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ABSTRACT
We present a simultaneous analysis of galaxy cluster scaling relations between weak-lensing
mass and multiple cluster observables, across a wide range of wavelengths, that probe both
gas and stellar content. Our new hierarchical Bayesian model simultaneously considers the
selection variable alongside all other observables in order to explicitly model intrinsic property
covariance and account for selection effects. We apply this method to a sample of 41 clusters
at 0.15 < z < 0.30, with a well-defined selection criteria based on RASS X-ray luminosity,
and observations from Chandra/XMM, SZA, Planck, UKIRT, SDSS, and Subaru. These
clusters have well-constrained weak-lensing mass measurements based on Subaru/Suprime-
Cam observations, which serve as the reference masses in our model. We present 30 scaling
relation parameters for 10 properties. All relations probing the intracluster gas are slightly
shallower than self-similar predictions, in moderate tension with prior measurements, and
the stellar fraction decreases with mass. K-band luminosity has the lowest intrinsic scatter
with a 95th percentile of 0.16, while the lowest scatter gas probe is gas mass with a fractional
intrinsic scatter of 0.16 ± 0.03. We find no distinction between the core-excised X-ray or high-
resolution Sunyaev–Zel’dovich relations of clusters of different central entropy, but find with
modest significance that higher entropy clusters have higher stellar fractions than their lower
entropy counterparts. We also report posterior mass estimates from our likelihood model.

Key words: gravitational lensing: weak – galaxies: clusters: general – galaxies: clusters: intr-
acluster medium – galaxies: stellar content – cosmology: observations.
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1 IN T RO D U C T I O N

Galaxy clusters form at rare peaks in the Universe’s density
distribution, and as such are rich laboratories for both cosmology
and astrophysics (e.g. Allen, Evrard & Mantz 2011; Kravtsov &
Borgani 2012). For cosmological purposes, counts and clustering of
galaxy clusters are direct results of the late-time growth of structure,
and their measurement provides tests of cosmological parameters
complementary to those of the cosmic microwave background
(CMB) or supernovae (e.g. Weinberg et al. 2013). The spatial
abundance of galaxy clusters is a strong function of system mass,
so such tests require accurate calibration of the absolute mass scale
of haloes as well as the statistical relationship between mass and
observable properties. This requirement has motivated a significant
effort to find and calibrate observable quantities that correlate
with halo mass, so-called cluster scaling relations (e.g. Giodini
et al. 2013).

On the astrophysics side, galaxy clusters are a unique environ-
ment within which the majority of the baryon content is observable,
either in stellar material or in hot intracluster gas (e.g. Gonzalez
et al. 2013; Chiu et al. 2016). The properties of the stellar and gas
content of clusters is the result of a wide range of physical effects,
including cooling, star formation, feedback, and accretion-driven
processes such as shocks, tidal stripping, and turbulence. Thus, the
observable properties of gas and stellar material and their scaling
with respect to the total cluster mass can give direct insight into the
physics of these processes.

Ideally, we would constrain the scaling relation of an observable
with the ‘true’ mass of the cluster, however, in practise this is not
measurable. A popular method of mass measurement uses X-ray
properties together with the simplifying assumption of hydrostatic
equilibrium (e.g. Mathews 1978; Sarazin 1988; Vikhlinin et al.
2006; Martino et al. 2014). More recently, significant progress has
been made in using the weak-lensing signal to probe the mass of
galaxy clusters. When carefully accounting for systematic effects,
these masses are thought to be, on average, close to unbiased with
respect to the true mass (e.g. Becker & Kravtsov 2011; Oguri &
Hamana 2011; Bahé, McCarthy & King 2012), although Henson
et al. (2017) report a 10 per cent mean bias that declines at very
high masses. Crucially, these measurements do not rely on the
assumption of hydrostatic equilibrium.

An often overlooked requirement for calibrating robust scaling
relations is a clear understanding of the cluster sample selection
and inclusion of the selection in the subsequent statistical analysis.
As each observable has a non-zero scatter in its relation with mass,
selection based on anything but true mass can bias the derived
relations relative to those of the underlying halo population. The
latter are often characterized by cosmological simulations (e.g. Le
Brun et al. 2017). Cluster samples are commonly selected from
optical, X-ray, or Sunyaev–Zel’dovich (SZ) surveys (e.g. Böhringer
et al. 2004; Rozo et al. 2009; Bleem et al. 2015), and constraints
on population model parameters are ultimately limited by both
understanding of the selection function and sample size.

The 41 clusters in this work are particularly well studied over
a wide range of wavelengths (e.g. Marrone et al. 2012; Martino
et al. 2014; Mulroy et al. 2014; Haines et al. 2015; Okabe &
Smith 2016). Combined with a well-defined selection function, they
provide the first cluster sample with which to simultaneously con-
strain scaling relations for X-ray, SZ, and optical observables. We
report here the mean behaviours – slopes, intercepts, and intrinsic
scatter – as well as correlations with the LX,RASS selection variable

for 10 properties. The full covariance matrix is presented in a
companion paper (Farahi et al., in preparation).

In Section 2, we describe our cluster sample, its selection,
and the wide range of multiwavelength data that we use in this
paper. In Section 3, we derive the expected scaling relations for a
self-similar model, and in Section 4 we describe our hierarchical
Bayesian method to fit the scaling relations. We present our results
in Section 5, discuss these results and compare to the literature in
Section 6, and conclude in Section 7. We assume �M = 0.3, �� =
0.7, and H0 = 70 km s−1 Mpc−1. In this cosmology, at the average
cluster redshift of 〈z〉 = 0.22, 1 arcsec corresponds to a projected
physical scale of 3.55 kpc. We employ a spherical mass and radius
convention, M500 and r500, based on a mean enclosed density of
500 times the critical density evaluated in the above cosmology.

2 DATA

2.1 Sample

We study a sample of 41 X-ray luminous clusters from the ‘High-
LX’ sample of the Local Cluster Substructure Survey (LoCuSS1),
which was selected from the ROSAT All Sky Survey catalogues
(RASS; Ebeling et al. 1998, 2000; Böhringer et al. 2004). These
are all the clusters satisfying clearly defined selection criteria:
nH < 7 × 1020 cm−2; −25◦ < δ < +65◦; and an X-ray luminosity
threshold of LX,RASSE(z)−1 > 4.4 × 1044 erg s−1 for clusters be-
tween 0.15 < z ≤ 0.24, and LX,RASSE(z)−1 > 7.0 × 1044 erg s−1

for clusters between 0.24 < z < 0.30 (Table 1 and Fig. 1), where
E(z) ≡ H (z)/H0 =

√
�M(1 + z)3 + �� is the evolution of the

Hubble parameter. Therefore, the only physical selection variable
for this sample of galaxy clusters is the RASS X-ray luminosity,
LX,RASS.

The LX,RASS measurements cover the soft-band X-ray
[0.1−2.4] keV, and are taken from the ROSAT Brightest Cluster
Sample and its low-flux extension for objects in the Northern
hemisphere (BCS, Ebeling et al. 1998; eBCS, Ebeling et al. 2000),
and the ROSAT−ESO Flux Limited X-ray galaxy cluster survey for
objects mostly in the Southern hemisphere (δ < 2.5◦; REFLEX;
Böhringer et al. 2004). For the clusters in the overlap between sur-
veys (Abell0267: BCS, REFLEX and Abell2631: eBCS, REFLEX)
we average the luminosities and errors. RASS luminosities are not
core-excised due to the angular resolution of the instrument, and so
are sensitive to the presence, or absence, of a cool core. We explore
the effects of core treatment in Section 5.3.

We observed this sample of clusters at X-ray, optical, near-
infrared, and millimetre wavelengths over the period 2005∓2014,
building up a unique and comprehensive data set. The main facilities
that we used are Chandra, XMM–Newton, Suprime-Cam on the Sub-
aru telescope, Hectospec on the Multiple Mirror Telescope (MMT),
WFCAM on the United Kingdom Infrared Telescope (UKIRT),
and the Sunyaev–Zel’dovich Array (SZA). The total investment of
telescope time amounts to several million seconds. The following
wavelength-specific sections describe the measurements of galaxy
cluster weak-lensing masses and observable properties used in this
article, with citations providing more complete details of their
respective observations. The measurements are listed in Tables 1
and 2, and summarized in Table 3.

1http://www.sr.bham.ac.uk/locuss
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Table 1. Cluster sample.

Name RA Dec. Redshift LX,RASS MWL Mpost

α [J2000] δ [J2000] z 1044 erg s−1 1014 M	 1014 M	
Abell2697 0.7990 − 6.0860 0.2320 6.88+0.85

−0.85 6.61+1.20
−1.21 5.98+0.57

−0.53

Abell0068 9.2785 9.1566 0.2546 9.47+2.61
−2.61 6.82+1.11

−1.01 6.38+0.52
−0.50

Abell0115 14.0012 26.3424 0.1971 8.90+2.13
−2.13 5.39+1.62

−1.49 6.13+0.90
−0.82

Abell0141 16.3864 − 24.6466 0.2300 5.76+0.90
−0.90 4.56+0.92

−0.86 5.01+0.68
−0.59

Abell0209 22.9689 − 13.6112 0.2060 6.29+0.65
−0.65 12.34+1.64

−1.50 10.67+0.96
−0.86

Abell0267 28.1748 1.0072 0.2300 6.74+1.42
−1.42 5.60+0.91

−0.85 5.48+0.55
−0.52

Abell0291 30.4296 − 2.1966 0.1960 4.88+0.56
−0.56 4.46+1.02

−0.95 2.99+0.37
−0.33

Abell0521 73.5287 − 10.2235 0.2475 8.18+1.36
−1.36 5.39+0.99

−0.93 5.62+0.63
−0.56

Abell0586 113.0845 31.6335 0.1710 6.64+1.30
−1.30 7.21+1.60

−1.40 6.62+0.75
−0.68

Abell0611 120.2367 36.0566 0.2880 8.86+2.53
−2.53 9.11+1.67

−1.56 6.42+0.70
−0.63

Abell0697 130.7398 36.3666 0.2820 10.57+3.28
−3.28 7.71+1.54

−1.43 9.61+1.06
−1.02

ZwCl0857.9+2107 135.1536 20.8946 0.2347 6.79+1.76
−1.76 2.07+0.99

−1.08 1.40+0.34
−0.29

Abell0750 137.3024 10.9745 0.1630 6.59+1.40
−1.40 6.15+1.71

−1.35 6.19+1.10
−0.98

Abell0773 139.4726 51.7271 0.2170 8.10+1.35
−1.35 10.07+1.07

−1.00 9.69+0.66
−0.61

Abell0781 140.1075 30.4941 0.2984 11.29+2.82
−2.82 4.75+1.72

−1.89 7.07+1.45
−1.25

ZwCl0949.6+5207 148.2048 51.8849 0.2140 6.60+1.15
−1.15 4.97+1.13

−1.04 3.06+0.40
−0.36

Abell0907 149.5917 − 11.0640 0.1669 5.95+0.49
−0.49 11.52+1.95

−1.67 7.86+0.96
−0.84

Abell0963 154.2652 39.0471 0.2050 6.39+1.19
−1.19 6.96+1.11

−1.03 5.77+0.63
−0.55

ZwCl1021.0+0426 155.9152 4.1863 0.2906 17.26+2.93
−2.93 5.32+0.87

−0.82 5.57+0.64
−0.57

Abell1423 179.3223 33.6110 0.2130 6.19+1.34
−1.34 4.44+0.89

−0.81 3.97+0.47
−0.42

Abell1451 180.8199 − 21.5484 0.1992 7.63+1.63
−1.63 8.17+1.04

−0.96 7.87+0.75
−0.67

ZwCl1231.4+1007 188.5728 9.7662 0.2290 6.32+1.58
−1.58 4.61+1.44

−1.47 5.02+0.77
−0.72

Abell1682 196.7083 46.5593 0.2260 7.02+1.37
−1.37 8.52+1.06

−0.99 7.84+0.75
−0.68

Abell1689 197.8730 − 1.3410 0.1832 14.07+1.13
−1.13 12.57+1.53

−1.40 12.00+0.97
−0.90

Abell1763 203.8337 41.0012 0.2279 9.32+1.33
−1.33 15.80+2.16

−1.94 13.70+1.40
−1.23

Abell1835 210.2588 2.8786 0.2528 24.48+3.35
−3.35 10.97+1.56

−1.44 11.03+0.93
−0.84

Abell1914 216.4860 37.8165 0.1712 10.98+1.11
−1.11 7.83+1.35

−1.24 8.30+0.86
−0.81

ZwCl1454.8+2233 224.3131 22.3428 0.2578 8.41+2.10
−2.10 3.74+1.46

−1.44 2.98+0.46
−0.42

Abell2009 225.0813 21.3694 0.1530 5.37+0.99
−0.99 6.39+1.45

−1.25 4.73+0.54
−0.48

RXCJ1504.1-0248 226.0313 − 2.8047 0.2153 28.07+1.49
−1.49 6.54+1.48

−1.32 6.19+0.95
−0.79

Abell2111 234.9188 34.4243 0.2290 6.83+1.65
−1.65 5.09+1.39

−1.21 5.84+0.76
−0.67

Abell2204 248.1956 5.5758 0.1524 12.50+1.34
−1.34 9.92+1.82

−1.59 10.11+1.01
−0.94

Abell2219 250.0827 46.7114 0.2281 12.73+1.37
−1.37 8.65+1.34

−1.29 10.76+1.02
−0.93

RXJ1720.1+2638 260.0420 26.6257 0.1640 9.57+1.07
−1.07 4.94+1.38

−1.17 4.55+0.65
−0.58

Abell2261 260.6133 32.1326 0.2240 11.31+1.55
−1.55 10.75+1.30

−1.20 10.41+0.92
−0.83

RXCJ2102.1-2431 315.5411 − 24.5335 0.1880 5.07+0.55
−0.55 3.71+0.87

−0.79 3.03+0.41
−0.37

RXJ2129.6+0005 322.4165 0.0894 0.2350 11.66+2.92
−2.92 3.46+1.14

−1.22 4.02+0.57
−0.53

Abell2390 328.4034 17.6955 0.2329 13.43+3.14
−3.14 10.53+1.52

−1.41 10.36+1.08
−0.96

Abell2537 347.0926 − 2.1921 0.2966 10.17+1.45
−1.45 8.57+2.03

−1.82 7.77+0.99
−0.89

Abell2552 347.8887 3.6349 0.2998 9.94+2.84
−2.84 7.16+1.88

−1.69 7.36+0.88
−0.78

Abell2631 354.4155 0.2714 0.2779 8.07+2.11
−2.11 5.61+1.58

−1.78 5.66+0.72
−0.66

2.2 Gravitational weak-lensing masses

We use weak-lensing masses from Okabe & Smith (2016; as
tabulated in their table 2), who calculate masses by fitting an
NFW (Navarro, Frenk & White 1997) mass profile to the shear
profile obtained from Subaru/Suprime-Cam observations. We use
M500 values, defined as the mass within radius r500, the radius
within which the average density is 500 × ρcrit(z), the critical
density of the Universe. We adopt these weak-lensing determined

radii, r500,WL, as the radii within which we measure the other
aperture-integrated properties in this work (except YX and λ). The
systematic biases in the ensemble calibration of the weak-lensing
mass calculations are controlled at ∼4 per cent level, based on
careful selection of red background galaxies, extensive tests of
both faint galaxy shape measurement methods and mass profile
fitting methods (Okabe & Smith 2016). The measurement errors on
M500 include contributions from shape noise, photometric redshift

MNRAS 484, 60–80 (2019)
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Figure 1. The LX,RASSE(z)−1− redshift distribution of the LoCuSS
clusters. The large points show the 41 clusters passing the selection criteria
and therefore used in this work, while the circles show the LoCuSS ‘High-
LX’ clusters. The straight lines show the selection criteria, and the curves
show the completeness limits for (e)BCS (Ebeling et al. 1998, 2000) and
REFLEX (Böhringer et al. 2004).

uncertainties, and uncorrelated large-scale structure. In our analysis
below, we assume these weak-lensing masses to be unbiased in the
mean with respect to true halo mass.

2.3 X-ray observables

We use X-ray measurements of the intracluster medium (ICM) de-
scribed in Martino et al. (2014), where most clusters were observed
with the XMM–Newton EPIC or Chandra ACIS-I detectors, except
for Abell0611 and ZwCl0949.6 + 5207 that were observed with
the Chandra ACIS-S detectors. We note that emission measure
profiles were robust to X-ray telescope cross-calibration issues for
the selected energy band, as shown in Martino et al. (2014).

We consider bolometric [0.7−10] keV core-excised luminosity
LX,ce and the average gas temperature TX,ce within an annulus of
[0.15−1]r500,WL to avoid the measurements being contaminated by
potentially stochastic cool-core emission. The error bars in LX,ce

include marginalization over TX. The gas mass Mgas is measured
within r500,WL. We also measure the integrated pressure proxy YX

(Kravtsov, Vikhlinin & Nagai 2006) for all but the two clusters
with ACIS-S observations. Defined as the product of gas mass and
average temperature, it is the X-ray analogue of the SZ parameter
described in Section 2.4.

Both the luminosity and the YX parameter derive from spherically
symmetric templates of the X-ray emission measure per unit
volume, [npne](r), which were projected along the line of sight,
radially averaged, and fitted to radial profiles of the soft [0.5−2] keV
X-ray surface brightness. The bolometric estimate of LX,ce derives
from an extrapolation of the soft surface brightness assuming the
spectral energy distribution of the ICM to correspond to a redshifted
isothermal plasma with average temperature, T.

We estimate the YX parameter following the established methods
based on its original definition (Kravtsov et al. 2006) to ensure
comparability with the literature. For each cluster, we iterate about
an existing YX−M500 scaling relation, yielding a characteristic
radius r500, different from the weak-lensing r500,WL radius within
which the other X-ray observables are measured. For clusters

observed with XMM–Newton, we use the relation of Arnaud et al.
(2010), and for those observed with Chandra we use the relation
of Vikhlinin et al. (2009). Both relations are calibrated using
hydrostatic mass estimates in a nearby cluster sample. The gas
masses were computed from spherical integrals of the gas density
profiles np(r), and the gas temperatures correspond to spectroscopic
measurements within projected [0.15−0.75]r500 and [0.15−1]r500,
following the prescription of the relevant scaling relation study. We
note that any bias in the assumed scaling relations would be a source
of error for our YX measurements.

2.4 Millimetre observables – Sunyaev–Zel’dovich effect

The SZ effect is caused by the inverse Compton scattering of CMB
photons by hot electrons, in this case in the ICM. These interactions
boost the photon energy by ∼kBT/mec2, leading to a characteristic
distortion of the CMB spectrum in the direction of galaxy clusters.
The CMB intensity is decreased below ∼220 GHz and increased
above, in proportion to the ‘Comptonization’ parameter, Y, which
is an integral of the product of the electron density and temperature
through the cluster. This integral of thermal pressure in the ICM,
which is roughly in hydrostatic equilibrium with the gravitational
potential well, should therefore be closely related to cluster mass
(Carlstrom, Holder & Reese 2002; Arnaud et al. 2010; Marrone
et al. 2012).

2.4.1 Sunyaev–Zel’dovich array

One of the SZ measurement data sets employed in this paper is
based on observations with the SZA, an interferometer comprising
eight 3.5-m antennas observing at 27−35 GHz. During the period
of these observations, 2006∓2014, the SZA initially observed from
the floor of the Owens Valley, near Big Pine, CA, and later was
relocated to the nearby Cedar Flat site of the Combined Array
for Research in Millimeter-wave Astronomy (CARMA). For all
observations presented here, the SZA antennas observed as an 8-
element array, rather than in concert with other CARMA antennas
as in, e.g. Plagge et al. (2013). The SZA was configured with six
antennas in a compact configuration to maximize sensitivity to the
large-scale cluster signal, with the remaining two antennas placed
as ‘outriggers’ to discriminate the emission from point-like radio
sources from the SZ signature of clusters. The resolution of the
compact array was approximately 2 arcmin, while baselines to the
outrigger antennas yield a resolution closer to 20 arcsec.

Observations with the SZA consist of roughly 6-h observing
segments in which the antennas alternated between point-like cali-
brator sources and the cluster targets on ∼20-min cycles. The data
were reduced using a MATLAB pipeline described in Muchovej
et al. (2007) to flag for weather and technical issues and to calibrate
the data. Absolute calibration was established from observations of
Mars and sometimes Jupiter.

A Markov Chain Monte Carlo (MCMC) code was used to
simultaneously fit galaxy cluster and point source models to the data.
Point sources were identified from peaks in the flux density in long-
baseline observations. Many of these sources were coincident with
1.4-GHz sources identified in the NRAO VLA Sky Survey (NVSS;
Condon et al. 1998) and/or the VLA Faint Images of the Radio Sky at
Twenty Centimeters (FIRST; Becker, White & Helfand 1995), and
any sources in these catalogues that lie within 2 arcmin of the cluster
centre were automatically included as model components even if
they were not obviously detected to prevent them from biasing
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Table 2. Cluster observables.

Name LX,ce kBTX,ce Mgas YX YSZAD2
A YPlD

2
A LK,BCG LK,tot λ

1044 erg s−1 keV 1014 M	 1014 M	 keV 10−5 Mpc2 10−5 Mpc2 1012 L	 1012 L	
Abell2697 11.68+0.44

−0.44 6.99+0.48
−0.38 0.90+0.07

−0.07 5.42+0.40
−0.40 7.61+0.78

−0.80 9.18+0.48
−0.48 – – 91.44+4.37

−4.37

Abell0068 9.91+0.59
−0.59 7.66+0.77

−0.62 0.80+0.04
−0.04 5.59+2.24

−2.24 9.38+1.21
−1.16 10.34+0.59

−0.59 1.01+0.01
−0.01 12.46+1.92

−2.26 93.04+4.60
−4.60

Abell0115 10.68+0.40
−0.40 5.93+0.39

−0.32 0.87+0.15
−0.15 5.88+0.57

−0.57 – 12.44+0.48
−0.48 0.74+0.00

−0.00 14.77+1.72
−2.13 –

Abell0141 5.10+0.88
−0.88 4.78+1.34

−0.83 0.60+0.05
−0.05 2.95+0.95

−0.95 – 8.42+0.38
−0.38 0.64+0.00

−0.00 15.02+1.22
−1.48 –

Abell0209 13.59+1.02
−1.02 6.39+1.05

−0.77 1.44+0.08
−0.08 8.80+1.68

−1.68 10.79+0.96
−0.96 19.33+0.53

−0.53 0.90+0.00
−0.00 20.51+2.01

−1.98 –

Abell0267 6.34+2.88
−2.88 8.03+2.83

−1.81 0.70+0.05
−0.05 7.21+2.91

−2.91 6.47+0.61
−0.62 6.47+0.61

−0.61 1.44+0.01
−0.01 12.71+1.76

−2.79 96.38+4.03
−4.03

Abell0291 3.37+0.08
−0.08 4.03+0.32

−0.29 0.47+0.04
−0.04 1.44+0.09

−0.09 2.57+0.57
−0.49 3.04+0.47

−0.47 0.55+0.00
−0.00 7.79+0.98

−0.96 53.86+2.75
−2.75

Abell0521 15.33+1.09
−1.09 6.72+0.33

−0.29 1.08+0.09
−0.09 7.27+0.39

−0.39 5.34+0.60
−0.62 12.72+0.58

−0.58 0.95+0.01
−0.01 14.17+2.14

−2.69 –

Abell0586 6.20+0.54
−0.54 5.56+1.10

−0.79 0.73+0.06
−0.06 3.63+0.69

−0.69 10.29+1.34
−1.27 5.30+0.44

−0.44 0.81+0.00
−0.00 18.30+1.96

−2.36 105.96+4.38
−4.38

Abell0611 12.00+0.94
−0.94 11.96+2.50

−2.40 0.69+0.05
−0.05 – 8.47+0.78

−0.84 11.67+0.67
−0.67 1.33+0.01

−0.01 13.61+2.66
−2.82 100.90+4.64

−4.64

Abell0697 22.55+2.29
−2.29 11.06+2.16

−1.83 1.22+0.10
−0.10 16.21+3.55

−3.55 16.35+1.51
−1.50 26.41+0.62

−0.62 1.50+0.01
−0.01 13.15+2.61

−2.62 147.28+5.13
−5.13

ZwCl0857.9 + 2107 4.50+0.19
−0.19 3.97+0.15

−0.46 0.34+0.07
−0.07 1.40+0.11

−0.11 – 0.66+0.44
−0.44 0.44+0.01

−0.01 2.79+0.92
−1.09 26.85+2.58

−2.58

Abell0750 2.89+0.20
−0.20 3.95+0.49

−0.39 0.55+0.06
−0.06 2.08+0.30

−0.30 5.27+0.77
−0.76 7.85+0.38

−0.38 0.75+0.00
−0.00 19.73+1.92

−2.26 139.58+4.40
−4.40

Abell0773 11.11+1.14
−1.14 7.50+1.58

−1.12 1.10+0.05
−0.05 7.46+1.39

−1.39 13.08+0.92
−0.91 12.33+0.46

−0.46 0.82+0.00
−0.00 22.02+2.04

−1.79 141.43+4.58
−4.58

Abell0781 4.16+1.92
−1.92 5.92+2.40

−1.36 0.74+0.12
−0.12 4.45+1.69

−1.69 – 9.58+0.71
−0.71 0.83+0.01

−0.01 16.58+3.43
−4.16 180.62+6.08

−6.08

ZwCl0949.6 + 5207 4.52+0.99
−0.99 7.31+0.94

−0.89 0.40+0.04
−0.04 – 3.22+0.69

−0.65 2.71+0.40
−0.40 0.80+0.00

−0.00 7.91+1.47
−1.51 44.37+3.38

−3.38

Abell0907 5.91+0.22
−0.22 5.66+0.51

−0.41 0.93+0.06
−0.06 4.01+0.33

−0.33 – 9.26+0.41
−0.41 0.60+0.00

−0.00 13.83+1.56
−1.71 –

Abell0963 7.89+0.29
−0.29 6.53+0.62

−0.50 0.80+0.05
−0.05 4.13+0.29

−0.29 – 8.22+0.46
−0.46 1.29+0.00

−0.00 14.84+1.66
−1.78 65.01+3.66

−3.66

ZwCl1021.0 + 0426 19.66+1.47
−1.47 9.04+1.51

−1.13 0.95+0.05
−0.05 10.80+2.50

−2.50 10.42+0.83
−0.82 9.81+0.60

−0.60 0.89+0.01
−0.01 9.27+1.87

−1.82 83.11+4.12
−4.12

Abell1423 7.35+0.68
−0.68 8.20+1.54

−1.16 0.62+0.06
−0.06 6.42+1.46

−1.46 3.15+0.46
−0.47 7.61+0.40

−0.40 1.02+0.01
−0.01 9.90+1.22

−1.47 59.00+3.77
−3.77

Abell1451 6.13+1.31
−1.31 8.87+1.45

−1.10 1.02+0.05
−0.05 7.57+1.07

−1.07 6.02+0.98
−1.01 11.52+0.49

−0.49 0.55+0.00
−0.00 18.77+2.11

−1.92 –

ZwCl1231.4 + 1007 7.87+0.66
−0.66 6.56+1.20

−0.89 0.69+0.11
−0.11 5.67+1.25

−1.25 – 8.62+0.42
−0.42 0.99+0.00

−0.00 9.43+2.83
−1.82 93.13+4.41

−4.41

Abell1682 4.99+2.00
−2.00 6.46+2.98

−1.49 0.84+0.04
−0.04 5.18+2.36

−2.36 – 8.71+0.41
−0.41 1.04+0.00

−0.00 19.56+1.83
−2.15 118.56+4.51

−4.51

Abell1689 15.81+0.55
−0.55 9.71+0.64

−0.51 1.31+0.05
−0.05 12.81+0.95

−0.95 27.55+2.27
−2.21 17.72+0.47

−0.47 0.74+0.00
−0.00 23.07+2.31

−2.51 163.62+4.13
−4.13

Abell1763 15.20+1.56
−1.56 7.67+1.64

−1.32 1.61+0.09
−0.09 11.08+2.56

−2.56 – 20.23+0.43
−0.43 1.17+0.01

−0.01 21.86+3.70
−3.18 172.16+5.30

−5.30

Abell1835 22.22+0.79
−0.79 10.16+0.68

−0.55 1.43+0.07
−0.07 13.84+1.03

−1.03 22.26+1.60
−1.67 19.51+0.71

−0.71 1.29+0.00
−0.00 21.42+3.15

−2.75 134.55+4.89
−4.89

Abell1914 17.08+1.36
−1.36 10.06+1.47

−1.22 1.11+0.07
−0.07 12.54+2.17

−2.17 21.10+2.71
−2.48 12.06+0.30

−0.30 0.96+0.00
−0.00 13.37+1.43

−1.71 110.67+3.61
−3.61

ZwCl1454.8 + 2233 6.66+0.27
−0.27 4.74+0.42

−0.34 0.54+0.08
−0.08 3.10+0.36

−0.36 2.39+0.49
−0.52 6.21+0.60

−0.60 1.25+0.01
−0.01 6.64+1.71

−2.15 48.09+3.23
−3.23

Abell2009 6.05+0.63
−0.63 7.44+1.56

−1.16 0.69+0.05
−0.05 4.72+1.03

−1.03 5.02+0.78
−0.80 4.44+0.38

−0.38 0.74+0.00
−0.00 9.51+1.78

−1.91 73.70+3.21
−3.21

RXCJ1504.1-0248 16.65+1.86
−1.86 9.55+2.23

−1.52 1.06+0.08
−0.08 11.26+3.49

−3.49 12.17+1.26
−1.22 11.35+0.65

−0.65 0.97+0.00
−0.00 10.31+1.40

−1.56 61.06+3.79
−3.79

Abell2111 5.93+2.76
−2.76 7.21+2.28

−1.52 0.68+0.08
−0.08 5.49+2.12

−2.12 5.58+0.76
−0.71 8.98+0.52

−0.52 0.64+0.00
−0.00 15.31+1.53

−1.80 138.66+4.96
−4.96

Abell2204 15.84+0.66
−0.66 13.38+1.15

−0.76 1.23+0.08
−0.08 11.79+1.02

−1.02 17.71+1.77
−1.72 17.15+0.39

−0.39 0.65+0.00
−0.00 19.69+1.50

−1.27 –

Abell2219 32.91+2.60
−2.60 10.13+0.83

−0.70 1.68+0.11
−0.11 17.90+1.67

−1.67 18.42+1.37
−1.37 30.27+0.46

−0.46 1.04+0.01
−0.01 21.72+2.07

−1.83 169.10+5.10
−5.10

RXJ1720.1 + 2638 9.63+0.57
−0.57 7.14+0.91

−0.73 0.71+0.07
−0.07 6.60+1.00

−1.00 – 8.60+0.31
−0.31 1.01+0.00

−0.00 9.77+2.11
−1.36 63.89+2.97

−2.97

Abell2261 13.04+1.12
−1.12 7.50+1.30

−1.09 1.23+0.06
−0.06 8.12+1.19

−1.19 12.36+1.52
−1.60 13.56+0.48

−0.48 1.78+0.01
−0.01 26.60+2.38

−3.64 142.94+4.89
−4.89

RXCJ2102.1-2431 4.62+0.12
−0.12 5.32+0.46

−0.37 0.46+0.05
−0.05 2.29+0.18

−0.18 – 4.00+0.36
−0.36 1.04+0.01

−0.01 7.77+0.87
−0.87 –

RXJ2129.6 + 0005 10.65+0.65
−0.65 5.94+0.75

−0.61 0.67+0.10
−0.10 5.47+0.95

−0.95 5.73+0.69
−0.89 5.76+0.48

−0.48 1.28+0.01
−0.01 7.53+1.60

−1.81 71.30+3.97
−3.97

Abell2390 25.43+1.16
−1.16 10.79+0.95

−0.84 1.66+0.09
−0.09 16.91+1.57

−1.57 16.36+3.15
−3.07 24.07+0.52

−0.52 0.75+0.00
−0.00 17.44+2.02

−1.98 121.10+4.89
−4.89

Abell2537 6.63+0.72
−0.72 9.93+3.73

−2.44 0.83+0.08
−0.08 6.30+2.30

−2.30 8.00+0.88
−0.86 9.77+0.63

−0.63 1.02+0.01
−0.01 19.48+2.65

−2.80 146.22+5.08
−5.08

Abell2552 13.46+1.77
−1.77 9.69+2.75

−1.94 1.00+0.10
−0.10 9.22+2.89

−2.89 9.09+1.19
−1.19 11.66+0.63

−0.63 0.63+0.00
−0.00 19.51+4.15

−4.55 148.78+6.27
−6.27

Abell2631 14.41+1.02
−1.02 6.91+1.18

−0.87 0.97+0.12
−0.12 6.69+1.21

−1.21 5.22+0.70
−0.83 11.95+0.57

−0.57 0.85+0.01
−0.01 13.75+2.31

−2.58 114.80+4.79
−4.79

the SZ signal. The SZ signal for each cluster was modelled as a
generalized NFW pressure profile (Nagai, Kravtsov & Vikhlinin
2007) using the parameters determined by Planck Collaboration
V (2013) from a joint fit to SZ and X-ray profiles of 62 massive
clusters. These parameters include a concentration parameter, c500 =
1.81, the ratio of r500 to the scale radius (rs) of the pressure profile.
The weak-lensing values of r500 and their uncertainties were used
to define a Gaussian prior for the value of the scale radius, rs =
r500/c500.

We are able to measure YSZA for 30 of the 41 clusters, finding
that the fields for nine are contaminated and that two clusters
(RXCJ2102.1-2431 and ZwCl0857.9 + 2107) are non-detections.
The two non-detections are near the low end of the sample
weak-lensing mass distribution. The contaminated clusters contain
30 GHz sources that are not point-like at the 20 arcsec resolution
of the SZA long baselines. In such cases, the interferometric
measurement cannot cleanly distinguish between emission from
spatially extended radio sources and the spatially extended SZ
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Table 3. Elements of the galaxy cluster observable vector.

Element, Sa Unit Description

LX,RASSE(z)−1 1044 erg s−1 Selection variable: RASS soft-band X-ray luminosity
LX,ceE(z)−1 1044 erg s−1 Core-excised bolometric X-ray luminosity within [0.15–1]r500,WL

TX,ce keV Core-excised ICM temperature within [0.15–1]r500,WL

MgasE(z) 1014 M	 ICM gas mass within r500,WL

YXE(z) 1014 M	 keV Spherical ICM X-ray thermal energy
YSZAE(z) 10−5 Mpc2 Spherical ICM SZ thermal energy within r500,WL

YPlE(z) 10−5 Mpc2 Cylindrical ICM SZ thermal energy within r500,WL

LK,BCGE(z) 1012 L	 BCG K-band luminosity
LK,totE(z) 1012 L	 Total K-band luminosity within r500,WL

λE(z) none redMaPPer richness (count of galaxies)
MWLE(z) 1014 M	 Weak-lensing M500 mass

effect signal, which appears as ‘negative’ emission. The degeneracy
between extended radio source emission and cluster SZ signal
makes the SZ measurements unreliable.

2.4.2 Planck

We also calculate the Y parameter from the six Planck High
Frequency maps (Planck Collaboration VIII 2016a) using a template
fitting program similar to the method described in section 2.3 of
Bourdin et al. (2017). The maps are high-pass filtered to remove
large-scale (1 deg) signals from the cosmic infrared background, SZ
background, and instrumental offsets. On cluster scales, we subtract
a spatially and spectrally variable model of the CMB and galactic
thermal dust anisotropies.

An Arnaud et al. (2010) pressure profile template was fit to
the residual flux within 5r500,WL using χ2 minimization, from
which we calculate the cylindrical signal within r500,WL. While we
use the brightest cluster galaxy (BCG) coordinates as the cluster
centres, the Planck team identify clusters as peaks in the signal
map with a signal-to-noise above 4, and as such identify 38 of
the 41 clusters in our sample, while we measure all 41. For the
38, our flux measurements are on average 10 per cent higher than
those measured by the Matched Multi-Filter 3 algorithm (Planck
Collaboration XXVII 2016b), which we attribute to the offsets of
1−2 arcmin in the cluster positions.

2.4.3 Difference between Y measurements

The SZA and Planck estimates of cluster Y parameters can be
expected to be tightly correlated, but for several reasons they
should not be perfectly so. Of principal importance in explaining
differences in Y is the difference in the angular scales probed by
the two measurements. The SZA interferometric observations are
absolutely insensitive to scales larger than 2−3 arcmin, set by the
closest antenna pairs in the array, while the Planck measurements
are unable to capture details finer than ∼5−10 arcmin owing to the
intrinsic resolution of the Planck High Frequency maps.

The Planck data necessarily infer the SZ signal within r500,WL

from a resolution element that is several times larger by assuming
that a fixed pressure profile applies to all clusters and explains the
observed, profile-integrated SZ signal detected in its large beam.
The SZA interferometer, on the other hand, measures a range of
spatial frequencies (the Fourier transform of the signal) with the
greatest sensitivity to scales finer than r500,WL, and must use an
assumed profile to fill in the missing spatial frequencies and estimate

the signal that would be detected in an aperture of this larger size.
Even when assuming the same profile, the two methods are sensitive
to different deviations from the profile, from large scales for Planck
and fine scales for SZA, and are unlikely to agree perfectly. The
SZA measurements suggest some significant deviations from the
assumed inner shape of the profile for many clusters, manifesting as
very different core radii for the pressure profile, but for consistency
with the Planck data we place a prior probability on the core radius
based on the weak-lensing r500,WL that reduces these differences. An
additional difference, though one that would be a constant factor
of ∼1.2 (Arnaud et al. 2010) between Planck and SZA for all
clusters if they all had the same pressure profile, is the use of a
cylindrical integration for the Planck Y and a spherical one for
SZA. These integration choices are made to be consistent with the
literature and to better accommodate the systematics of the two
measurements.

2.5 Optical and infrared observables

We also use optical and near-infrared observations of the member
galaxies, calculating the K-band luminosity of the BCG, the total
cluster K-band luminosity, and the optical richness.

2.5.1 Near-infrared luminosity

To investigate the stellar content of the clusters, we use near-infrared
data from WFCAM on UKIRT, where we observed in J and K band
to depths of K ∼ 19 and J ∼ 21 (Haines et al. 2009). We lack these
data for Abell2697. From these data, we calculate both the K-band
luminosity of the BCG, LK,BCG, and the total K-band luminosity of
the cluster members, LK,tot.

We analyse the data similar to Mulroy et al. (2014). We convert
from apparent K-band magnitude to rest-frame luminosity using a
k-correction consistent with Mannucci et al. (2001) and the absolute
K-band Vega magnitude of the sun, MK, 	 = 3.39 (Johnson 1966).
For the total luminosity, we select cluster members as galaxies lying
along a ridge line in (J − K)/K space. We select those within r500,WL

of the cluster centre down to a magnitude of K ≤ K∗(z) + 2.5,
basing K∗(z) on Lin et al. (2006) and choosing this limit because 2 <

K − K∗ < 2.5 is the faintest 0.5-mag width bin for which the average
K-band magnitude error is <0.1 for all clusters. To account for the
background, we perform this same calculation on a control field (the
UKIDSS-DXS Lockman Hole and XMM−LSS fields; Lawrence
et al. 2007) within 40 apertures of radius r500,WL, subtracting
the average from LK,tot and adding the standard deviation to the
measurement error. The other component of the measurement error
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66 S. L. Mulroy et al.

is calculated by propagating the error on the weak-lensing radius.
Note that the uncertainties in Mulroy et al. (2014) include a term
calculated using bootstrap resampling of the members that we do
not include here because we are interested in the individual cluster
measurement error and not the statistical properties of an ensemble
of galaxies.

We note that the consistency found in Mulroy et al. (2014) be-
tween colour−magnitude selected luminosity and spectroscopically
confirmed luminosity indicates the accuracy of colour−magnitude
member selection in (J − K)/K space, due to the sensitivity of near-
infrared data to old stars and its relative insensitivity to recent star
formation.

2.5.2 Richness

We calculate the richness, λ, defined in Rozo et al. (2009) and
improved in Rykoff et al. (2012), for the 33 cluster overlap between
our sample and the Sloan Digital Sky Survey (SDSS, Gunn et al.
1998; Doi et al. 2010; Alam et al. 2015). This matched filter richness
estimator is defined as the sum of the membership probabilities
of all the galaxies, and was constructed as a low scatter optical
mass proxy through extensive tests on the maxBCG cluster catalog
(Koester et al. 2007).

For all potential cluster members, their membership probability
is calculated considering their clustercentric radius, g − r colour
and i-band magnitude. The richness estimator is the sum of these
probabilities integrated down to M∗ + 1.75, while the measurement
error is derived from the variance. The corresponding radius is not
equivalent to an overdensity radius such as r500, but rather scales
deterministically as λ0.2. The mean radius for our sample is 1.4 Mpc.
While the scale misalignment with respect to the other measures
may add some additional variance, we retain the algorithm’s choice
so as to preserve consistency with other redMaPPer applications
(Rykoff et al. 2012, 2016). We find good agreement between our
values and redMaPPer values: 〈λLoCuSS/λredMaPPer〉 = 0.99 ± 0.26.

From a purely statistical point of view, λ is simply another label
tagged to each cluster. We leave it to future work to identify physi-
cally meaningful, minimum variance estimators of these labels.

3 SELF-SIMILAR SCALING

It is useful to review what might be expected for the outcome
of our scaling relation constraints, and in this section we review
predictions from self-similarity (Kaiser 1986). The dominant force
on the scale of galaxy clusters is gravity, which is scale invariant.
This means that galaxy clusters, under the influence of gravity and
shock heating only, are expected to be simply scaled versions of
each other, with their properties determined only by their mass and
redshift. Redshift determines the critical density

ρc(z) = E2(z)ρc,0, (1)

where the subscript 0 refers to the present epoch.
It is convention to define halo mass as that, centred on a

local potential minimum, contained within a sphere of radius r


encompassing an overdensity 
 relative to the critical density, thus

M
 = 4

3
πr3



ρc(z) ∝ E2(z)r3

. (2)

Matter in self-similar, hydrostatic galaxy clusters satisfies the
virial theorem between gravitational potential energy U and kinetic
energy K (〈U〉 = −2〈K〉), leading to the expression for the circular
velocity of the halo: v2

circ = M
/r
. Combined with equation (2),

we see that the combination of mass and redshift sets the strength
of the local gravitational potential:

v3
circ ∝ M
E(z). (3)

This relation, which been precisely calibrated by N-body simula-
tions (Evrard et al. 2008), motivates our use of the effective potential
well depth, M
E(z), as the independent degree of freedom in the
scaling relations we fit below. Note that we use the value 
 = 500
in this work because this is the radius that can be probed without
extrapolation by all our measurements.

Applying the virial theorem to the ICM, the total kinetic energy
can be written in terms of the average kinetic energy of the ICM
particles, i.e. the cluster X-ray temperature TX, leading to

TX ∝ [M
E(z)]2/3 . (4)

The X-ray emission from the ICM is dominated by thermal
bremsstrahlung emission, for which the resulting luminosity scales
as LX ∝ ρ2

gasr
3�(TX), where there are two factors of the gas

density ρgas because the radiation is produced by a two-body
interaction, and �(TX) is the cooling function. In the soft-band
range ∼[0.1−2.4] keV, the integral of the cooling function is nearly
independent of TX, while across the full energy range used for
bolometric X-ray luminosity it scales with T

1/2
X . This leads to

LX,soft

E(z)
∝ M
E(z),

LX,bol

E(z)
∝ [M
E(z)]4/3 . (5)

As probes of the same thermal energy, YX and YSZ have the same
self-similar scaling, which can be derived from the product of Mgas

and TX:

YE(z) ∝ [M
E(z)]5/3 , (6)

under the simple assumption of a constant gas fraction, fgas. We make
the similar assumption of a constant stellar fraction, f�, giving

Mgas = fgasM
 ∝ M
, LK ∝ M� = f�M
 ∝ M
, (7)

under the assumption that LK is a good indicator of the total stellar
mass.

Finally, if we assume each cluster has a galaxy population drawn
from a single luminosity function with some effective mean stellar
mass, m�,gal, we can also derive a relation between richness and
mass:

λ = M�

m�,gal
∝ M
. (8)

4 LI NEAR R EGRESSI ON

We assume that scaling relations between observable properties and
mass are described by power-law relations with constant slopes.2

We linearize the problem using the natural log of the values and
perform a Bayesian analysis to infer scaling parameters. To do
so correctly, we have to take into account measurement errors,
the halo mass function, and the selection criteria. Most commonly
used regression methods (e.g. BCES, Akritas & Bershady 1996;
and FITEXY, Press et al. 1992; Tremaine et al. 2002) can handle
measurement errors, while methods from Kelly (2007) and Mantz
(2016a) also take into account the independent variable distribution
by modelling it as a Gaussian mixture model inferred from the data.

2While simulations suggest mass-dependent slope behaviour (Farahi et al.
2018), a constant slope is a good approximation for the narrow mass range
probed by our sample.
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However, the selection function can still introduce significant
biases, either directly when the selection variable is considered
directly in the regression, or indirectly due to covariance between
this selection variable and the observable of interest. We quantify
this bias for the scaling relations presented in this paper by
performing linear regression without correcting for selection effects.
Results are presented in Table A1 of Appendix A. It is possible, in
principle, to use the methods of Kelly (2007) and Mantz (2016a)
to correct for selection effects when the selection variable is on
the dependent axis, using upper limits and generating ‘censored’
or missing data below the selection limit in an iterative process
(Gelman et al. 2003). However, it is more complicated to correct
for the bias caused by covariance with the selection variable, i.e.
when considering a dependent variable that is not the selection
variable, and this approach can be computationally challenging for
a larger data set.

We therefore develop a hierarchical Bayesian model similar to the
methods of Kelly (2007) and Mantz (2016a), which simultaneously
considers the selection variable alongside all other observables
in order to explicitly model the property covariance, i.e. the
intrinsic covariance between two observables at fixed halo mass,
and correctly propagate selection effects.

4.1 Hierarchical Bayesian model

We define log-space variables, μ ≡ ln (M) and s ≡ ln (S), where
M is the total halo mass and S the vector of observables given in
Table 3. In practice, we normalize mass using the median weak-
lensing mass of the sample. At a fixed redshift, the joint probability
that there exists a cluster with given observables and mass can be
written as the product

P (s, μ | θ , ψ) = P (s | μ, θ )P (μ | ψ), (9)

where θ is the set of parameters that characterize the scaling relation
of observable properties with mass, and ψ characterizes the distribu-
tion of the independent variable, in this case the cosmological mass
function of haloes. For the analysis presented here, we simplify the
latter term by assuming a fixed cosmology and use the second-order
mass function model of Evrard et al. (2014) at redshift 0.22. Since
the mass function shape has only a modest effect on the posterior
scaling parameter constraints, we do not attempt to marginalize over
cosmology and so drop ψ from the equations below.

We note that the mass discussed above is the true unobserved halo
mass, which we marginalize over. The small sample size and limited
set of observables force us to make the simplifying assumption that
weak-lensing mass is an unbiased measure of true halo mass, albeit
with non-zero scatter of ∼20 per cent (e.g. Becker & Kravtsov 2011;
Oguri & Hamana 2011; Bahé et al. 2012). We retain weak-lensing
mass, MWL, in the vector of observables s, and treat it in a special
way to avoid severe parameter degeneracies of the type discussed
in Penna-Lima et al. (2017).

We model P (s | μ, θ ), the first term in the joint probability
distribution in equation (9), as a log-normal distribution:

P (s | μ, θ ) ∝ det(�)−
1
2 exp

{
−1

2
(s − 〈s〉)T �−1(s − 〈s〉)

}
, (10)

where 〈s〉 = αμ + π and the model parameters, θ = {π, α, �},
include the intercepts π and slopes α of the log-mean behaviour,
as well as the property covariance matrix � of Gaussian deviations
about the log-mean. Each diagonal element of the covariance matrix
specifies the variance of a property, while the off-diagonal elements
are the property covariance, all at fixed true halo mass. Except for

Table 4. Prior distributions of the scaling relation parameters for any
property, a, other than weak-lensing mass. The same priors are used for
all properties and pairwise combinations, a, b.

Parameter Description Prior

πa Intercept N(0, 100)
αa Slope N(0, 100)
σa | μ Scatter U(0, 5)
ra,b | μ Correlation coefficient U(−1, 1)

the parameters connected to weak-lensing mass, which are fixed
as explained below, the remainder are unknown parameters to be
constrained. Parameter priors are uninformative, as specified in
Table 4.

We impose a strict prior on the scaling of MWL that assumes unit
slope and intercept with true mass, and a fixed log-normal scatter
of 0.2. We tested values for the scatter of 0.1 and 0.3, finding that
our results and inferred parameters are insensitive to this choice.
We assume zero intrinsic correlation between weak-lensing mass
and all other observable properties (rMWL,Sa

= 0 for all properties,
Sa). We include the correlation of weak-lensing mass measurement
uncertainty with the other observables defined within the weak-
lensing radius (so-called ‘aperture bias’, e.g. Okabe et al. 2010).

In the likelihood below, true masses of all clusters are treated
as extra degrees of freedom, or hyperparameters, with posteriors
shaped primarily by the input weak-lensing mass measurements and
secondarily by collective distance from the mean property scaling
relations. Because of the relatively narrow mass range probed by the
LoCuSS sample, the assumed form of the mass function is not very
important. As our focus is on scaling relation model parameters, the
likelihood does not contain explicit terms relating to the size of the
selected sample. In other words, the sample volume is not a factor
in our model.

In practice, we do not measure the true values of s; our measure-
ments, so, include observational uncertainties. We again assume a
log-normal form for the measurement errors:

P (so|s) ∝ det(�err)
− 1

2 exp

{
−1

2
(so − s)T �−1

err (so − s)

}
, (11)

where �err is the measurement error covariance. This matrix
includes both diagonal elements given by the square of the fractional
errors in each cluster’s measured properties, and off-diagonal
‘aperture bias’ terms for Mgas, LK,tot, and YSZA properties measured
within the characteristic radius inferred from weak-lensing mass.
The aperture bias contributions are the fraction of an observable’s
uncertainty that is due to the radial error, calculated by remeasuring
the observable within r500,WL ± δr to propagate the radial uncer-
tainty, where δr is ∼50–130 kpc, or ∼4−15 per cent of r500,WL.
The propagated aperture uncertainties are added in quadrature with
the observable’s other statistical uncertainty. While most other
observables are measured within the weak-lensing radius, they are
largely unaffected by small radial changes and so do not require
these off-diagonal terms.

The probability of measuring the observable properties, so,i, of a
specific cluster, i, is found by marginalizing over the true quantities,
s, resulting in

P (so,i |μi, θ ) ∝ det(�tot,i)
− 1

2 (12)

× exp

{
−1

2
(so,i − 〈so〉i)T �−1

tot,i(so,i − 〈so〉i)
}

,
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where 〈so〉i = αμi + π, with μi the unobserved true halo mass of
the ith cluster, and �tot,i = � + �err,i. We make a similar log-
normal assumption about the weak-lensing mass measurements –
which is an element in so – and include the measurement error
and its aperture-driven covariance with other measured property
uncertainties in the regression analysis.

Finally, we are able to account for the effect of sample selection,
as the vector of observables includes the selection variable (Gelman
et al. 2003; Kelly 2007). Our selection function is simply a
redshift-dependent LX,RASS threshold (see Fig. 1), which is taken
into account using a redshift-dependent step function. Letting
y ≡ ln LX,RASS and denoting the z-dependent threshold luminosity
as yt(z), the odds of selection given a true mass, μi, and model
parameters, θ , are

�i(μi, θ) =
∫

dy �(y − yt (zi)) P (y |μi , θ ), (13)

where �(z) is the Heaviside function. With the assumed log-normal
form, the integral yields a complementary error function that is
evaluated for each cluster at each step in the MCMC analysis.

The expression in equation (13) is used to renormalize the
contribution of each cluster to the likelihood. The likelihood of
the observed sample properties is then

L =
∏
i∈C

�−1
i (μi, θ ) P (so,i | μi , θ ), (14)

where C is the cluster sample. Compared to a selection-unweighted
likelihood (see Appendix A), the odds factor adds support in regions
where the LX,RASS–M relation has a lower mean amplitude, steeper
slope, and larger variance.

We consider the set of 41 true halo masses as additional degrees of
freedom and perform the MCMC analysis in this space joined with
75 model degrees of freedom consisting of slope, normalization,
and variance for 10 properties, and 45 correlation coefficients.
Uninformative priors, P (θ), on the latter parameters are specified
in Table 4, and the halo mass function, P(μi), is used as a prior
on cluster true masses. At every iteration of the MCMC analysis,
the likelihood is renormalized according to equation (13), and
the resulting posterior probability distribution in the full model
parameter space is

P (θ , μi | so,i) ∝
[∏

i∈C
�−1

i (μi, θ ) P (so,i | μi , θ )

]
P (μi , θ ), (15)

where P (μi , θ ) = P (μi)P (θ ) is the prior distribution.
We then determine the model parameter constraints, P (θ | so,i),

by marginalizing over the posterior distributions of the 41 halo
masses. In Section 5.4, we perform the complementary marginaliza-
tion and present posterior estimates of true mass for the 41 LoCuSS
clusters.

The MCMC algorithm is based on the PyMC library (Patil,
Huard & Fonnesbeck 2010) and proceeds as follows. For each
iteration, a mass is assigned to each cluster drawn randomly from
the halo mass function, i.e. the prior distribution. Then, a new set of
model parameters, θ , is drawn randomly from the prior distribution
specified in Table 4. With the assigned cluster masses and chosen set
of parameters, the selection function is evaluated and the likelihood
evaluated. The initial seeds are adapted in a way to minimize
the number of steps needed to reach equilibrium. We choose the
central value of the weak-lensing masses as the initial seed for each
unobserved halo mass, μi, and the scaling parameters are initialized
with the estimates from the uncorrected fit in Appendix A. This
choice of initial seeds allows us to reach equilibrium faster and does

Table 5. Scaling relation parameters constrained by our heirarchical
Bayesian method. See Table 3 for intercept units.

Observable Intercept Slope Scatter Self-Similar
Sa exp (πa) αa σ a|μ Slope

LX,RASS 4.70+1.65
−1.28 1.15+0.37

−0.42 0.54+0.11
−0.17 1.00

LX,ce 8.01+0.85
−0.81 0.94+0.19

−0.21 0.38+0.04
−0.05 1.33

TX,ce 6.98+0.46
−0.43 0.47+0.10

−0.11 0.20+0.03
−0.04 0.66

Mgas 0.97+0.05
−0.05 0.77+0.10

−0.10 0.16+0.03
−0.03 1.00

YX 6.18+0.65
−0.65 1.23+0.19

−0.20 0.34+0.05
−0.05 1.66

YSZA 7.93+1.06
−0.96 1.53+0.20

−0.22 0.31+0.07
−0.08 1.66

YPl 11.10+0.92
−0.93 1.14+0.15

−0.16 0.29+0.04
−0.04 1.66

LK,BCG 0.98+0.09
−0.09 0.21+0.15

−0.16 0.34+0.04
−0.05 –

LK,tot 16.85+0.73
−0.79 0.75+0.10

−0.10 <0.16∗ 1.00

λ 124.49+8.49
−11.25 0.74+0.14

−0.13 0.24+0.04
−0.05 1.00

Note. ∗The LK,tot scatter is not bounded from below (see Fig. 3), so the
value quoted is the 95th percentile.

not have an effect on the posterior distribution. The performance of
this method is demonstrated and compared with other methods in
Appendix B.

Our method is able to handle missing data, meaning systems
for which not all elements of the data vector are available. We
marginalize over these missing quantities by setting the missing
values to the median of that observable quantity and assuming a
large error, 999 in the natural log, on the missing value.

5 R ESULTS

In this section, we apply the hierarchical Bayesian method described
in Section 4.1 to the LoCuSS data described in Section 2. We discuss
the resulting scaling relation parameters below, focusing on the
individual properties in turn. Constraints on property covariances
are presented in a companion paper (Farahi et al., in preparation).

In order to characterize the scaling relations between cluster
observables and mass, we use a fixed mass pivot defined by the
sample average, Mp = 7.41 × 1014 M	, and fit the log-mean
behaviour of property a to the form

sa = αa(μ + e(z)) + πa, (16)

where μ = ln (Mhalo/Mp), e(z) = ln E(z), and the normalization is in
the natural log using units given in Table 3. We remind the reader
that one of the elements of the observable vector, so, is the weak-
lensing mass, which is assumed to be an unbiased estimator of true
mass with fixed slope αln MWL

= 1 and normalization πln MWL
= 0.

Since our method constrains the covariance between observables at
fixed mass, we use the same independent variable, μ + e(z), for
all properties. Where this is not the natural independent variable
derived in Section 3 (i.e. for Mgas, LK, and λ), we include an
additional factor of e(z) on the dependent axis, as listed in Table 3.

As a check, we also perform the fits with μ as the independent
variable and appropriately modified e(z) factors on the dependent
axes. As expected within such a narrow redshift range, the results
are consistent.

5.1 Scaling relation parameters

The resulting posterior estimates of the scaling relation parameters
are summarized in Table 5, shown in Fig. 2, and discussed below. In
ensuing subsections, we begin by presenting results for the selection
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LoCuSS: galaxy cluster scaling relations 69

Figure 2. Scaling relations between cluster observable properties and potential well depth, MWLE(z). Individual cluster points with error bars are shown,
while the hierarchical Bayesian fits and 68 per cent confidence regions of the mean behaviours are given by the solid lines and the grey scales, respectively. The
colour scale indicates the central entropy K(<20 kpc), with red being lower entropy, cool-core clusters and blue being higher entropy, non-cool-core clusters.
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variable, LX,RASS, and proceed to examine hot gas and stellar scaling
behaviours. Subsequent sections discuss intrinsic property variance
and the physical origins of deviations about the mean relations.

5.1.1 Selection variable

The posterior parameter constraints on the scaling of LX,RASS with
mass, listed in the first row of Table 5, entail large uncertainties that
are driven by significant sample incompleteness as a function of
mass. The upper left-hand panel of Fig. 2 shows that all but 4 of the
41 clusters lie above the best-fitting underlying scaling relation; the
selection skims off only the brightest systems as a function of mass.
This behaviour is a textbook example of Malmquist bias (Allen et al.
2011; Mantz 2016a; Giles et al. 2017).

While the inferred slope of 1.15+0.37
−0.42 agrees with the self-similar

expectation, the 35 per cent uncertainty in slope dilutes the impact
of this statement. The intrinsic scatter (in natural log) of 0.54+0.11

−0.17

is higher than the 0.38+0.04
−0.05 seen for the core-excised counterpart

LX,ce, which we interpret as the consequence of including the core.
We have also performed analysis using Chandra/XMM–Newton
luminosities that include the core, finding an intrinsic scatter of
0.51+0.08

−0.08, consistent with the LX,RASS value.
The relatively large uncertainty in the LX,RASS scaling parameters

allows only weak estimates of the correlation coefficients between
LX,RASS luminosity and other cluster properties. The largest coeffi-
cients, with values between 0.4 and 0.6 and uncertainties of roughly
0.2, are with follow-up X-ray measures and YSZA. The full set of
coefficients, provided in Table A2 of Appendix A, includes hint of
an anticorrelation between hot gas mass and stellar mass discussed
further in the companion paper (Farahi et al., in preparation).

5.1.2 X-ray observables

For the X-ray properties (rows 2 through 5 of Table 5), posterior
constraints on the slopes of the scaling relations are consistently
shallower than self-similar model expectations at the ∼1−2σ level,
with uncertainties ranging from 0.1 (Mgas and TX,ce) to 0.2 (LX,ce

and YX). The shallow behaviour for Mgas is unexpected, as previous
studies covering a wider dynamic range in cluster mass have found
that mean gas mass increases with halo mass in a superlinear fashion,
Mgas ∝ M1.2 (e.g. Pratt et al. 2009). However, as discussed below,
the slope we find is only in ∼1.5σ tension with the Weighing
the Giants study of Mantz et al. (2016b), who find a slope of
1.004 ± 0.014 for a high-mass sample of clusters. A trend towards
self-similar behaviour in the highest halo masses is seen in recent
hydrodynamical simulations that include AGN heating (Farahi et al.
2018).

We highlight that there is a degeneracy between the posterior
slope of a property and the covariance between that property and
the selection variable, LX,RASS. Physically, we expect a positive cor-
relation between Mgas and LX,RASS residuals, but find the correlation
coefficient to be only 0.24+0.21

−0.24. If this value were constrained higher,
the slope of the Mgas relation would also increase. To demonstrate
this, we perform the analysis with a uniform prior between 0.7 and 1
on this correlation coefficient, finding the slope of the Mgas relation
increases ∼1.5σ , from 0.77+0.10

−0.10 to 0.90+0.11
−0.11, consistent with both

the self-similar prediction and the Weighing the Giants result.

5.1.3 SZ observables

We find that the slopes of the two SZ-derived Y relations are
consistent with each other, with YSZA being steeper than YPl at

the level of 1.5σ . YSZA is within 1σ of the self-similar slope of 5/3,
and the two SZ values bracket the YX slope of 1.23+0.19

−0.20.
Regarding normalization, the cylindrical measurement of YPl

can be converted to a spherical estimate by dividing by a factor
Ycyl/Ysph = 1.2 (Arnaud et al. 2010). When we apply this conversion
factor to the YPl intercept, the resulting value of 9.25+0.77

−0.78 is
consistent with the YSZA value of 7.93+1.06

−0.96. To compare to the
X-ray normalization, we follow Arnaud et al. (2010) and apply a
conversion factor:

CXSZ = σT

mec2

1

μemp

= 1.416 × 10−19 Mpc2

M	keV
, (17)

giving a YX intercept of 8.75+0.92
−0.92. To summarize, we find good

agreement between the normalizations of all three relations that
measure the electron thermal energy content.

While the YSZA slope is in agreement with the self-similar relation,
the YPl slope is shallower. The YPl measurement errors for the low-
mass clusters are large, so they do not have a strong influence on the
fit. The fit parameters are largely constrained by the intermediate
and high-mass clusters, and an increase in the YPl measurement of
intermediate-mass clusters would act to shallow the fitted slope.
Indeed, we find the highest ratios of YPl to YSZA in low and
intermediate-mass clusters.

We note that the YSZA relation is constrained using a subsample of
33 clusters, due mostly to contamination as detailed in Section 2.4.1.
If there was correlation between cluster mass and the extended
sources that lead to contamination, this could lead to a bias in
the constrained relation. We refit all scaling relations using only
this subsample of 33 systems, finding the results largely consistent
within errors.

5.1.4 Stellar observables

The measures of galactic stellar content, LK,BCG, LK,tot, and λ,
provide complementary insights into the star formation history of
high-mass haloes. Both LK,tot and λ attempt to measure the total
stellar content of a cluster, but they differ in detail. The total K-
band luminosity, LK,tot, is a background-corrected estimate that
uses all member galaxies within the weak-lensing estimate of r500,
whereas λ is a red-sequence weighted estimate determined within an
aperture scaling as λ0.2. The former is luminosity-weighted, while
the latter is number-weighted. We highlight that any interpretation
of the stellar content derived from these galaxy observable scaling
relations relies on the assumption that they are reliable tracers
of the stellar mass. This is likely sensitive to the details of the
measurement, and determining the best stellar mass estimate would
require further study.

Despite their differences, the slopes of the LK,tot and λ scaling
relations are consistent, and in both cases shallower than the self-
similar prediction. As both measures scale with total stellar mass,
this is consistent with a stellar fraction that decreases with increasing
halo mass, implying that star-forming efficiency is a decreasing
function of halo mass (Gonzalez, Zaritsky & Zabludoff 2007;
Laganá et al. 2011). This result is supported by abundance-matching
arguments (Behroozi, Wechsler & Conroy 2013; Kravtsov 2013),
and AGN-based feedback scenarios in cosmological hydrodynam-
ics models are tuned to produce this feature (Croton et al. 2006;
De Lucia & Blaizot 2007; Planelles et al. 2013; Farahi et al. 2018;
Pillepich et al. 2018). Both weak-lensing (Simet et al. 2017) and
ensemble spectroscopic (Farahi et al. 2016) mass estimate methods
find mean mass scaling behaviour, M ∝ λ1.3, consistent with our
findings.
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The close agreement in the LK,tot and λ slope values may be
somewhat fortuitous. The radius within which λ is measured scales
more slowly (λ0.20) than the halo radius implied from its scaling with
weak-lensing mass (λ0.45), within which LK,tot is measured. While
this could potentially lead to proportionally smaller increases in
λ compared to LK,tot as halo mass increases, a secondary factor
such as a decreasing star-forming fraction in higher mass haloes
may compensate for the scale mismatch effect. We note that the
correlation coefficient between LK,tot and λ at fixed MWL, presented
in Farahi et al. (in preparation), is near unity: 0.77+0.16

−0.27.
The LK,BCG scaling relation is very shallow, almost consistent

with zero, demonstrating that the luminosity of the BCG is not a
strong function of mass for clusters in this mass range. As halo mass
increases, so does the galaxy velocity dispersion, and accretion on
to the BCG slows relative to the total mass growth of the cluster. As
these two processes are largely uncoupled, it leads to large scatter
in the relation, consistent with our finding that the LK,BCG relation
has a larger intrinsic scatter than the LK,tot relation.

The normalizations of the BCG and total LK relations provide a
simple estimate of the fraction of stellar mass associated with the
BCG. We find a value of 5.8 ± 0.5 per cent, with the uncertainty
dominated by the error in the BCG normalization. A comparison
to the literature is difficult to do homogeneously as the precise
values will rely on the method used for BCG and intracluster light
separation, as well as background subtraction.

Ziparo et al. (2016) applied very similar methods to ours to a
sample of clusters from the XXL survey with weak-lensing masses
between 1014 and 1015, finding LK,BCG/LK,500 between 3.5 and
20 per cent. Using slightly different methodology but again finding
consistent results, Lin & Mohr (2004) found LK,BCG/LK,200 ranged
from 3 to ∼18 per cent, again for clusters with masses similar to
our sample. These values, calculated using LK, 200, provide a lower
limit on LK,BCG/LK,500.

Halo occupation distribution models also enable calculation
of the BCG/total stellar fraction. For instance, Leauthaud et al.
(2012) use lensing, clustering, and stellar masses to parametrize the
occupation of haloes. Although these models are often driven by
galaxies haloes with masses less than clusters, the parametrization
do allow calculations at all masses. In the lowest redshift bin (z ∼
0.3), Leauthaud et al. (2012) found that haloes with masses greater
than 1014 had BCG/total stellar fraction below 10 per cent.

5.2 Intrinsic variance

Knowledge of the intrinsic variance in cluster properties is important
for precise cosmological studies with the population, but empirical
estimates of the full covariance matrix, including both on-diagonal
scatter and off-diagonal pair correlations, have only recently begun
to emerge (Okabe et al. 2010; Maughan 2014; Mantz 2016a).

Caution is required when estimating the covariance of sample
properties, as the statistical (measurement) errors must be accurately
determined and the selection model must be correctly described.
Considerable interest lies in the intrinsic scatter of an individual
property, σ a|μ, and its related scatter in halo mass.

The effect of including sample selection has a significant effect
on the posterior intrinsic scatter estimates. The ‘naive’ regression
model (see Appendix A) produces scatter estimates that differ
significantly from Table 5 for several X-ray properties, including the
LX,RASS selection variable. Note, however, that the intrinsic scatter
constraints on Mgas and TX,ce as well as all of the SZ and optical
properties are consistent between the two treatments.

Figure 3. Posterior PDF of the scatter in total K-band luminosity, σln LK
,

with the 68th and 95th percentiles indicated.

Since the model that includes selection effects should be closer
to unbiased, we employ the values in Table 5 as our primary results,
with a note of caution that posterior scatter constraints for LX,ce and
YX appear to be most sensitive to the selection model.

Reviewing the intrinsic scatter values, we note that Mgas and
LK,tot have the lowest values, while the LX,RASS selection variable
is highest. The posterior in LK,tot scatter has no finite lower bound.
As shown in Fig. 3, the posterior probability distribution function
(PDF) of the intrinsic scatter in the LK,tot relation is not well fitted
by a Gaussian, so we quote 68th and 95th percentiles of 0.08 and
0.16, respectively. The 95th percentile is below the central value
of the intrinsic scatter in the λ relation, 0.24+0.04

−0.05. We note that the
definition of membership for the two observables is different and
therefore recalculate LK,tot using membership as determined in the
λ calculation, finding the result unchanged. We interpret this as an
indication that LK,tot, as a tracer of the stellar mass, is a slightly
better proxy for cluster mass than the richness.

We find good agreement between the intrinsic scatter of ∼0.3 for
all three Y relations.

From Table 5, we can estimate the mass proxy power using the
inferred scatter in mass σμ|a = σ a|μ/αa. BCG K-band luminosity is
by far the least effective, with a wide scatter of 1.6 in logarithmic
mass. Total K-band light, on the other hand, is much more tightly
correlated, with an upper limit of ∼20 per cent. Gas mass provides
∼0.20 ± 0.05 fractional accuracy in mass, similar to all measures of
Y. We find no evidence that Y is the lowest scatter mass proxy. We
stress that these estimates are with respect to the weak-lensing mass
values, and the inference with respect to true mass is dependent
on our simplifying assumptions discussed in Section 4. Larger
homogeneous samples of the type used here are needed to provide
more accurate estimates of the intrinsic property covariance.

5.3 Origin of scatter

To motivate exploration of potential physical origins of the scatter
in the scaling relations, in Fig. 4 we compare the residuals in each
property with the central entropies of the clusters. The central
entropy, K(<20 kpc), measured in the inner 20 kpc (Sanderson,
Edge & Smith 2009b) is an indicator of the formation history of
the cluster, with a lower entropy suggesting a less disturbed cluster
with a cool core, and thus earlier formation epoch and/or less rich
recent merger history (Rasia et al. 2015; Hahn et al. 2017).
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Figure 4. Normalized residuals from each scaling relation, defined in equation (18), as a function of entropy in the central 20 kpc of the cluster. Colours
indicate K(< 20 kpc), as in Fig. 2.
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In Appendix C, we consider multiple other indicators of the level
of disturbance in the cluster – central surface brightness, centroid
shift, BCG/centroid separation, and magnitude gap – finding results
consistent with those of the central entropy described below.

We define the residual, δai, in property a as the vertical distance in
log-space between the ith cluster’s measurement and the posterior
mean scaling relation, normalized by the intrinsic scatter of that
relation:

δai = sa,i − (π̂a + α̂aμi)

σ̂a

, (18)

where the hatted quantities are the posterior central estimates of
the scaling relation parameters for property a, and μi is the weak-
lensing mass of the ith cluster. We use the 95th percentile of 0.16 for
σLK

. We highlight that the residuals from a given scaling relation do
not necessarily average to zero, due to sampling biases introduced
by the selection model. This effect is strongest in the LX,RASS

selection variable, but translates to other observables through non-
zero covariance.

The LX,RASS measurement contains the core, which will con-
tribute more to the signal for clusters with cool cores than those
without. We therefore expect large positive residuals in the low-
entropy clusters, as we see clearly in the top left-hand panel of
Fig. 4. In the Chandra/XMM–Newton X-ray observables, we see no
clear trend in the residuals with cluster entropy.

While we find no trend in YSZA (or YX) residuals, we do find a
trend in YPl of more positive (negative) residuals in higher (lower)
entropy clusters. This could suggest that a fixed Arnaud et al. (2010)
pressure profile performs less well in non-cool-core clusters, as a
boosted signal in the outskirts would increase the YPl measurement
and produce a positive residual. This interpretation is supported by
the results in Appendix C, where we find the same trend in indicators
sensitive to the gas morphology.

The clearest trends we find in Fig. 4 are in the lower two
panels, showing residuals of the total cluster optical observables
– LK,tot and λ – with more positive (negative) deviations in higher
(lower) entropy clusters. This trend is reproduced in most structural
indicators in Appendix C. The trend is also seen clearly in the two
lower panels of Fig. 2 and discussed further in Section 6.2.

5.4 Posterior distribution on true halo mass

Our model fits for the cluster halo mass, and so generates a posterior
distribution for the true mass of each cluster. We report these
posterior constraints in the final column of Table 1, and display them
next to our weak-lensing mass estimates in Fig. 5. Any differences
are due to a combination of two effects – the mass function
favouring low-mass systems, and the scaling relations favouring
systems that lie near the expectation value. The latter effect can
be seen by considering Fig. 5 alongside Fig. D1. Clusters with
negative residuals from the scaling relations tend to have posterior
masses smaller than their weak-lensing masses (e.g. Abell0907 and
Abell0291), while those with positive residuals have the opposite
(e.g. Abell2219 and Abell0697).

6 D ISCUSSION

6.1 Scaling relations in the literature

To obtain robust scaling relations requires an unbiased measurement
of the true mass, an understanding of and correction for the selection
of the sample, and a method that allows for the covariance between

the selection variable and the observable property. Mainly due to the
paucity of high-signal-to-noise, uniform, multiwavelength data for
well-defined cluster samples, the number of studies in the literature
that meet all of these criteria is small. We will largely restrict
ourselves to these studies for comparison.

The most similar study to our own is that of Mantz et al. (2016b),
who use weak-lensing measurements and gas mass as estimators of
the true mass, and attempt to model the selection of their clusters.
For the ICM properties, they also allow for the covariance of those
properties with the selection variable. Their sample includes 27
clusters with weak-lensing masses and a larger sample with gas
mass measurements, and spans a slightly wider redshift range than
ours. In mild conflict with our results, Mantz et al. (2016b) report
that the core-excised gas temperature and the gas mass agree with
the self-similar predictions. They find a TX,ce relation slope of
0.62 ± 0.04, consistent with the self-similar expectation of 2/3 but
only ∼1σ discrepant with our estimate of 0.47+0.10

−0.11. Their estimate
of the Mgas relation slope is 1.007 ± 0.012, in agreement with unity
and again marginally consistent with our estimate of 0.77+0.10

−0.10.
It is unclear what causes the differences in our results, however,
given our method, selection and data analysis are all different
from Mantz et al. (2016b), a difference of this magnitude is not
unexpected.

Similar to our results, Mantz et al. (2016b) also find that the soft-
band X-ray luminosity is steeper than the self-similar expectation,
and suggest that this is due to non-gravitational heating and cooling
processes in cluster cores.

Our study is the first to look at the simultaneous scaling of X-ray,
SZ, and optical properties, and so there are few results to compare
to the SZ and optical properties. Mantz et al. (2016b) provide an
empirical scaling (without modelling the covariance and correcting
for sample selection) and find a shallower YSZ slope than self-
similarity would predict (1.31 ± 0.03). Note that this measurement
is using Mgas as the mass parameter, but Mantz et al. (2016b) find a
one-to-one relation between Mgas and MWL. This result is bracketed
by our YPl and YSZA slopes.

Although not corrected for selection effects, studies have placed
constraints on the optical scaling relations of LK,tot (e.g. Lin,
Mohr & Stanford 2003, 2004; Mulroy et al. 2014, 2017) and λ (e.g.
Rykoff et al. 2012; Mantz et al. 2016b; Melchior et al. 2017; Simet
et al. 2017), finding the slopes to be shallower than the self-similar
predictions, consistent with our results.

Results from recent numerical simulations indicate that AGN
heating produces departures from self-similar scaling relations.
Several independent groups find that galactic physics with AGN
feedback steepens the ICM scaling relations (Planelles et al. 2013;
Hahn et al. 2017; Le Brun et al. 2017; Pillepich et al. 2018), in
moderate tension with our X-ray findings. The overall star formation
efficiency declines with increasing halo mass in these simulations,
producing stellar mass scaling relations that are sublinear with M, in
agreement with the LoCuSS behaviour. We caution that a concern
when making sample comparisons is the possibility that the scaling
relation slopes run with halo mass and, to a lesser extent, redshift
(Farahi et al. 2018).

6.2 Cluster residuals

In this section, we consider the trends observed in Section 5.3 in
more detail.

In Fig. 6, we split the clusters into low- (K < 80) and high-
(K > 80) entropy subsamples using central entropy K(< 20 kpc)
(Sanderson et al. 2009a), and show combined residuals from each
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Figure 5. The posterior constraints on true halo mass from the hierarchical Bayesian fit in grey, alongside the measured weak-lensing cluster masses in red.
The grey box plots and whiskers show the [25−75] and [0.3−99.7] percentile ranges, respectively, while the errors on the red points show the 25th and 75th
percentiles according to the measurement errors on the weak-lensing measurements. The data points are ordered by weak-lensing mass.

scaling relation for clusters within each subsample. Ensemble aver-
age values are inversely weighted by the square of the uncertainty in
that measurement. The x-axis order starts with X-ray measurements
before progressing to SZ and optical. Lines are coloured by central
entropy as in Fig. 2. For completeness and additional clarity, we
show the data for individual clusters in Appendix D.

Except for the LX,RASS selection variable, residuals of the re-
maining gas observables average to near zero for both subsamples,

indicating that both high- and low-entropy clusters follow similar
mean scaling relations between these gas observables and mass.

Surprisingly, the residuals in the total cluster optical content,
LK,tot and λ, show a clear difference between the two subsamples.
Interpreting them as a measure of stellar content, this suggests
that at fixed mass, lower entropy clusters contain a smaller stel-
lar mass and a smaller number of galaxies than higher entropy
clusters.
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Figure 6. Normalized residuals from the scaling relations, defined in equation (18), for low-entropy (K < 80, left) and high-entropy (K > 80, right) subsamples,
with K(<20 kpc) determined by Sanderson, O’Sullivan & Ponman (2009a) in units of keV-cm2. Colours indicate K(<20 kpc), as in Fig. 2. Ensemble average
values are shown in black, inversely weighted by the square of the measurement uncertainty, with error bars displaying the standard deviation in the mean.

This finding may be a signal of bias connected to halo formation
epoch, if high central entropy is an indicator of a later formation
epoch. The majority of star formation in the Universe took place at
high redshift (z ∼ 1−3), and it is well known that galaxies in the
field are more star forming than their cluster satellite counterparts
(Wetzel, Tinker & Conroy 2012; Haines et al. 2015). Galaxies in
later-forming clusters may be able to form more stellar mass because
the progenitor haloes spend more time in the field during this epoch
of cosmic star formation before being quenched in the cluster
environment. Conversely, early-forming clusters would quench
their galaxies earlier, and the massive galaxies would undergo more
merging than their field counterparts. The net result would be both
a lower stellar mass and a lower richness in older, lower entropy
clusters.

It is important to note, however, that the LX,RASS selection criteria
may contribute to the trend we see. This selection favours detection
of brighter, cool-core clusters, with lower central entropy. The low-
mass end of our sample is certainly incomplete, and potentially
the absent systems are preferentially non-cool-core clusters. Rather
than the non-cool-core clusters containing a systematically higher
stellar fraction than the cool-core clusters, it is consistent with Fig. 2
that these non-cool-core clusters are simply missing from the lower
mass end of our sample. Inclusion of these missing clusters could
possibly drive up the intrinsic scatter constraints in LK,tot and λ.
Studies based on optically selected samples will shed light on this
issue (Rykoff et al. 2014, 2016).

7 SU M M A RY

The task of constraining scaling relations is complicated by the
effects of the selection function and covariance. In this paper we
have presented a new multivariate approach to correct for these
effects, and applied it to a multiwavelength observational data set
for which the selection function is well defined. For the first time,
we have provided well-constrained scaling relation parameters with
mass for a range of galaxy cluster observables, and our main results
are as follows:

(i) We find that the ICM scaling relations are shallower than the
self-similar expectations at the 1−2σ level.

(ii) The results of the integrated optical observables, LK,tot and
λ, are in good agreement, with slopes of ∼0.75 suggesting that star-
forming efficiency is a decreasing function of cluster halo mass.

(iii) We find no distinction between the core-excised X-ray or
high-resolution SZ relations of clusters of different central entropy.

(iv) Clusters with low central entropy have negative residuals
from the integrated optical scaling relations, suggesting that early-
forming clusters have a lower stellar fraction than their younger
counterparts.

Following conclusion (iii), selection based on core-excised X-
ray or high-resolution SZ may lead to a more dynamically diverse
sample of clusters since neither property’s scaling relation is
impacted by the presence of a cool core. Further investigation with
samples including lower mass clusters is needed to fully understand
any dependence of the cluster stellar fraction on its dynamical state.
While our results in this work are limited by the low number of
observed clusters, our method will be applicable to future surveys
and will lead to excellent constraints on the physics of clusters and
the cosmological parameters.

AC K N OW L E D G E M E N T S

We thank Arif Babul and members of the LoCuSS collaboration
for their support and assistance. SLM and GPS acknowledge
support from the STFC. AF and AEE acknowledge support from
NASA Chandra Grant G06-17116B. AF acknowledges support
from a McWilliams Postdoctoral Fellowship. GPS acknowledges
support from the Royal Society. CO, DPM, ZA, JEC, and CARMA
operations were supported by NSF grant AST-1140019. CPH ac-
knowledges support from PRIN INAF 2014. This paper is dedicated
to the memory of Dr. Yu-Ying Zhang.

REFERENCES

Akritas M. G., Bershady M. A., 1996, ApJ, 470, 706
Alam S. et al., 2015, ApJS, 219, 12
Allen S. W., Evrard A. E., Mantz A. B., 2011, ARA&A, 49, 409
Arnaud M., Pratt G. W., Piffaretti R., Böhringer H., Croston J. H.,
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Laganá T. F., Zhang Y.-Y., Reiprich T. H., Schneider P., 2011, ApJ, 743, 13
Lawrence A. et al., 2007, MNRAS, 379, 1599
Le Brun A. M. C., McCarthy I. G., Schaye J., Ponman T. J., 2017, MNRAS,

466, 4442
Leauthaud A. et al., 2012, ApJ, 744, 159
Lin Y.-T., Mohr J. J., 2004, ApJ, 617, 879
Lin Y.-T., Mohr J. J., Stanford S. A., 2003, ApJ, 591, 749
Lin Y.-T., Mohr J. J., Stanford S. A., 2004, ApJ, 610, 745
Lin Y.-T., Mohr J. J., Gonzalez A. H., Stanford S. A., 2006, ApJ, 650, L99
Mannucci F., Basile F., Poggianti B. M., Cimatti A., Daddi E., Pozzetti L.,

Vanzi L., 2001, MNRAS, 326, 745
Mantz A. B., 2016a, MNRAS, 457, 1279
Mantz A. B. et al., 2016b, MNRAS, 463, 3582
Marrone D. P. et al., 2012, ApJ, 754, 119
Martino R., Mazzotta P., Bourdin H., Smith G. P., Bartalucci I., Marrone D.

P., Finoguenov A., Okabe N., 2014, MNRAS, 443, 2342
Mathews W. G., 1978, ApJ, 219, 413
Maughan B. J., 2014, MNRAS, 437, 1171
Melchior P. et al., 2017, MNRAS, 469, 4899
Muchovej S. et al., 2007, ApJ, 663, 708
Mulroy S. L. et al., 2014, MNRAS, 443, 3309
Mulroy S. L., McGee S. L., Gillman S., Smith G. P., Haines C. P., Démoclès

J., Okabe N., Egami E., 2017, MNRAS, 472, 3246
Murray S. G., Power C., Robotham A. S. G., 2013, Astron. Comput., 3, 23
Nagai D., Kravtsov A. V., Vikhlinin A., 2007, ApJ, 668, 1

Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Oguri M., Hamana T., 2011, MNRAS, 414, 1851
Okabe N., Smith G. P., 2016, MNRAS, 461, 3794
Okabe N., Zhang Y.-Y., Finoguenov A., Takada M., Smith G. P., Umetsu

K., Futamase T., 2010, ApJ, 721, 875
Patil A., Huard D., Fonnesbeck C. J., 2010, J. Stat. Softw., 35, 1
Penna-Lima M., Bartlett J. G., Rozo E., Melin J.-B., Merten J., Evrard A.

E., Postman M., Rykoff E., 2017, A&A, 604, A89
Pillepich A. et al., 2018, MNRAS, 475, 648
Plagge T. J. et al., 2013, ApJ, 770, 112
Planck Collaboration V, 2013, A&A, 550, A131
Planck Collaboration VIII, 2016a, A&A, 594, A8
Planck Collaboration XXVII, 2016b, A&A, 594, A27
Planelles S., Borgani S., Dolag K., Ettori S., Fabjan D., Murante G.,

Tornatore L., 2013, MNRAS, 431, 1487
Pratt G. W., Croston J. H., Arnaud M., Böhringer H., 2009, A&A, 498, 361
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APPENDI X A : SELECTI ON BI AS

Table A1 shows the scaling relation parameters inferred from
the Kelly (2007) method, without correcting for selection effects.
Comparison with the constraints from our hierarchical Bayesian
method, shown in Table 5, quantifies the bias from the selection
function and the importance of accounting for it. The bias in the
LX,RASS parameters is largest, as expected for the selection variable.

Table A1. Scalingrelation parameters inferred from the Kelly (2007)
method without correcting for selection effects.

Observable Intercept Slope Scatter
Sa exp (πa) αa σ a|μ

LX,RASS 7.61+0.52
−0.56 0.47+0.23

−0.23 0.37+0.05
−0.06

LX,ce 8.08+0.68
−0.75 1.02+0.29

−0.30 0.48+0.06
−0.08

TX,ce 7.03+0.33
−0.33 0.55+0.14

−0.15 0.22+0.04
−0.04

Mgas 0.90+0.04
−0.04 0.99+0.13

−0.14 0.17+0.04
−0.05

YX 6.43+0.60
−0.65 1.31+0.30

−0.30 0.47+0.08
−0.09

YSZA 8.01+0.81
−0.83 1.91+0.33

−0.36 0.30+0.09
−0.09

YPl 10.00+0.76
−0.77 1.37+0.23

−0.25 0.35+0.06
−0.07

LK,BCG 1.00+0.05
−0.05 0.18+0.18

−0.18 0.32+0.04
−0.04

LK,tot 14.99+0.70
−0.70 0.97+0.13

−0.14 0.12+0.05
−0.06

λ 100.82+6.16
−6.44 1.17+0.18

−0.19 0.20+0.07
−0.07
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Table A2. The covariance between LX,RASS and the observables, con-
strained by our hierarchical Bayesian method.

Observable Correlation coefficient
Sa ra,LX,RASS

LX,ce 0.43+0.15
−0.19

TX,ce 0.33+0.21
−0.25

Mgas 0.24+0.21
−0.24

YX 0.44+0.16
−0.21

YSZA 0.57+0.17
−0.24

YPl 0.18+0.20
−0.23

LK,BCG 0.12+0.21
−0.23

LK,tot −0.07+0.58
−0.47

λ −0.30+0.24
−0.21

The magnitude of the bias in other observables is consistent with
the magnitude of that observables covariance with LX,RASS, shown
in Table A2.

A P P E N D I X B: PE R F O R M A N C E O F
H I E R A R C H I C A L BAY E S I A N M E T H O D

We test the performance of the hierarchical Bayesian method on
1000 mock data sets, generated using the following steps:

(i) Generate X values assuming a mass function using the hmf
code (Murray, Power & Robotham 2013).

(ii) Generate Y values assuming a Y–X scaling relation.
(iii) Generate Z values assuming a Z–X scaling relation and a

correlation coefficient of −0.7 between Y and Z at fixed X.
(iv) Apply correlated measurement errors with variance 0.01

to X, Y, and Z values with a correlation coefficient of 0.7 at
fixed X.

(v) Select those above a Y limit.

After applying the Y selection, each data set contains ∼50
objects, similar to our LoCuSS sample. We calculate the best-
fitting parameters for each data set, and show the distribution of
these parameters in Fig. B1, finding all parameters to be well
constrained.

We compare the best-fitting parameters calculated using different
methods:

(i) LS: Ordinary Least Squares.
(ii) Kelly: the method of Kelly (2007), without correcting for

selection effects.
(iii) H-Bayesian: the hierarchical Bayesian model presented in

Section 4.1.
(iv) H-Bayesian (diag err cov): the same model, without mod-

elling the non-diagonal component of error covariance.

As expected, the methods that do not consider the selection
function (LS and Kelly) constrain a shallower slope (and higher
intercept) for selection variable Y and a steeper slope (and lower
intercept) for Z due to its negative covariance with Y. This leads the
Kelly method to underestimate the intrinsic scatter in both relations,
while a simple LS method is more accurate. We note that while
both H-Bayesian methods are accurate in the Y relation, where
modelling full error covariance is unimportant, the H-Bayesian
method that does not model full error covariance is less accurate in
the Z relation. This figure illustrates the importance of modelling
both the selection function and the error covariance on the inferred
parameter, particularly for the scatter parameter of the non-selection
variables.

Figure B1. Distribution of the best-fittingparameters for 1000 mock data sets, constrained by four different methods: LS – Ordinary Least Squares (cyan);
Kelly – the method of Kelly (2007), without correcting for selection effects (red); H-Bayesian – the hierarchical Bayesian model presented in Section 4.1
(blue); H-Bayesian (diag err cov) – the same model, without modelling the non-diagonal elements of the error covariance (green). The dashed lines show the
input values.
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APPENDIX C : OTHER STRUCTURAL
I N D I C ATO R S

In this section, we compare residuals from the scaling relations
against several structural indicators of the cluster, and display the
results in Fig. C1.

The surface brightness concentration, cSB, is defined as the ratio of
the central surface brightness within 40 kpc and the ambient surface
brightness within 400 kpc. A large cSB suggests the presence of a
cool core, and therefore a less dynamically disturbed cluster. The
centroid shift, 〈w〉, taken from Martino et al. (2014), is the standard

Figure C1. Normalizedresiduals from scaling relations, defined in equation (18), as a function of (clockwise) surface brightness concentration, centroid shift,
BCG/centroid separation, and magnitude gap. Colours indicate central entropy K(<20 kpc), as in Fig. 2.
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deviation of the projected separation between the X-ray peak and
the X-ray centroid calculated in circular apertures in the range
[0.05−1]r500. We also consider the projected separation between
the X-ray centroid and the BCG, 
BCG

centroid. Both projected separation
parameters (〈w〉 and 
BCG

centroid) are sensitive to the dynamical state
of the cluster, with a large value suggesting a more disturbed
cluster. Finally, we include the magnitude gap, 
M1,2, between the
two brightest galaxies within 0.5rvir. A larger magnitude gap sug-
gests that bright galaxies have had time since the last major merger
to accrete on to the BCG, therefore suggesting a less-disturbed
cluster.

The trends seen in Section 5.3 in residuals from the integrated
optical observables (LK,tot and λ) as a function of central entropy
K(< 20 kpc) are reproduced strongly in the structural indicators

sensitive to gas morphology. They are less clear in the indicators

sensitive to the galaxies. The K(<20 kpc) trend in YPl is also
reproduced by indicators sensitive to the gas morphology, consistent
with the explanation that measurements of more disturbed non-cool-
core clusters are overestimated by the assumption of an Arnaud et
al. (2010) profile.

We find positive correlation between 
M1,2 and residuals from
LK,BCG, as expected, with a larger 
M1,2 suggesting a brighter
BCG.

APPENDI X D : INDI VI DUAL CLUSTER
RESI DUALS

In Fig. D1, we present the unstacked cluster residuals as discussed in
Section 6.2. The panels are ordered by increasing MWL, and colours
indicate K(< 20 kpc), as in Fig. 2.
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Figure D1. Normalized residuals from the scaling relations, defined in equation (18), for all clusters. The panels are ordered by increasing MWL, and colours
indicate the cluster central entropy K(<20 kpc), as in Fig. 2.
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