)
· · · exp

(
∆tL†

ζ

)
.

This operator can be computed using the Baker-Campbell-Hausdorff (BCH) expansion and can thus
be viewed as a perturbation of the exact Fokker-Planck operator L†

(3.10) L̂† = L† +∆tL†
1 +∆t2L†

2 +O(∆t3) ,

for some perturbation operators L†
i .

We also define the invariant distribution ρ̂ associated with the numerical method as an approxi-
mation of the target invariant distribution ρ̃β

(3.11) ρ̂ = ρ̃β
[
1 + ∆tf1 +∆t2f2 +∆t3f3 +O(∆t4)

]
,

for some correction functions fi satisfying ⟨fi⟩ = 0.
Substituting L̂† and ρ̂ into the stationary Fokker-Planck equation

L̂†ρ̂ = 0

yields (
L† +∆tL†

1 +∆t2L†
2 +O(∆t3)

) (
ρ̃β
[
1 + ∆tf1 +∆t2f2 +∆t3f3 +O(∆t4)

])
= 0 .

Since the exact Fokker-Planck operator preserves the invariant canonical distribution, i.e. L†ρ̃β = 0,
we obtain

(3.12) L†(ρ̃βf1) = −L†
1ρ̃β ,
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by equating first order terms in ∆t.
For any particular integration scheme it is possible to find the perturbation operator L†

1 by using
the BCH expansion. Then we can calculate its action on ρ̃β . The last step, namely obtaining the
leading correction function f1, requires the solution of the above PDE (see examples in Langevin
dynamics [34]). In general solving for f1 in closed form is difficult, and it does not get simpler as
we consider, as here, more complicated formulations than Langevin dynamics and more complicated
splittings.

According to the BCH expansion, for (noncommutative) linear operators X and Y , we have

exp(∆tX) exp(∆tY ) = exp(∆tZ1) ,

where

(3.13) Z1 = X + Y +
∆t

2
[X,Y ] +

∆t2

12
([X, [X,Y ]]− [Y, [X,Y ]]) +O(∆t3) ,

and subsequently

exp

(
∆t

2
X

)
exp(∆tY ) exp

(
∆t

2
X

)
= exp(∆tZ2) ,

where

(3.14) Z2 = X + Y +
∆t2

12

(
[Y, [Y,X]]− 1

2
[X, [X,Y ]]

)
+O(∆t4) .

The notation [X,Y ] = XY − Y X denotes the commutator of operators X and Y .
These equations demonstrate that for nonsymmetric splitting methods, there typically exists a

nonzero term L†
1 ∝ [X,Y ] ̸= 0, while the condition L†

1 = 0, implying f1 = 0, is automatically satisfied
for symmetric splitting methods, thus, for observables ϕ(q,p, ξ), assuming the asymptotic expansion
holds, the computed average would be of order two

⟨ϕ⟩∆t = ⟨ϕ⟩+∆t⟨ϕf1⟩+∆t2⟨ϕf2⟩+ . . . = ⟨ϕ⟩+O(∆t2) ,

where ⟨·⟩ denote the average with respect to the target invariant distribution. Therefore, the SGNHT-S
method (3.9) would have second order convergence for all the observables.

We can work out the leading operator L†
1 associated with the nonsymmetric SGNHT-N (“PAD”)

method (3.7) of Ding et al. [14],

(3.15) L†
1,PAD =

1

2

([
L†
D,L

†
A

]
+
[
L†
D,L

†
P

]
+
[
L†
A,L

†
P

])
.

It is clear that the leading term f1,PAD in the perturbed distribution (3.11) is in general nonzero.
Therefore the nonsymmetric SGNHT-N (“PAD”) method would be expected to exhibit first order
convergence to the invariant measure. It should be noted that, if certain conditions are satisfied,
higher order convergence to the invariant measure would be possible as demonstrated by Abdulle
et al. [1, 2]. However, it can be easily demonstrated that it is not the case here for the SGNHT-N
(“PAD”) method. In the presence of a noisy gradient, the Ad-Langevin/SGNHT methods, despite the
stepsize-dependency (2.7), would similarly (and generally) be expected to be first order with respect
to the invariant distribution.

3.2. Superconvergence Property. Recently, it has been demonstrated in the setting of Langevin
dynamics that a particular symmetric splitting method (“BAOAB”), which requires only one force cal-
culation per step, is fourth order for configurational quantities in the ergodic limit and in the limit of
large friction [34,36].

In what follows we demonstrate that the newly-proposed SGNHT-S (“BADODAB”) method (3.9)
effectively inherits the superconvergence property of BAOAB in the setting of Ad-Langevin/SGNHT
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system (2.7) with a clean gradient, in case the parameters σA and µ are both taken to infinity in a
suitable way. For simplicity we consider here a one-dimensional model H = p2/2 + U(q), but the
analysis could easily be extended to higher dimensions.

Following the standard procedure described in Section 3.1, we obtain the following PDE associated
with the BADODAB method,

(3.16) L†(ρ̃βf2) = −L†
2ρ̃β ,

where L† is the exact Fokker-Planck operator

(3.17) L† = −p∂q + U ′(q)∂p + ξ∂p(p·) +
γ̂

β
∂pp −

1

µ
(p2 − β−1)∂ξ

with invariant measure

(3.18) ρ̃β(q, p, ξ) =
1

Z
exp (−βH(q, p)) exp

(
−βµ

2
(ξ − γ̂)2

)
,

where γ̂ = ⟨ξ⟩ = βσ2
A/2 and L†

2 can be calculated by using BCH expansion

L†
2 =

1

12

([
L†
O,
[
L†
O,L

†
D

]]
+
[
L†
D + L†

O,
[
L†
D + L†

O,L
†
A

]]
+
[
L†
A + L†

D + L†
O,
[
L†
A + L†

D + L†
O,L

†
B

]])
− 1

24

([
L†
D,
[
L†
D,L

†
O

]]
+
[
L†
A,
[
L†
A,L

†
D + L†

O

]]
+
[
L†
B,
[
L†
B,L

†
A + L†

D + L†
O

]])
,

whose action on the extended invariant measure reads

L†
2ρ̃β =

1

12

[
−βp3U ′′′(q) + 4βp2ξ3 + 3βξp2U ′′(q) + 3βpU ′(q)U ′′(q) +

6ξp2

µ

(
1− βp2

)]
ρ̃β

+
γ̂

12

[
3U ′′(q) + 4ξ2 − 16βp2ξ2 − 6βU ′′(q)p2 +

6

µ

(
2βp4 − 5p2 + β−1

)]
ρ̃β

+ γ̂2ξ
(
2βp2 − 1

)
ρ̃β + γ̂3

(
2

3
− βp2

)
ρ̃β .

The equation is very complicated and we have no direct means of solving it. However, the additional
variable ξ has mean γ̂. If we suppose that µ is large, then the variance of ξ will be small. In this case
we can consider the approximation obtained by replacing functions of ξ in the PDE (3.16) by their
corresponding averages

(3.19) ⟨ξ⟩ = γ̂ , ⟨ξ2⟩ = 1

βµ
+ γ̂2 , ⟨ξ3⟩ = 3γ̂

βµ
+ γ̂3 .

We use this as part of an averaging of the stationary Fokker-Planck equation with respect to the
auxiliary variable. That is, we project the Fokker-Planck equation and its solution by integrating with
respect to the Gaussian distribution of ξ in the ergodic limit. We can think of this is as defining a
sort of “subspace projection”; it is related to the Galerkin method that is widely used in solving high
dimensional linear systems and PDEs, including Fokker-Planck equations [10, 50]. In this case, we
apply the projection operator [19]

(3.20) Pν(q, p, ξ) :=

∫
Ωξ
ρ̃β(q, p, ξ)ν(q, p, ξ) dξ∫
Ωξ
ρ̃β(q, p, ξ) dξ

,

where ν is an arbitrary function, to the PDE (3.16). Effectively, this results in the reduced equation

(3.21) Ľ†(ρβ f̂2) = −ρβP
L†
2ρ̃β
ρ̃β

,
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where the operator Ľ† is just the operator L† reduced by the action of the projection, and which acts
on functions of q and p; this is nothing other than the corresponding adjoint generator of Langevin
dynamics. Likewise f̂2 is now a function of q and p only. The right hand side simplifies to

ρβP
L†
2ρ̃β
ρ̃β

=

(
β

12

[
3pU ′(q)U ′′(q)− p3U ′′′(q)

]
+

γ̂

12

[
3U ′′(q)− 3βp2U ′′(q) +

1

µ

(
6βp4 − 28p2 + 10β−1

)])
ρβ .

where ρβ is the Gibbs (canonical) density (exp(−βH(q, p))).

We consider the high friction limit (γ̂ → ∞) and expand f̂2 in a series involving the reciprocal
friction ε = 1/γ̂,

(3.22) f̂2(q, p) = f̂2,0(q, p) + εf̂2,1(q, p) + ε2f̂2,2(q, p) + . . .

with each function f̂2,i satisfying ⟨f̂2,i⟩ = 0. Dividing (3.16) by the friction coefficient γ̂, we obtain

(3.23)
(
L̄†
O + εL†

H

)(
f̂2,0 + εf̂2,1 +O(ε2)

)
ρβ = −ερβP

L†
2ρ̃β
ρ̃β

,

where

(3.24) L̄†
O = ∂p(p·) + β−1∂pp , L†

H = −p∂q + U ′(q)∂p .

We take the high thermal mass limit (µ → ∞) in such a way that ε = 1/µ = 1/γ̂. The use of this
limit yields the following terms of the expansion of the right hand side in powers of ε. Defining

−ερβP
L†
2ρ̃β
ρ̃β

≡ g = (g0 + εg1) ρβ ,

we have

g0 = −1

4

[
U ′′(q)− βp2U ′′(q)

]
,(3.25)

g1 = − 1

12

[
3βpU ′(q)U ′′(q)− βp3U ′′′(q) + 6βp4 − 28p2 + 10β−1

]
.(3.26)

Furthermore, by equating powers of the reciprocal friction ε, we can solve a sequence of equations

L̄†
O(ρβ f̂2,0) = g0ρβ ,

L†
H(ρβ f̂2,0)+ L̄†

O(ρβ f̂2,1) = g1ρβ ,

L†
H(ρβ f̂2,1)+ L̄†

O(ρβ f̂2,2) = 0 ,

...

to obtain the leading term f̂2,0,

(3.27) f̂2,0 ≡ f̂BADODAB
2,0 =

1

8

(
U ′′(q)− βp2U ′′(q)

)
.

Moreover, it can be easily shown that the marginal average of f̂BADODAB
2,0 with respect to momen-

tum is zero,

(3.28)

∫
Ωp

f̂BADODAB
2,0 (q, p)ρβ dωp = 0 ,

which leads to the average of configurational observables ϕ(q) with respect to the invariant measure as

⟨ϕ(q)⟩BADODAB = ⟨ϕ(q)⟩+∆t2⟨ϕ(q)f̂BADODAB
2,0 ⟩+O(ε∆t2 +∆t4) .
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Fig. 1: Log-log plot of the relative error in computed configurational temperature (left) and average potential
energy (right) against stepsize by using two Ad-Langevin/SGNHT methods (with a clean gradient). The system
(σA = 3) was simulated for 5000 reduced time units but only the last 80% of the data were collected to calculate
the quantity to make sure the system was well equilibrated. Ten different runs were averaged to further reduce
the sampling errors. The stepsizes tested began at ∆t = 0.03 and were increased incrementally by 10% until
both methods showed significant relative error (SGNHT-N became unstable at around ∆t = 0.08).

Thus, for configurational observables the BADODAB method has fourth order convergence to the
invariant measure in the large friction and thermal mass limits (i.e. ε→ 0),

lim
ε→0

⟨ϕ(q)⟩BADODAB = ⟨ϕ(q)⟩+O(∆t4) .

It should be emphasized here that only the BADODAB and BAODOAB methods appear to have
the superconvergence property among a number of different splitting methods investigated in the Ad-
Langevin/SGNHT system (2.7) with a clean gradient. The superconvergence property suggests to use
relatively large σA and µ ∝ σ2

A in the BADODAB (SGNHT-S) method in order to enhance sampling
accuracy. In fact we expect that larger values of µ than this bound will not diminish the sampling
accuracy, but the effect of large values of µ is to reduce the responsiveness of the thermostat device.

4. Numerical Experiments. In this section, we conduct a variety of numerical experiments to
compare the performance of the different schemes presented in this article.

4.1. Molecular Systems. Before we compare various methods in machine learning applications
(i.e. with a noisy gradient), we first demonstrate the order of convergence of various splitting methods
with a clean gradient.

A popular model of an N -body system with pair interactions based on a spring with rest length
(i.e. pendulum) was used, a standard if simplified model of molecular dynamics. The total potential
energy of the system is defined as

(4.1) U(q) =

N−1∑
i=1

N∑
j=i+1

φ(rij) ,

where rij = ∥qi − qj∥ denotes the distance between two particles i and j, and φ(rij) represents the
pair potential energy

(4.2) φ(rij) =


k

2
(rij − rc)

2
, rij < rc ;

0 , rij ≥ rc ,
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Fig. 2: Log-log plot of the relative error in computed average potential energy against stepsize by using the
SGNHT-S/BADODAB method with (left) different values of σA (µ = 10) and (right) different values of µ
(σA = 9). The format of the plots is the same as in Fig. 1 except fifty different runs were used to reduce the
sampling errors in high accuracy regime.

where k and rc represent the spring constant and the cutoff radius, respectively.
A system consisting of N = 500 identical particles (i.e. unit mass) was simulated in a cubic box

with periodic boundary conditions [4]. The positions of the particles were initialized on a cubic grid
with equidistant grid spacing, while the initial momenta were i.i.d. random variables with mean zero
and variance kBT , which was set to be unity. The thermal mass µ was chosen to be 10 unless otherwise
stated. Particle density ρd = 4 was used with spring constant k = 25 and cutoff radius rc = 1.

We first compare the two SGNHT methods on controlling two configurational quantities: config-
urational temperature and average potential energy. The configurational temperature [22], which in
principle, as the kinetic temperature, should be equal to the target temperature, can be defined as

kBT =

∑
i⟨∥∇iU∥2⟩∑
i⟨∇2

iU⟩
,

where the angle brackets denote the averages, ∇iU and ∇2
iU represent the gradient and Laplacian of

the potential energy U with respect to the position of particle i, respectively (see more discussions
in [39]).

As shown in Figure 1, with the help of the dashed order lines, we can see that SGNHT-N and
SGNHT-S show first and second order convergence, respectively, as expected. It is clear that not only
does SGNHT-S have at least one order of magnitude improvement in accuracy in both observables,
but also much greater robustness over the SGNHT-N method, which becomes completely unstable at
around ∆t = 0.08. The results on the configurational temperature and average potential energy are
rather similar, therefore in what follows we only present average potential energy results.

We also investigate the effect of changing the value of σA in the SGNHT-S/BADODAB scheme
proposed in this article. As can be seen from Figure 2, the SGNHT-S method displays second order
convergence to the invariant measure when σA is relatively small, while a fourth order convergence is
observed in the high “friction” limit (σA = 9) as anticipated from the analysis of the previous section.
It should be emphasized here that the superconvergence property was only observed in the BADODAB
and BAODOAB methods, which both reduce to the BAOAB method [34,36] in Langevin dynamics.

Figure 2 also compares the effect of varying the value of the thermal mass µ when σA is fixed. It
can be seen that the BADODAB method displays a clear fourth order convergence when µ is relatively
large, while when µ is small, not only is the smooth discretization error dependence on stepsize lost
but also significantly larger relative error is observed. This reinforces the choice of a relatively large
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Fig. 3: Log-log plot of the relative error in computed average potential energy against stepsize by using
various splitting methods of the Ad-Langevin/SGNHT system (σA = 3). The format of the plot is the same
as in Fig. 1.

value of µ. It is worth pointing out that µ = 10 works as well as µ = 100, therefore µ = 10 is used
throughout this article since a relatively smaller µ corresponds to a tighter interaction between the
thermostat and the system and thus it can fluctuate more rapidly to accommodate changes in the
noise and adapt more easily.

We also explore the performance of various splitting methods of the Ad-Langevin/SGNHT sys-
tem (2.7) with fixed values of σA and µ in Figure 3. All the methods clearly show second order
convergence with ABDODBA and BADODAB methods achieving one order of magnitude improve-
ment in accuracy compared to the other methods. This again illustrates the importance of optimal
design of numerical methods. The ABDODBA method seems to be slightly better that the BADODAB
method in the regime of σA = 3, however, as demonstrated in Figure 2 the BADODAB method achieves
a dramatic improvement in accuracy when σA is relatively large (e.g. σA = 9) while other schemes
remain the same except the BAODOAB method.

4.2. Bayesian Inference. In this subsection we compare methods in a classical Bayesian in-
ference model in one dimension, i.e. to estimate the mean of a normal distribution with known
variance [14]. More precisely, given N i.i.d. samples from a normal distribution, xi ∼ N (µ̌, σ̂2) where
it should be noted that µ̌ is the true mean when we draw samples, with known σ̂2, and a uniform
prior distribution ranging from −N/2 to N/2, we are able to calculate the posterior distribution of the
mean in a closed form

(4.3) µ̂ ∼ N
(
x̂,
σ̂2

N

)
,
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where x̂ =
∑N

i=1 xi/N . In the context of stochastic gradient approximation, we have

(4.4)

π(µ̂|X) ∝ π(X|µ̂)π(µ̂) ≈

(
ñ∏

i=1

π(xri |µ̂)

)N
ñ

π(µ̂) ,

=

(
1√
2πσ̂

)N
[

ñ∏
i=1

exp

(
− (xi − µ̂)2

2σ̂2

)]N
ñ

1

N
,

=

(
1√
2πσ̂

)N

exp

(
−N
ñ

ñ∑
i=1

(xi − µ̂)2

2σ̂2

)
1

N
,

∝ exp

(
−N
ñ

ñ∑
i=1

(xi − µ̂)2

2σ̂2

)
,

= exp

[
− 1

2σ̂2

N

ñ

(
ñ∑

i=1

(xi − x̄)2 + ñ(x̄− µ̂)2

)]
,

∝ exp

(
− N

2σ̂2
(x̄− µ̂)2

)
,

where x̄ =
∑ñ

i=1 xi/ñ. It clearly recovers the true distribution (4.3) when ñ = N . Taking the logarithm
and differentiating the posterior distribution obtained at the end of (4.4) with respect to µ̂ gives the
noisy force

(4.5) F̃ (µ̂) =
N

σ̂2

(
µ̂− 1

ñ

ñ∑
i=1

xi

)
.

In this simple case, the noise of the stochastic gradient is independent of µ̂ and is a constant given
ñ. Moreover, we are able to obtain its mean and variance with respect to the stochastic gradient [24,62]

(4.6)
EF̃ (µ̂) = F (µ̂) =

N

σ̂2

(
µ̂− 1

N

N∑
i=1

xi

)
,

VarF̃ (µ̂) =
1

σ̂4

N(N − 1)

ñ
VarX ,

where VarX is the variance of the dataset. Thus, it is straightforward to verify that the noise is
normally distributed according to the central limit theorem.

In our numerical experiments, σA was chosen as 1 due to the fact that large σA results in stability
issues here. We generated N = 100 samples from N (0, 1) and randomly select a subset of size ñ = 10
at each timestep to compute the noisy force (4.5). We plot the distributions of the posterior mean of
the dataset obtained by using four different methods with different stepsizes in Figure 4. Clearly, two
SGNHT methods completely outperformed SGLD and mSGLD methods. The latter only demonstrate
good approximation of the true distribution with order of magnitude smaller stepsize compared to the
former. But it should be noted that mSGLD here is slightly better than SGLD in maintaining the
true distribution: the distribution of mSGLD with ∆t = 0.001 is visibly much closer to the target
compared to that of SGLD with the same stepsize.

Note that stepsizes for SGNHT (2nd order dynamics) and SGLD (1st order dynamics) based
methods are not directly comparable—as mentioned in [34] the stepsize of a first order dynamics
method like Euler-Maruyama when viewed as the limiting discretization of a Langevin integrator
corresponds to ∆t2/2 where ∆t is the stepsize of the Langevin method. However, in our experiments
we are uninterested in the time-dynamics of the system, and only care about the invariant measure.
Therefore the important relationship is the error in thermodynamic averages in comparison with the
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Fig. 4: Comparisons of the distribution in a one-dimensional Bayesian inference problem by using SGLD
(top left), mSGLD (top right), SGNHT-N (bottom left) and SGNHT-S (bottom right) with different stepsizes
indicated by different colors. The black solid line is the exact solution. Note the difference in the legends
between rows.

number of timesteps (work), which quantifies the efficiency of a given method. The stepsize is just an
arbitrary parameter which allows for refinement of the statistical calculation

Between the two SGNHT methods, SGNHT-S (the new scheme being proposed here) is obviously
superior to SGNHT-N: the latter starts to show significant deviation to the true distribution at ∆t =
0.02 while the distribution of the former still looks well matched to the true one at ∆t = 0.03. Our
observations are confirmed by Figure 5, where the mean absolute error (MAE) of the distribution of
the two SGNHT methods were plotted. The MAE, which can be thought of as a relative error in
distribution, is defined as

(4.7) MAE =
1

N̄

N̄∑
i=1

|ωi − ω̂i| ,

where N̄ denotes the number of intervals, which was chosen as 100. ωi and ω̂i represent the observed
frequency in bin i and the exact expected frequency, respectively [34]. As can be seen, the stability
threshold of SGNHT-N was around ∆t = 0.03, beyond which the system became unstable as highlight-
ed in the figure (in which case the system blew up, resulting in a 100% MAE). Once again, SGNHT-S
not only shows an order of magnitude better accuracy but also has a much greater robustness than
SGNHT-N. In particular, for defined accuracy, the SGNHT-S method is able to use double the stepsize
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Fig. 5: Log-log plot of the mean absolute error in the distribution of the Bayesian inference model against
stepsize. The box indicates that the system was unstable with corresponding stepsizes for the SGNHT-N
method.

compared to SGNHT-N, which means a remarkable 50% improvement in overall numerical efficiency
as defined in [39].

4.3. Bayesian Logistic Regression. Following [62], we also investigate the performance of
different methods for a more complicated Bayesian logistic regression model. The data yi ∈ {−1, 1}
were modelled by

π(yi|xi,β) = f(yiβ
Txi) ,

where f(z) = 1/(1 + exp(−z)) ∈ [0, 1] is the logistic function and xi ∈ Rd are rows of a fixed dataset.
Our goal is to estimate the posterior mean of parameter vector β ∈ Rd. For simplicity, a multivariate
Gaussian prior N (0, I) was used on β. Therefore, by using Bayes’ theorem, we obtain the following
posterior distribution

(4.8) π(β) ∝ exp

(
−1

2
∥β∥2

) N∏
i=1

f(yiβ
Txi) .

Following the same procedure in the Bayesian inference example (Section 4.2), we can calculate the
noisy force and then plug it into different thermostats for sampling.

In our numerical experiments, we considered the d = 3 case with N = 1000 data points. We chose
the dataset to be

(4.9) X =


x1,1 x1,2 1
x2,1 x2,2 1
...

...
...

x1000,1 x1000,2 1


where xi,j were sampled from a standard normal distribution N (0, 1) for i = 1, . . . , 1000 and j = 1, 2.
A subset of size ñ = 100 was randomly chosen at each timestep to compute the noisy force.

The performance of estimating the posterior mean value of parameter vector β by various methods
(σA = 6) was tested and plotted in Figure 6. Again, SGLD and mSGLD, displaying considerable larger
root mean square error (RMSE) with a fixed stepsize, were outperformed by the two SGNHT methods.
In this case, the SGLD and mSGLD methods demonstrate similar control in numerical accuracy, but
the latter displays much worse stability than that of the former and became unstable just above
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Fig. 6: Comparisons of the root mean square error (RMSE) of the posterior mean in the Bayesian logistic
regression model by using various methods against stepsize. The system was simulated for 1000 reduced time
units with 100,000 different runs. The stepsizes tested began at ∆t = 0.001 and were increased incrementally
by 30% until all methods either displayed significant error or became unstable (mSGLD and SGNHT-N).

∆t = 0.01. As reported in the original paper [62], the performance of the mSGLD method depends
strongly on the size of the subset–for a larger subset, which requires higher computational cost, the
bias of mSGLD can be smaller than that of SGLD.

Of the two SGNHT methods, the SGNHT-S method again shows not only at least an order of
magnitude improvement on accuracy but also much better robustness than the other: SGNHT-N
became unstable just above ∆t = 0.02. Remarkably, the SGNHT-S method at ∆t = 0.1 still achieves
better accuracy than the SGLD method at ∆t = 0.01. In other words, the method we propose here
gives more than a 90% improvement in overall numerical efficiency compared to one of the most popular
methods in the literature. For fixed accuracy, the SGNHT-S method can use almost four times the
stepsize of the SGNHT-N method (i.e. an about 75% improvement in overall numerical efficiency).

5. Conclusions. We have reviewed a variety of methods in stochastic gradient systems with
applications in machine learning. We have provided a theoretical discussion on the foundation (un-
derlying dynamics) of those stochastic gradient systems, which has been lacking in the literature. We
have also proposed a new symmetric splitting (at least second order) method in SGNHT (SGNHT-
S/BADODAB), which substantially improves the accuracy and robustness compared to a nonsymmet-
ric splitting (first order) method (SGNHT-N) proposed recently in the literature. Furthermore, we
have demonstrated that under certain conditions the SGNHT-S/BADODAB method can inherit the
superconvergence property recently discovered in integrators for Langevin dynamics, i.e. fourth order
convergence to the invariant measure for configurational averages.

By conducting various numerical experiments, we have demonstrated that the two SGNHT meth-
ods outperform the popular SGLD method and its variant mSGLD. In particular, the SGNHT-S
method can use up to ten times the stepsize of SGLD, which implies a remarkable more than 90%
improvement in overall numerical efficiency. Between the two SGNHT methods, the SGNHT-S method
can use almost four times the stepsize of SGNHT-N for defined accuracy (i.e. about 75% improvement
in overall numerical efficiency).

It should be noted that, in certain cases, it may be desirable to employ a Metropolis-Hastings
procedure in order to remove the discretization bias [54]. However, we emphasize that the correction
is not without computational cost, particularly as the dimension is increased [6, 28, 52, 53], and the
results of [34–36] and of the current article demonstrate that high accuracy with respect to the invariant
distribution is often achievable using traditional numerical integration techniques, thus in many cases
entirely eliminating the necessity of Metropolis-Hastings corrections (see more discussions in [36]).
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Moreover, we mention that the methods of this article can in principle be combined with Metropolis-
Hastings algorithms if it is necessary to completely eliminate the discretization bias.
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[21] C. Hijón, P. Español, E. Vanden-Eijnden, and R. Delgado-Buscalioni, Mori-Zwanzig formalism as a practical

computational tool, Faraday discussions, 144 (2010), pp. 301–322.
[22] J. O. Hirschfelder, Classical and quantum mechanical hypervirial theorems, The Journal of Chemical Physics,

33 (1960), p. 1462.
[23] A. M. Horowitz, A generalized guided Monte Carlo algorithm, Physics Letters B, 268 (1991), pp. 247–252.
[24] D. G. Horvitz and D. J. Thompson, A generalization of sampling without replacement from a finite universe,

Journal of the American Statistical Association, 47 (1952), pp. 663–685.
[25] P. H. Hünenberger, Thermostat algorithms for molecular dynamics simulations, Advances in Polymer Science,

173 (2005), pp. 105–149.
[26] A. Jones and B. Leimkuhler, Adaptive stochastic methods for sampling driven molecular systems, The Journal

of Chemical Physics, 135 (2011), p. 084125.
[27] E. E. Keaveny, I. V. Pivkin, M. Maxey, and G. E. Karniadakis, A comparative study between dissipative

particle dynamics and molecular dynamics for simple-and complex-geometry flows, The Journal of Chemical
Physics, 123 (2005), p. 104107.

[28] A.D. Kennedy and B. Pendleton, Acceptances and autocorrelations in hybrid Monte Carlo, Nuclear Physics B
- Proceedings Supplements, 20 (1991), pp. 118–121.



22 ADAPTIVE THERMOSTATS

[29] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1992.
[30] F. Legoll, M. Luskin, and R. Moeckel, Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator,

Arch Rational Mech Anal, 184 (2006), pp. 449–463.
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[61] Y. W. Teh, A. Thiéry, and S. Vollmer, Consistency and fluctuations for stochastic gradient Langevin dynamics,

arXiv preprint arXiv:1409.0578, (2014).
[62] S. J. Vollmer, K. C. Zygalakis, and Y. W. Teh, (Non-) asymptotic properties of stochastic gradient Langevin

dynamics, arXiv preprint arXiv:1501.00438, (2015).
[63] M. Welling and Y. W. Teh, Bayesian learning via stochastic gradient Langevin dynamics, in Proceedings of the



BENEDICT LEIMKUHLER AND XIAOCHENG SHANG 23

28th International Conference on Machine Learning, 2011, pp. 681–688.


