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Origins and Evolution of the HET-s Prion-Forming
Protein: Searching for Other Amyloid-Forming Solenoids
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1 Department of Biology, McGill University, Montreal, Quebec, Canada, 2 McGill Center for Bioinformatics, McGill University, Montreal, Quebec, Canada

Abstract

The HET-s prion-forming domain from the filamentous fungus Podospora anserina is gaining considerable interest since it
yielded the first well-defined atomic structure of a functional amyloid fibril. This structure has been identified as a left-
handed beta solenoid with a triangular hydrophobic core. To delineate the origins of the HET-s prion-forming protein and
to discover other amyloid-forming proteins, we searched for all homologs of the HET-s protein in a database of protein
domains and fungal genomes, using a combined application of HMM, psi-blast and pGenThreader techniques, and
performed a comparative evolutionary analysis of the N-terminal alpha-helical domain and the C-terminal prion-forming
domain of HET-s. By assessing the tandem evolution of both domains, we observed that the prion-forming domain is
restricted to Sordariomycetes, with a marginal additional sequence homolog in Arthroderma otae as a likely case of
horizontal transfer. This suggests innovation and rapid evolution of the solenoid fold in the Sordariomycetes clade. In
contrast, the N-terminal domain evolves at a slower rate (in Sordariomycetes) and spans many diverse clades of fungi. We
performed a full three-dimensional protein threading analysis on all identified HET-s homologs against the HET-s solenoid
fold, and present detailed structural annotations for identified structural homologs to the prion-forming domain. An analysis
of the physicochemical characteristics in our set of structural models indicates that the HET-s solenoid shape can be readily
adopted in these homologs, but that they are all less optimized for fibril formation than the P. anserina HET-s sequence
itself, due chiefly to the presence of fewer asparagine ladders and salt bridges. Our combined structural and evolutionary
analysis suggests that the HET-s shape has ‘‘limited scope’’ for amyloidosis across the wider protein universe, compared to
the ‘generic’ left-handed beta helix. We discuss the implications of our findings on future identification of amyloid-forming
proteins sharing the solenoid fold.
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Introduction

The exact atomic structure adopted by amyloid fibrils is a topic of

intense debate, as high molecular weights and the polymeric

character and insolubility of amyloid fibrils remain obstacles for

high resolution structure determination methods such as nuclear

magnetic resonance (NMR) spectroscopy [1,2,3]. Several structural

studies of peptide amyloid fibrils have shown that the fibrils are

arranged in a ‘‘cross-beta’’ sheet, a pattern characterized by

repetitive arrays of beta-sheets that are parallel to the fibril axis, with

their strands perpendicular to the axis [1,2,3,4,5]. While atomic-

resolution structures of the infectious fibrils for many prions and

amyloid-forming proteins are still lacking, recent studies have

presented the first well-defined atomic structure of a functional

amyloid, based on amyloid fibrils of the HET-s yeast prion [6,7].

The het-s gene locus has two antagonistic alleles, het-s and het-S,

which encode for HET-s and HET-S, respectively, and which give

rise to the compatibility phenotypes [Het-s] and [Het-S] [8,9,10].

In comparison to its polymorphic variant, HET-S, only HET-s

undergoes a transition to an infectious prion state. The HET-s

prion of the filamentous fungus Podospora anserina is involved in

heterokaryon incompatibility, a programmed cell death reaction

that regulates the fusion between genetically distinct individuals

[8,9,10,11]. HET-s is a 289 residue protein with an N-terminal

domain (residues 1–227) and a prion-forming C-terminal domain

(residues 218–289). The crystal structure of the HET-s N-terminal

domain comprises an alpha-helical fold of 8–9 helices and a short

two-stranded beta sheet [8]. The HET-s prion forming domain

(PFD) is necessary and sufficient for amyloid formation in vitro, as

well as prion propagation in vivo [8,11,12]. Fibrils formed from this

PFD are described as a left-handed b-solenoid composed of four

parallel, stacked pseudo-repeated b-helices; the pseudo-repeats are

a result of one molecule forming two turns of the solenoid [6,7].

The first three b-strands of each pseudo-repeat enclose a dense

triangular hydrophobic core [6,7]. In addition to intra- and inter-

molecular hydrogen bonds between the pseudo-repeats, the

solenoid structure is also stabilized by favourable side-chain

contacts, such as salt bridges, between oppositely charged residues

facing outside of the triangular core [6,7].

Since its discovery, the HET-s solenoid, both in its native and

fibrillar forms, has been well characterized [6,7,10,11]. However,

studies on the evolutionary analysis of this fold, and identification

of possible homologs to HET-s, remain largely lacking, despite the

observation that a structural homolog of HET-s contributes to

efficient cross-seeding of the amyloid form [10]. Accordingly,

analysis of the evolution of the complete HET-s protein may allow
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for the identification of newer, potential amyloid-forming proteins

that can adopt the HET-s solenoid shape. To this end, we perform

an exhaustive search for all homologs of the prion-forming solenoid,

as well as the homologs to the HET-s N-terminal domain. Based on

our findings, we perform an evolutionary analysis of both domains

to determine when the solenoid fold arose in evolution, and its point

of attachment to the HET-s N-terminal domain. Additionally, we

identify and model structural homologs to the C-terminal solenoid

fold, and we present an analysis of the conserved physicochemical

properties we have observed in these generated solenoids, and how

they compare to the current understanding of the b-solenoid

structure. Our data sheds light on the relationship between the

HET-s solenoid fold and understanding the amyloid disease state.

Methods

Datasets
We downloaded the NCBI NR (non-redundant database:

14,261,927 protein sequences, database assembly dated 5/31/2011)

from ftp://ftp.ncbi.nih.gov/blast/db/FASTA/. The Podospora an-

serina proteome (21,408 sequences) was downloaded from the NCBI

Taxonomy Browser [13] (Taxonomy ID 5145). An additional 99

fungal proteomes (including mitochondrial proteomes, where avail-

able) from finished and ongoing projects were downloaded from the

Broad Fungal Genome Initiative [14]. The 100 proteomes (Supple-
mentary Text S1) were grouped together into one in-house

database (total of 715,255 protein sequences), and will be collectively

referred to as BROAD throughout the manuscript.

Identification of HET-s homologs using sequence analysis
Using the genomes from NR and BROAD, we searched for

homologs to the HET-s protein using (i) the N-terminal domain

(residues 1–227), and (ii) the C-terminal prion-forming domain

(PFD) (residues 218–289). For each query, sequence similarity

searches were performed using Psi-blast [version 2.2.23] [15] with

default parameters and masking for low complexity regions.

Searches were performed until convergence was reached or up to

a maximum of 20 iterations, whichever was earlier. Significant hits

were considered with E value,0.0001.

HMMs (Hidden Markov Models) for each of the queried regions

were generated using HMMER [version 3.0, March 2010] [16],

based on blastp [version 2.2.23] [15,17] hits of each query against

the NR database. For the N-terminal domain, 86 hits were

identified from which only significant hits (E,0.0001) were used to

create the HMM (n = 52). For the PFD, separate HMMs were

generated for significant hits (E,0.0001) to the PFD from blastp

(n = 7) as well as psiblast (n = 12). HMMs were also generated using

the entire sequences of all members that shared a conserved prion

domain (n = 12), as indicated by CDART (Conserved Domain

Architecture Retrieval Tool) [18]. The CDART sequences were

also refined and an HMM was generated only from the sub-

sequences that match the prion-forming domain itself. A final

HMM for the prion domain was generated based on sequences of

the HET-s_218–289 family from Pfam (PF11558) (n = 2) [19].

While such small number of sequences may raise concern about the

quality of the resulting PFD HMMs, for HMMs generated from

blastp, psiblast, or pfam multiple sequence alignments, we opted to

generate these domain-specific HMMs to reduce the number false

positive homologs to the solenoid fold when querying the HMM

against NR, as opposed to relying on an HMM based on a

multidomain (Nterm and Cterm PFD) sequence alignment. The

pfam-based HMM is an extreme case of a ‘‘restricted’’ HMM, but

which reflects on the highly restricted nature of the HET-s solenoid.

Conserved protein domains were identified by querying the HMMs

against the NR database to increase chances of detecting remote

homologs to the Nterm and C-term PFD.

Identification of structural homologs based on protein
fold recognition

All significant hits from Psiblast runs against NR and BROAD,

as well as significant hits from HMMER searches were threaded

against the HET-s solenoid [PDB: 2RNM] chains A–E, using

pGenThreader [20]. Corresponding alignments of the significant

hits were used to generate 3D models with MODELLER [21]. If

needed, these alignments were modified based on sequence-

alignments of the C-terminal region of HET-s and its homologs

[10]. 500 models for each protein were generated and the best

model was selected with the lowest Discrete Optimized Protein

Figure 1. Taxonomic lineage of homologs to the HET-s PFD. The
expanded taxonomic lineage of all species is presented. Actual species
of HET-s PFD homologs are highlighted in bold and underlined. The
non-significant PFD homologs from Arthroderma otae and Grosmannia
clavigera (red boxes) are also included for comparison.
doi:10.1371/journal.pone.0027342.g001

Origins & Evolution of HET-s Prion-Forming Protein

PLoS ONE | www.plosone.org 2 November 2011 | Volume 6 | Issue 11 | e27342



Energy (DOPE) score. Stereochemistry of the models was assessed

using the PROCHECK summary [22] of EBI PDBsum [23].

Selected models were viewed and rendered in PyMOL [24]. The

RMSD calculation between the generated model and 2RNM

template was calculated based on a structural alignment using the

‘super’ function in PyMOL [24]. Where applicable, the presence

of salt bridges at specific positions within the models was

determined using the ESBRI Server [25].

Functional analysis of homologs
We downloaded a non-redundant set of ‘genetic’ single-chain

domain protein sequences (n = 10,569) from ASTRALSCOP,

based on PDB SEQRES records (release 1.75). This was the non-

redundant set made such that all sequences in it have pairwise

similarity #40%. Entire protein sequences of all the identified

homologs to the prion-forming and N-terminal domains were

searched against this dataset using Blastp [version 2.2.23] [15,17].

Significant hits from ASTRALSCOP (E#0.0001) were submitted

to the SUPERFAMILY HMM search engine for further classifi-

cation of protein domains and protein domain families [26,27]. To

search for HET-s/LopB (HeLo) domains specifically, an HMM was

constructed based on a previously identified loss-of-pathogenicity

(LopB) protein and HeLo domains (n = 24 sequences) [8,28], and

queried against the entire sequence of the N-terminal homologs

identified from this study. Significant hits were selected based on

a cutoff E#0.0001. Protein sequences of identified structural

homologs to the HET-s PFD were also searched against the

Conserved Domain Database (38,392 PSSMs) using the NCBI CD-

Search and Batch Web CD-Search Tools [29,30,31].

Phylogenetic analysis
The NCBI taxonomy browser [13] and the taxonomy common

tree generation tool (http://www.ncbi.nlm.nih.gov/Taxonomy/

CommonTree/wwwcmt.cgi) were used to determine the taxo-

nomic lineage for identified homologs. Additional taxonomic trees

were generated using the Interactive Tree of Life (iTOL) server

[32]. PHYLIP v3.69 [33] was used to make neighbor-joining

majority-rule consensus trees based on MUSCLE [34] multiple

alignments. These trees were produced based on 100 replicates

using the PHYLIP seqboot, protdist, neighbor, and consense programs.

Briefly, 100 bootstrapped datasets were generated using seqboot.

Bootstrapped datasets were then used as input into protdist, and

distance matrices were generated for all sets using the Janet-

Taylor-Thornton (JTT) matrix, with default parameters. Neighbor

joining trees were generated based on these distance matrices

using neighbor. Lastly, the consense tool was used to pick the final

neighbor-joining bootstrapped tree. Selected trees were viewed

using TreeDyn [35] within the Phylogeny.fr server [36]. Similarity

matrices for N- and C-terminal domains of PFD homologs were

generated based on the BLOSUM matrix using the EBI ClustalW

[37] program, at default settings.

To make the neighbor-joining tree for phylogenetic analysis of

horizontal transfer, we used the CLUSTALW [37] phylogenetic

Figure 2. Graphical representation of the similarity matrix between N- and C-terminal homologs of the PFD. Each point on the graph
represents the percent similarity of the C-terminal domains and the N-terminal domains for a pair of PFD homologs. In addition to HET-s, ten PFD
homologs are represented. Pairs of homologs that include the HET-s or HET-S proteins have been colored differently for comparison. Comparison of
Podospora anserina sequences to each other are circled (purple).
doi:10.1371/journal.pone.0027342.g002
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option, with 1000 bootstrap iterations. The tree was visualized

using ProWeb tree server (www.proweb.org/treeviewer/).

Results

Identification of homologs to the HET-s domains
Homologs of the HET-s N-terminal and prion-forming domain

(PFD) have been searched against the non-redundant database (NR)

and genomes from the Broad Fungal Genome Initiative (here,

termed ‘BROAD’), using Psiblast and HMMER as described in

Methods. A total of 408 significant hits against both domains were

observed, 217 hits were from NR and an additional 191 hits were

from BROAD. In the initial comprehensive homology search, 29

hits were observed to match the prion-forming domain (PFD), and

400 hits matched against the HET-s N-terminal domain. Using

Blastclust to remove identical sequences (100% identity cutoff), 16

hits to the PFD and 338 hits to the N-terminal domain are observed.

Evolution of the Prion-Forming Domain
Despite the inclusion of the NR database, which represents all

kingdoms of life, all the identified homologs of the prion-forming

domain are restricted to the fungal kingdom, and they all belong to

Saccharomyceta, more specifically, the Sordariomyceta (Figure 1).

Twenty-nine homologs to the PFD were identified using Psiblast and

HMMer, in the initial comprehensive homology search. Manual

curation to remove different genbank entries for the same gene

(including provisional genbank entries), as well as removal of allelic

variants with very high sequence similarity (.80% sequence identity)

Figure 3. Phylogenetic trees of homologs to the HET-s prion-forming and N-terminal domains. A) Phylogenetic tree of homologs to
the HET-s prion-forming domain. B) Phylogenetic tree of homologs to the HET-s N-terminal domain. The generated trees are neighbor-
joining majority-rule consensus trees composed of 11 sequences. Sequences starting with EEU represent Nectria haematococca mpVI 77-13-4, FOXG
represent Fusarium oxysporum f. sp. lycopersici, FVEG represent Fusarium verticillioides (Gibberella moniliformis), and FG represent Fusarium
graminearum (Gibberella zeae). Branch numbers indicate the number of times the partition of the species into two sets which are separated by that
branch occurs among the trees, out of 100 trees, as described by Phylip consense program [33].
doi:10.1371/journal.pone.0027342.g003

Origins & Evolution of HET-s Prion-Forming Protein
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yielded 10 homologs to the PFD that were used in further evolutionary

study (Supplementary Data S1). In addition to Podospora anserina,

these 10 homologs were from 4 other fungal species, including Nectria

haematococca mpVI 17-13-4, Fusarium oxysporum, Fusarium graminearum

(Gibberella zeae), and Fusarium verticilliodes (Figure 1). Almost all of these

hits from our initial homology search have been previously identified

as homologs to HET-s [37], with the exception of a newly identified

homolog, EEU39630.1 [GI: 256726268] from Nectria haematococca

mpVI 17-13-4.

Interestingly, searching through non-significant hits to the HET-s

PFD revealed the presence of newly-identified remote HET-s

homologs that lend a more complete picture about the evolution of

the HET-s PFD within fungi. We identified a HET-s homolog with a

PFD domain in Grosmannia clavigera kw1407 [Genbank: EFX05012.1,

GI: 320592582], which is a species that also belongs to the

Sordariomyceta (Figure 1). This protein was identified in the NR

database with marginal significance levels (E, = 0.010 in psiblast

iterations). Performing a reverse PSI-BLAST of this homologous

PFD domain in the NR database yields a significant match to

Podospora anserina HET-s residues 218–282 (E-value,0.005). We have

also observed the presence of another small s protein annota-

tion in Arthroderma otae CBS 113480 (anamorph: Microsporum canis

CBS 113480), which is a more divergent Saccharomyceta species

(Figure 1). This protein was identified in both the NR [Genbank:

XP_002843091,GI: 296804478] and BROAD (MCYG_08174)

datasets with marginal significance levels in BROAD (E, = 0.030

in psiblast iterations). Unlike the PFD homolog identified in G.

clavigera, which spans almost the entire length of the PFD (68 residues

in G. clavigera compared to 72 residues in HET-s), the subsequence of

A.otae matching against the PFD is much shorter (49 residues). By

taking the segment in A.otae that matches only the PFD of HET-s, and

performing a reverse PSI-BLAST with default parameters for short

sequences, we find a significant match to Podospora anserina HET-s

residues 271–289 (E-value,0.005). Interestingly, the N-term of the

A.otae small s protein exhibits significant homology to the N-term of

HET-s (E-value 2e-35 in a web-based search). Given that the remote

homology of the A. otae segment to HET-s PFD is unlikely to occur

beside a homology to the N-terminal HET-s domain, simply by

chance, this marginally detectable homology likely indicates a

horizontal transfer from the Sordariomycetes to Arthroderma otae (a

Eurotiomycetes species). Indeed, the most similar sequences to the N-

terminal domain of the A. otae protein come from the Sordariomycetes

species P. anserina and Fusarium oxysporum (43% and 42% respectively,

over 215 residues). Also, 6/10 of the most similar N-terminal domain

sequences come from Sordariomycetes species, and not Eurotiomycetes). To

investigate further this likely horizontal transfer, neighbor-joining

phylogenetic analysis was performed on the N-terminal domains of

HET-s orthologs that significantly align to the A. otae N-terminal

domain protein sequence (Supplementary Figure S1). Regardless

of the parameters used, the A. otae sequence always clusters with high

bootstrap support (.80%) with the sequence from Fusarium oxysporum,

within a larger grouping of Sordariomycetes sequences (green box in

Supplementary Figure S1). Indeed, this is the only well-supported

clustering between sequences from different phylogenetic fungal

classes.

To compare the evolution of the N-terminal and C-terminal

(prion-forming) domains that occur in the HET-s protein, we

generated a similarity matrix for all proteins containing significant

homologs of both HET-s domains (n = 11) (Figure 2, Table S1).

We compared all pairwise similarities for the N-terminal domains to

the corresponding pairwise similarities for the C-terminal PFD

(Figure 2, Table S1). The plot clearly shows that the C-terminal

PFD is evolving more rapidly that the N-terminal domain, with

higher percentages of sequence identity between the N-terminal

Table 1. HET-s homologs showing significant structural homology to the 2RNM solenoid.

Threading
Score Accession Numbera Protein DBb Structural Model

Template Chain % Identityc RMSDd Prochecke

LOW [GI: 242774612] Hypothetical protein, Talaromyces stipitatus,
TSTA_087480

NR C 17.7 0.816 88.1

LOW EEU47148.1 Hypothetical protein, Nectria haematococca
mpVI 77-13-4

BROAD A 36.7 0.616 84.7

LOW EEU42351.1 Hypothetical protein, Nectria haematococca
mpVI 77-13-4

BROAD C 31.6 0.736 82.8

LOW EEU39630 Hypothetical protein, Nectria haematococca
mpVI 77-13-4

BROAD C 24.1 1.048 82.3

MEDIUM EEU38121.1 Hypothetical protein, Nectria haematococca
mpVI 77-13-4

BROAD A 35.4 0.487 77.6

LOW FOXG14669 Conserved hypothetical protein, Fusarium oxysporum BROAD C 34.2 1.460 81.8

LOW FOXG17103 or FOXG17314 Conserved hypothetical protein, Fusarium oxysporum BROAD C 29.1 1.073 80

LOW FVEG13490 Fusarium verticilliodes, hypothetical protein BROAD C 26.6 1.172 80.7

LOW FG 08145.1[GI: 46127535] Hypothetical protein, Fusarium graminearum NR D 31.6 0.667 75

MEDIUM FG 10600.1[GI: 46138171] Hypothetical protein, Fusarium graminearum NR A structure based on experimental analysis
is proposed by Wasmer et al, 2010 [10]

LOW [GI: 320592582] Small s protein, Grosmannia clavigera kw1407 NR A 26.6 0.492 83.3

a: The Genbank (GI) identification number from NR and BROAD accession numbers are provided, where available.
b: NR: non-redundant database, BROAD: Broad Fungal Genomes Initiative.
c: Percentage identity based on comparison with template in pGenThreader.
d: RMSD calculations are performed against the NMR model 9 of the [PDB: 2RNM] template.
e: Represents percentage of residues in the most favored region.
doi:10.1371/journal.pone.0027342.t001
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Figure 4. Models of HET-s homologs with structural homology to the HET-s PFD. The original solenoid [PDB: 2RNM] [6,7] is shown in the
top left corner. Ten structural homologs are represented, including the small s protein homolog from G. calivigera. The structure of FG10600.1 has
been shown by Wasmer et al [10] and is not included here. For each structure, two rungs for each solenoid are represented, with the first rung at the
top. Amino acids are color-coded as follows: acidic (Asp, Glu) in red, basic (Arg, Lys, His) in blue, nonpolor (Met, Phe, Pro, Trp, Val, Leu, Ile, Ala) in
white, polar (Ser, Thr, Asn, Gln, Tyr) in green, and the protein backbone in yellow.
doi:10.1371/journal.pone.0027342.g004
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domains as opposed to the C-terminal domains, and only one

pairwise comparison in disagreement amongst HET-s sequences

from species other than Podospora anserina. Despite this, the majority-

rule consensus neighbor-joining trees have similar clusterings of

sequences (ignoring the tree branchings with ,60% support)

(Figure 3). Taken collectively, the rapid evolution of the HET-s

PFD we have demonstrated, coupled with the limited phyle-

tic distribution of PFD homologs we have observed, suggests

innovation of the PFD in Sordariomyceta, followed by rapid

evolution in this domain, relative to the N-terminal domain. The

additional marginal homolog in A. otae most likely arose by

horizontal transfer, after innovation of the domain in Sordariomycetes.

Distribution of the HET-s solenoid fold in HET-s
homologs

Threading of all identified homologs to the HET-s N-terminal

and PFD against the prion-forming solenoid [PDB: 2RNM] using

pGenThreader [20] , identified 11 structural homologs from 5

species, almost all of which had already been previously identified in

the sequential analysis (Table 1). One of these homologs

(FG10600.1) has been addressed in a previous publication and a

model similar to HET-s has been proposed based on experimen-

tal analysis [10]. Two of the identified homologs (FOXG17103

and FOXG17314) are 100% identical and were considered

henceforth as one model (Table 1). Interestingly, in addition to

these homologs that have been identified both by sequential and

structural analysis, we also identified one further potential

structural homolog through threading alone, i.e., TSTA_087480,

in Talaromyces stipitatus (Table 1). However, for this case, absence

of other known homologs to TSTA_087480 precludes further

bioinformatic analysis.

We were able to successfully generate solenoid structural models

for all identified structural threadings of the C-terminal PFD using

the MODELLER tool [21] and pGenThreader-generated sequence

alignments (Figure 4). The RMSD and PROCHECK [22]

calculations of our generated models compare favorably against

the template solenoid fold [PDB: 2RNM] (Table 1). Similar to the

HET-s PFD, the modeled proteins adopt a pseudorepetitive

structure, where one chain is composed of two turns of the solenoid,

in addition to a conserved triangular hydrophobic core with similar

compositions of alanine (A) and the bulky hydrophobic residues of

valine (V), isoleucine (I), and phenyalanine (F) (Figure 4, Figure 5).

Figure 5. Conserved physicochemical properties of the HET-s structure in homologous solenoid models. The three chains of 2RNM (A,
C, D), used as templates in MODELLER, are represented (top). Beta sheet positions (as rendered in PyMOL) are highlighted in yellow (unless colored to
represent other physicochemical properties), and helices are highlighted in red. The three salt bridge pairs (K229-E265, E234-K270, R236-E272) of HET-
s are highlighted in dark blue, light blue, and light green, respectively. Asparagine ladders are represented in red boxes. The same coloring scheme
has been adapted to the 11 generated models against the HET-s solenoid structure. The small s protein from G. clavigera (here, represented as
Grosmannia), is also included for comparison against its 2rnm:A template. For all models, gapped positions have been removed for clarity, and the
number of amino acids spanning the HET-s PFD are indicated (out of 72 residues). The secondary structure of each model has been placed above
each sequence. Beta-strands are represented by yellow arrows and alpha-helices by red boxes. Blank spaces between the yellow arrows represent b
arcs within each solenoid rung, and the long connecting loop between the two solenoid rungs in each model has been represented by a grey flat
line.
doi:10.1371/journal.pone.0027342.g005
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The asparagine ladder, as previously noted by Wasmer et al. [10]

also remains largely conserved throughout the homologs (Figure 5),

although in some sequences, asparagines ladder residues are missing

at the appropriate positions. Few of the models retain the ability for

formation of a salt bridge pair at positions comparable to that of the

3 salt bridges of the PFD structure. Additionally, we have observed

changes in the length of the pseudorepeats which may hinder the

formation of a stable, repetitive fibril. For example, we have

observed that the first pseudorepeat ‘‘rung’’ is shorter by 2 residues

than the second rung in the homologs FVEG13490, FG08145, and

FOXG14669. This length difference would yield an irregular

fibrillar stacking of the solenoid.

We attempted to model structurally the small s proteins of the

more divergent PFD sequence homologs from Grosmannia clavigera

and Arthroderma otae, to determine if the conserved physicochemical

properties of the HET-s structure could be observed in these

marginal remote homologs. The small s protein from G.clavigera

could easily be modeled against the solenoid structure, and similar to

the other homologs, retains pseudorepeats, a conserved hydrophobic

core, and asparagines ladders. Contrastingly, for the A.otae small s

protein, all threading attempts using the entire sequence were ranked

as ‘‘GUESS’’ in pGenThreader [20], with the exception of chain A

of the solenoid structure [PDB: 2RNM], which ranked as ‘‘LOW’’ at

19% sequence identity. Interestingly, an unambiguous sequence

alignment in the A. otae sequence could be generated for only one

rung of the PFD solenoid (not shown), indicating perhaps that it

comprises an obligate oligomer with a single solenoid rung.

Evolution of the HET-s N-terminal Domain across fungal
clades

As opposed to the prion domain, which was likely innovated in

Sordariomycetes, homologs to the HET-s N-terminal domain are

more widespread within fungi (Figure 6); however, the domain

was not discovered outside of the fungal kingdom. As noted above,

analysis of the N-terminal domains of the PFD homologs indicates

that, while almost all of the domains share ,50% identity with the

HET-s or HET-S N-terminal domains, the sequence similarity

between these domains still exceeds that of the PFDs (Figure 2).

Comparing the N-terminal domains of the homologs to one another

also indicated that 8 pairs of homologous sequences (aside from

those involving HET-s or HET-S) share .50% sequence identity,

twice the number observed for the C-terminal PFDs (Table S1).

While an initial screen of the homologous sequences that

contain the N-terminal HET-s domain indicates that many are

labeled as hypothetical or predicted proteins, protein domain

assignments reveal a wide diversity of domain architectures in

HET-s homologs (Figures 7 & 8). Forty HET-s homologs were

mapped to 65 SCOP domains (Table S2, Table S3). Using the

SUPERFAMILY HMM search engine [26,27], these domains

could be categorized into 10 superfamilies, with ankyrin being the

most prevalent, followed by the WD40 repeat-like and the UBC-

like domains (Figure 7). A phylogenetic analysis of these 40

homologs indicates that the ankyrin repeat is largely predominant

in Sordariomycetes (Figure 8). Using HMMs, we also checked

for the presence of HeLo (HET-s/LopB) domains in the entire

Figure 6. Taxonomic lineage of homologs to the N-Term domain. Species with proteins homologous to the prion domain are highlighted in
the red box. The marginal additional homologs observed in Grosmannia clavigera and Arthroderma otae are highlighted in the navy boxes.
doi:10.1371/journal.pone.0027342.g006
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sequences of identified homologs to the HET-s N-terminal domain,

and we identified 212 HeLo domains in that set (Table S4). The

HeLo domain had been previously identified based on .30%

sequence similarity between the HET-s N-terminal domain and a

fungal loss-of-pathogenicity (LopB) protein from Leptosphaeria

maculans [8,28]. In this study, we identified a second LopB protein

[GI: 189205459] from Pyrenophora tritici-repentis Pt-1C-BFP with 30%

similarity and 14% identity to the N-terminal domain. Searching for

the conserved HeLo domains using the HMM also yielded a

significant match to a HET-s/LopB domain from Metarhizium

anisopliae ARSEF 23 [GI: 322703231, E-value 1.6e-10], as well as

marginally significant matches [GI: 310797955, GI: 317157340,

GI: 317033349] in several proteins from Glomerella graminicola,

Aspergillus oryzae RIB40, and Aspergillus niger CBS 513.88, respectively

[corresponding E-values 0.0042, 0.00082, 0.00083]. We visually

inspected the remaining homologs of the N-terminal for any other

HeLo domain-containing proteins and identified 3 more hits that

are classified as containing a HeLo domain but which are not

detected using the HMM ([GI:212532807] from Penicillium marneffei

ATCC 18224, [GI:242776556] from Talaromyces stipitatus ATCC

10500, and [GI: 327353076] from Ajellomyces dermatitidis ATCC

1818).

Discussion

The HET-s solenoid remains the only atomic resolution of a

fibril known to date, which raises an intriguing question of whether

other amyloid-forming proteins that adopt the HET-s solenoid

shape exist, and whether they can be identified. To probe this

question, we have performed an exhaustive study for homologs of

the HET-s prion-forming solenoid domain to identify potential

amyloid-forming proteins that adopt such a shape in their native

form or fibril states. Additionally, we investigated the evolutionary

relationship between the prion-forming solenoid, and the HET-s

N-terminal domain.

Our evolutionary analysis of the prion-forming domain reveals

that the PFD, compared to the N-terminal domain, has limited

phyletic distribution and has evolved rapidly. Despite the use of the

NR database and multiple queries based on psi-blast and HMMs of

the PFD, all results converge to the same set of homolog hits (n = 11).

This indicated that a ‘‘restricted’’ profile HMM based on a small

number of blast sequences has not influenced the results. Remote

homologs to the P. anserina PFD were identified (in G. clavigera and A.

otae), but with the exception of the remote homolog from A.otae, all

the PFD homologs remain restricted to one fungal clade,

Sordariomycetes. In several species, the HET-s homologs exist as

paralogous gene families, as we observed a single HET-s protein in

Podospora anserina, two in F. graminearum and four in N. haematococca. A

comparison of the sequence similarities for the PFD and N-terminal

domain of these homologs indicates a rapid divergence of the PFD

compared to their companion N-terminal alpha-helical domains, as

indicated by their sequence similarity matrix (Figure 2, Table S1).

In stark contrast to the limited phyletic distribution of the PFD, we

have identified a set of N-terminal homologs almost 14 times larger

Figure 7. Classification of 65 SCOP domains into superfamilies. These are the SCOP domain superfamilies that co-occur with the HET-s
protein domains. Ten superfamilies are represented.
doi:10.1371/journal.pone.0027342.g007
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than the PFD homolog set, and not surprisingly, with a larger

evolutionary spread within fungi (Figure 6). Based on the phyletic

distribution of these domains, the evolutionary point of attachment

of the HET-s N-terminal domain and prion-forming domain can be

attributed to Sordariomyceta, with a marginal homolog in A.otae that

probably arose by horizontal transfer. Parsimoniously, horizontal

transfer is a more likely event compared to multiple parallel gene loss

events of the PFD in several fungal clades associated with the N-

terminal domain.

The striking abundance and widespread phyletic distribution of

homologs to the N-terminal domain implies that it may serve

several functions beyond heterokaryon incompatibility and

amyloidogenicity in many fungal species. Our protein domain

assignment analysis of the homologous sequences that contain the

N-terminal domain identified a wide diversity of protein domain

partners. While many of the homologs to the N-terminal domain

are hypothetical proteins, we have successfully identified 10

proteins superfamilies, based on SCOP and SUPERFAMILY, in

10% of our homolog dataset (Figure 7). The most common

superfamily is the ankyrin repeat, followed by the protein kinase-

like (PK-like) domain, WD40 repeat-like, and UBC-like domains,

among others. Interestingly, all of the above-mentioned families

are involved in protein-protein interactions. The ankyrin repeat is

of particular interest, as this repeat is predominant in the HET-s

homologs in Sordariomycetes (Figure 8). This repeat is a

common protein-protein interaction motif found in a variety of

functionally diverse proteins such as enzymes, toxins, and

transcription factors [38]. Similarly, proteins containing WD40

or tetratricopeptide (TPR) repeats serve as platforms for protein

complexes [39,40,41]; WD40 repeats are found in G proteins that

participate in transmembrane signaling machinery, as well as

proteins involved in RNA-processing complexes [39,40].

In addition to protein-protein interactions, another underlying

functionality we have observed, both in the HET-s N-terminal and

prion-forming domains, is that of ‘pathogenicity’. While previous

studies of the N-terminal homologs did not identify any homologs

with a known function, a new HET-s/LopB (HeLo) domain had

been identified based on a 31% similarity of the HET-s N-terminal

domain to the loss-of-pathogenicity (LopB) protein from the

Dothideomycete fungus Leptosphaeria maculans, a fungus that causes

blackleg disease of Brassica napus [8,28]. In current literature, 23

representative HeLo domains have been identified to date [8,28].

We searched for these proteins in our list of homologs, and in

addition to these representative proteins, we identified a second

Figure 8. SUPERFAMILY associations with the N-terminal homologs (n = 36). A majority-rule consensus tree is generated for N-terminal
homologs which are significantly associated with families identified using SUPERFAMILY. The clades of the different proteins are also annotated,
especially for proteins which belong to ‘Sordariomycetes’ or ‘Eurotiomycetes’. Superfamilies associated with each protein are indicated, and are
abbreviated as follows: CTCR: C-term (heme d1) of cytochrome reductase. P-loop NTH: P-loop containing nucleoside triphosphate hydrolase. NDST:
Nucleoside-diphospho-sugar transferase.
doi:10.1371/journal.pone.0027342.g008
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loss-of-pathogenicity protein (LopB) in the Dothideomycete fungus

Pyrenophora tritici-repentis, and 212 HeLo domains in more than 40

species (Table S4). Notably, we observed that the species of many

of the PFD structural homologs we have identified, such as Nectria

haematococca mpVI 17-13-4, Fusarium oxsyporum, and Fusarium

graminearum, are all plant pathogens, causing diseases such as

wheat headblight disease and Fusarium wilt disease [42,43].

Our evolutionary search for sequential homologs to the HET-s

PFD, and subsequent analysis on structural homologs to the HET-

s solenoid structure, sheds light on the contribution of the HET-s

solenoid fold to fibril formation and stability in amyloid-forming

proteins. As the HET-s solenoid shape remains the only atomic

structure for a fibril to date, to what extent do other proteins share

this fold? From an evolutionary perspective, our analysis of the

PFD solenoid, and the limited phyletic distribution of PFD

structural homologs we have observed, suggest that the HET-s

solenoid shape has ‘limited scope’ for amyloidosis. The restriction

of this particular left-handed b-solenoid to filamentous ascomy-

cotes strikingly contrasts against that of a ‘generic’ left-handed

beta-helix found in almost all phyla [44], and which is the current

proposed model for fibrils of prions and other amyloid-forming

proteins that are not necessarily fungal [45,46,47,48,49,50,51].

Interestingly, at face value, the HET-s solenoid is an attractive

candidate for the formation of stable fibrils in the structural

homologs we have identified: this shape is easily modelled in the

homologs we have identified (despite poor sequence identity), and

could even be modelled in remote homologs to the PFD, such as

the small s protein of G. clavigera (Figure 4 and Figure 5), and

even in A.otae. Several characteristic physicochemical properties of

HET-s remained conserved within these models, such as a

conserved triangular hydrophobic core with enrichment for

hydrophobic bulky residues, and conserved asparagine ladders at

comparable positions to the HET-s PFD (Figure 5). Such

characteristics are amenable for fibril formation in some structural

homologs such as FG10600.1, whereby the structural conservation

in this solenoid allowed for HET-s and FG10600.1 amyloid cross-

seeding experiments [10]. However, a closer inspection of

structural homologs to the PFD indicates that the potential for

salt-bridge formation is largely lacking, with several homologs only

partaking in one possible salt-bridge pair compared to the 3 salt

bridges in HET-s (Figure 5). Additionally, in at least three of the

structural homologs we have analyzed, we observe a discrepancy

in the length of the rungs composing the pseudorepetitive solenoid,

such that the first rung is shorter than the second rung in the

solenoid monomer. If these homologs do indeed form fibrils, they

would be built on the stacking of structurally different units, and as

such, there would a noticeable ‘‘shift’’ in the hydrophobic core,

asparagine ladders, and salt bridges between different units of the

solenoid. These shifts in the inter- and intra-molecular bonds of

the solenoid monomers may hinder stability of the resultant fibril;

this remains to be determined by experimental analysis. Based on

our analysis however, the contribution of the HET-s shape to

future amyloid forming proteins is quite limited, and for many of

the structural homologs that can adopt that shape, structural and

energetic hindrances would need to be overcome before formation

of a stable fibril.

We have performed an evolutionary, functional, and structural

bioinformatics analysis of homologs to the HET-s prion-forming

domain, and we compare our findings against the identified

homologs of the HET-s N-terminal domain. Based on phyloge-

netic analysis, we conclude that the HET-s PFD has a limited

phyletic distribution in the kingdom of life, especially within fungi,

but is also highly evolving compared to the N-terminal domain.

Using fold recognition techniques, we have predicted a set of

PFD homologous structures which are amenable to adopting

a b-solenoid fold, but which lack many of the characteristics

of the HET-s solenoid that promote the formation of stable fibrils.

Accordingly, we conclude that the HET-s shape has ‘limited scope’

for amyloidosis across the wider protein universe. Additionally, we

assessed the tandem evolution of the HET-s N-terminal and prion-

forming domains and identified functional linkages of the N-

terminal homologs. Our research suggests that the HET-s N-

terminal domain has a widespread phyletic distribution and may

contribute to several protein-protein interactions besides hetero-

karyon incompatability.

Supporting Information

Figure S1 Neighbor-joining phylogentic tree of the N-
terminal domains of Het-s orthologs that significantly
align to the A. otae N-terminal domain protein se-
quence. This is a phylogenetic tree made with the neighbor-

joining algorithm. The % bootstrap values are labeled at each

node. The green box shows the clustering of A. otae with F.

oxysporum. The phylogenetic class of each sequence is labeled

after the species name (i.e., Sordariomycetes, Eurotiomycetes,

etc.).

(TIF)

Table S1 Blosum similarity matrix for the N-terminal
domains and C-terminal domains of the homologs to the
PFD. A percent similarity matrix is provided for each of the N-

terminal and C-terminal domains based on 10 homologs to the

PFD. Naming of the homologs matches the naming scheme of

(Figure 3).

(DOC)

Table S2 List of N-terminal homologs with significant
hits to SCOP domains (n = 40). For each homolog, the

number of hits against the SCOP domains is also shown.

(XLS)

Table S3 SCOP domains that are significant (E,0.0001)
to the HET-s N-terminal homolog proteins (n = 65). 65

SCOP domains are represented, with a description of each

domain, and the number of hits against the homologous proteins

of the N-terminal domain.
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Table S4 212 HeLo domains identified in N-terminal
homologs using HMMER. The HMMER output is shown.

Detailed explanation of the output is provided with the file.
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Text S1 List of Proteomes constituting the BROAD
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