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While quantum theory cannot be described by a local hidden variable model, it is nevertheless pos-
sible to construct such models that exhibit features commonly associated with quantum mechanics.
These models are also used to explore the question of ψ-ontic versus ψ-epistemic theories for quan-
tum mechanics. Spekkens’ toy theory is one such model. It arises from classical probabilistic me-
chanics via a limit on the knowledge an observer may have about the state of a system. The toy theory
for the simplest possible underlying system closely resembles stabilizer quantum mechanics, a frag-
ment of quantum theory which is efficiently classically simulable but also non-local. Further analysis
of the similarities and differences between those two theories can thus yield new insights into what
distinguishes quantum theory from classical theories, and ψ-ontic from ψ-epistemic theories.

In this paper, we develop a graphical language for Spekkens’ toy theory. Graphical languages
offer intuitive and rigorous formalisms for the analysis of quantum mechanics and similar theories.
To compare quantum mechanics and a toy model, it is useful to have similar formalisms for both.
We show that our language fully describes Spekkens’ toy theory and in particular, that it is complete:
meaning any equality that can be derived using other formalisms can also be derived entirely graph-
ically. Our language is inspired by a similar graphical language for quantum mechanics called the
ZX-calculus. Thus Spekkens’ toy bit theory and stabilizer quantum mechanics can be analysed and
compared using analogous graphical formalisms.

1 Introduction

The study of the differences between quantum physical behaviour and classical behaviour is at the heart
of much foundational research in quantum physics. The usual way of analysing these differences is
by finding phenomena that are intrinsic to one theory and do not appear in the other, for example the
violation of Bell inequalities [5]. Yet there is also another approach: that of building toy models which
reproduce phenomena generally considered quantum even though their description is entirely rooted in
classical physics.

One such toy model is Spekkens’ toy theory, first introduced in [25]. The original description of
the model was informal, but it was put into equational form in [12]. Furthermore, the toy model was
redefined in a rigorous way in [26]; this redefinition is consistent with [12]. Despite being a local hidden
variable theory, Spekkens’ toy theory reproduces many features of quantum mechanics, e.g. incompati-
bility of certain observables, teleportation, and no-cloning. The toy theory for the simplest kind of system
– the toy bit theory – closely resembles the theory of stabilizer quantum mechanics [25, 21]. Stabilizer
quantum mechanics is a fragment of quantum theory resulting from a restriction of the allowed opera-
tions to preparation of states in the computational basis, unitary Clifford operations, and computational
basis measurements [16].

There are also some phenomena that appear in stabilizer quantum theory but are not replicated in
the toy model, e.g. the above-mentioned violation of Bell inequalities. This is related to the fact that
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Spekkens’ toy theory is a ψ-epistemic theory by construction. A ψ-epistemic theory is a theory where
the state that an observer assigns to a system, is not real: it is only an artefact of the restricted knowledge
of the observer. Quantum theory on the other hand is considered to be ψ-ontic, i.e. it is a theory where
the states an observer assigns to a system are real [22].

To compare and contrast the two theories – Spekkens’ toy bit theory and stabilizer quantum theory –
in more detail, it is useful to have similar mathematical formalisms for describing both. Particularly, what
are needed are high-level formalisms, which hide some of the details of the underlying theories so as to
focus on conceptual properties. Graphical languages are high-level languages that use two-dimensional
diagrams. These two-dimensional languages allow parallel composition – applying transformations to
two different systems at the same time – to be separated from sequential composition – the application
of transformations to the same system at different times – by designating one dimension to roughly
correspond to “space” and the other to “time”. A major difference between classical physics and quantum
physics is the way the state spaces of systems compose in parallel, i.e. when the systems are put “side
by side” [3]: classically, the resulting state space is the Cartesian product of the original spaces, meaning
each state of the joint system can be described by specifying separate states for each of the component
systems. For quantum systems, on the other hand, the joint state space is the tensor product of the original
state spaces and joint states may not correspond to well-defined states of the separate systems: they can
be entangled. Thus in the study of quantum foundations, the study of composite systems is central, and
graphical languages offer an intuitive way of doing that.

Spekkens’ toy bit theory and stabilizer quantum theory have previously been studied using the stabi-
lizer formalism [21]. The two theories have also been compared using methods from categorical quantum
mechanics [10]. Categorical quantum mechanics is the analysis of quantum mechanics via the mathemat-
ical formalisms of category theory, pioneered by Abramsky and Coecke [2]. While categorical quantum
mechanics has given rise to a range of graphical languages for quantum theory, Spekkens’ toy theory has
not been analysed graphically before. The ZX-calculus is one such graphical language based on categor-
ical quantum mechanics [8, 9]; we use it as inspiration for the construction of a graphical calculus for
the toy theory.

For a graphical formalism to capture a model fully, it needs to satisfy several properties. Firstly, it
should be universal, i.e. it should be possible to represent graphically any process allowed in the model.
The formalism should furthermore be sound, i.e. any equality that can be derived graphically should
be derivable using other standard formalisms for the model. Lastly, the graphical formalism should
be complete, meaning that any equality that can be derived using other standard formalisms can also
be derived graphically. The ZX-calculus is universal, sound [9], and complete [4] for pure state qubit
stabilizer quantum mechanics with post-selected measurements. We show that our graphical calculus
satisfies all three of these properties for the maximal knowledge fragment of the toy theory (which
corresponds to pure states in quantum theory) with post-selected measurements.

We introduce Spekkens’ toy theory and stabilizer quantum mechanics in section 2. Section 3 contains
an overview over graphical languages and how to make them rigorous. We then define the graphical cal-
culus for Spekkens’ toy bit theory in section 4 and prove that it is universal and sound. The completeness
proof for the graphical calculus is given in section 5, with conclusions in section 6.

2 Spekkens’ toy theory and stabilizer quantum mechanics

In this section we introduce Spekkens’ toy bit theory as well as stabilizer quantum mechanics. We also
present some of the standard formalisms used to analyse the two theories.
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Figure 1: (a) & (b) Visualisations of the state space of a single toy bit. (c) Visualisation of the joint state
space of two toy bits. Specific states can be represented by colouring in cells in the diagram.

2.1 Definition of Spekkens’ toy bit theory

Spekkens’ toy theory is a local hidden variable theory that nevertheless displays many of the same prop-
erties and effects as quantum mechanics [25]. It arises from classical probabilistic mechanics via an
epistemic restriction, i.e. a restriction on the knowledge an observer may have about the state of the
system [26].

We shall only consider the toy theory for the simplest non-trivial system here: the toy bit theory. A
single toy bit is a system with four states, these are the ontic states or states of reality. These states are
often drawn on a 2 by 2 grid as in Fig. 1 a. An ontic state can be described by giving the values – 0 or 1
– for two variables X and Z.

An observer or experimenter working with toy bits does not have direct access to the ontic states,
instead they assign to a system an epistemic state, a state of knowledge. The observer can learn about the
state of a system by measuring quadrature variables, which are linear combinations of the variables X
and Z – for a single toy bit, these are X , Z, or X⊕Z, where⊕ denotes addition modulo 2. As in quantum
mechanics, the quadrature variables X and Z for the same toy bit are considered non-commuting: this is
done by imposing a commutation relation [·, ·] satisfying:

[X ,X ] = 0 = [Z,Z] and [X ,Z] = 1 = [Z,X ], (1)

which is furthermore linear, so that e.g.:

[X⊕Z,Z] = 1. (2)

Now the knowledge an observer may have is determined by the principle of classical complementarity
[26]:

The valid epistemic states are those where an agent knows the values of a set of commuting
quadrature variables and is ignorant otherwise.

States of maximal knowledge are those epistemic states where the observer knows the values of a maximal
set of commuting quadrature variables, i.e. a set with which no other quadrature variable commutes.
These states correspond to pure states in quantum theory, and we will only consider states of maximal
knowledge in this paper.

There are six states of maximal knowledge of a single toy bit. Single-toy bit states can be visualised
on the 2 by 2 grid by colouring in those ontic states that are consistent with the knowledge of the observer.
For example, the state X⊕Z = 0 is shown in Fig. 2 a.

Multiple toy bits can be considered jointly, in which case the variables X and Z for separate subsys-
tems are considered to commute, i.e.:

[Xi,Z j] = δi j, (3)
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(a) (b)

Figure 2: (a) The single-toy bit state characterised by X ⊕ Z = 0. (b) The joint state of two toy bits
corresponding to Z1 = 1∧X2 = 0.

where the subscripts denote the subsystem to which the variable belongs and δi j is 1 if i = j and 0
otherwise. Thus, e.g. Z1 = 1∧X2 = 0 is an example of a valid joint state of two toy bits. Joint states of
two toy bits can be visualised by stretching the diagram for one bit into a line (see Fig. 1 b) and then
combining two such lines into a 4 by 4 grid as shown in Fig. 1 c. The above-mentioned state is drawn in
Fig. 2 b.

The valid reversible transformations in the toy theory are those permutations of the ontic states that
map all valid epistemic states to valid epistemic states. Any set of commuting quadrature variables is a
valid measurement.

As a different notation, the ontic states of the toy theory are sometimes numbered 1 through 4 in the
order in which they appear in Fig. 1 b [11]. Epistemic states can then be denoted by sets, e.g. the state
X⊕Z = 0 corresponds to the set {1,4} and the two-toy bit state Z1 = 1∧X2 = 0 corresponds to:

{(2,1),(2,2),(4,1),(4,2)}. (4)

Rather than considering states of n toy bits to be sets, they can also be seen as relations from the one-
element set I = {•} into IV n, the n-fold Cartesian product of the set IV = {1,2,3,4}. Formally, a relation
R between sets A and B is a subset of the Cartesian product A×B. We use the notation a∼ b to indicate
that (a,b) ∈ R. Thus, the state X⊕Z = 0 shown in Fig. 2 a corresponds to the relation:

• ∼ {1,4}. (5)

Similarly, post-selected measurements on n toy bits can be seen as relations from IV n to I, e.g. the
single-toy bit measurement of the Z variable with outcome 1 corresponds to:

{2,4} ∼ •. (6)

Reversible transformations can also be considered as relations. This perspective puts state preparation
and post-selected measurements on an equal footing with reversible transformations and allows any
process on toy bits to be considered as a relation.

In a slight abuse of notation, we use states and states-as-relations interchangeably.

2.2 Stabilizer quantum mechanics

Stabilizer quantum mechanics is a restriction of the full quantum theory. It includes only those states that
are simultaneous eigenstates of several tensor products of Pauli operators, and unitary transformations
that map this set of states back to itself. This theory was first introduced in the context of error-correcting
codes [16].

In general, 2n complex numbers are required to specify a quantum state on n qubits – these can be,
for example, the components of the vector describing the state in terms of the computational basis. For
stabilizer states, there exists a more efficient description by specifying a generating set for the group of
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Pauli products that stabilizes the state, i.e. maps it back to itself. As an example, consider the Bell state:

1√
2
(|00〉+ |11〉), (7)

which is a stabilizer state. It is stabilized by the following group of Pauli products:

{I⊗ I,X⊗X ,Z⊗Z,−Y ⊗Y}, (8)

which is generated e.g. by:
〈X⊗X ,Z⊗Z〉 . (9)

There exists a representation of pure n-qubit stabilizer states in terms of 2n by n binary matrices
called check matrix [6]. Each column in the matrix corresponds to one of the Pauli products generating
the stabilizer group, ignoring the factor of ±1. A single Pauli matrix is encoded in two bits as follows:

I 7→ 00, (10)

X 7→ 01, (11)

Y 7→ 11, and (12)

Z 7→ 10. (13)

For a Pauli product on n qubits, the m-th factor in the tensor product is represented by the m-th and
(m+n)-th components of the vector. Thus the generating set from (9) yields the following check matrix:

0 1
0 1
1 0
1 0

 , (14)

where the first column represents X⊗X and the second column Z⊗Z.
The pure state qubit stabilizer fragment can also be defined operationally in terms of the following

transformations [20]:

• preparation of states in the computational basis

• unitary Clifford operations, generated by the single-qubit Hadamard operator, H, and the phase
operator, S:

H =
1√
2

(
1 1
1 −1

)
and S =

(
1 0
0 i

)
,

as well as the two-qubit controlled-NOT operator:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (15)

• measurements in the computational basis.

We make use of both the operational description and the binary formalism in later parts of this paper.
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U1

U2
V

W

U3 U4

Figure 3: A quantum circuit diagram on three qubits. The operators U1,U2,U3, and U4 are single-qubit
unitaries, V is a two-qubit unitary, and W a three-qubit unitary.

3 Graphical languages

Graphical languages provide an intuitive and high-level way of reasoning. One of the reasons for this
is the fact that they allow parallel and sequential composition to be denoted along two different dimen-
sions. By parallel and sequential composition, we mean that there are two different ways of composing
transformations: Parallel composition corresponds, roughly, to applying transformations to different (e.g.
spatially separated) systems at the same time. Sequential composition, on the other hand, corresponds to
applying transformations to the same system at different times.

In linear algebraic notation, parallel and sequential composition are usually distinguished by different
operator symbols. For example, the parallel composition of two matrices A and B is the tensor product,
denoted by A⊗B. The sequential composition of two matrices A and B is the matrix product, usually
written simply as AB. Long algebraic expressions can thus become difficult to parse: it is not easy to see
how different components of the expression compose.

In a graphical language, parallel composition can be denoted by stacking symbols vertically, and
sequential composition by juxtaposing them horizontally (or conversely, depending on convention). An
example of such a graphical notation is the quantum circuit notation [14, 20]. With a two-dimensional
notation, it is much easier to see how components compose, even in long and complicated expressions.
For example, the quantum circuit in Fig. 3 can be written algebraically as:

(I⊗ I⊗ (U4U3))W (I⊗V )(U1⊗U2⊗ I), (16)

where I denotes the single-qubit identity operator. The diagram is much easier to take in at a glance than
the algebraic expression.

Yet graphical languages are often introduced as informal personal short-hands and used to develop
an intuitive understanding of a problem that can then be confirmed using a more rigorous but less intu-
itive language. This means doing the same work twice: once graphically, then again in the alternative
formalism. To avoid this, the graphical languages need to be made rigorous; then reliable results can be
derived entirely graphically.

3.1 Making graphical languages rigorous

There are two steps to the process of making graphical languages rigorous: firstly, one needs to give
an explicit translation between diagrams and algebraic terms. Secondly, one needs to prove that two
diagrams that seem intuitively equal translate to algebraic terms that are equal.

We are here considering languages that are similar to quantum circuits in that they consist of boxes,
which denote transformations, and wires, which correspond to systems or the identity transformations
on those systems.
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(a)
U

V
=

V

U
(b) SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Figure 4: (a) A quantum circuit equality where a wire crossing denotes the SWAP map and U,V are
arbitrary single-qubit unitaries. (b) The SWAP matrix.

(a) (b) (c) = (d) =

Figure 5: (a) & (b) The cap and cup denoting a compact structure. (c) & (d) The snake equations satisfied
by caps and cups. Note that this graphical notation is read from bottom to top rather than left-to-right.

The natural formalism for making graphical languages rigorous is category theory, as monoidal cat-
egories are the most general mathematical structures incorporating both parallel and sequential compo-
sition of transformations. This research programme was begun by Joyal and Street, who used the theory
of monoidal categories to give rigorous underpinnings to a range of graphical notations from Feynman
diagrams to Petri Nets [17]. An introduction to category theory aimed at physicists, can be found in [7];
the standard textbook is [18].

There are other types of categories with additional structure which can be used to model more com-
plicated graphical languages. For example, symmetric monoidal categories include a map that swaps two
systems that have been composed in parallel. These categories can be used to model graphical languages
with wire crossings where “wires don’t tangle”: i.e. two wire crossings are the same as no crossing at
all. An example of this are quantum circuits, where wire crossings are used to denote the transformation
interchanging two qubits, for example the circuit shown in Fig. 4.

Quantum mechanics and similar theories are modelled as dagger compact closed categories [2].
These are categories which have a dagger map – a generalisation of the Hermitian adjoint for linear maps
– and a compact structure, which corresponds to completely entangled states and measurement effects.
Graphically, the compact structure is denoted by curved wires – “cups” and “caps” in a language which
is read from bottom to top – which satisfy the snake equations shown in Fig. 5. In quantum theory, the
“cup” can be thought of as the preparation of a completely entangled state on two systems; the “cap”
is the outcome of finding that same state when doing a joint measurement of two systems. The snake
equations thus correspond to a post-selected formulation of quantum teleportation.

In graphical languages based on dagger compact closed categories, two diagrams represent the same
map if they are equal up to topological transformations that keep the inputs and outputs of the diagrams
as a whole invariant [24]. Topological transformations here are operations like lengthening or shorten-
ing wires, bending or straightening wires, or moving boxes around while keeping their connections the
same. Both the equality in Fig. 4 and the snake equations in Fig. 5 are examples of such topological
transformations.

Yet topological transformations are not enough to yield all desired equalities between diagrams: e.g.
the diagram equality in Fig. 6 is true, but it is not a topological transformation, and cannot be made into
one by a change of notation either. By assuming a set of axiomatic equalities called rewrite rules, further
graphical equalities can be derived using graphical rewriting. The idea is that whenever two diagrams
are equal, any time one of those diagrams appears as part of a larger diagram, it can be “cut out” and
replaced by the other diagram. We gloss over the details of this rewrite process here and assume that a
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Z
=

Z

Figure 6: A quantum circuit equality, where Z denotes the Pauli-Z gate and the other symbol is the
controlled-NOT gate as defined in (15).

Z

7→ 7→

Z

Figure 7: Rewriting a quantum circuit using the rewrite rule given in Fig. 6: the left-hand side of that
equality matches part of the diagram here, that part is “cut out”, and the right-hand side of Fig. 6 is
pasted in.

simple copy-paste process works. An example using quantum circuits is given in Fig. 6 and Fig. 7.
This process of introducing rewrite rules is fairly arbitrary, posing the question of which equalities

should become rewrite rules and how many rewrite rules are necessary. That issue can be simplified by
considering the graphical calculus as a formal system.

3.2 Graphical calculi as formal systems

A graphical calculus with rewrite rules can be considered as a formal system that allows the derivation
of equalities from the axioms given by the rewrite rules. For such a calculus to be a useful alternative
to a more standard algebraic language, it needs to satisfy certain properties, which are all relative to the
interpretation of the diagrams. Given a diagram D, we denote by JDK its interpretation, i.e. the process
corresponding to D. The desired properties of a graphical language include universality, soundness, and
completeness, which are defined as follows:

• A graphical calculus for a theory is universal if any state or transformation allowed by the theory
can be represented graphically, i.e. for any process P there exists a diagram D such that:

JDK = P. (17)

• It is sound if any equality that can be derived graphically can also be derived in the underlying
theory, i.e. if for any two diagrams D1 and D2:

D1 = D2 =⇒ JD1K = JD2K . (18)

• A graphical calculus is complete if any equality that can be derived in the underlying theory can
also be derived graphically, i.e. if for any two diagrams D1 and D2:

JD1K = JD2K =⇒ D1 = D2. (19)

Universality and soundness are usually straightforward to determine: The property of universality
does not involve the rewrite rules at all, it only depends on the diagram components and their interpreta-
tions. Soundness does depend on the rewrite rules, but it can be checked on a rule-by-rule basis: if each
rule is sound, then the graphical calculus as a whole is sound. Completeness is more difficult to prove
because it relies on the interaction of all the rewrite rules.
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4 A graphical calculus for Spekkens’ toy bit theory

In this section, we construct a graphical calculus for the maximal knowledge fragment of Spekkens’ toy
bit theory with post-selected measurements. This graphical calculus is modelled after the ZX-calculus for
quantum mechanics [8]. We define basic elements of the graphical notation and show how to combine
them into more complicated diagrams. Next, we give rewrite rules for those diagrams. We argue that the
calculus is universal and sound for Spekkens’ toy bit theory. Finally, we compare the graphical calculus
for the toy theory to the ZX-calculus.

4.1 Components of the toy theory graphical calculus

The graphical calculus for the toy theory is read from bottom to top. Rather than denoting maps by
labelled boxes, most maps are denoted by circular nodes which may have labels attached. As before, we
use JDK to denote the process corresponding to a diagram D.

Define to be the following map from one toy bit to two toy bits:

r z
:=


1∼ {(1,1),(2,2)}
2∼ {(1,2),(2,1)}
3∼ {(3,3),(4,4)}
4∼ {(3,4),(4,3)}.

(20)

This is a valid process in the toy theory; it can be considered to consist of the preparation of an ancilla in
some fixed state followed by some joint reversible operation on the original toy bit and the ancilla.

The converse of a relation R, denoted by R†, is defined as:

R† = {(b,a) | (a,b) ∈ R}. (21)

Let be the converse of :
r z

:=
r z†

. (22)

This is also a valid process in the toy theory, which can be thought of as a reversible operation on two
toy bits, followed by a post-selected measurement of one of them. As indicated by this notation, the
relational converse is the toy theory equivalent of the Hermitian adjoint [11].

More complicated diagrams in the toy theory graphical calculus can be built by putting smaller
diagrams side-by-side, which corresponds to taking the Cartesian product of the corresponding relations;
i.e. if:

D
. . .

. . .
and D′

. . .

. . .

denote two arbitrary diagrams, then:
t

D
. . .

. . .
D′
. . .

. . .

|

=

t

D
. . .

. . .

|

×

t

D′
. . .

. . .

|

. (23)

Connecting the inputs of some diagram to the outputs of another corresponds to the operation of relational
composition: if R : A→ B and S : B→C are two relations, their composite S◦R is:

S◦R = {(a,c) | ∃b ∈ B s.t. (a,b) ∈ R∧ (b,c) ∈ S}. (24)
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Graphically, assuming the number of outputs of D is equal to the number of inputs of D′:
u

www
v

D′
. . .

. . .

D
. . .

}

���
~

=

t

D′
. . .

. . .

|

◦

t

D
. . .

. . .

|

. (25)

We introduce a short-hand notation for specific diagrams built from and : a green node with
n inputs and m outputs for positive integers n,m is defined as follows:

. . .

. . .

m

n

:=

. . .

. . .

m

n

(26)

Such a node is called a spider.
Represent the following four single-toy bit states by green nodes with phase labels:

r
00

z
:= {1,3}, (27)

r
01

z
:= {1,4}, (28)

r
10

z
:= {2,3}, and (29)

r
11

z
:= {2,4}, (30)

and let be short-hand for 00 . These two alternative notations make later definitions consistent.
Spiders can now be given phase labels via the following definition:

. . .
xy

. . .

m

n

:=
. . .

. . .

m

n
xy

(31)

where x,y ∈ {0,1}. Furthermore, spiders without inputs can be defined by composing and a spider
with one input. Let be the converse of , seen as a relation:

q y
:=

{
1∼ •
3∼ •.

(32)

Then arbitrary spiders with no outputs can be defined as composites of a one-output spider and . In this
way, definitions (26) and (31) can be extended to arbitrary non-negative numbers of inputs and outputs n
and m.

Let be the following reversible single-toy bit operation:

r z
:=


1∼ 1
2∼ 3
3∼ 2
4∼ 4.

(33)
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As a final short-hand, define red spiders as green spiders with copies of on all inputs and outputs:

xy := xy
. . .

. . .

. . .

. . .
(34)

A single straight wire corresponds to the identity relation and a wire crossing is the obvious SWAP

relation interchanging the states of the two subsystems. A “cup” is interpreted as follows:

J K = {(1,1),(2,2),(3,3),(4,4)}, (35)

and the cap is its converse.
As , , xy , and are all special cases of green spiders, the graphical calculus can be consid-

ered to consist of green phased spiders with n inputs and m outputs, where n and m are now non-negative
integers; red phased spiders with arbitrary numbers of inputs and outputs; and .

Spiders with exactly one input and one output are called phase shifts, these are the only spiders
representing reversible operations. A diagram with neither inputs nor outputs is called a scalar diagram;
the same terminology is also used for parts of larger diagrams that are disconnected from all inputs or
outputs of the large diagram.

4.2 Rewrite rules of the toy theory graphical calculus

We postulate the following rewrite rules for the toy theory graphical calculus. Any rule given here can
also be used with the colours red and green swapped. Rules can furthermore be used upside-down.

Spider rule and loop rule: Two nodes of the same colour can merge if they are connected by an
edge, in that case their phase labels combine by bit-wise addition modulo 2. Self-loops can be removed.

. . . . . . . . . . . .
ab = (a⊕ c)(b⊕d)cd

. . . . . .. . . . . .

. . .

ab
. . .

=

. . .

ab
. . .

Identity rule, bialgebra rule, and copy rule: A node with one input and one output and no phase
label (or, equivalently, phase 00) is the same as an edge. The bialgebra rule allows a certain pattern of
two red and two green nodes to be replaced by just one red and green node. A node of one colour with
one input and two outputs copies the zero phase state of the other colour.

= = =

11-copy rule and 11-commutation rule: A 11-phase shift is copied by a node of the other colour.
It can also be moved past any phase shift of the other colour, swapping the two bits of that phase label in
the process.

=

11

. . .
11 . . . 11

ab
=11 ba

11

Colour change rule and Euler decomposition of : The node swaps the colour of red and green
nodes when it is applied to each input and output. Furthermore, can be replaced by three green and
red nodes of alternating colours, each with phase 01. This rule is called Euler decomposition in analogy
to the Euler decomposition of general rotations in three-dimensional space into three rotations about two
distinct axes.
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xy = xy
. . .

. . .

. . .

. . .
= 01

01

01

Whenever a rule holds for any number of edges, that number may be zero. For example, the colour
change rule with zero inputs and zero outputs implies that xy = xy for any x,y ∈ {0,1}.

There are also two meta rules, rules that are not specified in terms of diagram equalities. The first
of these is that “only the topology matters”. This means that two diagrams represent the same process
whenever they contain the same set of nodes connected up in the same ways, no matter how those nodes
are arranged on the plane. Secondly, we “ignore all scalars that do not represent the empty relation”,
meaning scalar subdiagrams can simply be dropped as long as they do not represent the empty relation.

4.3 Universality of the graphical calculus

The graphical calculus for the toy theory as defined in the previous two subsections is universal for the
maximal knowledge fragment of Spekkens’ toy bit theory with post-selected measurements. This follows
from the category-theoretical formulation of the toy theory in [11], where it is shown that all processes in
the toy theory arise – via parallel and sequential composition, and taking the relational converse – from
the 24 reversible transformations of a single toy bit together with a specific map called δ from one toy bit
to two toy bits, and a post-selected measurement outcome denoted ε . It is straightforward to see that
and the phase shifts suffice to construct all 24 reversible single-toy bit transformations, which correspond
to the 24 permutations of the ontic states. The maps δ and ε from [11] are exactly the maps denoted by

and here. The graphical calculus allows parallel and sequential composition, as well as the taking
of relational converses, which corresponds to flipping diagrams upside-down. Therefore any process in
the maximal knowledge fragment of Spekkens’ toy bit theory with post-selected measurements can be
represented graphically.

4.4 Soundness of the graphical calculus

Most of the rewrite rules of the toy theory graphical calculus can straightforwardly be checked to be
sound by translating the diagrams on both sides of the equality into the corresponding maps. For example,
the left-hand side of the copy rule is, by definition, equal to:

.

Using the definitions of , , and , this diagram can be translated to the state:

{(1,1),(1,3),(3,1),(3,3)}. (36)

The right-hand side of the copy rule translates to:

{1,3}×{1,3}. (37)

By explicitly constructing the Cartesian product in (37), the two relations are seen to be the same. There-
fore the copy rule is sound.

The other rewrite rules with fixed numbers of inputs and outputs – i.e. the identity rule, bialgebra
rule, 11-commutation rule, and Euler decomposition rule – can be checked in the same way. The colour
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change rule is sound by definition. Soundness of both the 11-copy rule and the loop rule can be verified
by induction over the number of outputs and/or inputs.

For soundness of the spider rule, we again rely on results from the categorical formulation of Spek-
kens’ toy bit theory. As shown in [12], the maps and form a category-theoretical observable. This
means that any connected diagram constructed from these maps, their converses, wire crossings, and
curved wires is determined solely by its number of inputs and outputs. Graphically, this corresponds ex-
actly to the spider law without phase labels [13]. The states xy form a phase group for this observable
[12]. In particular, they form a group under the operation given by composition with :

ab
(a⊕ c)(b⊕d)

cd
= , (38)

with group identity and all group elements being self-inverse. From this, it follows that the spider law
with phase labels is also sound.

Soundness of the topology meta-rule also follows from the category-theoretical formulation of the
toy theory: The toy theory is modelled as a dagger compact closed category, therefore the results given
in section 3.1 apply.

The ignore-scalars rule is also sound by the category-theoretical formulation. There are exactly two
relations from I to I, the identity relation {(•,•)} and the empty relation /0. Composing any relation with
{(•,•)} does not change the relation. Thus dropping scalar subdiagrams is justified, as long as they are
not the empty relation.

4.5 The toy theory graphical calculus and the ZX-calculus

The toy theory graphical calculus is modelled after the ZX-calculus for pure state stabilizer quantum
mechanics with post-selected measurements, which also consists of green and red phased spiders and
yellow nodes that change the colour of spiders [8, 9].

The ZX-calculus arises from the categorical formulation of quantum mechanics, and as explained in
the previous section, the toy theory graphical calculus is closely related to the categorical formulation of
Spekkens’ toy bit theory. Category-theoretically, the only difference between the toy theory and stabilizer
quantum theory is the phase group of the respective observables: for the toy theory the phase group is
isomorphic to the Klein Four group Z2×Z2, whereas for stabilizer quantum theory the phase group is
isomorphic to the cyclic group of order 4, Z4 [12].

Correspondingly, the rewrite rules of the toy theory graphical calculus that do not involve specific
phases are exactly the same as those of the ZX-calculus if the phase groups are swapped out. In the stabi-
lizer ZX-calculus, the phase group is generally denoted by the angles {−π/2,0,π/2,π} under addition
modulo 2π . The Euler decomposition rule and 11-copy rules also have straightforward analogues in the
ZX-calculus, with π/2 phase shifts appearing in the Euler decomposition and π taking the role of 11.

The ZX-calculus analogue to the 11-commutation rule is the π-commutation rule:

α
=

π −α

π
. (39)

At first glance this looks different to the 11-commutation rule: the π-commutation rule sends any phase
shift to its inverse whereas the 11-commutation rule swaps the two bits denoting the phase. In fact, both
commutation rules can be expressed in the same way nevertheless. Let ϕ denote 11 or π and let θ be an
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arbitrary phase label for the respective theory. We can write the two commutation rules in general form
as:

θ
=

φ f (θ)
φ

, (40)

where f is some map from the phase group to itself. Then in both the ZX-calculus for stabilizer quantum
mechanics and in the graphical calculus for Spekkens’ toy bit theory, the map f can be characterised
as follows: f maps both ϕ and the identity of the phase group back to themselves, but it swaps the
remaining two elements of the phase group.

5 Completeness of the graphical calculus

We now show that the toy theory graphical calculus is complete by adapting the completeness proof for
the stabilizer ZX-calculus [4]. There are several parts to the argument: First, we show that the results
characterising all true equalities between stabilizer states from [19], which are central to the ZX-calculus
completeness proof, also hold in Spekkens’ toy theory. We then argue that it is sufficient to consider
equalities between toy states rather than more general processes in the toy theory, because the toy theory
has map-state duality. Next, we prove that diagrams in the toy theory graphical calculus can be brought
into a normal form called GS-LO form. Finally, we show that the rewriting strategies used in the ZX-
calculus completeness proof also work in the toy theory graphical calculus.

Where the steps in the completeness argument for the toy theory differ only marginally from the
corresponding steps in the stabilizer ZX-calculus completeness proof, the proofs are left out or given in
sketch form. Longer proofs can be found in the appendices.

5.1 The binary stabilizer formalism and the graph state theorems

Completeness of a graphical language means that any equality that can be derived in the standard for-
malism for the same theory can also be derived graphically. Thus it is useful to have some simple way
of characterising the equalities that can be derived in the underlying theory.

The completeness proof for the stabilizer ZX-calculus makes use of two theorems about relationships
between stabilizer states under local Clifford unitaries, i.e. unitary stabilizer operations that are tensor
products of single-qubit unitaries. Central to these results are graph states – a class of stabilizer states
whose entanglement structure is that of a finite simple graph, i.e. a graph with finitely many vertices
(corresponding to the qubits), at most one edge between each pair of vertices (corresponding to the
entanglement), and no self-loops. Graph states on n qubits can be represented in the binary formalism as
follows [19]:

S =

(
θ

I

)
, (41)

where θ is a n by n symmetric matrix with zeroes along the diagonal and I is the n by n identity matrix.
The matrix θ is in fact the adjacency matrix of the underlying graph: a 1 in position (p,q) means that the
p-th and q-th vertices are connected by an edge, a 0 means they are not connected. The following results
can be proved using the binary formalism:
Theorem 1 ([19]). Any stabilizer state can be transformed into some graph state by application of a
local Clifford operation.

Theorem 2 ([19]). Two stabilizer states are equivalent under local Clifford operations if and only if the
underlying graphs are related by a sequence of local complementations.
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By local complementation we mean the following operation on a graph.

Definition 1. Let G = (V,E) be a graph with set of vertices V and set of edges E. The local complemen-
tation about the vertex v is the operation that inverts the subgraph generated by the neighbourhood of v
(but not including v itself). Formally, a local complementation about v ∈V sends G to the graph:

G? v =
(
V,E4

{
{b,c}

∣∣{b,v},{c,v} ∈ E ∧b 6= c
})

, (42)

where 4 denotes the symmetric set difference, i.e. A4B contains all elements that are contained either
in A or in B but not in both.

We now show that these results translate to the toy theory.
As described in section 2.1, a state of maximal knowledge on n toy bits is given by a set of n

commuting quadrature variables, together with the values for each of the variables. These quadrature
variables can be represented as binary vectors, similar to the representation of Pauli products, where
the m-th and (m+ n)-th component together encode the quadrature variable acting on the m-th toy bit
according to the following encoding:

X 7→ 01, (43)

Z 7→ 10, and (44)

X⊕Z 7→ 11, (45)

with 00 indicating that no quadrature variable is acting on the given toy bit. Thus, ignoring the values of
the quadrature variables, any state of maximal knowledge can be described by a binary 2n by n matrix in
the same way as a pure quantum state.

Lemma 3. A binary 2n by n matrix S represents a valid state in the toy theory if and only if ST JS = 0,
where:

J =

(
0 I
I 0

)
(46)

with I the n by n identity matrix.

This follows from the principle of classical complementarity, as shown in [26]. In the binary picture,
the valid reversible transformations of the toy theory are represented by 2n by 2n binary matrices Q
satisfying QT JQ = J.

The conditions for 2n by n binary matrices to represent valid states and the condition for 2n by 2n
binary matrices to represent valid transformations are exactly the same as in the binary formalism for
stabilizer quantum mechanics. Therefore the binary matrix formalism for Spekkens’ toy bit theory is
exactly the same as the check matrix formalism for stabilizer quantum mechanics, if one ignores the
values of the quadrature variables in the former and the eigenvalues in the latter. An equivalent result
was shown in [21], albeit not using check matrices.

When considering graph states and local Clifford transformations in quantum mechanics, it is rea-
sonable to ignore the eigenvalues in the stabilizer formalism because the eigenvalue for each stabilizer of
a graph state can be changed by a local Clifford transformation that keeps all the other properties of the
state invariant. Define graph states in Spekkens’ toy bit theory to be states having the same check matrix
representation as some graph state in stabilizer quantum mechanics. Then the values of the quadrature
variables can be ignored for the same reason as eigenvalues in quantum theory.

Thus theorems 1 and 2 carry over to the toy theory, i.e. we have:
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Theorem 4. Any toy stabilizer state is equivalent to some toy graph state under local toy transformations
σ ∈ (S4)

n.

Theorem 5. Two toy graph states on the same number of toy bits are equivalent under local toy trans-
formations if and only if there is a sequence of local complementations that transform one graph into
other.

Local complementations on a graph are defined just as above.

5.2 Map-state duality for the toy theory

The graph state theorems, as implied by the name, apply only to toy states, not more general processes
in the toy theory. Yet it suffices to consider only equalities between states in order to get a completeness
result for the entire theory. This is because the toy theory exhibits map-state duality: as in quantum
theory, there exists a bijection between operators from n to m toy bits and states on (n+m) toy bits.
This duality is also known as the Choi-Jamiołkowski isomorphism. Denoting the map by A and its
corresponding state by B, the isomorphism can be represented diagrammatically as follows:

A
. . .

. . .

. . .

=

. . . . . .

B ⇐⇒ A
. . .

. . .
=

. . .

. . . . . .

B
(47)

This result follows directly from the snake equations given in Fig. 5, which hold in the toy theory
graphical calculus via the topology rule.

The Choi-Jamiołkowski isomorphism allows toy theory operators to be turned into states. Any equal-
ities derived between these states then apply also to the original operators. Thus, a completeness result
for the entire toy theory can be derived by considering only toy states.

5.3 Graph states and related diagrams in the toy theory graphical calculus

In the first part of this section, we defined graph states for the toy theory via their check matrices. We
now show that they also have an elegant graphical representation.

Definition 2. Let G be a finite simple undirected graph, i.e. a graph with finitely many vertices, at most
one edge between any pair of vertices, and no self-loops. Let the set of vertices be V and the set of edges
E. The associated graph state in the toy theory graphical calculus comprises the following:

• for each vertex in V , a green node with one output, and
• for each edge in E, a copy of connected to the green nodes representing the vertices at either

end of the edge.

To show that this definition is equivalent to the previous one, we consider the operators stabilizing
the graph state.

Lemma 6. Let G
. . .

denote the state associated with a graph G. Then for any vertex v ∈V ,

α1 . . . αv−1

G
=

αnαv+1 . . .11

G
. . .

where αk = 11 if {v,k} ∈ E and αk = 00 otherwise. This means that G
. . .

is an eigenstate of any
operator that applies 11 to one of the vertices and 11 to all neighbours of that vertex.
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This lemma follows from the rules of the red-green calculus for the toy theory; the proof is entirely
analogous to that for the ZX-calculus, where π-phase shifts appear instead of the 11-phase shifts [15].

Corollary 7. Definition 2 is equivalent to the definition of toy theory graph states via their check matri-
ces.

Proof. Lemma 6 gives n quadrature variables of which the diagram is an eigenstate: a phase shift 11
on the p-th output corresponds to a term Xp in the quadrature variable, a phase shift 11 on the q-th
output corresponds to a term Zq. Translate each of these variables into a binary vector as described
in section 5.1, and assemble the resulting vectors as the columns of a matrix with the vector for the
variable involving the term Xm as the m-th column. The resulting check matrix then has the form given
in (41).

The local complementation operations from theorem 5 can be derived from the rules of the toy theory
graphical calculus. Note that from now on we use the term “local complementation” in a slightly different
sense as before: previously, the term referred to an operation on graphs only. From now on, we use the
same term to refer to an operation on graph states together with the application of a local operation to all
the toy bits that keeps the overall toy state invariant.

Lemma 8. The following local complementation rule holds in the red-green calculus for the toy theory:

α1 . . . αv−1

G? v
=

αnαv+1 . . .01

G
. . .

where αk = 01 if {v,k} ∈ E and αk = 00 otherwise, and G ? v denotes the graph-theoretical local com-
plementation as defined in (42).

A sketch proof of this lemma can be found in appendix A.1.
A local complementation along an edge {v,w} ∈ E consists of a local complementation about v, a

local complementation about w, and another local complementation about v, yielding:

G′
=

G

. . .σ1 σn σ ′1 σ ′n. . .

where:

σ
′
j =

{
σ j ◦ (23) if j ∈ {v,w}
σ j otherwise

and G′ = (V,E ′) satisfies the following properties:

• G′ = ((G? v)?w)? v = ((G?w)? v)?w;

• {v,w} ∈ E ′;

• for j ∈V \{v,w}, { j,v} ∈ E ′⇔{ j,w} ∈ E and { j,w} ∈ E ′⇔{ j,v} ∈ E, i.e. a vertex j is adjacent
to v in G′ if and only if j was adjacent to w in G and correspondingly with v and w exchanged;

• for p,q∈V \{v,w}, let P be the intersection of p’s neighbourhood with {v,w}, i.e. v∈P if {p,v} ∈
E and w ∈ P if {p,w} ∈ E, and define Q correspondingly. Then the edge {p,q} is toggled if and
only if P,Q and /0 are pairwise distinct.

This operation is symmetric under interchange of the two vertices v and w.
It will be useful to have a normal form for reversible single-toy bit operators.
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Lemma 9. Any reversible single-toy bit operator, i.e. any diagram or subdiagram consisting solely of
phase shifts and , can be written uniquely in one of the following forms:

ab
cd

01
eē
f g

or

where a,b,c,d,e, f ,g ∈ {0,1} and ē = e⊕1, with ⊕ denoting addition modulo 2.

This is straightforward to check, analogously to the corresponding result in the ZX-calculus. In
the following, whenever we talk about reversible single-toy bit operators we will assume that they are
normalised as in the above lemma.

Definition 3. A diagram in the red-green calculus for Spekkens’ toy theory is called a GS-LO diagram
(graph state with local operators) if it consists of a graph state as in definition 2 with reversible single-toy
bit operators on each output.

GS-LO diagrams play a central role in the graphical calculus for the toy theory, as shown by the
following theorem.

Theorem 10. Any state diagram in the red-green calculus for Spekkens’s toy theory is equal to some
GS-LO diagram according to the rewrite rules.

This theorem is analogous to theorem 7 in [4]. A sketch of the parts of the proof that differ from
the ZX-calculus case can be found in appendix A.1. The proof relies on the fact that diagrams can be
decomposed into reversible single-toy bit operators and four basic spiders:

, , , and .

Local complementations together with fixpoint operations can be used to change the reversible single-toy
bit operator on any given toy bit in the graph state to any desired operator, similar to the equivalent result
for the ZX-calculus [4]. Thus it can be shown that any diagram consisting of a basic spider composed
with a GS-LO diagram can be rewritten into GS-LO form. The only basic spider with no inputs is , so
any state diagram must contain at least one copy of that; furthermore is a GS-LO diagram. Therefore,
by induction, any diagram can be brought into GS-LO form.

The GS-LO form is not unique, i.e. there may be different GS-LO diagrams representing the same
state. It is not clear how to define a unique normal form, but it is possible to reduce the number of
diagrams needing to be considered further.

Definition 4. A diagram in Spekkens’s toy theory is said to be in reduced GS-LO (or rGS-LO) form if it
is in GS-LO form and satisfies the following additional conditions:

• All the reversible single-toy bit operators belong to the set:

R = 01
10
01

{ }
.11 10

01
01

(48)

• Two adjacent vertices must not both have vertex operators that include red nodes.

Theorem 11. Any toy stabilizer state diagram is equal to some rGS-LO diagram within the graphical
calculus.

A sketch proof of this theorem can be found in appendix A.1.
Reduced GS-LO diagrams are still not unique, as shown by the following two propositions, sketch

proofs of which can be found in the appendix.
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Proposition 12. Suppose a rGS-LO diagram contains a pair of neighbouring toy bits p and q in the
following configuration, where a,b ∈ {0,1}:

aā bb
01

p q

. . . . . .

Then a local complementation about q, followed by a local complementation about p, yields a diagram
which can be brought into rGS-LO form by at most two applications of the fixpoint rule.

Proposition 13. Suppose a rGS-LO diagram contains a pair of neighbouring toy bits p and q in the
following configuration, where a,b ∈ {0,1}:

aā bb̄
01

p q

. . . . . .

Then a local complementation along the edge {p,q} yields a diagram which can be brought into rGS-LO
form by at most two applications of the fixpoint rule.

With the definitions and results in this section, state diagrams in the toy theory graphical calculus can
be simplified significantly. By map-state duality, the results can be applied to arbitrary diagrams.

For completeness it remains to be shown that whenever two rGS-LO diagrams represent the same toy
state, they can be rewritten into each other using the rewrite rules for the toy theory graphical calculus.

5.4 Equalities between rGS-LO diagrams

The graphical calculus is complete for toy theory states if, given any two rGS-LO diagrams representing
the same state, we can show that they are equal using the rules of the graphical calculus. In this section,
we exhibit an algorithm for rewriting two diagrams representing the same toy state to be identical. As
rewrite rules are invertible, this is equivalent to being able to rewrite one diagram into the other. The
algorithm is adapted from a similar one for the stabilizer ZX-calculus [4].

Given two toy state diagrams on the same number of toy bits, we start by pairing up red nodes
between the two diagrams.

Definition 5. A pair of rGS-LO diagrams on the same number of toy bits is called simplified if there are
no pairs of toy bits p,q such that p has a red node in its vertex operator in the first diagram but not in the
second, q has a red node in the second diagram but not in the first, and p and q are adjacent in at least
one of the diagrams.

Proposition 14. Any pair of rGS-LO diagrams on n toy bits can be simplified.

The proof of this proposition is analogous to the stabilizer ZX-calculus case in [4]. The idea is to
use the equivalence operations of rGS-LO diagrams given in propositions 12 and 13 to shift red nodes to
different toy bits in the diagram.

Simplifying a pair of diagrams is not an arbitrary process: for a simplified pair of diagrams, it is
straightforward to decide whether or not they are equal according to the rewrite rules. Firstly, if there
exist red nodes that cannot be paired up between the two diagrams, then the diagrams cannot represent
the same state, as shown by the following lemma.
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Lemma 15. Consider a simplified pair of rGS-LO diagrams and suppose there exists an unpaired red
node, i.e. there is a toy bit p which has a red node in its vertex operator in one of the diagrams, but not
in the other. Then the two diagrams are not equal.

This lemma is proved in appendix A.2.
The existence of unpaired red nodes is not the only sign that a simplified pair of diagrams cannot be

equal. In fact, a simplified pair of diagrams are either identical or they do not represent the same state.

Theorem 16. The two diagrams making up a simplified pair of rGS-LO diagram are equal, i.e. they
correspond to the same toy theory state, if and only if they are identical.

The proof of this theorem is analogous to that of theorem 18 in [4].
By map-state duality for the toy theory, as given in (47), and invertibility of the rewrite rules, theorem

16 directly implies:

Theorem 17. The red-green calculus is complete for Spekkens’ toy bit theory.

Equalities between two diagrams in the toy theory graphical calculus can be derived as follows: if
the diagrams are not states, bend all inputs around to become outputs. Bring the two diagrams into
GS-LO form and thus into rGS-LO form. Simplify the pair of diagrams. Then either the two diagrams
are identical, in which case some of the rewrite steps can be inverted to get a sequence of rewrites
transforming one diagram into the other, or they are not identical, in which case the two diagrams do not
represent the same operator, so there is no equality to derive.

If the diagrams were not states to begin with, the appropriate outputs can be bent back into inputs in
all diagram. This yields a sequence of valid rewrites transforming one of the original diagrams into the
other.

6 Conclusions

We have defined a graphical calculus for Spekkens’ toy bit theory and shown that it is universal, sound,
and complete for the maximal knowledge fragment of the theory with post-selected measurements. This
means that the graphical calculus has the full power of any formalism for analysing the toy theory. Our
graphical calculus is modelled after the ZX-calculus, a similar universal, sound, and complete graphical
calculus for pure state qubit stabilizer quantum mechanics with post-selected measurements. Therefore
similarities and differences between stabilizer quantum mechanics and the toy bit theory can be analysed
entirely graphically.

A potential next step for this research programme is to implement the rewrite rules and algorithms
involved in the completeness proof in the software system Quantomatic, which enables automated and
semi-automated manipulation of diagrams in the ZX-calculus and similar graphical languages [1]. That
way, diagrams can be simplified and equalities between toy theory diagrams can be derived automatically.
If the corresponding algorithms for the ZX-calculus are implemented as well, Quantomatic can compare
the two theories automatically.

So far, we have only considered pure state qubit stabilizer quantum mechanics and the maximal
knowledge fragment of Spekkens’ toy bit theory. An obvious next step would be to extend the graphical
calculi to mixed states in the quantum case and states of less-than-maximal knowledge in the toy theory.
The category-theoretical formulations underlying the graphical calculi can easily be extended in this way
using the CPM-construction [24] and these extensions carry over to categorical graphical calculi.

Furthermore, it would be interesting to extend this argument to stabilizer quantum mechanics for
higher dimensional systems and the higher-dimensional toy theory. Some steps in this direction have
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been made by generalising the ZX-calculus to qudits and Spekkens’ toy theory for systems of dimension
greater than two, though it is still unclear whether these graphical languages are complete [23].

Rigorous graphical languages have many applications in the analysis of quantum physics and related
theories.
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A Appendix

A.1 Proofs of results about graph states, GS-LO diagrams, and rGS-LO diagrams

Here, we give the proofs for results stated in section 5.3 where they differ significantly from the cor-
responding proofs in the ZX-calculus. The ZX-calculus is introduced in [9] and extended in [15]. The
completeness proof for the stabilizer ZX-calculus can be found in [4].

Lemma 8, sketch. The proof is similar to the ZX-calculus case as given by Duncan and Perdrix [15]. We
show here as an example the case of the complete graph on three vertices (rearranged with two inputs at
the bottom for ease of reading):

=

0101
01

=

01 01

01

=

01

0101

=

01 01
01

=

01 01

01
=

01

01

01

=

01

01

01

The first equality uses the decomposition of in terms of red and green phase shifts In the second step,
the spider rule is used to merge the green phases with their green neighbours. Subsequently, the red and
green phased spiders are “pulled apart”, again using the spider law. In the fifth step, the colour change
law and the fact that is self-inverse are used to change the green node at the top into a red one. The
next step is an application of the bialgebra law. The penultimate step uses the fact that 01 = 01 ,
which is the case a = 0 of (49) below. Lastly, the colour change rule is applied again.

The full proof then proceeds by induction over the number of vertices in the graph state.

Theorem 10, sketch. The proof is analogous to the proof of Theorem 7 in [4], noting the following facts:

• Let a ∈ {0,1} and ā = a⊕1, then:

aā
=

aā

=

aā
01

01
01

=

aa

01
01

=
01
aa

=

aa

01 01
01
aa

=

aā
aā

= (49)

Here, the first step uses the fact that is self-inverse and the second step uses the decomposition
of into red and green phase shifts. The third step is an application of the spider law to merge
the bottom two nodes, which is again used in the fourth step to pull apart the green node. In the
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fifth step, the bottom red node is copied: this works for both values of a. The penultimate step,
involves dropping the scalar diagram on the left and merging the two red nodes in the non-scalar
part by the spider law. The last equality is by the colour change law.

• Any single toy bit operator can be written as

ab
cd
e f

for some a,b,c,d,e, f ∈ {0,1}.

• 11 and 11 denote the zero scalar.

• A loop with a node in it disappears:

= (50)

Theorem 11. By theorem 10, any state diagram in the toy theory is equal to some GS-LO diagram.
Lemma 9 shows that each vertex operator in the GS-LO diagram can be brought into the form:

ab
cd

01
eē
f g

or ,

where a,b,c,d,e, f ,g ∈ {0,1}. Note that the cases c = 0 = d and f = 0 = g of the above normal forms
correspond exactly to the elements of R as defined in (48). A local complementation about a vertex v pre-
multiplies the vertex operator of v with 01 and a fixpoint operation with 11 , so any vertex operator
can be brought into one of the above forms by some combination of local complementations and fixpoint
operations about the corresponding vertex. The other effects of local complementations are to toggle
some of the edges in the graph state and to pre-multiply the vertex operators of neighbouring vertices
by 01 , whereas fixpoint operations leave the edges invariant and pre-multiply the vertex operators of
neighbouring vertices by 11 . The set R is not mapped to itself under repeated pre-multiplication with

01 : this transformation sends the set { ab } for a,b ∈ {0,1} to itself, but it maps:

aā
01

}
7→

{
01
aā

01
10
11

{ }
. (51)

The normal form of a vertex operator contains at most two red nodes. Once a vertex operator is in one
of the forms in R, pre-multiplication by green phase operators does not change the number of red nodes
it contains when expressed in normal form. Thus the process of removing red nodes from the vertex
operators by applying local complementations must terminate after at most 2n steps for an n-toy bit
diagram, at which point all vertex operators are elements of the set R.
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With all vertex operators in R, suppose there are two adjacent toy bits u and v which both have red
nodes in their vertex operators, i.e. there is a subdiagram of the form:

aā bb̄
01 01

u v

. . . . . .

(52)

with a,b,∈ {0,1}. A local complementation along the edge {u,v} maps the vertex operator of u to:

01

01
aa

01

=
aa
aā

=
01
aa

01

01

aā
01

01

= (53)

and similarly for v. After this, if a = 1, we apply a fixpoint operation to u and if b = 1 we apply a fixpoint
operation to v. After this, the vertex operators on both u and v are green phase operators. Vertex operators
of toy bits adjacent to u or v are pre-multiplied with some power of 11 , which maps R→ R. Thus each
such operation removes the red nodes from a pair of adjacent toy bits and leaves all vertex operators in
the set R. Hence after at most n/2 such operations, it will be impossible to find a subdiagram as in (52).
Thus, the diagram is in reduced GS-LO form.

Proposition 12, sketch. The effect of the local complementations on the vertex operators of p and q is as
follows:

01

01

aā
01

=
01

01
aa =

aa
aa

bb
01
01

= bb̄
bb̄

=
01
01
bb

and (54)

If a = 1, we apply a fixpoint operation to p and if b = 1, we apply a fixpoint operation to q; then the
vertex operators of p and q are in R. The fixpoint operations add 11 to neighbouring toy bits, which
maps the set R to itself. As fixpoint operations do not change any edges, we do not have to worry about
them when considering whether the rest of the diagram satisfies definition 4.

The rest of the proof is analogous to the stabilizer QM case in [4].

Proposition 13. After the local complementation along the edge, the vertex operator of p is given by
(53). For the vertex operator of q, we have:

bb
01
01

= bb̄
bb̄

=
01
01
bb

bb̄
01
01
01

= (55)

Thus if a or b is 1, we apply a fixpoint operator to the appropriate vertex. From the properties of local
complementations along edges it follows that the overall transformation preserves the two properties of
rGS-LO states.
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A.2 Proof of completeness result

The arguments in the following proof closely follow the proof of Lemma 17 in [4]. As the diagrams are
complicated and differ in subtle ways from the ZX-calculus ones, the proof is nevertheless produced in
full here.

Lemma 15. Let D1 be the diagram in which p has the red node, D2 the other diagram. There are multiple
cases:

In either diagram, p has no neighbours: In this case, the overall state factorises and the two diagrams
are equal only if the two states of p are the same. But:

ab
cc̄
016=ab = =cc 01

=
cc̄

01
cc̄= (56)

for a,b,c ∈ {0,1}, so the diagrams must be unequal.
p is isolated in one of the diagrams but not in the other: We argue in section 5.1 that, as in stabilizer

QM, two toy graph states with local operators are equal only if one can be transformed into the other
via a sequence of local complementations with corresponding changes to the local operators. As a local
complementation never turns a vertex with neighbours into a vertex without neighbours, or conversely,
the two diagrams cannot be equal.

p has neighbours in both diagrams: Without loss of generality, assume that p is the first toy bit. Let
N1 be the set of all toy bits that are adjacent to p in D1, and define N2 similarly. The vertex operators
of any toy bit in N1 must be green phases in both diagrams. In D1, this is because of the definition of
rGS-LO diagrams, in D2 it is because the pair of diagrams is simplified. Suppose the original diagrams
involve n toy bits each. Let G be the graph on n vertices (named according to the same convention as in
D1 and D2) whose edges are {{p,v}|v ∈ N1}. Now consider the following diagram:

G

p
. . .

. . .01

(57)

where the ellipse labelled G denotes the toy graph state corresponding to G, except that each vertex in the
graph has not only an output but also an input. Call this diagram U . It is easy to see that U is invertible:
composing it with itself upside-down yields the identity. Therefore composing this diagram with D1
and D2 will yield two new diagrams which are equal if and only if D1 = D2. We will denote the new
diagrams by U ◦D1 and U ◦D2 and show that, no matter what the properties of D1 and D2 are (beyond
the existence of an unpaired red node on p),

• in U ◦D1, the toy bit p is in state or 11 ;
• in U ◦D2, p is either entangled with other toy bits, or in one of the states ab , where a,b∈ {0,1}.

By the arguments used in the first two cases, this implies that U ◦D1 6=U ◦D2 and therefore D1 6= D2.
Let n = |N1|, m = |N1∩N2|, and suppose the toy bits are arranged in such a way that the first m

elements of N1 are those which are also elements of N2, if there are any. Consider first the effect on
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diagram D1. The local operator on p combines with the single-toy bit operators from U to:

aā
01
01

= aa , (58)

where a ∈ {0,1}. As green phase shifts can be pushed through other green nodes, the subdiagram
involving p and the elements of N1 in U ◦D1 is equal to:

bncn

· · ·

. . . . . . . . .
. . .

b1c1

aa
b2c2 b1c1 b2c2

. . .

· · ·

. . .

=

aa bncn

. . .. . .

· · ·
(59)

Here, b1, . . . ,bn,c1, . . . ,cn ∈ {0,1}. Note that at the end p is isolated and in the state aa . The fact that
we have ignored all toy bits not originally adjacent to p in D1 does not change that.

Next consider U ◦D2. As N1 is not in general equal to N2, the subdiagram consisting of p and vertices
in N1 looks as follows:

de
f1g1 fmgm

p

. . . . . .
. . .

· · ·

. . .

. . .
. . .

flgl

· · ·
fngn

. . .

· · · · · ·

where l = m+1 and d,e, f1, . . . , fn,g1, . . . ,gn ∈ {0,1}. Note that we neglect edges that do not involve p
and also edges between p and vertices not in N1. We will now distinguish different cases, depending on
the values of d and e.

If d = 0,e = 1 apply a local complementation about p. This does not change the edges incident on
p:

01
f1g1 fmgm

p

. . . . . .
. . .

· · ·

. . .

. . .
. . .

flgl

· · ·
fngn

. . .

· · · · · ·

01

f1ḡ1 fmḡm

p

. . . . . .
. . .

· · ·

. . .

. . .
. . .

flgl

· · ·

fngn

. . .

· · · · · ·
01

=
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01

f1ḡ1 fmḡm

p

. . . . . .
. . .

· · ·

. . .

. . .
. . .

flgl

· · ·
fngn

. . .

· · · · · ·=

01

f1ḡ1 fmḡm

p

. . . . . .
. . .

· · ·

. . .

. . .
. . .

flgl

· · ·

fngn

. . .

· · · · · ·=

01
f1ḡ1 fmḡm

p

. . . . . .
. . .

. . .

. . .
. . .

flgl fngn

. . .

· · · · · ·
=

Now if N1 =N2, p has no more neighbours and is in the state 01 . This is not the same as the state p has
in diagram 1, so the diagrams are not equal. Else, after the application of U , p still has some neighbours
in diagram 2. Local complementations do not change this fact. Thus the two diagrams cannot be equal.
The case d = 1,e = 0 is entirely analogous, except that there is a fixpoint operation in addition to the
local complementation at the beginning.

If d = e = 0, there are two sub-cases. First, suppose there exists v ∈ N2 such that v /∈ N1. Apply a
local complementation about this v. This operation changes the vertex operator on p to 01 . It also
changes the edges incident on p, but the important thing is that p will still have at least one neighbour.
Thus we can proceed as in the case d = 0,e = 1.

Secondly, suppose there is no v∈N2 which is not in N1. Since N2 6= /0 (N2 = /0 corresponds to the case
“p has no neighbours in D2”, which was considered above), we must then be able to find v ∈ N1 ∩N2.
The diagram looks as follows, where now m > 0 (again, we are ignoring edges that do not involve p):

f1g1 fmgm

p

. . . . . .
. . .

· · ·

. . .

. . .
. . .

flgl

· · ·
fngn

. . .

· · · · · ·

f1g1 fmgm

p

. . . . . .
. . .

· · ·
. . .

. . .
. . .

flgl

· · ·

fngn

. . .

· · · · · ·

=

To show that the two diagrams are unequal it suffices to show that in diagram 2 the state of p either
factors out, but is not or 11 , or that it remains entangled with other toy bits. We are thus justified
in ignoring large portions of the above diagram to focus only on p, v and the edge between the two. In
particular, we will ignore for the moment the edges between p and toy bits other than v, as well as the
last on p. Then:
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fvgv

p v

. . .

=

fvgv

p

. . .

v

0101
01

01

p v

fvgv

. . .

. . .
=

. . .

...

. . .

= ...

. . .

01

01
vp

fvgv

01 =
01

01

01

. . .

fvgv

p v

. . .

. . .

where for the second equality we have applied a local complementation to v and used the Euler decom-
position, the third equality follows by a local complementation on p, and the last one comes from the
merging of p with the green node in the bottom left. Note that, in the end, p and v are still connected
by an edge. None of the operations we ignored in picking out this part of the diagram will change that.
Thus, as before, the state of p cannot be the same as in diagram 1. The two diagrams are unequal.

The case d = e = 1 is analogous to d = e = 0, except in either sub-case we start with a fixpoint
operation on the chosen v.

We have thus shown that a simplified pair of rGS-LO diagrams are not equal if there are any unpaired
red nodes.
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