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Abstract

Monte Carlo sampling for Bayesian posterior inference is a common approach
used in machine learning. The Markov chain Monte Carlo procedures that are
used are often discrete-time analogues of associated stochastic differential equa-
tions (SDEs). These SDEs are guaranteed to leave invariant the required posterior
distribution. An area of current research addresses the computational benefits of
stochastic gradient methods in this setting. Existing techniques rely on estimating
the variance or covariance of the subsampling error, and typically assume constant
variance. In this article, we propose a covariance-controlled adaptive Langevin
thermostat that can effectively dissipate parameter-dependent noise while main-
taining a desired target distribution. The proposed method achieves a substantial
speedup over popular alternative schemes for large-scale machine learning appli-
cations.

1 Introduction

In machine learning applications, direct sampling with the entire large-scale dataset is computation-
ally infeasible. For instance, standard Markov chain Monte Carlo (MCMC) methods [16], as well
as typical hybrid Monte Carlo (HMC) methods [3, 6, 9], require the calculation of the acceptance
probability and the creation of informed proposals based on the whole dataset.

In order to improve the computational efficiency, a number of stochastic gradient methods [4, 5, 20,
21] have been proposed in the setting of Bayesian sampling based on random (and much smaller)
subsets to approximate the likelihood of the whole dataset, thus substantially reducing the com-
putational cost in practice. Welling and Teh proposed the so-called stochastic gradient Langevin
dynamics (SGLD) [21], combining the ideas of stochastic optimization [18] and traditional Brow-
nian dynamics, with a sequence of stepsizes decreasing to zero. A fixed stepsize is often adopted
in practice which is the choice in this article as in Vollmer et al. [20], where a modified SGLD
(mSGLD) was also introduced that was designed to reduce the sampling bias.

SGLD generates samples from first order Brownian dynamics, and thus, with a fixed timestep, one
can show that it is unable to dissipate excess noise in gradient approximations while maintaining the
desired invariant distribution [4]. A stochastic gradient Hamiltonian Monte Carlo (SGHMC) method
was proposed by Chen et al. [4], which relies on second order Langevin dynamics and incorporates a
parameter-dependent diffusion matrix that is intended to effectively offset the stochastic perturbation
of the gradient. However, it is difficult to accommodate the additional diffusion term in practice.

∗The first and second authors contributed equally, and the listed author order was decided by lot.
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Moreover, as pointed out in [5], poor estimation of it may have a significant adverse influence on the
sampling of the target distribution; for example, the effective system temperature may be altered.

The “thermostat” idea, which is widely used in molecular dynamics [7, 13], was recently adopted
in the stochastic gradient Nosé–Hoover thermostat (SGNHT) by Ding et al. [5] in order to adjust
the kinetic energy during simulation in such a way that the canonical ensemble is preserved (i.e. so
that a prescribed constant temperature distribution is maintained). In fact, the SGNHT method is
essentially equivalent to the adaptive Langevin (Ad-Langevin) thermostat proposed earlier by Jones
and Leimkuhler [10] in the molecular dynamics setting (see [15] for discussions).

Despite the substantial interest generated by these methods, the mathematical foundation for
stochastic gradient methods has been incomplete. The underlying dynamics of the SGNHT
method [5] was taken up by Leimkuhler and Shang [15], together with the design of discretiza-
tion schemes with high effective order of accuracy. SGNHT methods are designed based on the
assumption of constant noise variance. In this article, we propose a covariance-controlled adaptive
Langevin (CCAdL) thermostat, that can handle parameter-dependent noise, improving both robust-
ness and reliability in practice, and which can effectively speed up the convergence to the desired
invariant distribution in large-scale machine learning applications.

The rest of the article is organized as follows. In Section 2, we describe the setting of Bayesian
sampling with noisy gradients and briefly review existing techniques. Section 3 considers the con-
struction of the novel CCAdL method that can effectively dissipate parameter-dependent noise while
maintaining the correct distribution. Various numerical experiments are performed in Section 4 to
verify the usefulness of CCAdL in a wide range of large-scale machine learning applications. Final-
ly, we summarize our findings in Section 5.

2 Bayesian Sampling with Noisy Gradients

In the typical setting of Bayesian sampling [3, 19], one is interested in drawing states from a posterior
distribution defined as

π(θ|X) ∝ π(X|θ)π(θ) , (1)

where θ ∈ RNd is the parameter vector of interest, X denotes the entire dataset, and, π(X|θ)
and π(θ) are the likelihood and prior distributions, respectively. We introduce a potential energy
function U(θ) by defining π(θ|X) ∝ exp(−βU(θ)), where β is a positive parameter and can be
interpreted as being proportional to the reciprocal temperature in an associated physical system, i.e.
β−1 = kBT (kB is the Boltzmann constant and T is the temperature). In practice, β is often set to
be unity for notational simplicity. Taking the logarithm of (1) yields

U(θ) = − log π(X|θ)−log π(θ) . (2)
Assuming the data are independent and identically distributed (i.i.d.), the logarithm of the likelihood
can be calculated as

log π(X|θ) =

N∑
i=1

log π(xi|θ) , (3)

where N is the size of the entire dataset.

However, as already mentioned, it is computationally infeasible to deal with the entire large-scale
dataset at each timestep as would typically be required in MCMC and HMC methods. Instead, in
order to improve the efficiency, a random (and much smaller, i.e. n � N ) subset is preferred in
stochastic gradient methods, in which the likelihood of the dataset for given parameters is approxi-
mated by

log π(X|θ) ≈ N

n

n∑
i=1

log π(xri |θ) , (4)

where {xri}ni=1 represents a random subset of X. Thus, the “noisy” potential energy can be written
as

Ũ(θ) = −N
n

n∑
i=1

log π(xri |θ)−log π(θ) , (5)

where the negative gradient of the potential is referred to as the “noisy” force, i.e. F̃(θ) = −∇Ũ(θ).
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Our goal is to correctly sample the Gibbs distribution ρ(θ) ∝ exp(−βU(θ)) (1). As in [4, 5], the
gradient noise is assumed to be Gaussian with mean zero and unknown variance, in which case one
may rewrite the noisy force as

F̃(θ) = −∇U(θ)+
√

Σ(θ)M1/2R , (6)
where M typically is a diagonal matrix, Σ(θ) represents the covariance matrix of the noise, and,
R is a vector of i.i.d. standard normal random variables. Note that

√
Σ(θ)M1/2R here is actually

equivalent to N (0,Σ(θ)M).

In a typical setting of numerical integration with associated stepsize h, one has

hF̃(θ) = h
(
−∇U(θ)+

√
Σ(θ)M1/2R

)
= −h∇U(θ)+

√
h
(√

hΣ(θ)
)

M1/2R , (7)

and therefore, assuming a constant covariance matrix (i.e. Σ = σ2I, where I is the identity matrix),
the SGNHT method by Ding et al. [5] has the following underlying dynamics, written as a standard
Itō stochastic differential equation (SDE) system [15]:

dθ = M−1pdt ,

dp = −∇U(θ)dt+σ
√
hM1/2dW−ξpdt+

√
2Aβ−1M1/2dWA ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt ,

(8)

where, colloquially, dW and dWA represent vectors of independent Wiener increments; and are
often informally denoted by N (0,dtI) [4]. The coefficient

√
2Aβ−1M1/2 represents the strength

of artificial noise added into the system to improve ergodicity, and A, which can be termed the “ef-
fective friction”, is a positive parameter and proportional to the variance of the noise. The auxiliary
variable ξ ∈ R is governed by a Nosé–Hoover device [8, 17] via a negative feedback mechanism,
i.e. when the instantaneous temperature (average kinetic energy per degree of freedom) calculated
as

kBT = pTM−1p/Nd (9)
is below the target temperature, the “dynamical friction” ξ would decrease allowing an increase
of temperature, while ξ would increase when the temperature is above the target. µ is a coupling
parameter which is referred to as the “thermal mass” in the molecular dynamics setting.

Proposition 1 (See Jones and Leimkuhler [10]). The SGNHT method (8) preserves the modified
Gibbs (stationary) distribution:

ρ̃β(θ,p, ξ) = Z−1 exp (−βH(θ,p)) exp
(
−βµ(ξ−ξ̄)2/2

)
, (10)

where Z is the normalizing constant, H(θ,p) = pTM−1p/2+U(θ) is the Hamiltonian, and
ξ̄ = A+βhσ2/2 . (11)

Proposition 1 tells us that the SGNHT method can adaptively dissipate excess noise pumped into
the system while maintaining the correct distribution. The variance of the gradient noise, σ2, does
not need to be known a priori. As long as σ2 is constant, the auxiliary variable ξ will be able to
automatically find its mean value ξ̄ on the fly. However, with a parameter-dependent covariance
matrix Σ(θ), the SGNHT method (8) would not produce the required target distribution (10).

Ding et al. [5] claimed that it is reasonable to assume the covariance matrix Σ(θ) is constant when
the size of the dataset, N , is large, in which case the variance of the posterior of θ is small. The
magnitude of the posterior variance does not actually relate to the constancy of the Σ, however,
in general, Σ is not constant. Simply assuming the nonconstancy of the Σ can have a significant
impact on the performance of the method (most notably the stability measured by the largest usable
stepsize). Therefore, it is essential to have an approach that can handle parameter-dependent noise.
In the following section, we propose a covariance-controlled thermostat that can effectively dissipate
parameter-dependent noise while maintaining the target stationary distribution.

3 Covariance-Controlled Adaptive Langevin Thermostat

As mentioned in the previous section, the SGNHT method (8) can only dissipate noise with a con-
stant covariance matrix. When the covariance matrix becomes parameter-dependent, in general, a
parameter-dependent covariance matrix does not imply the required “thermal equilibrium”, i.e. the
system cannot be expected to converge to the desired invariant distribution (10), typically resulting
in poor estimation of functions of parameters of interest. In fact, in that case it is not clear whether
or not there exists an invariant distribution at all.
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In order to construct a stochastic-dynamical system that preserves the canonical distribution, we
suggest adding a suitable damping (viscous) term to effectively dissipate the parameter-dependent
gradient noise. To this end, we propose the following covariance-controlled adaptive Langevin
(CCAdL) thermostat:

dθ = M−1pdt ,

dp = −∇U(θ)dt+
√
hΣ(θ)M1/2dW−(h/2)βΣ(θ)pdt−ξpdt+

√
2Aβ−1M1/2dWA ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt .

(12)

Proposition 2. The CCAdL thermostat (12) preserves the modified Gibbs (stationary) distribution:
ρ̂β(θ,p, ξ) = Z−1 exp (−βH(θ,p)) exp

(
−βµ(ξ−A)2/2

)
. (13)

Proof. The Fokker–Planck equation corresponding to (12) is
ρt = L†ρ :=−M−1p·∇θρ+∇U(θ)·∇pρ+(h/2)∇p ·(Σ(θ)M∇pρ)+(h/2)β∇p ·(Σ(θ)pρ)

+ξ∇p ·(pρ)+Aβ−1∇p ·(M∇pρ)−µ−1
[
pTM−1p−NdkBT

]
∇ξρ .

Just insert ρ̂β (13) into the Fokker–Planck operator L† to see that it vanishes.

The incorporation of the parameter-dependent covariance matrix Σ(θ) in (12) is intended to offset
the covariance matrix coming from the gradient approximation. However, in practice, one does not
know Σ(θ) a priori. Thus instead one must estimate Σ(θ) during the simulation, a task which will
be addressed in Section 3.1. This procedure is related to the method used in the SGHMC method
proposed by Chen et al. [4], which uses dynamics of the following form:

dθ = M−1pdt ,

dp = −∇U(θ)dt+
√
hΣ(θ)M1/2dW−Apdt+

√
2β−1 (AI−βhΣ(θ)/2)M1/2dWA .

(14)

It can be shown that the SGHMC method preserves the Gibbs canonical distribution:
ρβ(θ,p) = Z−1 exp (−βH(θ,p)) . (15)

Although both CCAdL (12) and SGHMC (14) preserve their respective invariant distributions, let
us note several advantages of the former over the latter in practice:

(i) CCAdL and SGHMC both require estimation of the covariance matrix Σ(θ) during simu-
lation, which can be costly in high dimension. In numerical experiments, we have found
that simply using the diagonal of the covariance matrix, at significantly reduced computa-
tional cost, works quite well in CCAdL. By contrast, it is difficult to find a suitable value
of the parameter A in SGHMC since one has to make sure the matrix AI−βhΣ(θ)/2 is
positive semidefinite. One may attempt to use a large value of the “effective friction” A
and/or a small stepsize h. However, too-large a friction would essentially reduce SGHMC
to SGLD, which is not desirable, as pointed out in [4], while extremely small stepsize
would significantly impact the computational efficiency.

(ii) Estimation of the covariance matrix Σ(θ) unavoidably introduces additional noise in both
CCAdL and SGHMC. Nonetheless, CCAdL can still effectively control the system tem-
perature (i.e. maintaining the correct distribution of the momenta) due to the use of the
stabilizing Nosé–Hoover control, while in SGHMC, poor estimation of the covariance ma-
trix may lead to significant deviations of the system temperature (as well as the distribution
of the momenta), resulting in poor sampling of the parameters of interest.

3.1 Covariance Estimation of Noisy Gradients

Under the assumption that the noise of the stochastic gradient follows a normal distribution, we
apply a similar method to that of [2] to estimate the covariance matrix associated with the noisy
gradient. If we let g(θ; x) = ∇θ log π(x|θ) and assume that the size of subset n is large enough for
the central limit theorem to hold, we have

1

n

n∑
i=1

g(θt; xri) ∼ N
(
Ex[g(θt; x)],

1

n
It

)
, (16)

where It = Cov[g(θt; x)] is the covariance of the gradient at θt. Given the noisy (stochastic)
gradient based on the current subset ∇Ũ(θt) = −Nn

∑n
i=1 g(θt; xri)−∇ log π(θt) and the clean

4



Algorithm 1 Covariance-Controlled Adaptive Langevin (CCAdL) Thermostat

1: Input: h, A, {κt}T̂t=1.
2: Initialize θ0, p0, I0, and ξ0 = A.
3: for t = 1, 2, . . . , T̂ do
4: θt = θt−1+pt−1h;
5: Estimate Ît using Eq. (18);
6: pt = pt−1−∇Ũ(θt)h− h

2
N2

n Îtpt−1h−ξt−1pt−1h+
√

2AhN (0, I);
7: ξt = ξt−1+

(
pTt pt/Nd−1

)
h;

8: end for

(full) gradient ∇U(θt) = −
∑N
i=1 g(θt; xi)−∇ log π(θt), we have Ex[∇Ũ(θt)] = Ex[∇U(θt)],

and thus

∇Ũ(θt) = ∇U(θt)+N
(

0,
N2

n
It

)
, (17)

i.e. Σ(θt) = N2It/n. Assuming θt does not change dramatically over time, we use the moving
average update to estimate It:

Ît = (1−κt)Ît−1+κtV(θt) , (18)
where κt = 1/t and

V(θt) =
1

n−1

n∑
i=1

(g(θt; xri)−ḡ(θt)) (g(θt; xri)−ḡ(θt))
T (19)

is the empirical covariance of the gradient. ḡ(θt) represents the mean gradient of the log likelihood
computed from a subset. As proved in [2], this estimator has a convergence order of O(1/N).

As already mentioned, estimating the full covariance matrix is computationally infeasible in high
dimension. However, we have found that employing a diagonal approximation of the covariance
matrix (i.e. estimating the variance only along each dimension of the noisy gradient) works quite
well in practice, as demonstrated in Section 4.

The procedure of the CCAdL method is summarized in Algorithm 1, where we simply used M = I,
β = 1, and µ = Nd in order to be consistent with the original implementation of SGNHT [5].

Note that this is a simple, first order (in terms of the stepsize) algorithm. A recent article [15] has
introduced higher order of accuracy schemes which can improve accuracy, but our interest here is in
the direct comparison of the underlying machinery of SGHMC, SGNHT, and CCAdL, so we avoid
further modifications and enhancements related to timestepping at this stage.

In the following section, we compare the newly established CCAdL method with SGHMC and
SGNHT on various machine learning tasks to demonstrate the benefits of CCAdL in Bayesian sam-
pling with a noisy gradient.

4 Numerical Experiments

4.1 Bayesian Inference for Gaussian Distribution

We first compare the performance of the newly established CCAdL method with SGHMC and
SGNHT for a simple task using synthetic data, i.e. Bayesian inference of both the mean and vari-
ance of a one-dimensional normal distribution. We apply the same experimental setting as in [5]. We
generated N = 100 samples from a standard normal distribution N (0, 1). We used the likelihood
function of N (xi|µ, γ−1) and assigned a normal-gamma distribution as their prior distribution, i.e.
µ, γ ∼ N (µ|0, γ)Gamma(γ|1, 1). Then the corresponding posterior distribution is another normal-
gamma distribution, i.e. (µ, γ)|X ∼ N (µ|µN , (κNγ)−1)Gamma(γ|αN , βN ), with

µN =
N x̄

N+1
, κN = 1+N , αN = 1+

N

2
, βN = 1+

N∑
i=1

(xi−x̄)2

2
+

N x̄2

2(1+N)
,

where x̄ =
∑N
i=1 xi/N . A random subset of size n = 10 was selected at each timestep to approxi-

mate the full gradient, resulting in the following stochastic gradients:

∇µŨ = (N+1)µγ− γN
n

n∑
i=1

xri , ∇γŨ = 1−N+1

2γ
+
µ2

2
+
N

2n

n∑
i=1

(xri−µ)2 .
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It can be seen that the variance of the stochastic gradient noise is no longer constant and actually
depends on the size of the subset, n, and the values of µ and γ in each iteration. This directly violates
the constant noise variance assumption of SGNHT [5], while CCAdL adjusts to the varying noise
variance.

The marginal distributions of µ and γ obtained from various methods with different combinations
of h and A were compared and plotted in Figure 1, with Table 1 consisting of the corresponding
root mean square error (RMSE) of the distribution and autocorrelation time from 106 samples. In
most of the cases, both SGNHT and CCAdL easily outperform the SGHMC method possibly due
to the presence of the Nosé–Hoover device, with SGHMC only showing superiority with a small
value of h and a large value of A, neither of which is desirable in practice as discussed in Section 3.
Between SGNHT and the newly proposed CCAdL method, the latter achieves better performance in
each of the cases investigated, highlighting the importance of the covariance control with parameter-
dependent noise.
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Figure 1: Comparisons of marginal distribution (density) of µ (top row) and γ (bottom row) with various
values of h and A indicated in each column. The peak region is highlighted in the inset.

Table 1: Comparisons of (RMSE, Autocorrelation time) of (µ, γ) of various methods for Bayesian inference
of the mean and variance of a Gaussian distribution.

Methods h = 0.001, A = 1 h = 0.001, A = 10 h = 0.01, A = 1 h = 0.01, A = 10
SGHMC (0.0148, 236.12) (0.0029,333.04) (0.0531, 29.78) (0.0132, 39.33)
SGNHT (0.0037, 238.32) (0.0035, 406.71) (0.0044, 26.71) (0.0043, 55.00)
CCAdL (0.0034,238.06) (0.0031, 402.45) (0.0021,26.71) (0.0035,54.43)

4.2 Large-Scale Bayesian Logistic Regression

We then consider a Bayesian logistic regression model trained on the benchmark MNIST dataset
for binary classification of digits 7 and 9 using 12, 214 training data points, with a test set of size
2037. A 100-dimensional random projection of the original features was used. We used the likeli-
hood function of π

(
{xi, yi}Ni=1|w

)
∝
∏N
i=1 1/

(
1+exp(−yiwTxi)

)
and the prior distribution of

π(w) ∝ exp(−wTw/2). A subset of size n = 500 was used at each timestep. Since the dimen-
sionality of this problem is not that high, a full covariance estimation was used for CCAdL.

We investigate in Figure 2 (top row) the convergence speed of each method through measuring test
log likelihood using the posterior mean against the number of passes over the entire dataset. CCAdL
displays significant improvements over SGHMC and SGNHT with different values of h and A:
(1) CCAdL converges much faster than the other two, which also indicates its faster mixing speed
and shorter burn-in period; (2) CCAdL shows robustness in different values of the effective friction
A, with SGHMC and SGNHT relying on a relative large value of A (especially for the SGHMC
method), which is intended to dominate the gradient noise.

To compare the sample quality obtained from each method, Figure 2 (bottom row) plots the two-
dimensional marginal posterior distribution in randomly selected dimensions of 2 and 5 based on
106 samples from each method after the burn-in period (i.e. we start to collect samples when the test
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log likelihood stabilizes). The true (reference) distribution was obtained by a sufficiently long run of
standard HMC. We implemented 10 runs of standard HMC and found there was no variation between
these runs, which guarantees its qualification as the true (reference) distribution. Again, CCAdL
shows much better performance than SGHMC and SGNHT. Note that the contour of SGHMC does
not even fit in the region of the plot, and in fact it shows significant deviation even in the estimation
of the mean.
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Figure 2: Comparisons of Bayesian logistic regression of various methods on the MNIST dataset of digits 7
and 9 with various values of h and A: (top row) test log likelihood using the posterior mean against the number
of passes over the entire dataset; (bottom row) two-dimensional marginal posterior distribution in (randomly
selected) dimensions 2 and 5 with A = 10 fixed, based on 106 samples from each method after the burn-in
period (i.e. we start to collect samples when the test log likelihood stabilizes). Magenta circle is the true
(reference) posterior mean obtained from standard HMC and crosses represent the sample means computed
from various methods. Ellipses represent isoprobability contours covering 95% probability mass. Note that the
contour of SGHMC is well beyond the scale of the plot especially in the large stepsize regime, in which case
we do not include it here.

4.3 Discriminative Restricted Boltzmann Machine (DRBM)

DRBM [11] is a self-contained non-linear classifier, and the gradient of its discriminative objective
can be explicitly computed. Due to the limited space, we refer the readers to [11] for more details.
We trained a DRBM on different large-scale multi-class datasets from the LIBSVM1 dataset col-
lection, including connect-4, letter, and SensIT Vehicle acoustic. The detailed information of these
datasets are presented in Table 2.

We selected the number of hidden units using cross-validation to achieve their best results. Since the
dimension of parameters,Nd, is relatively high, we used only diagonal covariance matrix estimation
for CCAdL to significantly reduce the computational cost, i.e. estimating the variance only along
each dimension. The size of the subset was chosen as 500–1000 to obtain a reasonable variance
estimation. For each dataset, we chose the first 20% of the total number of passes over the entire
dataset as the burn-in period and collected the remaining samples for prediction.

Table 2: Datasets used in DRBM with corresponding parameter configurations.
Datasets training/test set classes features hidden units total number of parameters Nd

connect-4 54,046/13,511 3 126 20 2603
letter 10,500/5,000 26 16 100 4326

acoustic 78,823/19,705 3 50 20 1083

The error rates computed by various methods on the test set using the posterior mean against the
number of passes over the entire dataset were plotted in Figure 3. It can be observed that SGHMC
and SGNHT only work well with a large value of the effective friction A, which corresponds to a
strong random walk effect and thus slows down the convergence. On the contrary, CCAdL works

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html
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reliably (much better than the other two) in a wide range of A, and more importantly in the large
stepsize regime, which speeds up the convergence rate in relation to the computational work per-
formed. It can be easily seen that the performance of SGHMC heavily relies on using a small value
of h and a large value of A, which significantly limits its usefulness in practice.
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Figure 3: Comparisons of DRBM on datasets connect-4 (top row), letter (middle row), and acoustic (bottom
row) with various values of h and A indicated: test error rates of various methods using the posterior mean
against the number of passes over the entire dataset.

5 Conclusions and Future Work

In this article, we have proposed a novel CCAdL formulation that can effectively dissipate
parameter-dependent noise while maintaining a desired invariant distribution. CCAdL combines
ideas of SGHMC and SGNHT from the literature, but achieves significant improvements over each
of these methods in practice. The additional error introduced by covariance estimation is expected
to be small in a relative sense, i.e. substantially smaller than the error arising from the noisy gradi-
ent. Our findings have been verified in large-scale machine learning applications. In particular, we
have consistently observed that SGHMC relies on a small stepsize h and a large friction A, which
significantly reduces its usefulness in practice as discussed. The techniques presented in this article
could be of use in more general settings of large-scale Bayesian sampling and optimization, which
we leave for future work.

A naive nonsymmetric splitting method has been applied for CCAdL for fair comparison in this
article. However, we point out that optimal design of splitting methods in ergodic SDE systems has
been explored recently in the mathematics community [1, 13, 14]. Moreover, it has been shown
in [15] that a certain type of symmetric splitting method for the Ad-Langevin/SGNHT method with
a clean (full) gradient inherits the superconvergence property (i.e. fourth order convergence to the
invariant distribution for configurational quantities) recently demonstrated in the setting of Langevin
dynamics [12, 14]. We leave further exploration of this direction in the context of noisy gradients
for future work.
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