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ABSTRACT

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) were used intensively as flame
retardants, worldwide. They have been detected in human serum samples and PBDEs have been found to be
elevated in young children. Commercial Penta- and Octa-PBDE mixtures were banned in Australia in 2005, while
HBCDD was banned worldwide in 2013. We investigated PBDE and HBCDD concentrations in serum collected
from young children. We also investigated temporal trends in PBDE concentration 10 years after their Australian
ban.

Surplus human blood serum samples were collected through a pathology clinic (n = 800), in 2014/15,
stratified by age (0-6, 6-12, 12-18, 18-24, 24-30, 30-36, 36-42, 42-48, 48-54 and 54-60 months) and sex and
pooled for analysis of PBDEs (BDEs —28, —47, —99, —100, —153, —154, —183) and HBCDD. In 2014/15, the
geometric mean concentration of the sum of all PBDEs measured (XPBDEs) was 4.5 ng/g lipid (median: 4.6 ng/g
lipid, range: 0.88-26 ng/g lipid). A positive association between BDE-47 concentration and age was observed
(R = 0.41, p = 0.008), however there were no trends between other PBDE congeners or HBCDD and age. There
were no significant differences between genders for PBDEs (t-test, p = 0.802) or HBCDD (t-test, p = 0.740).The
highest concentrations observed were in pools from the females 30-36 month (26 ng/g lipid) and Males
6-12 month (21 ng/g lipid) categories. BDEs —47 and —99 were the predominant congeners with a combined
average contribution of 75% of £PBDEs.

PBDEs showed a significant reduction in children aged 0—4 years over an eight year period. In 2014/15, the
mean (range) concentration of BDE-47 is 2.8 (0.23 to 11) ng/g lipid compared to pools in 2006/07 at 19 (3-55)
ng/g lipid (p < 0.0001) and for BDE-153 is 0.73 (< 0.1 = —2.9) ng/g lipid compared to pools in 2006/07 at
4.7 (2—10) ng/g lipid (p < 0.0001). HBCDD concentrations were lower than PBDEs with a mean concentration
of 0.45ng/g lipid. There were no temporal trends observed for HBCDD when compared to samples collected in
2012. The dominant stereoisomer was a-HBCDD (mean = 0.38 ng/g lipid) with an average contribution of 65%
towards THBCDD.

Levels of PBDEs in young Australian children have significantly decreased since the bans of commercial
Penta- and Octa-BDE in 2005. There has been no observed decrease in HBCDD levels in Australian children since
its ban in 2012.

1. Introduction

flammability and therefore reducing risk of harm to humans from fires.
There are three commercial PBDE formulations - Penta-, Octa- and

Brominated flame retardants (BFRs) such as polybrominated di- DecaBDE. The main PBDE applications include electrical and electronic
phenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) have equipment (EEE - such as TVs, PCs and small domestic appliances)
been used as a cost effective and efficient means of reducing (European Commission, 2011), soft furnishings (e.g. sofas, mattresses,
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pillows and curtains) (United Nations Environment Programme
(UNEP), 2010) and in polyurethane foam (PUF) seat fillings used in
automobiles (European Chemicals Bureau, 2000). The primary use of
HBCDD is to flame retard expanded and extruded polystyrene (EPS/
XPS) used in building insulation foam (European Chemicals Agency,
2009).

Both PBDEs and HBCDD are lipophilic and resistant to metabolism
allowing them to bioaccumulate in the liver and other fatty tissues.
They have long half-lives in humans of approximately 1.8-6.5 years and
0.2 years for PBDEs and HBCDD, respectively (Geyer et al., 2004), and
have been associated with adverse health effects. PBDEs are thought to
disrupt levels of sex hormones, including luteinising hormone and fol-
licle stimulating hormone in men (Meeker et al., 2009), cause toxic
effects in other organs including liver, kidneys and thyroid gland;
neurodevelopmental deficits including inhibited foetal and infant de-
velopment; and various cancers (Costa et al., 2008). Data on human
health effects of HBCDD exposure is limited, however recent studies
have demonstrated that HBCDD displays oestrogenic properties
(Dorosh et al., 2011) and can damage dopamine neurons with potential
for neurological and endocrine disruption (Genskow et al., 2015). There
is also evidence for reduced birthweight and significant adverse neu-
rodevelopment, including impaired motor skills and increased anxiety
levels in rodent models (Maurice et al., 2015). Concerns over persis-
tence and toxicity led to importation bans commercial Penta- and Octa-
BDE into Australia in 2005 (Toms et al., 2009), prior to global bans of
all three commercial PBDE formulations and HBCDD under the UNEP
Stockholm Convention of Persistent Organic Pollutants (Stockholm
Convention, 2009; Health and Environment Alliance, 2013; Chemical
Watch, 2017). Penta and OctaBDEs have never been manufactured in
Australia (NICNAS, 2007). These bans do not apply to PBDEs in-
corporated into products made in other countries and imported into
Australia. Exposure to PBDEs continues with an assessment of PBDEs in
microenvironments in Australia in 2015 finding sumPBDE (BDEs-28,
47, 99, 100, 153, 154, 183 and 209) concentrations in dust of 2.1 ug/g
dust (He et al., 2018).

PBDEs and HBCDDs have been detected in various environmental
compartments resulting in direct human exposure through food
(Fernandes et al., 2004), dust (Toms et al., 2015), sediment (Drage
et al., 2015) and breast milk (Toms et al., 2012). Despite a cessation in
new usage of these BFRs, products treated with PBDEs and HBCDDs will
remain in use for some time with the potential to provide environ-
mental and human exposure sources. Biomonitoring in Australia re-
vealed unexpectedly high concentrations of PBDEs compared to “tra-
ditional” persistent organic pollutants (POPs) such as dioxins and
polychlorinated biphenyls with highest concentrations in young age
groups at 4 times that of adults (Toms et al., 2008). These high con-
centrations raised concerns that young children may be more vulner-
able to possible adverse health effects from exposure to higher con-
centrations of PBDEs (Grandjean and Landrigan, 2014). More recently,
studies of adults in other countries have suggested that PBDE levels
have reached a plateau in the US (Hurley et al., 2017; Parry et al.,
2018)) while elsewhere some studies suggest a continued decrease (Ma
et al.,, 2017; Zhang et al., 2017). Data on HBCDD in the Australian
population is more limited, with only two previous studies (Toms et al.,
2012; Drage et al., 2017). Both studies demonstrated high variability in
HBCDD concentrations, with no obvious temporal trends. Neither study
focussed on samples from children.

The aim of this study was to investigate PBDE and HBCDD con-
centrations in infants and children in Australia using 10 age groups
under the age of 5 years to investigate specific small age group trends as
first identified with pools from 2006/07 where peak PBDE concentra-
tions occurred in children 2-5years (Toms et al., 2009). Temporal
trends were assessed by comparing the PBDE concentrations of this
study to the previous data obtained from the same age groups in 2006/
07 as well as pooled data collected every two years from 2004/05 to
2014/15.
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2. Materials and methods
2.1. Chemicals & reagents

High purity solvents (HPLC grade), sulfuric acid (analytical grade),
sodium sulfate, silica gel (high purity grade, 60 A pore size) and Florisil
(60-100 mesh particle size) were purchased from Sigma Aldrich
(Germany). Hydromatrix was purchased from Agilent (Santa Clara, CA,
USA). '3C;,-labelled standards for HBCDDs (a-, B- and y- isomers),
PBDEs (—28, —47, —99, —153, —154, —183 and —77) and "3C;»-
TBBPA, native HBCDDs (a-, 3- and y- isomers) and PBDEs (BDEs — 28,
—47, —99, —100, —153, —154 and — 183) were purchased from
Wellington Laboratories (Guelph, ON, Canada).

2.2. Sample collection & preparation

Sample collection occurred in 2014 and 2015 from South East
Queensland, Australia. Human blood samples were obtained in a de-
identified manner from surplus pathology samples through a commu-
nity pathology clinic (Sullivan Nicolaides Pathology). The data pro-
vided was date of birth, date of collection, gender and postcode. The
serum samples were pooled by gender (males and females) and from 10
age groups (0-6, 6-12, 12-18, 18-24, 24-30, 30-36, 36-42, 42-48,
48-54 and 54-60 months). The total number of samples was 800 with
20 samples in each pool and one replicate pool per strata, that is, for
females 0-6 months there were two pools of 20 samples each and so on
for each age group and gender. While these samples cannot be assumed
to represent the entire population of Australia, this sampling metho-
dology has been used for almost two decades to assess age, gender and
temporal trends for many environmental pollutants in Australia (Toms
et al., 2014; Heffernan et al., 2016; Thomas et al., 2017). There are
limitations to pooling as outlined by Heffernan et al. (2014) such as an
inability to detect the lowest and highest exposed in the population but
the advantages include ease of logistics and trend analysis. Ethics ap-
proval for this study was granted by The University of Queensland
Medical Research Ethics Committee and Queensland University of
Technology.

2.3. Lipid analysis of serum samples

Aliquots (300 pL) of each sample were sent to Sullivan Nicolaides
Pathology for analysis of total cholesterol (TC) and triglycerides (TG).
Total lipid (TL) concentration (mg/dL) was calculated using Eq. (1)
(Phillips et al., 1989).

TL = 2.27. TC + TG + 62.3 (@)

2.4. Sample extraction and clean-up

Samples underwent a combined extraction and clean-up using
pressurised liquid extraction (PLE) on an ASE 350 (Dionex, Sunnyvale,
CA, USA). 5 g of each serum pool was weighed into a 15 mL falcon tube.
10 uL of an internal standard mixture (containing 100 pg/uL of '3C;,
BDEs —28, —47, —99, —100, —153, —154, —183 and '°C;»- a-, B-
and y-HBCDD in methanol). Samples were vortexed for 2min and
transferred into 100 mL Dionium™ ASE cells, pre-packed from the
bottom upwards with 2 x glass fibre filters (GFF), 5g silica, 2g hy-
dromatrix, 1 x (GFF) 12 g sulfuric acid (44%) impregnated silica, 1 x
GFF, 5g florisil, 30 g anhydrous sodium sulfate, 10 g diatomaceous
earth. Cells were loaded onto the ASE 350 and extracted using
hexane:DCM (3:2, v/v ratio) at 90 °C and 1500 psi. The heating time
was 5 min, with a 4 min static time, purge time 120 s and flush volume
50%. Three static cycles were required to achieve maximum recovery of
all target compounds. Clean extracts were transferred to round-bot-
tomed flasks and concentrated to 1-2 mL in a rotavap (Buchi). Samples
were transferred to 5mL disposable glass tubes and concentrated to
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Table 1

Concentrations (ng/g lipid) of PBDEs and HBCDDs in serum from Australian children 0—4 years old in 2014/15.
Chemical BDE 28 BDE 47 BDE 100 BDE 99 BDE 154 BDE 153 BDE 183 XPBDEs a-HBCDD B3-HBCDD y-HBCDD XHBCDD
Detection frequency (%) 50 100 30 80 7.5 75 28 N/A 85 0 75 N/A
Mean 0.22 2.8 0.22 1.9 0.11 0.73 0.18 5.9 0.38 < 0.1 0.25 0.62
Geometric mean 0.13 21 0.11 0.66 0.08 0.36 0.10 4.5 0.30 <0.1 0.17 0.45
Median 0.09 2.7 <0.1 0.85 < 0.12 0.58 <0.15 4.61 0.32 <0.1 0.15 0.48
Min < 0.1 0.23 <0.1 <0.1 <0.12 <0.12 <0.15 0.88 <0.1 <0.1 <0.1 < 0.1
Max 1.4 11 2.3 24 1.2 2.9 1.1 26 1.3 <0.1 1.4 1.90

near-dryness at 40 °C under a gentle stream of nitrogen. The sample was
reconstituted in 50 uL toluene containing 1ng of '3C;,-BDE-77 as a
recovery standard and transferred to a 200 pL inserted autsosampler
vial. After analysis of PBDEs via GC/HRMS, extracts were solvent ex-
changed into 50 uL methanol containing 1 ng of *3C;,-TBBPA as a re-
covery standard for analysis of HBCDDs via LC-MS/MS.

2.5. Instrumental analysis

Samples were analysed for PBDEs (BDEs —28, —47, —99, —100,
—153, —154, —183) via a Thermo 1310 gas chromatograph coupled to
a DFS Magnetic Sector high resolution mass spectrometer (GC-HRMS).
The HRMS was operated in electron impact-multiple ion detection (EI-
MID) mode, and resolution was set to =10,000 (10% valley definition).
Full method parameters have been published previously (Wang et al.,
2017).

HBCDD (o, 3- and y-) was measured in serum extracts using an AB/
Sciex API 5500Q mass spectrometer (AB/Sciex, Concord, Ontario,
Canada) coupled to a Shimadzu Nexera HPLC system (Shimadzu Corp.,
Kyoto, Japan). The mass spectrometer (MS) was operated in multiple
reaction monitoring (MRM) mode using negative electrospray ionisa-
tion (ESI). Separation was achieved using a Kinetex XB C18,
50 X 2.0mm 1.7 pm column (Phenomenex, Torrance CA) using a mo-
bile phase gradient of 85% methanol, ramping up to 100% methanol
over 6 min and then holding for 4 min at a flow rate of 0.3 mL/min. Full
LC-MS/MS details including MRM parameters have been published
previously (Drage et al., 2017).

2.6. Quality assurance/quality control

To avoid cross-contamination of samples during extraction and
clean-up, a rinsing cycle (using the same solvent combination) was
programmed before and after each different extraction. Furthermore,
all pre-packed cells underwent a pre-extraction under the same para-
meters, prior to the loading of samples, to reduce any interferences or
potential blank contamination from the in-cell components during
analyses.

A blank sample consisting of 5 mL bovine serum was extracted with
every batch of samples. All target analytes were below the limits of
detection in blank samples. Therefore no correction for blank con-
centrations occurred. The method was validated by repeated analysis
(n =6) of a pooled in-house QC sample. This consisted of pooled
human serum which had been previously characterised and found to
contain between < 1.0 pg/mL (BDEs —100 and —154) and 10 pg/mL
(BDEs —47 and —153). Three 5 mL aliquots were spiked with 1 ng of
each target analyte. The concentrations were then measured and the
recoveries of target analytes calculated. Average recoveries for PBDEs
ranged from 90% (BDE-153) to 116% (BDE-100). Average recoveries
for HBCDDs were 91% (a-HBCDD), 90% (B-HBCDD) and 87% (y-
HBCDD). The relative standard deviation (RSD) was < 15% for all
target compounds.

For all target compounds method detection limits (MDLs) were
calculated based on a chromatogram signal to noise of 10:1. MDLs for
PBDEs were 0.1ng/g lipid for BDEs —28, —47, —99 and —100;
0.12ng/g lipid for BDEs —154 and —153; and 0.15 ng/g lipid for BDE-

183. The MDL for all HBCDD isomers was 0.1 ng/g lipid.

2.7. Statistical analysis

All statistical tests were carried out using Microsoft Excel 2010 and
Prism Graphpad. For the purpose of averages and statistical calcula-
tions, all samples found below the method detection limit (MDL) were
assigned a value of MDL/v2. As the data was log-normally distributed,
associations between age and contaminant concentration were assessed
using a Pearson correlation on log-transformed data while significant
differences between genders were tested using a t-test on log-trans-
formed data. To assess temporal trends, significant differences between
novel and historical datasets were tested using a Mann-Whitney U test.
Confidence intervals were set to 95%.

BDEs — 28, —100, —154 and —183 were detected in < 50% of
pools and are therefore discussed briefly. However, a table of ¥PBDEs
and XHBCDD concentrations for each individual pool is available in SI
Table S1. Due to the low detection frequency of other congeners this
paper will primarily discuss the individual concentrations for BDEs
—47, —99 and —153 rather than the sum of all congeners.

3. Results and discussion

The average concentration and detection frequencies of all com-
pounds measured in this study are presented in Table 1. PBDEs were
detected in measureable concentrations in all pools (n = 40) for chil-
dren aged 0-5 years. The geometric mean concentration of the sum of
all PBDEs measured (EPBDEs) was 4.5ng/g lipid (median: 4.6 ng/g
lipid, range: 0.88-26 ng/g lipid). BDEs —47 and —99 were the pre-
dominant congeners with a combined average contribution of 75% of
YPBDEs. BDE-47 was detected in all samples with a median con-
centration of 2.7 ng/g lipid (range: 0.23-11 ng/g lipid). This was fol-
lowed by BDE-99, which was detected in 80% of samples
(median = 0.85ng/g lipid, range: < 0.1-24 ng/g lipid) and BDE-153,
which was detected in 75% of samples and made up 15% of LPBDEs
(median = 0.58 ng/g lipid, range: < 0.12-2.9ng/g lipid). The re-
maining average XPBDE content was made up of BDE-28 (4.4%), BDE-
183 (2.3%) and BDE-100 (1.8%). This is consistent with congener
profiles seen in, amongst others, Australia (Toms et al., 2009), USA
(Stapleton et al., 2012; Eskenazi et al., 2011), Nicaragua (Athanasiadou
et al., 2008), Spain (Gari and Grimalt (2013), Pakistan (Ali et al., 2003)
and Mexico (Pérez-Maldonado et al., 2009), and typical of exposure to
products treated with the Penta-BDE commercial formulation. As the
majority of PBDEs measured in this study were detected in 50% or
fewer samples, only BDEs —47, —99 and, — 153 are discussed from this
point on (as mentioned in Section 2.7).

HBCDD was detected in 90% of samples with a geometric mean of
0.45ng/g lipid (range: < 0.1-1.9ng/g lipid). The dominant stereo-
isomer was a-HBCDD (median = 0.32ng/g lipid, range: < 0.1-1.3ng/
g lipid) with an average contribution of 65% towards THBCDD. This
was followed by y-HBCDD (median = 0.15ng/g lipid, range: <
0.1-1.4ng/g lipid), which contributed 35% towards XHBCDD. f-
HBCDD was not detected in any of the 40 pools. The concentrations of
HBCDD in children's serum were generally lower than those of PBDEs.
This is likely to be because HBCDD is generally found in lower
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Fig. 1. Concentrations of BDE-47 (left) and BDE-153 (right) (ng/g lipid) by age and year of collection (log scale).
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concentrations than PBDEs in environmental samples as it is typically
added to products at 0.7-2% by weight (European Commission, 2011),
while products treated with PBDEs have been treated in concentrations
of up to 25% by weight of the various commercial mixtures (European
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Commission, 2011; UNEP, 2010). Moreover, > 95% of HBCDD use has
been application to cavity wall insulation, while PBDEs are more
commonly used in electronics and furniture, and are therefore more
likely to volatilise from their products through more regular use (Drage
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et al., 2018).
3.1. Demographic trends of PBDEs and HBCDDs in Australian children

A positive association was found between BDE-47 levels and age
(R = 0.41, p = 0.008) in serum from Australian children collected in
this study (Fig. 1). However, there was no observed trend between age
and concentration of BDE-99 (R = 0.059, p = 0.72), or BDE-153
(R = —0.021, p = 0.893). While not statistically significant, the total
proportion of BDE-153 to total PBDE content was highest in children
under 2 years (R = 0.288, p = 0.074). This, combined with the positive
association of BDE-47 levels and age could suggest that more recently
born infants are exposed to more historical PBDEs via breastmilk. This
is because BDE-153 has a longer half-life in humans than other PBDEs,
such as BDEs —47 and — 99 (Geyer et al., 2004). Therefore a mother
who has had an historical exposure to PBDEs is likely to display a
higher BDE-153:3XPBDEs ratio than one who has had a more recent
exposure. This would in turn be passed on to an infant via placental
transfer and breastfeeding and subsequently displayed in their serum
concentrations. In contrast, BDE-47 may have been excreted more ra-
pidly, therefore lowering mothers' body burdens and subsequently re-
ducing placental transfer and exposure via breastmilk. In similar pools
collected in 2006/7, the reverse of this trend was observed with the
contribution of BDE-153 towards XPBDEs increasing with age of chil-
dren (Toms et al., 2009).

Pools were also tested for any gender differences in PBDE levels.
However there were no significant differences (t-test) between con-
centration and gender for BDE-47 (p = 0.42), BDE-99 (p = 0.59) or
BDE-153 (p = 0.34) with the highest concentrations observed in pools
from the females 30-36 months (26 ng/g lipid) and males 6-12 months
(21 ng/g lipid) categories.

The median YHBCDD concentration in this study (0.48 ng/g lipid) is
comparable with that of 4 pooled samples collected from Australian
children 0-4 year olds in 2013 at 0.35ng/g lipid (Drage et al., 2017).
No statistically significant trends were observed between XHBCDD and
age (R*> = 0.098, p = 0.55, Fig. 2) or gender (t-test, p = 0.74). The
dominance of a-HBCDD in this study is consistent with previous studies
from Australia (Toms et al., 2012; Drage et al., 2017) as well as serum
from India (Devanathan et al., 2012), Sweden (Weiss et al., 2006),
Canada (Rawn et al., 2014) and Japan (Kakimoto et al., 2008). Selective
predominance of a-HBCDD in biota has been previously reported
(Tomy et al., 2004, Law et al., 2006).

3.2. Temporal trends of PBDEs in serum from Australian children

For %,PBDEs a significant decrease of > 85% was seen for children
aged 0-4 years between 2006/07 (mean = 40 ng/g lipid) and 2014/15
(mean = 5.6ng/g lipid) in Australia (Fig. 3) (Mann-Whitney test
p < 0.0001). The p-values for each Mann-Whitney test conducted be-
tween 2014/15 and previous sampling campaigns are presented for
BDEs —47 and — 153 in the supporting information (Tables S2 and S3).
These data demonstrate that PBDE levels in Australian children have
undergone a dramatic year-on-year decrease consistently since their
bans in Australia. This differs to the patterns observed in adults where a
less prominent decrease of approximately 55% was observed for BDE-
47 (mean decrease from 8.3ng/g lipid (2006/7) to 3.6ng/g lipid
(2012/13) all pools from aged > 16years) and a lower decrease in
BDE-153 by approximately 22% (mean of > 16 years 3.6 and 2.8 ng/g
lipid for 2006/07 and 2012/13, respectively) (Toms et al., 2018). This
change may be related to decrease or removal of a source of exposure.
Previous studies have indicated differences in adult and child exposure
with regards to dust ingestion, mouthing/child-specific behaviours such
as eating with fingers, and breast milk consumption (Toms et al., 2015;
Heffernan et al., 2016; Jones-Otazo et al., 2005; Lorber, 2008; Stapleton
et al., 2005; Harrad et al., 2008). Adult concentrations have decreased
only slightly over the 10 year period. This difference between adults
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and children could also be related to growth and therefore a faster rate
of dilution in children compared to adults. PBDE concentrations in fe-
males of child-bearing age have not changed over this same time period
(Toms et al., 2018), however, if major external sources of PBDEs are
being removed from microenvironments (i.e. replaced with “PBDE-free
products”, then these initial exposures via breastfeeding and placental
transfer are likely to be quickly diluted as a child grows rapidly in the
first few years of life.

With the apparent reduction of exposure to PBDEs for children
potentially via indoor dust and child-specific behaviours, it is likely that
traditional sources, i.e. placental transfer (Zhao et al., 2013), breast
milk (Toms et al., 2007) and food (Domingo, 2012) will provide greater
contribution to future paediatric PBDE exposure.

4. Conclusions

There has been a significant reduction in PBDE concentration in
Australian children over the decade following the bans of commercial
Penta-BDE and Octa-BDE in 2005. HBCDD concentrations were sub-
stantially lower than PBDEs but continued monitoring is required to
assess temporal trends. Previous observations that PBDE concentrations
are much higher in young children than in adults are no longer ap-
parent. This decrease in PBDE concentrations appears to be rapid
compared to adult PBDE concentrations over the same period. This is
likely to be due to a reduction in the number of PBDE-containing pro-
ducts in indoor microenvironments as they have been disposed and
replaced with “PBDE-free” alternatives. Subsequent assessments of the
youngest age groups are predicted to show concentrations similar to
maternal concentrations. If this pattern continues in future monitoring
programmes in Australia, it would suggest a change in the relative
sources of exposure. This means that similar to “traditional” POPs,
placental transfer, human milk, and general exposures in the food
supply, will become the major sources of PBDE exposure for infants and
young children, and that indoor environments will make a lower con-
tribution to overall concentrations.
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