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Unrestricted Quantification and
the Structure of Type Theory

SALVATORE FLORIO AND NICHOLAS K. JONES

University of Birmingham

Semantic theories based on a hierarchy of types have prominently been used to defend the possibility of
unrestricted quantification. However, they also pose a prima facie problem for it: each quantifier ranges
over at most one level of the hierarchy and is therefore not unrestricted. It is difficult to evaluate this prob-
lem without a principled account of what it is for a quantifier to be unrestricted. Drawing on an insight of
Russell’s about the relationship between quantification and the structure of predication, we offer such an
account. We use this account to examine the problem in three different type-theoretic settings, which are
increasingly permissive with respect to predication. We conclude that unrestricted quantification is avail-
able in all but the most permissive kind of type theory.

1. Introduction

The result of theoretical inquiry often depends on the framework in which theorising is
conducted. Central features of any such framework are the linguistic resources regarded
as legitimate, and the notions taken as primitive. Philosophical inquiry is no exception.
To take a prominent example, one’s ontological views may depend on whether primitive
modal vocabulary is regarded as legitimate. Eliminating modal vocabulary naturally leads
one to postulate a vast plenitude of concrete worlds (Lewis 1986), which can be avoided
by permitting primitive modals (Prior and Fine 1977; Stalnaker 1976; Stalnaker 2012,
especially Chapter 1). For another example, one’s views about the existence and nature
of properties may depend on whether higher-order quantification is regarded as legiti-
mate. The Quinean view that only first-order quantification is legitimate naturally leads
one to postulate the existence of immanent universals (Armstrong 1980; Lewis 1983, 20–
25), which can be avoided by permitting primitive quantification into predicate position
(van Cleve 1994; Jones 2018). Permitting such higher-order quantification will also affect
the result of one’s semantic theorising. This paper concerns the influence of primitive
higher-order quantification on the semantic thesis that unrestricted quantification over
absolutely everything whatsoever is possible.

The possibility of unrestricted quantification appears to be presupposed by the abso-
lutely general modes of inquiry arguably characteristic of metaphysics, logic, and mathe-
matics. A framework capable of accommodating unrestricted quantification is thus
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needed to make reflective sense of these theoretical pursuits. One prominent candidate is
provided by higher-order logic, and type theory more generally. It is well known that
standard model-theoretic semantics, couched in set-theoretic terms, cannot accommodate
unrestricted interpretations of the quantifiers because there is no universal set available to
serve as an unrestricted domain of quantification. In contrast, the framework of higher-
order logic makes available a novel notion of property compatible with the existence
of a universal property of objects. This universal property can serve as a seemingly
unrestricted domain of quantification (Williamson 2003). However, it is unclear whether
this framework really is compatible with unrestricted quantification. The problem is
that the universal property of objects may not be truly universal. For surely a truly uni-
versal property would apply not only to all the objects, but also to any other entities
recognised by the framework. Yet no property is universal in that sense. Call this the
intuitive problem for unrestricted quantification within type theory, or the intuitive
problem for short.

One can see this as a revenge problem affecting type-theoretic semantics for unre-
stricted quantification. Like other revenge problems, it arises because the theoretical
resources used to resolve a problem allow us to formulate a new instance of that very
problem. In the present case, the original problem was that no set-theoretic domain of
quantification contains every object. The new problem is that no type-theoretic domain
contains every type-theoretic entity. So one wonders whether anything has been gained
by adopting the type-theoretic framework.

Is the intuitive problem sound? It is difficult to answer this question without a princi-
pled account of what it is for a domain of quantification to be unrestricted. In particular,
we need an account that can be applied in a range of different settings, including differ-
ent forms of type theory. Important as it is to our understanding of unrestricted quantifi-
cation, such an account is presently absent from the literature. We address this lacuna (in
§3) by identifying the core theoretical role governing unrestricted quantification and
offering a positive account of its occupier. In so doing we develop an insight of Bertrand
Russell’s about the structure of quantification. We then argue that whether the intuitive
problem is sound depends on the precise structure of predication. To this end, we con-
sider three kinds of type theory (in each of 4–6), which are increasingly permissive with
respect to predication. It will emerge that the intuitive problem is sound in only the most
permissive kind of theory.

2. Unrestricted quantification within type theory

This section introduces the type-theoretic framework with which we are concerned, and
its role in the semantics of unrestricted quantification.

We will be considering languages with the following kind of type-theoretic structure.
There is an infinite hierarchy of syntactic categories, or types. Type 0 is the type of sin-
gular terms. Type 1 is the type of predicates that form sentences when combined with
expressions of type 0. Type 2 is the type of predicates that form sentences when com-
bined with expressions of type 1. And so on. Importantly for us, there will be variables
of each type, all of which can be bound by quantifiers.

These languages extend the familiar language of first-order logic. Singular terms and
variables like ‘a’ and ‘x’ are of type 0. Predicates like ‘F’ are of type 1, since they form
sentences when combined with expressions of type 0, e.g. ‘F(a)’. The type-theoretic
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languages we are interested in go beyond first-order logic by introducing new kinds of
predicative expressions (i.e. predicates of predicates, predicates of those predicates, and
so on) and the means of quantifying on them. The result is a system of higher-order
logic.

A word on notation. In first-order logic, it is convenient to let the upper-case/lower-
case distinction indicate type: upper-case for predicates, lower-case for terms. We will
occasionally employ this convention. However, since we will consider languages with
many more than two types, we need something more systematic. So we use superscripts
to indicate type. For example, ‘a1’ is a constant of type 1, whereas ‘x2’ is a variable of
type 2, and ‘x2(a1)’ is an open sentence which combines them.

First-order logic, understood as a regimentation of a fragment of English, is widely
regarded as a legitimate language of theorising. According to the type-theoretic frame-
work we are interested in, languages with the structure just described can also be legiti-
mate languages of theorising and do not require reductive explanation. That is, taken at
face value, they are in perfectly good standing. This primitivist attitude towards type-the-
oretic languages is a rejection of W.V.O. Quine’s (1986, 66–68) view that higher-order
languages must be explained in set-theoretic terms (see, e.g., Prior 1971, Chapter 3;
Boolos 1975; Rayo and Yablo 2001; Williamson 2003; Hale 2013, Chapter 8).

Why would one adopt this type-theoretic framework? First and foremost, because it is
useful. While the framework has been widely applied in the foundations of mathematics,
recent developments have shown that it holds great promise elsewhere. Notably, it has
found fruitful applications in the metaphysics of properties, relations, propositions, iden-
tity, and modality (e.g. Dunaway 2013; Williamson 2013; Goodman 2017; Dorr 2016;
Jones 2018). It has also proven fruitful in the foundations of semantics, where it has been
used to to disentangle logic from mathematics (Florio and Incurvati 2019), and to charac-
terise the intended model of the language of set theory (e.g. Boolos 1985; Shapiro 1991,
Chapter 5). This last application is particularly relevant to the semantics of unrestricted
quantification, to which we turn shortly.

Given a type-theoretic language understood as we have described, one can use it to in-
troduce a metaphysical hierarchy of entities. At the base of the hierarchy, level 0, are the
objects. To say that there are objects, one uses existential quantifiers binding variables of
type 0, e.g. ∃x0(. . .x0. . .).1 At the next level up, level 1, are the properties of objects. To
say that they exist, one uses existential quantifiers binding variables of type 1, e.g.
∃x1(. . .x1. . .). Level 2 contains properties of level 1 properties. To say that they exist,
one uses existential quantifiers binding variables of type 2, e.g. ∃x2(. . .x2. . .). And so on.
Finally, one says that an entity has a property by predicating the property of the entity,
e.g. a1(b0) or a2(b1).

Importantly for us, this description of a metaphysical hierarchy of objects and proper-
ties should not be understood as relying on an antecedent conception of such entities. In
line with the primitivist interpretation of type-theoretic languages assumed here, our talk
about different levels should be understood in terms of the different orders of quantifica-
tion available in this setting, rather than conversely. We thereby legitimise a familiar and
natural way of talking, making our exposition go more smoothly. But it is important to

1 Henceforth, we typically omit quotation marks in the interests of readability. We will also indulge in
some harmless use/mention confusion when it simplifies exposition. Context will serve to disambiguate.
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remember the sense we have given to talk about objects and properties, which may not
always legitimise familiar ways of using these notions.

Canonical set-theoretic semantics embodies a Quinean attitude towards this metaphysi-
cal hierarchy and the type-theoretic language used to introduce it. Taking first-order set
theory and its corresponding hierarchy of sets as given, this approach interprets quanti-
fiers of all types as ranging over sets. As a result, type-theoretic languages provide no
new conceptual resources beyond the background set theory used to interpret them. In
effect, the metaphysical hierarchy is revealed as merely a hierarchy of sets. Our rejection
of the Quinean attitude makes room for a different approach. Taking a type-theoretic lan-
guage and its corresponding metaphysical hierarchy as given makes a novel suite of con-
ceptual resources available. These resources can then be used in our semantic theorising.
In particular, they can be used to develop a semantic theory that seems able to accommo-
date the possibility of unrestricted quantification.

To make reflective sense of this possibility, we require a semantic theory in which the
quantifiers can have an unrestricted interpretation. For simplicity, we let our object lan-
guage be a first-order language of the usual sort. An interpretation of this language has
two components. One interprets the non-logical vocabulary. We assume this component
to be fixed. The other provides a domain of quantification, which we allow to vary. So
our goal will be to characterise the truth conditions of quantified sentences relative to
arbitrary domains of quantification: sentence s is true in domain d. To avoid complica-
tions, we focus on the simplest generalizations possible in the language, namely sen-
tences like ∀v0F1(v0), which we call basic generalisations.2 (Henceforth, we generally
omit type indices in sentences of the first-order object language.)

To a first approximation, the truth conditions for basic generalisations can be stated as
follows:

∀vF(v) is true in d if and only if, for each x in d, F applies to x.

The precise regimentation of this clause, including type indices, depends on the theoreti-
cal framework in which one is working. For example, in standard model-theoretic seman-
tics all metalinguistic quantifiers are first-order (i.e. they bind variables of type 0). The
truth conditions for basic generalisations are then regimented as:

∀vF(v) is true in d0 if and only if, for each object x0 in d0, F applies to x0.

Notice that this sort of regimentation treats domains as objects (level 0), usually sets,
though different implementations may employ different kinds of objects.

Is unrestricted quantification possible in this framework? A necessary condition is the
existence of a domain containing all objects. Yet, if domains are objects, the following
domain-theoretic principle of separation entails that no domain contains all objects:

2 Our focus on basic generalisations does not narrow the scope of our investigation. This is because com-
plex generalisations can be expressed by means of basic ones. Consider a complex generalisation of the
form ∀v0φ(v0), where f 1 is the property determined by φ(v0). By interpreting F as standing for f 1, we
can express the complex generalisation ∀v0φ(v0) as the basic generalisation ∀v0F(v0).
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For any domain d, there is a domain d* comprising all and only the objects in d
that satisfy φ(x0), where φ(x0) is any formula of one’s language of theorising.3

The incompatibility of separation with a domain of level 0 containing all objects is one
lesson of Russell’s paradox. If there is such a d0, then there is, by separation, another
domain r0 containing all and only the objects that do not contain themselves. But since
r0 is itself an object, its existence is classically inconsistent: it contains itself if and only
if it does not.

Adopting a type-theoretic framework resolves this problem by making available a
novel notion of property compatible with the existence of a universal property of objects.
The key move is to use expressions of type 1 to regiment domain talk, as in this regi-
mentation of the truth conditions for basic generalisations:

∀vF(v) is true in d1 if and only if, for each object x0 such that d1(x0), F applies
to x0.4

Above, we identified a necessary condition on the possibility of unrestricted quantifi-
cation, namely the existence of a domain containing all objects. Given this regimentation
of domain talk, it follows from a standard principle of comprehension that there is such a
domain, i.e. a property u1 such that u1(x0) for every object x0.5 By replacing d1 with u1,
we obtain from the present regimentation an account of the truth conditions for basic
generalisations in this seemingly unrestricted domain of objects. Because the paradoxical
reasoning based on separation requires that domains are objects, and u1 is not an object,
its existence is compatible with separation. More specifically, that reasoning requires ask-
ing whether a certain domain contains itself, which one cannot meaningfully do if
domains are properties of level 1. To ask whether a domain of level 1 contains itself, one
would need to use a formula of the form d1(d1), which is ungrammatical within standard
forms of type theory (but see §6 for an alternative).

We appear to have vindicated the possibility of unrestricted quantification. At this
point, however, the intuitive problem rears its ugly head. Although there is a property u1

possessed by all the objects, surely a truly universal domain would also be possessed by
all properties. But, within the type-theoretic framework, one cannot grammatically say
that a property possesses another property (of the same or higher level), never mind show
that some property is possessed by all properties.6

3 A full justification of this domain-theoretic principle of separation is beyond the scope of this article.
However, one may start from the following simple observation. In ordinary conversation, we sometimes
interpret our interlocutor’s domain of quantification as progressively narrowing. The domain-theoretic
principle of separation merely encodes the following plausible generalisation about how this narrowing
may proceed. We begin by interpreting our interlocutor as employing a given domain. When a certain
condition becomes salient, we then interpret our interlocutor as employing a restriction of that domain to
things that satisfy the condition.

4 Note that, since the type of the domain has changed from 0 to 1, the type of the predicate ‘true in’ will
have to change too, to accept expressions of type 1 in its second argument.

5 The relevant instance of comprehension is: ∃y1∀x0(y1(x0) ↔ x0 = x0).
6 Within the type-theoretic framework, to say that a property has a property of the same or higher level,

one would need to use a formula like a1(b1) or a1(b2) where the subject has the same or higher type than
the predicate. Those formulae are ungrammatical in standard forms of type theory, though we discuss an
alternative later (§6).
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So, is quantification over u1 really unrestricted? Some have claimed so (e.g. Rayo and
Williamson 2003; Williamson 2003; Rayo 2006). Others, however, have claimed not.
For example, Leonard Linsky (1992, 262) makes the following general claim:

the theory of logical types [. . .], in all of its many varieties, has at its center a
rejection of this unrestricted notion of everything.

A similar view is suggested by remarks of Øystein Linnebo and Agustin Rayo (2012,
especially 292–293), who consider arguments from the open-endedness of the type-theo-
retic hierarchy to open-endedness of the set-theoretic hierarchy. More recently, Stephan
Kr€amer (2017) argues that a specific kind of type theory is incompatible with unrestricted
quantification; we discuss this argument in §5.

It is difficult to make progress on this issue without a principled account of what it is
for a domain to be unrestricted. In particular, we need an account that is applicable in a
range of different settings, including alternative developments of the type-theoretic frame-
work introduced above. Important as it is to our understanding of unrestricted quantifica-
tion, such an account is presently absent from the literature. In the next section, we
address this lacuna by identifying the core theoretical role governing unrestricted quantifi-
cation and offering a positive account of its occupier.

Our account will reveal an intimate connection between unrestricted quantification and
the structure of meaningful predicability. We will employ the following methodological
assumption in our investigation. According to the theoretical framework assumed here,
type-theoretic languages are legitimate languages of theorising and not in need of further
reductive explanation. In keeping with this approach, we take syntactic restrictions on
predication to line up with meaningful predicability. This will allow us to draw conclu-
sions about meaningful predicability, and hence unrestricted quantification, from premises
about what kinds of predication count as well-formed in different developments of the
framework. In short, we interpret the type-theoretic structure as encoding the limits of
meaningful thought and talk.

3. Russellian domains

Unrestricted quantification is quantification over an unrestricted domain. So we can expli-
cate unrestricted quantification by explicating unrestricted domains. We do so by identi-
fying the core theoretical role governing unrestricted domains and, drawing on an insight
of Russell’s, offering Russellian domains as occupants of this role. Subsequent sections
apply our proposal within three different kinds of type theory.

We begin with the following natural conception of universal quantification as preclu-
sion of counterexamples: for a universal generalisation to be true in a domain is for that
domain to lack counterexamples. For example, for the generalisation ‘everything is F’ to
be true in a domain d is for d to lack counterexamples, i.e. to be free from non-Fs. When
the domain is unrestricted, true universal quantification over it precludes there from being
absolutely any counterexamples whatsoever. We take this to be the distinctive feature of
unrestrictedness, which delivers the following theoretical role: an unrestricted domain is a
domain such that true universal quantification over it precludes there from being abso-
lutely any counterexamples whatsoever.
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Moreover, we can argue that this role is correct by appeal to the initial motivations for
unrestricted quantification, namely making reflective sense of the absolutely general
modes inquiry arguably characteristic of metaphysics, logic, and mathematics.7 By way
of example, consider the physicalist thesis that everything is physical. The metaphysically
interesting version of this thesis is refuted by anything non-physical whatsoever, which
requires quantification over a domain d that is unrestricted in the sense of our theoretical
role: true universal quantification over d precludes there from being any counterexamples
whatsoever.

What must a domain be like to occupy this theoretical role? Our key idea is inspired
by this passage from Russell 1908 (236–237):

Every proposition containing all asserts that some propositional function is
always true; and this means that all values of the said function are true, not that
the function is true for all arguments, since there are arguments for which any
given function is meaningless, i.e., has no value. Hence we can speak of all of a
collection when and only when the collection forms part or the whole of the
range of significance of some propositional function, the range of significance
being defined as the collection of those arguments for which the function in
question is significant, i.e., has a value. [. . .] A type is defined as the range of
significance of a propositional function, i.e., as the collection of arguments for
which the said function has values.

For Russell, quantifiers are operators on certain worldly items he calls propositional
functions, i.e. functions from entities to propositions. It is useful in the present context to
adopt a more linguistic interpretation.8 Focussing on the case of basic generalisations, we
can think of propositional functions as predicates. The range of significance of a predi-
cate F then comprises the things of which F can be meaningfully predicated, i.e. the
things that can be meaningfully said to be F. (To aid readability, we indulge in use/men-
tion confusion: when we say here that something can be meaningfully said to be F, we
should properly say that F can be meaningfully applied to it.)

In the quoted passage Russell claims that, for every propositional function, some enti-
ties lie outside its range of significance. The range of significance of F comprises what-
ever can be meaningfully said to be F. So Russell’s claim amounts to the following: for
every F, some entity cannot be meaningfully said to be F, i.e. there is no such proposi-
tion as the proposition that it is F.

We can now state Russell’s key insight about the structure of quantification: meaning-
ful quantification never goes beyond the range of significance. As he puts it, “we can
speak of all of a collection when and only when the collection forms part or the whole
of the range of significance of some propositional function.”

Russell describes this as a form of restricted quantification. Unlike more familiar forms
of quantifier restriction, however, “this is an internal limitation upon x, given by the nat-
ure of the function; and it is a limitation which does not require explicit statement, since
it is impossible for a function to be true more generally than for all its values” (Russell

7 Williamson (2003, 415–416) employs this kind of motivation for unrestricted quantification.
8 We also thereby bypass certain exegetical worries concerning the compatibility of propositional functions

with Russell’s multiple relation theory of judgment.
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1908, 234). In present terminology, it is impossible for a predicate F to be true or false
of things that cannot be meaningfully said to be F. So the domain of quantification of
∀vF(v) must be included in the range of significance of F.9 This is Russell’s internal lim-
itation on quantification.

We embrace this Russellian insight about the structure of quantification, but deny that
his internal limitation always yields a restricted form of quantification. Properly under-
stood, what Russell described as a restriction on quantification need really be no restric-
tion at all. When the domain coincides with the whole range of significance, the domain
should not be seen as restricted.

We can make this precise as follows. Define a domain as Russellian for a basic gener-
alisation ∀vF(v) if, and only if, it coincides with the range of significance of F. We con-
tend that Russellian domains play the unrestricted domain role characterised above. So
our main thesis is:

(R=U) Russellian domains are all and only unrestricted domains.

According to (R=U), a domain d is Russellian for ∀vF(v) if and only if d is unrestricted
for ∀vF(v).

Before continuing, let us pause to consider two concerns that might arise. According
to the first, this is a terminological issue. After all, unrestrictedness is a theoretical notion.
Provided we are clear about what we mean by unrestrictedness, we can use the notion as
we please. Consequently, (R=U) is at most definitional, not a substantive thesis.

This worry is misplaced. The issue is substantive because of the theoretical role for
unrestrictedness independently argued for above: a domain is unrestricted when true uni-
versal quantification over it precludes there from being absolutely any counterexamples
whatsoever. We claim that all and only Russellian domains satisfy this role, which is
clearly not a definitional matter. The only obvious alternative proposal requires that unre-
stricted domains contain all levels of the type-theoretic hierarchy of objects and proper-
ties. Moreover, one might naturally think, this alternative better captures the generality
characteristic of metaphysics, logic, and mathematics, such as the strong nominalist thesis
that nothing of any level is abstract.

In response, we could simply grant that although our theoretical role captures one
important aspect of unrestrictedness, it is not the only one. The earlier argument for our
theoretical role secures its significance, and hence also that of (R=U). However, a more
direct response is also available.

According to the alternative proposal, a domain is unrestricted only if it contains all
levels of the type-theoretic hierarchy. So consider the generalisation ‘everything is
abstract’, which is negated by the strong nominalist thesis mentioned above. We should
now ask after the range of significance of this generalisation’s predicate, ‘is abstract’. In
particular, does it contain all levels? If so, the alternative proposal agrees with ours. If
not, the alternative proposal should be rejected because it is incompatible with Russell’s

9 One way to see this is as follows. Given a domain d, the basic generalisation ∀vF(v) expresses a proposi-
tion whose truth requires, for each x in d, the truth of the singular proposition that x is F. When d
extends beyond the range of significance of F, it contains something for which there is no such singular
proposition. So ∀vF(v) does not express a proposition when “interpreted” over d: meaningful quantifica-
tion never goes beyond range of significance.
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insight about the connection between quantification and predication: meaningful quantifi-
cation never goes beyond the range of significance. The point generalises beyond this
particular example: either the alternative proposal agrees with ours, or it conflicts with
Russell’s insight and should therefore be rejected.

The second concern is that our main thesis cannot be expressed within the type-theo-
retic framework. For example, recall how we characterised ranges of significance: “the
range of significance of F comprises whatever can be meaningfully said to be F”. To
have its intended effect, the quantifier “whatever” here must range over entities of all
levels, not just those of some particular level. But such quantification across types is not
permitted within the framework. The concern is thus that we cannot properly characterise
ranges of significance, and so we cannot express our main thesis (R=U).

This is an old and familiar problem facing type-theoretic approaches. A version of the
problem was driving Frege’s (1892) notorious paradox of the concept horse, and was
also recognised by G€odel (1944, 466). The problem arises from a mismatch of perspec-
tives. The first is the external perspective of someone attempting to describe the type-the-
oretic framework from the outside, aiming to understand its workings. The second is the
internal perspective of someone who thinks, speaks, and works within the system. The
problem arises from attempting to reformulate the external perspective on the system
within the system itself. The expressive limitations currently at issue constrain the extent
to which the external perspective is available within the system.

Although this is clearly a deep and difficult issue, it is not obvious what to make of this
mismatch between perspectives. On the one hand, external theorising is central to making
sense of, and evaluating, theoretical options based on alternative conceptual schemes. On
the other hand, it would be nice if the resultant theoretical considerations could be appreci-
ated by all parties, regardless of perspective. Alas, situations often arise in philosophy where
these desiderata cannot be jointly satisfied. The present case is one such situation.

We cannot address this issue fully here, and so we simply pause for two observations.
Firstly, this is a very general problem for those who wish to make reflective sense of the
type-theoretic framework. In this respect, our proposal is no worse off than many others
in the area. Secondly, various techniques have been proposed for reducing the system’s
expressive limitations, many of which could be employed here.10 With these issues set
aside, we now argue for (R=U).

First, we show that every Russellian domain is unrestricted. Suppose that d is
Russellian for ∀vF(v). By definition of Russellian, F is not meaningfully predicable of
anything outside d. So nothing outside d can even count as a counterexample to ∀vF(v).
An entity can count as a counterexample only if it can be meaningfully said not to be F.
But what cannot be meaningfully said to be F cannot be meaningfully said not to be F
either. Then, because d is Russellian for ∀vF(v), it contains everything that can count as
a counterexample to the generalisation. So the truth of ∀vF(v) in d precludes there from
being any counterexamples whatosever. By the theoretical role for unrestrictedness, there-
fore, d is unrestricted for ∀vF(v).

10 In place of generalisation across levels, one can employ schematic generality and typical ambiguity, or
infinitary conjunction and disjunction. One can also adopt a metalinguistic stance on the type-theoretic
language and invoke ungrammaticality of certain strings (and also of those used to “interpret” them) in
place of talk about meaninglessness. For recent discussions of related issues, see e.g. Wright 1998,
Glanzberg 2004, Lavine 2006, Linnebo 2006, Hale 2013, Kr€amer 2013, Hale and Wright 2012, Jones
2016, and Florio and Linnebo forthcoming, Part IV.
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Now we argue for the converse: every non-Rusellian domain is restricted. Suppose d
is non-Russellian for ∀vF(v). Then, by definition of Russellian, either (a) F is not mean-
ingfully predicable of something in d, or (b) F is meaningfully predicable of something x
outside d. In case (a), the domain is not included in the range of significance of F,
which, as Russell observed, is impossible for meaningful quantification. In case (b), x
can count as a counterexample to ∀vF(v) and hence the truth of ∀vF(v) in d doesn’t pre-
clude x from being a counterexample. It follows by the theoretical role for unrestricted-
ness that d is not unrestricted for ∀vF(v).

Returning to the intuitive problem, consider u1, the universal property of objects. Is quan-
tification over u1 really unrestricted? Assuming (R=U), this is a question about whether u1 is
a Russellian domain for ∀vF(v): does u1 coincide with the range of significance of F? The
following sections examine this question within three different kinds of type theory. As we
will argue, the answer depends on the precise structure of meaningful predicability.

4. Strict type theory

The most familiar form of type theory embodies a very restrictive conception of predica-
tion: a predication is well-formed if and only if the type of its predicate immediately suc-
ceeds the type of its subject. This section argues that, in this setting, u1—a property of
level 1 possessed by all and only objects—is indeed an unrestricted domain for basic
generalisations in a first-order object-language. We begin with a more precise description
of this strict type theory, keeping it as simple as present purposes permit.

Elaborating on the outline in §2, the language has an infinite hierarchy of types
indexed by the natural numbers. There are monadic variables and constants of each type,
alongside the usual logical operators. There is also an intra-type identity predicate for
each type. Quantifiers can bind variables of any type. The distinctive feature of strict type
theory is its treatment of predication: si(t j) is well-formed if and only if i = j + 1.

We assume the standard, classical rules for the logical operators. In addition, we have
a principle of comprehension for each type i ≥ 1:

9xi8yi�1
�
xiðyi�1Þ $ uðyi�1Þ�

subject to the usual proviso that xi does not occur in φ. We also have a form of Leibniz’s
Law governing the intra-type identity predicate =i+1 for each type i:

8xi8yi�xi ¼iþ1 y
i $ 8ziþ1�ziþ1ðxiÞ $ ziþ1ðyiÞ��

To aid readability, we usually omit indices on the identity signs, allowing context to dis-
ambiguate.

As presented, the system lacks relations. This will greatly simplify the discussion of
cumulativity in the next section. Nothing of substance turns on this omission of relations
because one can simulate them within the present system, given appropriate assumptions.
In particular, binary relations (including cross-level relations) can be identified with prop-
erties of pairs.11

11 For definitions of cross-level pairing in an extensional setting, see Linnebo and Rayo 2012,
Appendix B2, and Florio and Linnebo forthcoming, Appendix 11.B. It is worth emphasising that these
complications are required only because we have omitted relational types in order to simplify the discus-
sion of cumulativity in §5.
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Let us now examine the intuitive problem within this strict system. The idea driving
the problem was that a truly universal property would apply not only to all the objects,
but also to any other entities recognised by the framework. So, in particular, (a) a prop-
erty is an unrestricted domain only if it is possessed by all properties of level 1, and (b)
although u1 is possessed by all objects, it is not possessed by any property of level 1.
Therefore, u1 is not an unrestricted domain.

The strict system avoids this problem because neither (a) nor (b), let alone the more
general idea driving the problem, is expressible without violating the strict type restric-
tions on well-formed predication. For example, one would express the claim that u1 is
not possessed by any property of level 1 with the formula ∀x1¬u1(x1). Yet this violates
the requirement that the type of the subject immediately precede the type of the predicate.
Given our methodological assumption that syntactic restrictions on predication align with
meaningful predicability, it might therefore appear that the intuitive problem is merely an
expressive illusion.

However, matters are not so simple. A closely related problem is expressible within
the strict system. As observed above, although the system lacks relations, one can simu-
late them within it. This allows us to make sense of the claim that the properties of level
1 outnumber the objects. Moreover, the regimentation of this claim is provable, yielding
a type-theoretic version of Cantor’s theorem.12 At a first pass, this appears to be incom-
patible with u1 being unrestricted. We now use (R=U) to argue that this appearance is
misleading.

According to (R=U), a domain d is unrestricted for a basic generalisation ∀vF(v) if
and only if d is Russellian for that generalisation, i.e. d coincides with the range of sig-
nificance of F. What is this range? It depends how our first-order object language is
interpreted. Earlier, we assumed a fixed interpretation of its non-logical vocabulary. This
is an interpretation of the usual sort, namely one in which the quantifiers range over
objects and the predicates express properties of level 1. So let f 1 be the property
expressed by F. By the strict type restriction on predication, f 1 is grammatically predica-
ble of all and only objects. Since we are taking syntactic restrictions on predication to
line up with meaningful predicability, F is meaningfully predicable of all and only
objects. So the range of significance of F comprises the objects. Since all and only
objects possess u1, u1 is Russellian, hence unrestricted, for ∀vF(v).

Cantor’s theorem provides a sense in which the properties outnumber the objects,
hence also a sense in which some entities are outside u1. But the theorem does not entail
anything about meaningful predicability. So by (R=U), it does not entail anything about
unrestrictedness. In fact, in the strict type theory, u1 coincides with the range of signifi-
cance of every predicate of our first-order object language. So, as argued just above, u1

is an unrestricted domain for every basic generalisation ∀vF(v) of our object language.
The point extends to basic generalisations in higher-order object languages. An object

language predicate of type i is interpreted by a property of level i, and is therefore mean-
ingfully predicable of all and only entities of level i�1. Let ui be the property possessed
by all entities of level i�1. Then ui is Russellian, hence unrestricted, for ∀vi�1Fi(vi�1).
The upshot is that the strict type theory is hospitable to unrestricted quantification of
every order.

12 The claim that the properties of level 1 outnumber the objects is regimented as the claim that no relation
from the objects to the properties is both functional and onto. For a proof, see Shapiro 1991, 103–104.

UNRESTRICTED QUANTIFICATION AND THE STRUCTURE OF TYPE THEORY 11



5. Cumulative type theory

Strict type theory encodes a very restrictive conception of predication. However, one can
make good mathematical sense of a more permissive approach: a predication is well-
formed if and only if the type of the subject is lower than the type of the predicate.13

This means that predication of all lower types is now permitted, not just of the immedi-
ately preceding type. So one can say, for example, that a property is possessed by entities
of different levels, e.g. F2ða1Þ ^ F2ðb0Þ. This kind of cumulative type theory has been
discussed in favorable terms by Wolfgang Degen and Jan Johanssen (2000), and Linnebo
and Rayo (2012). Timothy Williamson (2013, 237–238) also employs cumulativity in the
semantics of higher-order modal languages.

The cumulative system considered here is just like the strict system except for its treat-
ments of predication and comprehension. As just mentioned, a predication si(t j) is well-
formed if, and only if, i > j (rather than i = j + 1). As for comprehension, there are vari-
ous options. A natural idea is that one can define a property of a given level i by specify-
ing, for each level below i, which entities of that level possess it. Formally,

9xi�8yi�1ðxiðyi�1Þ $ ui�1ðyi�1ÞÞ ^ . . . ^ 8y0ðxiðy0Þ $ u0ðy0ÞÞ
�

Note that this allows one to choose different formulae for different levels. A weaker vari-
ant requires greater uniformity in the choice of formulae (e.g. Linnebo and Rayo 2012,
288).

Why adopt this version of type theory? First, there is no obvious reason why the type
theory has to be strict, given that we can make good mathematical sense of cumulativity.
Second, it has been argued that we should embrace infinite types (Linnebo and Rayo
2012), which naturally delivers cumulativity. Since no type immediately precedes the first
infinite type x, the strict system permits no predications of the form sx(ti), whereas the
cumulative system permits them whenever i is finite. Although we remain officially neu-
tral about the ultimate success of these arguments, they clearly motivate taking cumula-
tivity seriously.

Let us now examine the intuitive problem within this cumulative system. The simplest
version we have seen so far rested on two claims: (a) a property is an unrestricted
domain only if it is possessed by all properties of level 1; (b) although u1 is possessed
by all objects, it is not possessed by any property of level 1. It follows that u1 is not an
unrestricted domain. Just like in the strict system, however, neither claim is well-formed
in the cumulative system, and so there is no problem here to respond to.

Another version of the intuitive problem has been endorsed in a recent paper by
Kr€amer (2017). In the context of a debate between defenders of unrestricted quantifica-
tion (Absolutists) and their opponents (Relativists), Kr€amer writes that, within cumulative
type theory:

there is more than is dreamt of by [the first-order object language’s] quantifiers
—what sets the picture apart from the Relativist’s is only that what is more is
not in the range of the semantics’ first-order quantifiers but their second-order
cousins. So the [type-theoretic] version of Absolutism is not really worthy of the

13 Michael Potter (2002, §5.12) points out that Ralph Hawtrey suggested this approach to Russell in a letter
of 1908.
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name [. . .] it preserves the letter of Absolutism, but [. . .] gives up on its spirit.
(Kr€amer 2017, 511)

Kr€amer’s argument proceeds by considering a certain sentence which says that some
properties of level 1 are not objects; he calls this sentence (MORE). Kr€amer then argues
as follows:

(1) In the cumulative system, there are cross-type identity relations.

(2) If there are cross-type identity relations, then (MORE) is expressible and prov-
able (hence true).

(3) If (MORE) is true, then the quantifiers of the first-order object language are not
unrestricted—because (MORE) is contrary to “the spirit of Absolutism”.

As we will explain below, one can see this as a version of the Cantorian argument dis-
cussed in the previous section, where the role previously played by a cardinality compar-
ison between objects and properties is now played by (MORE). We will argue that our
response to the Cantorian argument carries over to this case. Specifically, (MORE) is
consistent with unrestricted quantification, assuming (R=U). We begin by explaining
Kr€amer’s premises (1) and (2).

To see why the cumulative system contains cross-type identity relations, note that they are
definable using the resources of the system.14 Both the strict and cumulative systems have
intra-type identity relations characterized by indistinguishability within the next level up:

xi ¼iþ1 y
i $ 8ziþ1ðziþ1ðxiÞ $ ziþ1ðyiÞÞ

The cumulative system can also define cross-type identity relations characterized by indis-
tinguishability within the first type predicable of the relata.15 Where k = max(i,j) + 1, we
can regiment this as:

xi �k y
j $ 8zkðzkðxiÞ $ zkðyjÞÞ

This generalises intra-type identity because, when x and y are of the same type i, the first
type predicable of both is the next one up, i.e. k = i + 1. As with intra-type identity, we
usually omit indices on cross-type identity signs to aid readability, allowing context to
disambiguate.

14 There would be no need to define cross-type identity explicitly if we were working in a relational system that
treated all predicates cumulatively, including identity. Because identity has a privileged relational status in our
chosen monadic system, we did not assign a type to the identity sign. Making the types cumulative therefore
does not force identity to become cumulative too, and so cross-type identity must be explicitly defined.

15 See Degen and Johannsen 2000, 149–150, and Linnebo and Rayo 2012, 282. Kr€amer (2017, 17–18) has
a slightly more complex formulation because his system has primitive relational types. It is not obvious
that any of these definitions captures a form of identity. Identity should satisfy this condition: if x is iden-
tical to y, then anything meaningfully predicable of x is meaningfully predicable of y. But it is unclear
whether that condition is satisfied by indistinguishability within the first level predicable of both x and y,
hence also unclear whether the definition captures a genuine form of identity. For argument’s sake, how-
ever, we grant that cross-type identity as defined really is a form of identity. This concession only
strengthens Kr€amer’s case.
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We can use cross-type identity to formally express Kr€amer’s (MORE) within the
cumulative system:

(MORE) 9x18y0ðx1 6� y0Þ

This says that some property of level 1 is cross-type distinct from every object, i.e. some
property is not an object. This is not only expressible but provable as a theorem of the
cumulative system. Perhaps the easiest way to see why is as follows. Suppose for reduc-
tio that (MORE) is false. Then every property (of level 1) is cross-type identical to an
object. So cross-type identity is a relation from level 0 to level 1 that is both functional
and onto. But this contradicts the type-theoretic version of Cantor’s theorem discussed in
the previous section. Since the cumulative system extends the strict one, the type-theo-
retic version of Cantor’s theorem is available there too. So by reductio, (MORE) is true.
Given that this reasoning employs only logical rules of the cumulative system, (MORE)
is a theorem of that system.

This suggests that (MORE) raises no new problems for unrestricted quantification
beyond the type-theoretic version of Cantor’s theorem. And this is borne out by closer
examination: a version of our response to that problem within the strict system is also
available within the cumulative one.

Recall, the key issue is whether u1—the property of level 1 possessed by all and only
objects—is an unrestricted domain for a basic generalisation of the first-order object lan-
guage, such as ∀vF(v). It follows from (MORE) that some property is not in this domain
because that property is not identical to any object. But given (R=U), this is silent about
whether u1 is unrestricted. According to (R=U), a domain is unrestricted for ∀vF(v) if,
and only if, it coincides with the range of significance of F. Although (MORE) entails
that some entity lies outside u1, it does not entail that F is meaningfully predicable of
that entity. So (MORE) does not entail that the range of significance of F extends beyond
u1. It therefore does not entail that u1 is a restricted domain for ∀vF(v). In a nutshell,
(MORE) provides new entities outside u1, but not new candidate counterexamples to
∀vF(v). It therefore does not conflict with u1 being unrestricted.

In fact, it follows from (R=U) that u1 is unrestricted for ∀vF(v). The reason is just the
same as in the strict system. In brief, since F expresses a property of level 1, it is mean-
ingfully predicable of all and only objects. Since all and only objects possess u1, u1 is
Russellian, hence unrestricted, for ∀vF(v).16

The point extends to basic generalisations in higher-order object languages. An object
language predicate of type i is interpreted by a property of level i, and is therefore mean-
ingfully predicable of all and only entities of levels below i. As before, let ui be the prop-
erty possessed by all entities of level i�1. Then a Russellian, hence unrestricted, domain
for ∀vi�1F i(vi�1) is a property that combines every property uj where j is below i.17

16 The argument assumes that F expresses a property of level 1. Different interpretations are available. For
example, suppose F expresses a property of level i. Then F is meaningfully predicable of all and only
entities from levels below i. So an unrestricted domain for ∀vF(v) is not u1 but a property possessed by
every entity whose level is below i (see footnote 17). In short, the existence of an unrestricted domain
for ∀vF(v) is independent of how F is interpreted.

17 More precisely, a Russellian domain for ∀vi�1Fi(vi�1) is any property ai such that

8x0aiðx0Þ ^ 8x1aiðx1Þ ^ . . . ^ 8xi�1aiðxi�1Þ
The existence of such a property follows from comprehension.
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The upshot is that cumulative type theory is hospitable to unrestricted quantification of
every order, and (MORE) is compatible with Absolutism, namely the thesis that unre-
stricted quantification is possible. This undermines the following premise of Kr€amer’s
version of the intuitive problem:

(3) If (MORE) is true, then the quantifiers of the first-order object language are
not unrestricted—because (MORE) is contrary to “the spirit of Absolutism”.

Given the theoretical role of unrestrictedness identified in §3, the spirit of Absolutism
requires a domain containing all the candidate counterexamples to any given generalisa-
tion. We have just seen that, within the cumulative system, there are domains containing
all candidate counterexamples in the strong sense of containing everything that can be
meaningfully said to be a counterexample.

Let us take stock. The strict and cumulative systems both permit unrestricted quantifi-
cation. They differ over which domains count as unrestricted for which generalisations.
And they do so because they differ over the range of significance they assign to predi-
cates of a given type i: all levels below i in the cumulative system, but only level i�1 in
the strict system. An unrestricted domain for ∀vi�1Fi(vi�1) is thus ui in the strict system,
whereas it is a property combining all of u1,. . .,ui in the cumulative system.

Within the cumulative system, a version of (MORE) is provable for any types i,j
where i > j:

9xi8yjðxi 6� yjÞ

This shows, in effect, that every domain can be expanded. The mistake underlying
Kr€amer’s argument was to treat this kind of expandability as incompatible with unre-
strictedness. However, the question isn’t whether the domain is expandable. The question
is whether it’s expandable with new candidate counterexamples to a given generalisation,
that is, whether the expanded domain is contained within the appropriate range of signifi-
cance. The domain expansion arising from (MORE) is irrelevant to that question. By
combining (R=U) with cumulativity, we see that unrestricted domains may also be
expandable.

6. Liberal type theory

The final form of type theory considered here adopts a maximally permissive approach to
predication: si(t j) is well-formed for all i,j. In this kind of liberal type theory, one can
now say that a property is possessed by entities of the same or higher level than it, e.g.
F1(a2). Following Kurt G€odel (1933, 46), we assume for the time being that these newly
permitted predications (i.e. si(t j) with i ≤ j) are always false, though we will revisit this
issue later. We will focus on a liberal system that is in all other respects just like the
cumulative one.

Why take this framework seriously? Firstly, there is no obvious reason why the type
theory has to be just strict or cumulative, especially given that one can make good math-
ematical sense of liberalism (G€odel 1933, 46). Secondly, an argument from cumulativity
to liberalism has recently been offered by Linnebo and Rayo (2012, 281–283), and we
have already seen good reasons to take cumulativity seriously. We examine their argu-
ment in §7.
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Recall the simplest version of the intuitive problem from earlier: (a) a property is an
unrestricted domain only if it is possessed by all properties of level 1; (b) although u1 is
possessed by all objects, it is not possessed by any property of level 1; therefore u1 is
not an unrestricted domain. Within the liberal system, both claims are not only express-
ible but also true. Claim (a) follows from (R=U) together with our assumed alignment of
syntactic restrictions on predication with meaningful predicability (§3). Claim (b) follows
from the assumption that predications of the form si(ti) are always false. It follows from
(a) and (b) that u1 is not an unrestricted domain for basic generalisations in our first-order
object language. This does not yet show that there are no such domains. However, given
any domain di, one can use the following argument to refute the hypothesis that di is
unrestricted for ∀vF(v) according to the liberal system.

Consider any candidate domain di of level i. We now show that di is not unrestricted
for ∀vF(v). Let f j be the property expressed by F. The liberal system allows one to
meaningfully ask whether entities of level i possess f j, no matter what i and j are.
Because F expresses f j, F can also be meaningfully applied to entities of level i. In short,
the range of significance of F encompasses level i. Yet, according to the liberal system,
not every entity possesses di; in particular, no entity of level i or above possesses di (re-
call that si(tj) is false whenever i ≤ j). So di does not include the range of significance of
F. By (R=U), di is not unrestricted for ∀vF(v).

Because the levels i and j were arbitrary, this argument can be reproduced for higher-
order object languages. Given any domain and basic generalisation in a higher-order lan-
guage, one can use the argument to show that the domain is not unrestricted for the gen-
eralisation. In short, the intuitive problem is both expressible and sound in the liberal
system.

In fact, a more informative result is available too. Define a type i as bounded if and
only if, for some level j, expressions of type i are not meaningfully predicable of entities
of level j or above. Consider a basic generalisation such as ∀vFi(v). We can show that
this generalisation admits an unrestricted domain just in case its predicate’s type i is
bounded.

First, suppose that type i is unbounded. Adapting the argument of three paragraphs
ago, it follows that no domain is unrestricted for ∀vFi(v). Now suppose instead that i is
bounded. Then the range of significance of Fi is confined below some level j. Let C be
the collection of levels within which Fi can be meaningful predicated. We can find a
domain coinciding with Fi

’s range of significance by combining the universal properties
uj+1 where j 2 C. For example, if Fi can be meaningfully predicated only within levels
0 and 2, then its range of significance coincides with a property that combines u1 with
u3. Putting these results together, a basic generalisation admits an unrestricted domain
just in case its predicate is of a bounded type.

The preceding arguments assume that, when j ≥ i, predications of the form si(t j) are
always false. But that assumption is not forced on us solely by liberalism’s maximally
permissive approach to predication. This suggests the possibility of reinstating unre-
stricted quantification by rejecting the assumption.

We followed G€odel in making this assumption because liberalism opens up new ques-
tions about the behaviour of properties predicated within their own level or above. The
assumption embodies a radical yet simple answer to those questions. Other answers may
be available. The effect of any such answer will be to allow properties that are more
inclusive in the sense of being possessed by entities from their own level or above. Some
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answers will even be consistent with a property possessed by every entity, regardless of
level. That would require suitable restrictions on comprehension and separation, but such
a property would be a Russellian domain for any generalisation. A detailed investigation
of the options here would take us too far afield from our primary concerns. Instead, we
simply note that the impossibility of unrestricted quantification requires more than liberal-
ism’s maximally permissive conception of predication; it also depends on how properties
behave when predicated within their own level and above.

7. Does cumulativity entail liberalism?

We have seen that unrestricted quantification is available in the strict and cumulative sys-
tems, but not in the liberal one. However, Linnebo and Rayo (2012, 281–283) have
recently argued from cumulativity to liberalism. If sound, their argument shows, in effect,
that the cumulative system is unstable, and hence that unrestricted quantification requires
a strict type theory.

Recall that relations of cross-type identity are available in the cumulative setting.
Linnebo and Rayo claim that such relations suffice for liberalism’s type-unrestricted
approach to predication:

Once this type-unrestricted version of identity is in place, defining a type-unre-
stricted notion of predication is straightforward. One simply uses type-unre-
stricted identity to raise the type of the predicate enough to ensure that the
predication is legitimate. (Linnebo and Rayo 2012, 282)

We can spell out the challenge emerging from this passage thus:

(1) In the cumulative system, there is a cross-type identity relation.

(2) If there is a cross-type identity relation, then there is a liberal notion of predication.

(3) If there is a liberal notion of predication, then one should adopt a liberal type theory.

We have already seen that (1) is true (§5). Moreover, we may grant (3) on the basis
of the following considerations. If a liberal notion of predication is available, then our
assumed alignment of syntactic structure with meaningful predicability militates in favour
of a similarly liberal type theory. For adopting a cumulative system would involve adopt-
ing what one regards as an unduly restrictive approach to predication. Although (1) and
(3) are true, we will argue that (2) is false.

To see why one might believe premise (2), consider a predication that is ill-formed within
the cumulative system but well-formed within the liberal system, e.g. ‘a1(b2)’. According to
Linnebo and Rayo, one can leverage cross-type identity to show that any such predication is
meaningful. Here is one way of doing so. Let a1 be the property expressed by ‘a1’, and b2

be the property expressed by ‘b2’. A predication like ‘a1(b2)’ is meaningful just in case it
makes sense to predicate a1 of b2. So suppose a1 is cross-type identical to an entity a3 of
level 3, that is, a1 � a3. It makes sense to predicate a3 of b2. Since a1 � a3, predicating a3

of b2 is just the same as predicating a1 of b2. So it makes sense to predicate a1 of b2, and
‘a1(b2)’ is meaningful after all, despite violating the cumulative system’s type restrictions.
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The exact notion of predication delivered by this argument depends on the extension
of the cross-type identity relation. In particular, one obtains a liberal notion of predication
only if every entity is cross-type identical with an entity of any higher level. In symbols,

8xi9yjðxi � yjÞ

for all types i,j with i < j. But this axiom scheme of type-raising may be contested. In
fact, it follows from the version of comprehension presented in §5 that cross-type identity
never holds between entities from different levels. For example, the following conse-
quence of comprehension says that there is a property which distinguishes between the
entities a1 and a3 employed in the argument:

9x4�8y3ðx4ðy3Þ $ y3 ¼ a3Þ ^ 8y1ðx4ðy1Þ $ y1 6¼ a1Þ�

It follows from this together with the definition of cross-type identity that a1 ≢ a3. Similar
principles are available to distinguish any other pair of entities drawn from different levels.

The situation points to this conclusion: cumulativity alone does not suffice for a liberal
notion of predication. For there is a consistent development of the cumulative system in
which cross-type identity is empty. It is only when the cumulative system is augmented
with substantive metaphysical assumptions—namely, all instances of the axiom scheme
of type-raising—that the preceding argument delivers a liberal form of predication.18

Linnebo and Rayo avoid this problem by offering an alternative argument from cross-
type identity to a liberal notion of predication. As we will see, however, it is doubtful
whether this alternative argument really delivers a form of predication.

They first define the following cross-type relation:

xieyj ¼def
yjðxiÞ if i\j
9yiþ1ðyj � yiþ1 ^ yiþ1ðxiÞÞ if i� j

�

They then use this relation to interpret predication; that is, they take ‘yj(xi)’ to mean the same
as ‘xieyj’. Linnebo and Rayo thereby provide meaning for predications that are ill-formed in
the cumulative system. When ‘yj(xi)’ is well-formed within the cumulative system, its mean-
ing is unaffected by this interpretation. But when ‘yj(xi)’ is ill-formed within the cumulative
system, i.e. when i ≥ j, this interpretation supplies it with the following meaning: something
from immediately above xi’s level is both identical to yj and possessed by xi.

From the cumulative system’s perspective, there are reasons to deny that e is a form
of predication. It is really a combination of quantification, cross-type identity, predication,
and logical operations. To see this, consider the variant relation e* defined thus:

xie�yj ¼def
yjðxiÞ if i\j
8yiþ1ðyj � yiþ1 ! yiþ1ðxiÞÞ if i� j

�

Like e, this relation extends the cumulative notion of predication. It differs from e only
when i ≥ j. In that case, it requires that everything immediately above xi’s level and

18 In this connection, notice that Linnebo and Rayo (2012, 288) include the relevant assumptions as addi-
tional axioms of their system. The assumption is also embedded in Degen and Johannsen’s flexible rules
for the quantifiers, which allow universal instantiation with respect to variables of any lower type (Degen
and Johannsen 2000, 149).
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identical to yj is also possessed by xi (whereas e requires only that something immediately
above xi’s level is). Moreover, e* has as good a claim as e to be a form of predication.
So we have two options for interpreting ‘yj(xi)’: as synonymous either with ‘xie*y j’ or
with ‘xiey j’. However, these interpretations are not equivalent. For example, if i ≥ j and
yj is not identical to anything of level i + 1 or higher, then ‘xieyj’ is false while ‘xie*y j’
is true. The quantifiers and other logical operators in the definitions are therefore not
semantically inert. This suggests that neither relation is a form of predication. Both are
logically complex combinations of quantification, cross-type identity, and genuine predi-
cation.19

To summarize, we have seen two potential ways of using cross-type identity to trans-
form a cumulative notion of predication into a liberal one. The first delivered a genuinely
predicational notion but fell short of liberalism. The second did not deliver a genuinely
predicational notion. Either way, the cumulative system appears to provide a stable theo-
retical framework hospitable to unrestricted quantification.

8. Conclusion

One central difficulty for unrestricted quantification is that, if domains are objects, no
domain contains all objects. The intuitive problem we have considered is a kind of
revenge problem facing type-theoretic responses to this difficulty: if domains are type-
theoretic entities, no domain contains all type-theoretic entities. In light of this problem,
one wonders whether anything is gained by adopting a type-theoretic framework.

Different authors have offered different views of this issue. Their arguments tend to
invoke features peculiar to a specific type-theoretic framework. Evaluation of these argu-
ments has been hampered by the absence of a principled account of unrestrictedness,
which can be applied consistently across different frameworks.

We have provided precisely such an account, by arguing for an explication of unre-
stricted domains as Russellian domains. This reduces the question of whether a domain
is unrestricted to a question about meaningful predicability: does the domain coincide
with the appropriate range of significance? Because different type-theoretic frameworks
embody different conceptions of meaningful predicability, they can diverge over this
question. On the one hand, the strict and cumulative systems constrain meaningful predi-
cability so that there is always a domain coincident with each range of significance. This
makes both systems hospitable to unrestricted quantification. On the other hand, the lib-
eral system imposes no constraints on meaningful predicability. In this respect, liberalism
is like more familiar semantic frameworks where one can only quantify over objects:
every entity recognised by the framework lies within every predicate’s range of signifi-
cance. Suitable principles governing the existence of domains (e.g. forms of separation
and comprehension) then entail that the range of significance is never confined within a
domain, which precludes unrestricted quantification. This shows that the intuitive prob-
lem requires substantive assumptions about the structure of predication. We conclude that

19 One might observe that e and e* become coextensive if we assume the axiom scheme of type raising
mentioned above. Even so, this shows at most that the second argument from cumulativity to liberalism
is no better than the first: both depend on substantive metaphysical assumptions.
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something is gained by going type-theoretic just in case type-theoretic structure con-
strains meaningful thought and talk in an appropriate way.20
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[Correction added on August 23, 2019, after first online publication: The word “The” has been
updated as “the” in article title in page 1, the display equation “R=U” is left justified in page 8,
the country name “Birmingham” has kept in single line in page 20, in reference, Potter, Michael.
2002, the “‐‐‐‐‐ “ is replaced instead by “ ’ ” between “Reason” and “s” have been updated.]
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