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Abstract
Optical projection tomography (OPT)

is a 3D mesoscopic imaging modality

that can utilize absorption or fluores-

cence contrast. 3D images can be rap-

idly reconstructed from tomographic

data sets sampled with sufficient num-

bers of projection angles using the

Radon transform, as is typically

implemented with optically cleared

samples of the mm-to-cm scale. For

in vivo imaging, considerations of pho-

totoxicity and the need to maintain ani-

mals under anesthesia typically preclude the acquisition of OPT data at a sufficient

number of angles to avoid artifacts in the reconstructed images. For sparse samples,

this can be addressed with iterative algorithms to reconstruct 3D images from under-

sampled OPT data, but the data processing times present a significant challenge for

studies imaging multiple animals. We show here that convolutional neural networks

(CNN) can be used in place of iterative algorithms to remove artifacts—reducing

processing time for an undersampled in vivo zebrafish dataset from 77 to

15 minutes. We also show that using CNN produces reconstructions of equivalent

quality to compressed sensing with 40% fewer projections. We further show that

diverse training data classes, for example, ex vivo mouse tissue data, can be used for

CNN-based reconstructions of OPT data of other species including live zebrafish.
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1 | INTRODUCTION

Optical imaging is now ubiquitous in biomedical research,
extensively applied to planar samples such as two-
dimensional (2D) cell cultures and tissue sections and
increasingly applied to extended tissue volumes and whole
organisms. There is particular interest in three-dimensional
(3D) imaging in vivo, to provide a more realistic context [1]
for the biology under study. Longitudinal imaging is highly
desirable to mitigate against biological sample variability
and to reduce animal numbers used in research.

Optical projection tomography (OPT) [2] is an
established technique for 3D imaging in non/weakly scatter-
ing samples. Often described as the optical equivalent of
X-ray computerized tomography (CT), OPT entails the
acquisition of wide-field 2D transmission and/or fluores-
cence images of a rotating sample. It is frequently applied to
mesoscopic sized volumes on the mm-to-cm scale, for exam-
ple, to phenotype chemically cleared small animal organs
[3–6], and the low phototoxicity associated with wide-field
imaging makes it suitable for extended in vivo imaging stud-
ies, for example, of zebrafish embryos [7] and adult
zebrafish [8]—the latter mutated [9, 10] to suppress melanin
and iridophore production.

For ex vivo samples, images are acquired at hundreds
of different projection angles, from which the 3D volume
can be analytically calculated using filtered back projection
(FBP) [11], which typically takes a few minutes on a modest
graphical processing unit (GPU)-enabled personal computer.
For in vivo OPT, however, it is highly desirable to reduce
the length of time an animal is anesthetized, thereby mini-
mizing side-effects and possible confounding factors linked
to anesthesia, and reducing the likelihood of unwanted move-
ment during the OPT data acquisition [12]. In addition, it is
also important to minimize the light dose (and therefore the
total OPT data acquisition time) to minimize phototoxicity or
photobleaching of fluorescent proteins. While improvements
in light collection efficiency, and therefore reductions in
OPT acquisition times, have been realized by increasing the
imaging numerical aperture, for example, through angularly-
multiplexed acquisition [13] or focal-scanning OPT [14, 15],
more significant reductions in total acquisition time can real-
ized by reducing the number of projection images acquired.
This also decreases the data volume and therefore data stor-
age requirements.

Unfortunately, reducing the number of angular projec-
tions in a computed tomography data set significantly below
the number set by the Shannon-Nyquist sampling theorem
leads to streak artifacts in images reconstructed using FBP
[11]. This impact of undersampled OPT data sets can be
mitigated using compressed sensing (CS) algorithms [16] to
significantly reduce the number of projections required to

reconstruct faithful 3D images for suitable sparse samples.
Unfortunately, due to the iterative nature of these reconstruc-
tion algorithms, which require multiple rounds of regulariza-
tion and both forward-projection and back-projection per
reconstructed slice, CS introduces a significant computational
cost. In our laboratory, for example, a typical OPT data set
that would normally take a few minutes to reconstruct using
FBP implemented on a GPU-accelerated desktop computer
would require more than an hour to reconstruct using the
two-step iterative shrinkage/thresholding (TwIST) CS algo-
rithm [17]. This therefore introduces a data processing bottle-
neck for highly sampled longitudinal or high throughput
studies.

Convolutional neural networks (CNN) provide an alter-
native computational approach for this and many other
image data processing applications [18]. In X-ray CT, a U-
net CNN has been used to remove the streak artifacts from
FBP reconstructions calculated from 7 and 20 times under-
sampled data [19]. While the theoretical basis of this
approach to deep learning is still being developed, for exam-
ple [20], it provides an empirically useful approach to accel-
erating reconstruction of sparse tomography data. In this
paper we report on CNNs applied to provide streak artifact-
free reconstructions of undersampled OPT data that have
been trained using high quality 3D images of chemically
cleared tissue volumes reconstructed using FBP of densely
sampled OPT data. This CNN approach enables us to recon-
struct undersampled OPT data five times faster compared to
our previous iterative CS-OPT approach and we demonstrate
that CNN reconstructions can provide equivalent image
quality to CS with 40% fewer projections, thereby further
reducing the OPT data acquisition time. For in vivo applica-
tions, we show that a CNN trained on ex vivo immuno-
stained mouse tissue OPT data can also be applied to
reconstruct in vivo OPT datasets of zebrafish embryos
expressing fluorescent proteins. This demonstrates the abil-
ity of the method to work across different types of biological
sample and expands the scope of training data that can be
used. The latter point is a particular advantage with live
imaging, where the acquisition of sufficient high quality and
fully sampled training data from live zebrafish would be
technically challenging and undesirable in terms of the num-
ber of animals required.

2 | METHODS

2.1 | Reconstruction of OPT data using FBP
and CS

If the sample is contained within the depth of focus of a
telecentric imaging system and the object presents negligible
optical scattering, OPT data can be analyzed with parallel
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projection in the same way as X-ray CT data. Thus, the for-
ward model is given by:

Y =RX + n ð1Þ

where Y is the measured 2D sinogram, R the Radon trans-
form, X is the 2D fluorescence distribution of a slice of a 3D
sample (Figure 1A-C), and n is the measurement noise. For
a well-sampled sinogram Y, X can be analytically determined
using FBP [11] (Figure 1B,C), which we have implemented
in MATLAB using the built in iradon function.

For undersampled data, X can be recovered by solving
the optimization problem:

minX
1
2

Y−RXk k22 + τΦTV Xð Þ ð2Þ

where the first term is the l2-norm of the residuals, τ is the
regularization hyperparameter and ΦTV(X) is the total varia-
tion functional. To solve the problem represented by Equa-
tion (2) we employed a MATLAB implementation of
TwIST [17], based on that demonstrated in [21]. For the

FIGURE 1 Convolutional
neural networks for
reconstructing undersampled
optical projection tomography
(OPT) data-sets: A, represents
an OPT dataset of a 4 days post
fertilization zebrafish embryo,
consisting of a series of 2D (x-
y) projections acquired as the
sample is rotated to an angle θ;
Each (y-θ) cross section through
the dataset forms a sinogram,
(B, D), which can be processed
with filtered back projection
(FBP) to give a (y-z)
reconstructed slice, (C, E), of
the sample volume. B and C,
show the reconstruction of a
highly sampled, 800 projection,
dataset and (D, E) show the
result of reconstructing from an
undersampled, 40 projection,
sinogram—resulting in a streak-
corrupted slice. F, shows the
reconstruction obtained using a
U-net deep learning
architecture—consisting of
convolutional layers, max-
pooling, bilinear interpolation
upscaling, and concatenated
skip paths—to estimate the
well-sampled reconstruction
from the undersampled FBP
reconstruction (E). G, image
obtained when the 2D
reconstructed slices are stacked
together to give the 3D
fluorescence distribution of the
sample
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analysis presented in this paper, τ was kept constant at 0.004
for all reconstructions.

2.2 | Convolutional neural network
architecture to reconstruct undersampled
OPT data

To reconstruct undersampled OPT data (Figure 1D), CNNs
with a modified U-net architecture [22]—implemented using
the Python package PyTorch (https://pytorch.org/)—were
trained to output an estimate for the well-sampled
(Figure 1C) reconstructed slice from the streak-corrupted
FBP reconstruction of under-sampled OPT data (Figure 1E).
The U-net architecture (Figure 2) we implemented consisted
of a contracting path of four blocks, each composed of two
3 × 3 convolutional layers followed by 2 × 2 max pooling
(i.e., down-sampling by taking the maximum local pixel
value). After each max pooling step, the number of features
doubled, starting from 64. The expanding path was also
composed of four blocks, each up-scaling the features by a
factor of two. Due to GPU memory limits, this up-scaling
was performed using bilinear interpolation rather than with
transpose convolutional layers. The expanded features were
concatenated with those from the equivalent scale on the
contracting path. The concatenated features were passed
through two 3 × 3 convolutional layers and have their

number quartered. Because transposed convolutional layers
were not used, the number of features on the expanding path
were half what they would be in a conventional U-net. Zero
padding was used in the convolutional layers to keep image
sizes consistent between contracting and expanding paths.

Batch normalization layers were used after each con-
volutional layer to minimize internal covariate shift. These
were followed by rectified linear unit layers to enable the
network to account for possible nonlinear effects.

The CNNs were trained on 400-projection OPT data-sets
from previous studies of ex vivo cleared mouse pancreas for
which OPT was used to assay beta cell mass [23] and
unpublished OPT studies of mouse lung. Eighty percent of
the sinograms (14 416) were randomly assigned to training
with the remaining 20% (3342) reserved for testing. These
were assigned in batches of 10 neighboring slices to reduce
correlations between testing and training data from adjacent
sinograms.

CNNs were trained to remove streaks from slices
reconstructed for a range of degrees of undersampling;
12, 16, 20, 24, 28, 32, 40, 48, 64 and 80 projections were
used. Ground truth data (Figure 1C), I, were calculated using
FBP of the complete 400-projection sinogram data set
(Figure 1B), with an additional Hann window applied to the
ramp filter, scaled to 0.4. The input data, I0, consisted of
FBP reconstructions from a reduced number of projections

FIGURE 2 U-net architecture convolutional neural network (CNN), which takes streak corrupted slices reconstructed from angularly
undersampled optical projection tomography (OPT) datasets as inputs and outputs estimates of streak-free slices reconstructed from well sampled
datasets

4 of 10 DAVIS ET AL.

https://pytorch.org/


spaced as equally as the subsampling allowed (eg, a 64 pro-
jection sinogram used the 1st, 7th, 14th, 20th, 26th, etc.
within the 400 projections). To augment the training data, a
random angle in each sinogram was selected as the starting
point (i.e., labeled 0�) and random vertical and/or horizontal
flips were applied. Both ground truth and input FBP
reconstructed slice pairs were normalized such that the input
had a mean of zero and unit variance, and during training
were randomly cropped to 128 × 128 pixels to transfer a
batch size of 32 into GPU memory.

The CNN (Figure 2) takes the streak-corrupted under-
sampled FBP reconstruction (Figure 1E) as its input and out-

puts an estimate for the streak-free slice, Î (Figure 1F). The

network was trained using the error between Î and I using
the l1-norm:

l1=
1
n

Xn

i=1
Î i− Ii
�� �� ð3Þ

where i is the pixel index. The l1-norm was averaged over
each batch of 32 slices and back-propagated through the
network to update the neuron weights. The Adam algorithm
for stochastic gradient descent was used with the default
parameters in PyTorch. We employed early stopping: after
each pass of the training data, the average error on the test
data was calculated and the training terminated when the
error did not improve compared to the previous two
epochs—the previous best network was kept. Training typi-
cally took between 3 and 6 hours on a desktop computer
equipped with a Nvidia Tesla K40c, with 12 GB of memory.
The training and testing scripts can be found online [24].

2.3 | OPT data acquisition and samples

Fluorescence OPT of cleared mouse tissue samples was
undertaken using a 0.5× telecentric lens (63-074; Edmund
Optics Ltd, Barrington, New Jersey) with a depth of field of
5 mm, imaging onto a charge-coupled device camera (Retiga
R1; QImaging, Surrey, Canada) for the pancreas samples and
a 1× telecentric lens (58-430; Edmund Optics Ltd) with a
5 mm depth of field, imaging onto a sCMOS camera (Zyla
5.5; Andor Instruments, Belfast, England) for the lung sam-
ples. Samples were suspended from a stepper motor
(NM08AS-T4-MC04-HSM8 and X-MCB1-KX11BG; Laser
2000 (UK) Ltd, Huntingdon, England) in a cuvette filled with
index matching fluid and 400 equally spaced projections were
acquired over a full rotation.

A total of nine pancreas samples were prepared following
the protocol as described in [25]. Briefly, the beta-cell mass
of whole fixed mouse pancreata were labeled with
Alexa647-conjugated antibodies. They were mounted in 2%
agarose, dehydrated in increasing concentrations of

methanol up to 100% and subsequently chemically cleared
in a 1:2 mixture of benzyl alcohol: benzyl benzoate. Fluores-
cence excitation was provided by a 660 nm light-emitting
diode (Cairn Research Ltd, Faversham, England) in combi-
nation with a 705 ± 15 nm emission filter. A total of four
lung samples were prepared. Briefly, KRASG12D TP53frt/frt

murine lung adenocarcinoma cells bearing yPET fluorescent
protein were injected into the tail vain of ROSA26-dTomato
C57BL/6 mice (under authority of PPL70/8380). After
21–28 days, or at the clinically applicable humane endpoint,
mice were sacrificed, and trachea were perfused with 2%
low melting point agarose. Following this, lungs were
placed in 4% PFA then 30% sucrose to allow lung speci-
men to retain fluorescence. Lastly, 30% sucrose was
exchanged with Rapiclear RD: 1.52 to optically clear the
tissue.

Fluorescence OPT of live zebrafish embryos was under-
taken using a home-built x4 microscope (N4X-PF objective
lens and ITL200 tube lens; Thorlabs Inc., Newton, New Jer-
sey) with an aperture positioned directly behind the micro-
scope objective lens to set the depth of field to 0.6 mm. The
zebrafish embryo was suspended in a water filled cuvette
from a stepper motor (T-NM17A200; Zaber Technologies
Inc., Vancouver, Canada) and images were recorded on a
sCMOS camera (Zyla 5.5; Andor Instruments).

The zebrafish embryos (detailed description in Ref. [21])
were derived from a mutant TraNac background to suppress
melanin production (a gift from Julian Lewis, Cancer
Research UK, London Research Institute, London, England)
and were subsequently genetically modified to express
mCherry fluorescence protein (mCherryFP) in the vascula-
ture. mCherryFP fluorescence was excited using a 561 nm
laser (Jive; Cobolt AB, Solna, Sweden) and imaged through
a 641 ± 37 nm emission filter. The zebrafish embryos were
imaged 4 days post-fertilization, being anesthetized and
mounted in fluorinated ethylene tubing with a refractive
index that matched that of water.

3 | RESULTS

3.1 | Reconstruction of ex vivo mouse
pancreas and lung OPT data

Figure 3 shows representative image slices from the mouse
pancreas OPT data reconstructed with a decreasing fraction of
the 400 acquired projections and processed using either FBP,
CS or CNN. As expected, the image quality of the FBP recon-
structions degrades significantly as the number of projections
is decreased. Streak artifacts become apparent across the
whole of the reconstructed slice and the image contrast
decreases. For modest undersampling with 64 projections, the
iterative CS approach provides a visually improved
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reconstruction with significantly reduced streak artifacts and
improved contrast, although the CS algorithm also smooths
the reconstruction, leading to a slight reduction in apparent
resolution. The CS reconstructions degrade further with
increased undersampling: artifacts appear in background
regions of the reconstructed images and the contrast is further
reduced. The CNN approach outperforms both the FBP and
CS reconstructions of undersampled OPT data, showing sig-
nificantly reduced streak artifacts and higher image contrast.

The performance of the three approaches reconstructing
undersampled OPT data was quantitatively assessed by cal-
culating the peak signal to noise ratio (PSNR) with respect
to the “ground truth” reconstruction over 3342 pancreas and
lung slices (i.e., FBP on OPT data with 400 projections),
shown in Figure 4.

The PSNR, in dB, is given by:

PSNR=10log10
IMAX

1
n

Pn
i=1 Î i− Ii

�� ��2
ð4Þ

where IMAX is the peak pixel value of I, and the denominator
is the mean squared error between I and Î.

The PSNR for the FBP reconstructions is seen to
decrease as fewer projections are used. The CS and CNN
reconstructions provide superior reconstructions compared
to FBP, with the PSNR decreasing more slowly with fewer

projections. Moreover, the CNN approach consistently out-
performs CS. Therefore, employing CNN for the reconstruc-
tion should enable the OPT data acquisition times to be
reduced compared to CS for equivalent PSNR in the
reconstructed images.

FIGURE 3 Comparison of optical projection tomography (OPT) reconstructions with false color intensity scale of a representative pancreas
slice using filtered back projection (FBP), compressed sensing (CS), and convolutional neural networks (CNN), with different numbers of
projections: compared to simple FBP of undersampled OPT data, CS and CNN methods are both able to provide significantly improved
reconstructions. The CNN OPT reconstructions present reduced streak artifacts in the background compared to CS. Scalebar is 2 mm

FIGURE 4 Variation of ratio of peak signal to noise ratio
(PSNR) between undersampled optical projection tomography (OPT)
reconstructions and “ground truth” for pancreas and lung test data-set.
The graph plots mean and standard error of measurements across the
test data-set of 3342 slices
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3.2 | Reconstruction of in vivo zebrafish
OPT data

A key requirement for implementing CNN-based approaches
to image processing is a sufficient quantity and quality of
training data. For OPT of fixed and cleared tissue samples,
such high-quality data can be easily obtained by acquiring a
large number (i.e., hundreds) of projection images since
there is no restriction on total acquisition time beyond possi-
ble photobleaching of the fluorescent labels. Such data sets
are already available from many previous OPT studies of
ex vivo tissue.

The acquisition of high-quality in vivo training OPT data
is much more challenging, since the total acquisition time
may be practically restricted. For example, in our previous
in vivo OPT study of tumor and vascular development in
adult zebrafish [8], the total acquisition time was limited to
15 minutes by the maximum time we could confidently main-
tain the fish under anesthesia and be able to recover them.
This time was sufficient for two (spectrally distinct) OPT

acquisitions of only 64 projections per acquisition. While this
undersampled OPT data can be reconstructed using the CS
approach, it is not suitable as a CNN training data set.

Fortunately, it is not necessary to acquire in vivo training
data. One practical approach would be to chemically clear a
number of zebrafish and image them ex vivo with suitably
high numbers of projections. However, this would still
require a significant number of zebrafish to be specifically
sacrificed to gather sufficient training data for the CNN
approach. Instead, we reasoned that, while the 3D structure
of previously imaged ex vivo mouse tissue is significantly
different compared to the labeled structures in the zebrafish,
the reconstructed OPT slices are similarly sparse, with the
fluorescence signal localized to multiple small regions (eg,
the islets in the mouse pancreas and the vasculature in the
zebrafish). Consequently, the artifacts produced by FBP
applied to undersampled data should be similar. We there-
fore applied our CNNs that were trained on the under-
sampled mouse tissue volumes described above to

FIGURE 5 Comparison of optical projection tomography (OPT) reconstructions with false color intensity scale of a zebrafish embryo slice
using filtered back projection (FBP), compressed sensing (CS), and convolutional neural networks (CNN) with different numbers of projections.
The CS and CNN approaches produce acceptable reconstructions with significantly fewer projections than FBP. Below 64 projections, CS
reconstructions are partially corrupted with streaks, while the CNN approach produces acceptable reconstructions using only 40 projections.
Scalebar: 200 μm
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reconstruct in vivo OPT data of a transparent zebrafish line
expressing mCherryFP in the vasculature: Tg(kinase insert
domain receptor:mCherryFP).

Figure 5 shows a comparison of OPT image slices from
an in vivo zebrafish embryo OPT data set from the study
reported in [21] reconstructed using the FBP, CS and CNN
approaches for a decreasing fraction of 800 acquired projec-
tions. As observed with the reconstructed images of mouse
tissue, the FBP data suffers from increasingly significant
streak artifacts and decreased contrast as the number of pro-
jections is reduced. The CS approach provides a reasonable
reconstruction with 64 projections but presents increasing
streak artifacts and reduced image contrast with images
reconstructed from 40 and 32 projections. In contrast, the
images reconstructed using the CNN approach presents
higher image quality with fewer apparent streak artifacts and
better preservation of the localized vascular signal (Video S1
in Appendix S1, Supporting Information).

Figure 6A shows how the PSNR between slices
reconstructed from fully sampled and undersampled projection
data, averaged over the 2218 slices of the zebrafish embryo,
varies with degree of undersampling. As seen with the mouse
tissue, the PSNR value improves from FBP to CS to CNN for
reconstructions with the same number of projection images.
The PSNR for the CS and CNN reconstruction decreases
more significantly with undersampling than was observed with
the mouse pancreas OPT data in Figure 4. However, the
CNN approach still outperforms the FBP and CS approaches
and employing CNN for the OPT image reconstruction
achieves equivalent PSNR compared to a 64 projection
CS reconstruction with 40 projections—enabling a reduction
in data acquisition time of 40%. The PSNR measures the
image reconstruction performance averaged across all

reconstructions. To explore the dynamic range, an investiga-
tion of the reconstruction of specific features with different sig-
nal levels is included in supplementary information S1.

The decrease in processing time per slice for the CNN
approach compared to CS is even more significant.
Figure 6B shows the average data processing time per
reconstructed slice for the FBP, CS and CNN approaches
implemented on the same desktop computer with an Nvidia
Tesla K40c GPU. We note that FBP is an established ana-
lytic reconstruction technique that has been optimized in
MATLAB and required only (8.75 ± 0.01) × 10−3 seconds
to reconstruct each slice from 64 projections. The CNN
reconstruction approach takes FBP reconstructions as input
and performs one feedforward pass through the neural net-
work, so the additional processing time is independent of the
number of projection images, with a value of (3.40
± 0.02) × 10−1 seconds per slice for 64 projections. In con-
trast, the CS approach requires multiple rounds of forward-
and back-projection and regularization, resulting in a signifi-
cantly increased overall reconstruction time per slice, which
further increases with the number of projection images. The
average reconstruction time per slice for our CS implementa-
tion was 2.18 ± 0.01 seconds for 64 projections. Thus, for
reconstructions from OPT data with 64 projections, the itera-
tive CS approach was 6× slower per slice compared to
CNN, and its reconstruction quality, as indicated by the
PSNR metric, was inferior. The total OPT image reconstruc-
tion time for the zebrafish data set comprising 2218 slices
with 64 projections was 15 minutes for the CNN approach,
compared to 77 minutes required for the CS approach. This
includes common overheads such as the time required for
loading and saving the data to disk.

FIGURE 6 A, variation of peak signal to noise ratio (PSNR) of image slices of zebrafish embryo in vivo optical projection tomography (OPT)
data between undersampled OPT reconstructions using filtered back projection (FBP), compressed sensing (CS), and convolutional neural networks
(CNN) (trained on mouse tissue) and “ground truth” based on FBP of 800 projection images of zebrafish and (B) average OPT image reconstruction
time per slice, using FBP, CS, and CNN. Graph shows mean and standard error of PSNR of 2218 reconstructed slices
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4 | DISCUSSION

OPT can offer accelerated imaging of sparse samples by uti-
lizing compressive sensing techniques to reconstruct under-
sampled OPT data sets. This is essential for in vivo OPT and
convenient whenever smaller data volumes are desired. Here
we have extended previous work [21] to demonstrate the use
of CNNs for significantly faster and improved reconstruction
of undersampled OPT data compared to an iterative com-
pressive sensing algorithm. We have developed this novel
approach to OPT applied to data from previous studies of
chemically cleared and labeled mouse tissue and have dem-
onstrated that the resulting CNNs are also applicable to
in vivo zebrafish OPT data. Significantly, the mouse tissue-
trained CNN maintain their relative reconstruction quality
and speed advantage compared to iterative CS reconstruction
despite no zebrafish data being included during the network
training process. This is important in terms of reduced num-
bers of animals being sacrificed for in vivo research.

The improved image quality and data processing speed
provided by the CNN approach to reconstructing under-
sampled OPT data will be important for longitudinal and
high throughput 3D preclinical imaging studies of zebrafish
and other small/transparent organisms, for which the sub-
stantial computational challenge presented by the iterative
algorithm of the CS approach is a significant bottleneck that
can delay or preclude important feedback to the ongoing
study (eg, informing optimization of data quality or animal
welfare).
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