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Number of superclasses of four-qubit entangled states under the inductive
entanglement classification

Miriam Backens*

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
(Received 8 November 2016; published 21 February 2017)

L. Lamata et al. use an inductive approach to classify the entangled pure states of four qubits under stochastic
local operations and classical communication (SLOCC) [Phys. Rev. A 75, 022318 (2007)]. The inductive method
yields a priori ten entanglement superclasses, of which they discard three as empty. One of the remaining
superclasses is split into two, resulting in eight superclasses of genuine four-qubit entanglement. Here, we show
that two of the three discarded superclasses are in fact nonempty and should have been retained. We give explicit
expressions for the canonical states of those superclasses, up to SLOCC and qubit permutations. Furthermore,
we confirm that the third discarded superclass is indeed empty, yielding a total of ten superclasses of genuine
four-qubit entanglement under the inductive classification scheme.

DOI: 10.1103/PhysRevA.95.022329

I. INTRODUCTION

Entangled states are an important resource in quantum in-
formation and computation. The classification of entanglement
under stochastic local operations and classical communication
(SLOCC) aims to group quantum states according to which
quantum information tasks they can accomplish [1]. This
classification is an important question in quantum theory, and
it has not been resolved for more than four qubits.

This is in part because there are infinitely many distinct
entanglement classes under SLOCC for four or more qubits [2].
Approaches to the classification of four-qubit entanglement
group these infinitely many classes into “superclasses”, which
contain entanglement classes with similar structures that are
nevertheless distinct under SLOCC [3,4]. In the following, we
sometimes use the word “class” to refer to a superclass; it
should be clear from the context which is meant.

One scheme for entanglement classification of multiqubit
states is the inductive approach of Lamata et al. [5]. In a
subsequent paper in 2007, the same authors apply this approach
to the classification of four-qubit states [3], reporting eight
distinct entanglement superclasses of genuine four-partite
entanglement (up to qubit permutations). In the process, they
consider three other potential superclasses, discarding them
with the claim that they are empty. We point out that in
two cases this is erroneous: the classes called W0k�,W and
WW,W in the naming scheme from [3] should not have been
discarded because they do contain states that do not fall into
any other entanglement superclass. For these two entanglement
superclasses, we not only show that they are nonempty but also
derive their respective canonical states, into which any state
in the given class can be transformed by SLOCC. This is
analogous to the approach taken for the other entanglement
classes in [3]. We, furthermore, confirm that in the third
case—that of the class called WGHZ,GHZ—Lamata et al. were
correct in discarding it.

Throughout this paper, we use the equational rules for the
classification of three-qubit entanglement derived by Li et al.
in 2006 [6].

*m.backens@bristol.ac.uk

In the following, we first recap the inductive entanglement
classification in Sec. II and the equational rules in Sec. III. The
new results are reported in Sec. IV.

II. THE INDUCTIVE ENTANGLEMENT CLASSIFICATION

In the inductive entanglement classification of Lamata et al.,
introduced in [5] and applied to four-qubit states in [3],
entanglement classes are distinguished as follows: Consider an
n-qubit state |ψ〉. Let |v0〉 and |v1〉 be two linearly independent
states of the first qubit. Then the full state can be written as

|ψ〉 = |v0〉|φ0〉 + |v1〉|φ1〉 (1)

for some (n − 1)-qubit states |φ0〉, |φ1〉. Note that |v0〉, |v1〉
do not need to be normalized, and even if they are chosen
to be normalized, |φ0〉 and |φ1〉 need not be. As SLOCC
operations can change the norm of states, in general we work
with unnormalized states anyway.

The entanglement class—or rather superclass, as there are
infinitely many SLOCC classes on four or more qubits—is
determined by the types of (n − 1)-qubit entangled vectors
found in different spanning sets for span{|φ0〉,|φ1〉}. Those in
turn are given by the entanglement classes of (n − 1)-qubit
states: hence the inductiveness of the classification process.

By convention, states are classified according to the span-
ning sets for span{|φ0〉,|φ1〉} containing vectors with the “least
amount of entanglement”. In the case of the classification of
four-qubit entanglement, the chosen order of the entanglement
classes of three-qubit states is [3]

000 < 0� < GHZ,W, (2)

where, furthermore, GHZ is usually considered before W.
Here, 000 denotes a fully separable state, and 0� denotes
a state which is the product of a single-qubit state and an
entangled two-qubit state. This type of state is sometimes
referred to as a “bipartite separable state”. GHZ and W are
the usual classes of fully entangled three-qubit states [2], the
(unnormalized) standard representatives of which we write
as |GHZ〉 = |000〉 + |111〉 and |W 〉 = |001〉 + |010〉 + |100〉,
respectively.

Lamata et al. label the entanglement classes according to
the types of entangled vectors in the spanning set WX,Y where
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X and Y take the values 000, 0�, GHZ, or W . In the case of
0�, the bipartition may be specified by a subscript, i.e., 0k�,
where k ∈ {1,2,3}, denotes a state where the kth qubit is in a
product with an entangled state of the remaining two qubits.

We give a few examples of the classification conditions.
Consider a four-qubit state |ψ〉 and decompose it as in (1). Let
W = span{|φ0〉,|φ1〉}. Then:

(i) If there is a spanning set for W that contains two fully
separable states, |ψ〉 is in the class W000,000.

(ii) If there is a spanning set containing one fully separable
state and one bipartite separable state and there are no spanning
sets containing two fully separable states, |ψ〉 is in the class
W000,0� .

(iii) If there is a spanning set containing one fully separable
state and one GHZ state and there are no spanning sets
containing two separable states of which at least one is fully
separable, |ψ〉 is in the class W000,GHZ.

(iv) If there is a spanning set containing one fully separable
state and one W state and there are no spanning sets containing
a fully separable state together with a non-W type state, then
|ψ〉 is in the class W000,W .

(v) If there is a spanning set containing two bipartite
separable states and there are no fully separable states in W,
then |ψ〉 is in a W0�,0� class.

(vi) And so on.
Always picking the spanning set with the “lowest” entangle-

ment makes the classification unique: if, e.g., some subspace
W has a spanning set containing two linearly independent
fully separable states, then there are certainly also spanning
sets containing entangled states. Hence without the “lowest
entanglement” criterion, many states would fall into multiple
entanglement classes.

Determining the entanglement class of arbitrary three-qubit
states is thus a crucial part of the inductive entanglement
classification of four-qubit states. To do this, Lamata et al. use
a method based on the ranks of coefficient matrices and some
of their other properties [3,5]. Coefficient matrices arise from
a state vector as partial transposes. For example, a three-qubit
state expressed in the computational basis as

∑
i,j,k∈{0,1}

aijk|ijk〉, (3)

where a000,a001, . . . ,a111 ∈ C, has a 2×4 coefficient matrix:

C1|23 =
(

a000 a001 a010 a011

a100 a101 a110 a111

)
. (4)

There are also two other 2×4 coefficient matrices for the same
state, labeled C2|13 and C3|12, which arise by permuting the
role of the qubits. A three-qubit state is fully separable if and
only if all three coefficient matrices have rank 1. Further rules,
some of them involving additional properties of the coefficient
matrices or their submatrices, can be used to identify exactly
to which of the three-qubit entanglement classes a given state
belongs (see Theorem 1 in [3]).

Yet, in the context of the inductive entanglement classifica-
tion, it is not just single three-qubit states whose entanglement
class needs to be identified. Instead, it is generally necessary
to determine which types of entanglement arise in a subspace
spanned by two three-qubit states, whose definitions may

themselves involve free parameters. The process of determin-
ing the rank and other properties of a 2×4 matrix depending on
multiple parameters for all values of these parameters is tedious
and error-prone: it is easy to overlook special cases arising for
specific values of some of the parameters. This seems to be the
origin of the errors in [3]: the generic coefficient matrices given
there for the entanglement superclasses W0k�,W and WW,W are
correct, but the analysis of their properties is flawed.

III. EQUATIONS FOR THE CLASSIFICATION
OF THREE-QUBIT ENTANGLEMENT

For four or more qubits, the classification (or, rather, the
grouping of entanglement classes into superclasses) is not
unique. Different classification schemes thus cannot easily
be combined or interchanged. This problem does not arise
for three-qubit states: there is only a small finite number
of entanglement classes—fully separable states, three types
of bipartite separable states, and GHZ and W states—whose
definitions are generally accepted. We are thus free to choose
any method for identifying the entanglement class of a
three-qubit state. Hence, we use the following equational
method derived by Li et al. [6], which we find much more
straightforward than the classification method from [3] and [5],
described above.

This equational method works as follows. Consider a
nonvanishing three-qubit state expressed in the computational
basis as

a0|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + a4|100〉
+ a5|101〉 + a6|110〉 + a7|111〉, (5)

where a0,a1, . . . ,a7 ∈ C are not all 0. This state is in the
GHZ SLOCC class if and only if the following expression
is nonzero:

(a0a7 − a2a5 + a1a6 − a3a4)2 − 4(a2a4 − a0a6)(a3a5 − a1a7).

(6)

The state is in the W SLOCC class if and only if (6) is 0, and
furthermore,

(a0a3 �= a1a2 ∨ a5a6 �= a4a7)

∧ (a1a4 �= a0a5 ∨ a3a6 �= a2a7)

∧ (a3a5 �= a1a7 ∨ a2a4 �= a0a6). (7)

We sometimes refer to formula (7) as the “W conditions”.
In all other cases, the state is not genuinely three partite

entangled: all three clauses are false for a fully product state;
for bipartite states, one of the clauses is satisfied and two are
not [6]. This classification is basis independent to some degree:
as SLOCC transformations do not change the entanglement
class of a state, the same equations hold when the state is
expressed in any basis that arises from the computational basis
via SLOCC, i.e., via applying an invertible 2×2 matrix to each
qubit.
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IV. THE POTENTIALLY EMPTY FOUR-QUBIT
ENTANGLEMENT CLASSES

In [3], the inductive entanglement classification is applied to
four-qubit states. A priori, and up to qubit permutations, there
are 10 potential entanglement classes, given that there are four
entanglement classes of three-qubit states: W000,000, W000,0� ,
W000,GHZ, W000,W , W0�,0� , W0�,GHZ, W0�,W , WGHZ,GHZ,
WGHZ,W , and WW,W .

Lamata et al. consider these classes one by one and discard
three of them as being empty: W0�,W , WGHZ,GHZ [7], and
WW,W . On the other hand, they split the class of states where
the spanning set consists of two bipartite entangled states
according to whether the two bipartitions are the same or
different, resulting in W0k�,0k� and W0i�,0j � . This gives a
total of eight classes of genuine four-qubit entanglement.
Additionally, there are also classes of four-qubit states that
do not exhibit any four-partite entanglement; these are ignored
here.

We reanalyze the three discarded classes using the equa-
tional classification criteria of Li et al. [6] (cf. Sec. III).
With these methods, we show that, while WGHZ,GHZ is indeed
empty, there are in fact states that belong in W0�,W or WW,W ,
respectively, according to the inductive classification.

A. The entanglement class W0k�,W

The entanglement class labeled W0k�,W in the naming
scheme in [3] is the class containing states

|ψ〉 = |v0〉|φ0〉 + |v1〉|φ1〉, (8)

where span{|φ0〉,|φ1〉)} contains no vectors of type 000, exactly
one vector of type 0�, and no vectors of GHZ type. Up to
permutations of the last three qubits, a generic representative
of this class can be written as

|φ〉|ϕ1〉|�1〉 + |φ̄〉(|ϕ2ψ2θ̄2〉 + |ϕ2ψ̄2θ2〉 + |ϕ̄2ψ2θ2〉). (9)

Here, lowercase Greek letters label single-qubit states.
Throughout, states do not need to be normalized (though they
may not have norm 0). Overbars denote linear independence,
i.e., |φ〉 and |φ̄〉 are linearly independent, as are |ϕ2〉 and |ϕ̄2〉,
and so on. Different indices denote states that may or may not
be linearly independent, e.g., |ϕ1〉 may be linearly dependent
on |ϕ2〉, or |ϕ̄2〉, or neither. The state |�1〉 is an entangled
two-qubit state.

To simplify the representative state, we can apply a SLOCC
operation that maps {|φ〉,|φ̄〉} to the computational basis and,
similarly, all pairs of linearly independent states with index 2.
This yields

|0〉|ϕ〉|�〉 + |1〉(|001〉 + |010〉 + |100〉)
= |0〉|ϕ〉|�〉 + |1〉|W 〉, (10)

where |ϕ〉 is the result of applying the SLOCC operation
described above to |ϕ1〉, and similarly for |�〉. Now |ϕ〉
and |�〉 can be expressed in the computational basis as
|ϕ〉 = ϕ0|0〉 + ϕ1|1〉 and

|�〉 = �00|00〉 + �01|01〉 + �10|10〉 + �11|11〉, (11)

where entanglement of |�〉 implies that �00�11−�01�10 �= 0.
Furthermore, ϕ0 and ϕ1 cannot both be 0.

Lamata et al. claim that span{|ϕ�〉,|W 〉} always contains a
GHZ-type vector and that therefore the W0k�,W class is empty,
as any state with a spanning set of type 0�,W also has one
of type 0�,GHZ and thus falls into the W0k�,GHZ class by the
ordering of the classes [3]. We show by analysis of the different
combinations of parameter values that this is not correct and,
furthermore, identify a canonical state for the W0k�,W class.

An arbitrary state in span{|ϕ�〉,|W 〉} can be written as
x|ϕ�〉 + y|W 〉 for some x,y ∈ C. Expanding this yields

xϕ0�00|000〉 + (xϕ0�01 + y)|001〉 + (xϕ0�10 + y)|010〉
+ xϕ0�11|011〉 + (xϕ1�00 + y)|100〉 + xϕ1�01|101〉
+ xϕ1�10|110〉 + xϕ1�11|111〉. (12)

Now, using (6), we find that this state is in the GHZ SLOCC
class if and only if

((
ϕ2

0�
2
11 + 2ϕ0ϕ1�01�11 + 2ϕ0ϕ1�10�11 + ϕ2

1�
2
01

− 2ϕ2
1�01�10 + ϕ2

1�
2
10 + 4ϕ2

1�00�11
)
x + 4ϕ1�11y

)
xy2 �= 0.

(13)

There are no GHZ-type states in the subspace if and only if
this polynomial is 0 for all values of x and y, i.e., if and only
if

0 = ϕ2
0�

2
11 + 2ϕ0φ1�01�11 + 2ϕ0ϕ1�10�11 + ϕ2

1�
2
01

− 2ϕ2
1�01�10 + ϕ2

1�
2
10 + 4ϕ2

1�00�11 (14)

and also

4ϕ1�11 = 0. (15)

For each case in which the subspace contains no GHZ
vectors, we, furthermore, need to check that it contains no
separable vectors other than |ϕ�〉. To exclude |ϕ�〉, we
assume that y �= 0 and, for simplicity, rescale so that y = 1.
We distinguish cases according to the solutions of (15).

1. Case ϕ1 = 0

If ϕ1 = 0, then we must also have ϕ0 �= 0. In this case, (14)
reduces to ϕ2

0�
2
11 = 0. As ϕ0 cannot vanish, we must have

�11 = 0 and hence �01�10 �= 0 by entanglement of |�〉. The
W conditions, (7), become

(0 �= (ϕ0�01x + 1)(ϕ0�10x + 1))

∧ (ϕ0�01x + 1 �= 0) ∧ (ϕ0�10x + 1 �= 0). (16)

All parameters appearing in those inequalities are nonzero,
thus there are always separable states in the subspace: set
x = −1/(ϕ0�01) or x = −1/(ϕ0�10).

2. Case �11 = 0

If �11 = 0, then we must also have �01�10 �= 0. In this
case, (14) reduces to ϕ2

1(�01 − �10)2 = 0. Hence there are
two subcases.

(i) ϕ1 = 0, which implies ϕ0 �= 0. This brings us back to
the case considered in Sec. IV A 1, above.

022329-3



MIRIAM BACKENS PHYSICAL REVIEW A 95, 022329 (2017)

(ii) �01 = �10: under this assumption, the state is in the W
SLOCC class if((

0 �= (ϕ0�01x + 1)2) ∨ (
ϕ2

1�
2
01x

2 �= 0
))

∧ ((ϕ0�01 + ϕ1�00)x + 1 �= 0). (17)

The last inequality represents two clauses in the original set of
three, which have become identical under the current choice
of parameter values. Now, the following cases occur:

(a) If ϕ1 = 0 �= ϕ0, there exists a 000-type state in the
subspace: setting x = −1/(ϕ0�01) makes all the inequali-
ties false.

(b) If ϕ1 �= 0 and ϕ0�01 + ϕ1�00 �= 0, there is a sepa-
rable state in the space, which can be constructed by setting
x = −1/(ϕ0�01 + ϕ1�00). (Recall that the last inequality
represents two clauses of the original set.)

(c) If ϕ1 �= 0 and ϕ0�01 + ϕ1�00 = 0, any state in the
subspace (other than |ϕ�〉) is in the W class. To see this,
note that ϕ0�01 + ϕ1�00 = 0 implies that the last inequality
in (17) is always satisfied. The first two inequalities would
both need to be false simultaneously for the state not to be
in the W class. But the second inequality is false only for
x = 0, for which the first inequality is satisfied. Hence states
of this form are classified into W0k�,W by the inductive
scheme.

This concludes the analysis of all cases in which
span{|ϕ�〉,|W 〉} contains no GHZ-type states.

3. The canonical state for W0k�,W

From the above, the canonical state for W0k�,W satisfies
�11 = 0, �01 = �10, ϕ1 �= 0, and ϕ0�01 + ϕ1�00 = 0. Since
ϕ1 �= 0, we can write �00 = −ϕ0�01/ϕ1. Then the canonical
generator is

(ϕ0|0〉 + ϕ1|1〉)
(

−ϕ0�01

ϕ1
|00〉 + �01|�+〉

)
, (18)

where |�+〉 = |01〉 + |10〉. Let λ = ϕ0/ϕ1, and the generator
becomes

ϕ1�01(λ|0〉 + |1〉)(−λ|00〉 + |�+〉). (19)

From the previous conditions, we must have λ,ϕ1,�01 ∈ C
and ϕ1�01 �= 0. The canonical state is

ϕ1�01|0〉(λ|0〉 + |1〉)(−λ|00〉 + |�+〉) + |1〉|W 〉. (20)

Note that the nonzero factor ϕ1�01 can be removed by a
SLOCC operation on the first qubit. Then the canonical state
becomes

|0〉(λ|0〉 + |1〉)(−λ|00〉 + |�+〉) + |1〉|W 〉, (21)

where λ is arbitrary.

B. The entanglement class WGHZ,GHZ

Lamata et al. consider the class WGHZ,W before WGHZ,GHZ,
i.e., if a state qualifies for both, it is considered to be in
WGHZ,W . This means that a state is in WGHZ,GHZ if and only
if span{|φ0〉,|φ1〉} contains only GHZ-type vectors, where the
state has been decomposed as in (1). Now, Lamata et al. argue
that the span of two GHZ-type vectors always contains a
W state or a separable state and that therefore WGHZ,GHZ is
empty [3]. To ensure that our revisions of the classification are
complete, we confirm this result using the methods from [6].

A generic representative of WGHZ,GHZ can be written as

|φ〉(|ϕ1ψ1θ1〉 + |ϕ̄1ψ̄1θ̄1〉) + |φ̄〉(|ϕ2ψ2θ2〉 + |ϕ̄2ψ̄2θ̄2〉), (22)

with the same conventions as before. Via a SLOCC operation,
this state can be transformed to

|0〉(|ϕψθ〉 + |ϕ̄ψ̄ θ̄〉) + |1〉(|000〉 + |111〉)
= |0〉(|ϕψθ〉 + |ϕ̄ψ̄ θ̄〉) + |1〉|GHZ〉, (23)

where |ϕ〉 is the result of applying the SLOCC operation to
|ϕ1〉, and similarly for the other variable states.

Rather than expanding each single-qubit state in the
computational basis (leading to 12 parameters and three
linear-independence conditions), it will be easier to expand
the full state |ϕψθ〉 + |ϕ̄ψ̄ θ̄〉 instead, which only requires 8
parameters and the GHZ condition. Thus let

|ϕψθ〉 + |ϕ̄ψ̄ θ̄〉 = a0|000〉 + a1|001〉 + a2|010〉 + a3|011〉
+ a4|100〉+a5|101〉 + a6|110〉+a7|111〉,

(24)

where a0, . . . ,a7 ∈ C satisfy

0 �= (a0a7 − a2a5 + a1a6 − a3a4)2

− 4(a2a4 − a0a6)(a3a5 − a1a7). (25)

A general element of span{|ϕψθ〉 + |ϕ̄ψ̄ θ̄〉,|GHZ〉} then has
the form

x(|ϕψθ〉 + |ϕ̄ψ̄ θ̄〉) + y|GHZ〉 (26)

or, equivalently,

(a0x + y)|000〉 + a1x|001〉 + a2x|010〉 + a3x|011〉
+ a4x|100〉 + a5x|101〉 + a6x|110〉 + (a7x + y)|111〉,

(27)

where x,y ∈ C. For a state to be in the class WGHZ,GHZ, all
nonvanishing elements of the subspace must be of the GHZ
type, i.e., we need the polynomial,

(
a2

3a
2
4 − 2a2a3a4a5 + a2

2a
2
5 − 2a1a3a4a6 − 2a1a2a5a6 + 4a0a3a5a6 + a2

1a
2
6 + 4a1a2a4a7 − 2a0a3a4a7 − 2a0a2a5a7

− 2a0a1a6a7 + a2
0a

2
7

)
x4 + (

4a1a2a4 − 2a0a3a4 − 2a0a2a5 − 2a0a1a6 + 4a3a5a6 + 2a2
0a7 − 2a3a4a7 − 2a2a5a7

− 2a1a6a7 + 2a0a
2
7

)
x3y + (

a2
0 − 2a3a4 − 2a2a5 − 2a1a6 + 4a0a7 + a2

7

)
x2y2 + 2(a0 + a7)xy3 + y4, (28)

to be nonzero whenever at least one of x and y is nonzero.
This means that, given any fixed nonzero value for x (or y), the

remaining polynomial in the other variable must have no roots.
A polynomial has no roots over C only if it is equal to some
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nonzero constant. Hence for any nonzero x, the polynomial
must be independent of y. That cannot be achieved here for
any choice of a0, . . . ,a7, as the coefficient of y4 is independent
of the parameters and of x. Hence the subspace spanned by
two GHZ states always contains non-GHZ states and the class
WGHZ,GHZ is indeed empty.

C. The entanglement class WW,W

Finally, consider the class WW,W , i.e., the class containing
states

|ψ〉 = |v0〉|φ0〉 + |v1〉|φ1〉, (29)

where span{|φ0〉,|φ1〉} contains only W-type vectors. A generic
representative of this class can be written as

|φ〉(|ϕ1ψ1θ̄1〉 + |ϕ1ψ̄1θ1〉 + |ϕ̄1ψ1θ1〉)
+ |φ̄〉(|ϕ2ψ2θ̄2〉 + |ϕ2ψ̄2θ2〉 + |ϕ̄2ψ2θ2〉). (30)

As before, overbars denote linear independence. States with
different indices may or may not be linearly dependent, as
long as the two W-type states are linearly independent of each
other.

To simplify this representative state, apply a SLOCC
transformation that maps {|φ〉,|φ̄〉} to the computational basis,
and similarly, all pairs of linearly independent states with index
2. This yields

|0〉(|ϕψθ̄〉 + |ϕψ̄θ〉 + |ϕ̄ψθ〉) + |1〉(|001〉 + |010〉 + |100〉),
(31)

where |ϕ〉 is the result of applying the SLOCC operation
described above to |ϕ1〉, and similarly for the other variable

states. Rather than expanding each single-qubit state in the
computational basis, it is easier to expand the full state and use
the W conditions from Sec. III. Thus let

|ϕψθ̄〉 + |ϕψ̄θ〉 + |ϕ̄ψθ〉
= a0|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + a4|100〉

+ a5|101〉 + a6|110〉 + a7|111〉, (32)

where a0, . . . ,a7 ∈ C satisfy

0 = (a0a7 − a2a5 + a1a6 − a3a4)2

− 4(a2a4 − a0a6)(a3a5 − a1a7) (33)

and

(a0a3 �= a1a2 ∨ a5a6 �= a4a7)

∧ (a1a4 �= a0a5 ∨ a3a6 �= a2a7)

∧ (a3a5 �= a1a7 ∨ a2a4 �= a0a6). (34)

A general element of

span{|ϕψθ̄〉 + |ϕψ̄θ〉 + |ϕ̄ψθ〉,|W 〉} (35)

has the form

x(|ϕψθ̄〉 + |ϕψ̄θ〉 + |ϕ̄ψθ〉) + y|W 〉 (36)

or

a0x|000〉 + (a1x + y)|001〉 + (a2x + y)|010〉 + a3x|011〉
+ (a4x + y)|100〉 + a5x|101〉 + a6x|110〉 + a7x|111〉,

(37)

where x,y ∈ C. We need all nonvanishing elements of this
subspace to be of the W type (the case y = 0 automatically
includes |ϕψθ̄〉 + |ϕψ̄θ〉 + |ϕ̄ψθ〉 itself). By (6), this requires
the following polynomial in x and y to be identically 0:

(
a2

3a
2
4 − 2a2a3a4a5 + a2

2a
2
5 − 2a1a3a4a6 − 2a1a2a5a6 + 4a0a3a5a6 + a2

1a
2
6 + 4a1a2a4a7 − 2a0a3a4a7

− 2a0a2a5a7 − 2a0a1a6a7 + a2
0a

2
7

)
x4 + (

2a2
3a4 − 2a2a3a5 − 2a3a4a5 + 2a2a

2
5 − 2a1a3a6 − 2a3a4a6

− 2a1a5a6 − 2a2a5a6 + 2a1a
2
6 + 4a1a2a7 − 2a0a3a7 + 4a1a4a7 + 4a2a4a7 − 2a0a5a7 − 2a0a6a7

)
x3y

+ (
a2

3 − 2a3a5 + a2
5 − 2a3a6 − 2a5a6 + a2

6 + 4a1a7 + 4a2a7 + 4a4a7
)
x2y2 + 4a7xy3. (38)

Additionally, by (7), it requires the following three statements
to be true whenever x and y are not both 0:

(y2 + (a1 + a2)xy + (a1a2 − a0a3)x2 �= 0)

∨ (a7xy + (a4a7 − a5a6)x2 �= 0), (39)

(y2 + (a1 + a4)xy + (a1a4 − a0a5)x2 �= 0)

∨ (a7xy + (a2a7 − a3a6)x2 �= 0), (40)

(a7xy + (a1a7 − a3a5)x2 �= 0)

∨ (y2 + (a2 + a4)xy + (a2a4 − a0a6)x2 �= 0). (41)

The GHZ polynomial, (38), is identically 0 if and only if
each coefficient is 0. For the coefficient of xy3 this implies

a7 = 0. Given that assumption, the coefficient of x2y2

vanishes if

a3
3 − 2a3a5 − 2a3a6 + a2

5 − 2a5a6 + a2
6 = 0. (42)

We consider several cases.

1. Case a6 = 0 ∧ a5 = a3

With a6 = 0 and a5 = a3, the GHZ polynomial reduces to
(a2 − a4)2a2

3x
4. Hence there are two subcases:

(a) a3 = 0, in which case the W conditions, (39)–(41),
become

(0 �= (a1x + y)(a2x + y))

∧ ((a1x + y)(a4x + y) �= 0)

∧ ((a2x + y)(a4x + y) �= 0). (43)
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As the y = 0 case must be a W-type state, this implies
a1,a2,a4 �= 0. But then the subspace always contains separable
states by setting y = −a1x or y = −a2x or y = −a4x for any
nonzero x.

(b) a3 �= 0 and a4 = a2, in which case the W conditions
become

((a1a2 − a0a3)x2 + (a1 + a2)xy + y2 �= 0)

∧ ((
a2

3x
2 �= 0

) ∨ ((a2x + y)2 �= 0)
)
, (44)

where the first inequality represents both (39) and (40). Hence
for the y = 0 case to be a W-type state, we need a0a3 �= a1a2.
But then the subspace always contains separable states by
setting y to a root of (a1a2 − a0a3)x2 + (a1 + a2)xy + y2

(where x is considered another parameter and we are free
to assume that it is nonzero).

The cases ((a5=0) ∧ (a6=a3)) and ((a3=0) ∧ (a6=a5)) are
analogous.

2. Case a3,a5,a6 �= 0 ∧ a6 = a3 + a5 ± 2
√

a3a5

First, note that a3a5 ± a3
√

a3a5 = 0 would imply that at
least one of a3, a5, and a6 is 0. Hence, in the current case we
must have a3a5 ± a3

√
a3a5 �= 0. Thus, for the coefficient of

x3y to vanish, we require

a4 = 2a1a3a5 − a2a3a5 ± √
a3a5(a1a3 + a1a5 − a2a5)

a3a5 ± a3
√

a3a5
,

(45)

and this expression is well defined. Then the GHZ polynomial
becomes

(
a2

1 − 2a1a2 + a2
2 + 4a0a3

)(
a2

3 + 6a3a5 + a2
5 ± 4

√
a3a5a3 ± 4

√
a3a5a5

)
a2

5x
4

(a5 ± √
a3a5)2 . (46)

Again, this is well defined, as a5 ± √
a3a5 = 0 implies either a5 = 0 or a3 = a5 and a6 = 0; so under the assumptions of the

current case, a5 ± √
a3a5 must always be nonzero.

There are two subcases.
(a) a2

3 + 6a3a5 + a2
5 ± 4

√
a3a5a3 ± 4

√
a3a5a5 = 0. This implies
(
a2

3 + 6a3a5 + a2
5

)2 = 16a3a5(a3 + a5)2, (47)

which is equivalent to (a3 − a5)4 = 0, so it implies a3 = a5. Then the equation a2
3 + 6a3a5 + a2

5 ± 4
√

a3a5a3 ± 4
√

a3a5a5 = 0
becomes

8a3

(
a3 ±

√
a2

3

)
= 0. (48)

We assumed a3 �= 0, so this can only be satisfied if the square root function and sign are such that a3 ±
√

a2
3 = 0. But a3 = a5

and a3 ±
√

a2
3 = 0 together imply that a3 + a5 ± 2

√
a3a5 = 0, which contradicts the assumption that a6 �= 0. Hence this case

cannot happen.
(b) a2

1 − 2a1a2 + a2
2 + 4a0a3 = 0, i.e., a0 = −(a1 − a2)2/(4a3). In this case, the subspace contains no GHZ states (by

construction). The W conditions, (39)–(41), become

(− 1
4 ((a1 + a2)x + 2y)2 �= 0

) ∨ ((a3 + a5 ± 2
√

a3a5)a5x
2 �= 0), (49)

(P (x,y) �= 0) ∨ ((a3 + a5 ± 2
√

a3a5)a3x
2 �= 0), (50)

and

(a3a5x
2 �= 0) ∨ (Q(x,y) �= 0), (51)

where

P (x,y) = (4a3(a5 ± √
a3a5))−1

(
4(3a1a3a5 − a2a3a5 ± 2

√
a3a5a1a3 ± √

a3a5a1a5 ∓ √
a3a5a2a5)xy

+ 4a3(a5 ± √
a3a5)y2 + (

8a2
1a3a5 − 4a1a2a3a5 + a2

1a
2
5 − 2a1a2a

2
5 + a2

2a
2
5 ± 4

√
a3a5a

2
1a3

± 5
√

a3a5a
2
1a5 ∓ 6

√
a3a5a1a2a5 ± √

a3a5a
2
2a5

)
x2) (52)

and

Q(x,y) = (4a3(a5 ± √
a3a5))−1

(
4(2a1a3a5 ± √

a3a5a1a3 ± √
a3a5a2a3 ± √

a3a5a1a5 ∓ √
a3a5a2a5)xy

+ 4a3(a5 ± √
a3a5)y2 + (

3a2
1a3a5 + 2a1a2a3a5 − a2

2a3a5 + a2
1a

2
5 − 2a1a2a

2
5 + a2

2a
2
5 ± √

a3a5a
2
1a3

± 2
√

a3a5a1a2a3 ± √
a3a5a

2
2a3 ± 3

√
a3a5a

2
1a5 ∓ 2

√
a3a5a1a2a5 ∓ √

a3a5a
2
2a5

)
x2

)
. (53)

By assumption, a3, a5, and a3 + a5 ± 2
√

a3a5 are nonzero, so for x �= 0 the W conditions are satisfied. With x = 0 �= y, the W
conditions can be seen to reduce to just one inequality, y2 �= 0, which is clearly satisfied (as it should be, since the x = 0 state
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is y|W 〉 and thus a W state by construction). This means that the subspace contains no separable states and states of this type
belong in WW,W according to the classification.

The canonical generator has the form

− (a1 − a2)2

4a3
|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + (2a1 − a2)a3a5 ± (a1a3 + a1a5 − a2a5)

√
a3a5

a3a5 ± √
a3a5a3

|100〉

+ a5|101〉 + (a3 + a5 ± 2
√

a3a5)|110〉, (54)

where a3 and a5 are nonzero, with a3 + a5 ± 2
√

a3a5 also nonzero for the given choice of square root function and sign, and a1

and a2 are arbitrary.
This concludes the investigation of all potential members of WW,W .

3. The canonical state for WW,W

Given the canonical generator above, the canonical state for WW,W can be written (up to SLOCC) as

|0〉
(

− (a1 − a2)2

4a3
|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + (2a1 − a2)a3a5 ± (a1a3 + a1a5 − a2a5)

√
a3a5

a3a5 ± √
a3a5a3

|100〉

+ a5|101〉 + (a3 + a5 ± 2
√

a3a5)|110〉
)

+ |1〉|W 〉, (55)

where a3 and a5 are nonzero, with a3 + a5 ± 2
√

a3a5 also nonzero for the given choice of square root function and sign, and a1

and a2 are arbitrary.
In fact, we can remove one parameter via SLOCC. Note that

− (a1 − a2)2

4a3
|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + (2a1 − a2)a3a5 ± (a1a3 + a1a5 − a2a5)

√
a3a5

a3a5 ± √
a3a5a3

|100〉

+a5|101〉 + (a3 + a5 ± 2
√

a3a5)|110〉 (56)

is equal to

− (a1 − a2)2

4a3
|000〉 + (a2 − a1)|010〉 + a3|011〉 + (a1 − a2)(a3a5 ± a5

√
a3a5)

a3a5 ± a3
√

a3a5
|100〉

+a5|101〉 + (a3 + a5 ± 2
√

a3a5)|110〉 + a1|W 〉, (57)

where we have separated out a copy of a1|W 〉. Now let μ = a1 − a2; then the canonical state can be transformed to

|0〉
(

− μ2

4a3
|000〉 − μ|010〉 + a3|011〉 + μ

a5(a3 ± √
a3a5)

a3(a5 ± √
a3a5)

|100〉 + a5|101〉 + (a3 + a5 ± 2
√

a3a5)|110〉
)

+ |1〉|W 〉 (58)

by a SLOCC operation on the first qubit.

V. CONCLUSIONS

In their inductive classification of four-qubit states, Lamata
et al. discard three potential superclasses as not having any
members, namely, the ones labeled W0k�,W , WGHZ,GHZ, and
WW,W . We show that, while they are correct in stating that
WGHZ,GHZ is empty, the other two classes are in fact nonempty.

In particular, we find that the W0k�,W class consists of the
following one-parameter family of states, up to SLOCC and

permutations of the last three qubits:

|0〉(λ|0〉 + |1〉)(−λ|00〉 + |�+〉) + |1〉|W 〉, (59)

where λ ∈ C. Furthermore, we show that WW,W consists of
the following three-parameter family of states, again up to
SLOCC:

|0〉
(

− μ2

4a3
|000〉 − μ|010〉 + a3|011〉 + μ

a5(a3 ± √
a3a5)

a3(a5 ± √
a3a5)

|100〉 + a5|101〉 + (a3 + a5 ± 2
√

a3a5)|110〉
)

+ |1〉|W 〉, (60)

where a3 and a5 are nonzero complex numbers satisfying a3 + a5 ± 2
√

a3a5 �= 0 for the given choice of square root function
and sign, and μ is an arbitrary complex number.

In the inductive classification scheme, there are hence ten (rather than eight) entanglement superclasses of four-qubit genuinely
entangled states, with corresponding effects on the expected number of entanglement superclasses of five or more qubits.
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