

University of Birmingham

Masking ring-LWE
Reparaz, Oscar; Roy, Sujoy Sinha; De Clercq, Ruan; Vercauteren, Frederik; Verbauwhede,
Ingrid
DOI:
10.1007/s13389-016-0126-5

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Reparaz, O, Roy, SS, De Clercq, R, Vercauteren, F & Verbauwhede, I 2016, 'Masking ring-LWE', Journal of
Cryptographic Engineering, vol. 6, no. 2, pp. 139-153. https://doi.org/10.1007/s13389-016-0126-5

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a post-peer-review, pre-copyedit version of an article published in the Journal of Cryptographic Engineering. The final authenticated
version is available online at: http://dx.doi.org 10.1007/s13389-016-0126-5

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1007/s13389-016-0126-5
https://doi.org/10.1007/s13389-016-0126-5
https://birmingham.elsevierpure.com/en/publications/481c6580-8ac5-4f7f-940b-46a4c99e13f7

Noname manuscript No.
(will be inserted by the editor)

Masking ring-LWE

Oscar Reparaz · Sujoy Sinha Roy · Ruan de Clercq ·
Frederik Vercauteren · Ingrid Verbauwhede

Received: date / Accepted: date

Abstract In this paper, we propose a masking scheme

to protect ring-LWE decryption from first-order side-

channel attacks. In an unprotected ring-LWE decryption,

the recovered plaintext is computed by first performing

polynomial arithmetic on the secret key, and then de-

coding the result. We mask the polynomial operations

by arithmetically splitting the secret key polynomial

into two random shares; the final decoding operation is

performed using a new bespoke masked decoder. The

output of our masked ring-LWE decryption are Boolean

shares suitable for derivation of a symmetric key. Thus,

the masking scheme keeps all intermediates, including

the recovered plaintext, in the masked domain. We have

implemented the masking scheme on both hardware

and software. On a Xilinx Virtex-II FPGA, the masked

ring-LWE processor requires around 2000 LUTs, a 20%
increase in the area with respect to the unprotected

architecture. A masked decryption operation takes 7478

cycles, which is only a factor ×2.6 larger than the un-

protected decryption. On a 32-bit ARM Cortex-M4F

processor, the masked software implementation costs

around ×5.2 more cycles than the unprotected imple-

mentation.

This journal version is based on a paper appeared at the CHES
2015 conference [27]. Sections 6, 7.3 and 8.2 carry substantial
differences.

O. Reparaz
Kasteelpark Arenberg 10 bus 2452
Tel.: +32-45-678910
Fax: +123-45-678910
E-mail: oscar.reparaz@esat.kuleuven.be

1 Introduction

Once the quantum computer is built, Shor’s algorithm

will make most current public-key cryptographic algo-
rithms obsolete. In particular, public-key cryptosystems

that rely on number-theoretic hardness assumptions

such as integer factorization (RSA) or discrete loga-

rithms, either in Z∗p (Diffie-Hellman) or in elliptic curves

over finite fields, will be insecure. On the bright side,
there is an entire branch of post-quantum cryptography

that is believed to resist mathematical attacks running

on quantum computers.

There are three main branches of post-quantum cryp-

tosystems: based on codes, on multivariate quadratic

equations or on lattices [2]. Lattice-based cryptographic

constructions, founded on the learning with errors (LWE)

problem [24] and its ring variant known as ring-LWE

problem [18], have become a versatile tool for design-

ing asymmetric encryption schemes [18], digital signa-

tures [10] and homomorphic encryption schemes [11,4].

Several hardware and software implementations of such

schemes have appeared in the literature. So far, the re-

ported implementations have focused mainly on efficient

implementation strategies, and very little research work

has appeared in the area of side channel security of the

lattice-based schemes.

It comes as no surprise that implementations of post-

quantum algorithms are vulnerable to side-channel at-

tacks. Side-channel attacks, as introduced by Kocher [16],

exploit timing, power consumption or the electromag-

netic emanation from a device executing a cryptographic

implementation to extract secrets, such as cryptographic

keys. A particularly powerful side-channel technique

is Differential Power Analysis (DPA), introduced by

Kocher et. al. [17]. In a typical DPA attack, the ad-

versary measures the instantaneous power consumption

2 Oscar Reparaz et al.

of a device, places hypotheses on subkeys and applies

statistical tests to confirm or reject the hypotheses. DPA

attacks can be surprisingly easy to mount even with

low-end equipment, and hence it is important to protect

against them.

There are plenty of countermeasures against DPA.

Most notably, masking [7,14] is provably sound and

popular in industry. Masking effectively randomizes the

computation of the cryptographic algorithm by splitting

each intermediate into several shares, in such a way

that each share is independent from any secret. This

property is preserved through the entire computation.
Thus, observing any single intermediate (for example,

by a side-channel, be it known or unknown) reveals

nothing about the secret. However, there are not many

masking schemes specifically designed for post-quantum

cryptography. In [5] Brenner et. al. present a masked

FPGA implementation of the post-quantum pseudo-

random function SPRING.

In the rest of the paper, we focus on protecting

the ring-LWE decryption operation against side-channel

attacks with masking. The decryption algorithm is con-

siderably exposed to DPA attacks since it repeatedly
uses long-term private keys. In contrast, the encryp-

tion or key-generation procedures use ephemeral secrets

only [28].

Our contribution. In this paper we present a compact

masked implementation of the ring-LWE decryption

function. The masking countermeasure adds a small over-

head when compared to the other previous approaches,
thanks to a bespoke probabilistic masked decoder de-

signed specifically for our implementation. We imple-

mented the masked ring-LWE decryption on a Virtex-II

FPGA and on an ARM Cortex-M4F processor, and

tested the side-channel security with practical experi-

ments.

Organization. The paper is structured as follows: we

provide a brief mathematical background of the ring-

LWE encryption scheme in Section 2 and describe a

high-level overview of the proposed masked ring-LWE

decryption in Section 3. Next, in Section 4 we construct

the masked decoder. In 5 we describe our hardware im-

plementation, and in the next Section 6 we describe our

software implementation. We analyze the error rates of

the decryption operation in Section 7. We dedicate Sec-

tion 8 for the side-channel evaluation of both hardware

and software implementations and draw conclusions in

the last section.

2 Preliminaries

Notation. The Latin letters r, ci indicate polynomials.

When we want to explicitly access a coefficient of the

polynomial we write r[i]. Multiplication of polynomials

is written as r ∗ c1. Coefficient-wise multiplication is

denoted as r·c1. The letter m denotes a string of message

bits, and q is an integer. Letters with prime x′ or double

prime x′′ represent shares of variable x. Depending on

the context, these shares are split either arithmetically

x = x′+x′′ (mod q) or Boolean x = x′+x′′ (mod 2). A

polynomial r is shared into (r′, r′′) by additively sharing

each of its coefficients r[i] such that r = r′ + r′′.

Ring-LWE. For completeness, we give in this section a

description of the three major algorithms of the ring-

LWE public-key cryptosystem [18]: key-generation, en-

cryption and decryption.

The ring-LWE encryption scheme works with poly-

nomials in a ring Rq = Zq[x]/(f(x)), where f(x) is

an irreducible polynomial of degree n. During the key

generation, encryption and decryption operations, poly-

nomial arithmetic such as polynomial addition, subtrac-

tion and multiplication are performed. In addition, the

key-generation and encryption operations require sam-

pling of error polynomials from an error distribution

(typically a discrete Gaussian.)

The ring-LWE encryption scheme is described in this

way:

– In the key generation phase, two error polynomials

r1 and r2 are sampled from the discrete Gaussian

distribution. The secret key is the polynomial r2 and

the public key is the polynomial p = r1−g∗r2. After

key generation, there is no use of the polynomial r1.

The polynomial g is globally known.

– In the encryption operation of a binary message

vector m of length n, the message is first lifted to

a ring element m̄ ∈ Rq by multiplying the message

bits by q/2. The ciphertext is computed as a pair

of polynomials (c1, c2) where c1 = g ∗ e1 + e2 and

c2 = p ∗ e1 + e3 + m̄ ∈ Rq. The encryption operation

requires generation of three error polynomials e1, e2
and e3.

– The decryption operation uses the private key r2 to

compute the message as m = th(c1 ∗ r2 + c2). The

decoding function th is a simple threshold decoder

that is applied coefficient-wise and is defined as

th(x) =

{
0 if x ∈ (0, q/4) ∪ (3q/4, q)

1 if x ∈ (q/4, 3q/4)
(1)

Masking ring-LWE 3

Efficiency improvements. To achieve an efficient im-

plementation of the encryption scheme, the irreducible

polynomial f(x) is taken as xn + 1 where n is a power

of two, and the modulus q is chosen as a prime number

satisfying q ≡ 1 mod 2n [21,29]. In this setting, poly-

nomial multiplications can be efficiently performed in

O(n log n) time using the Number Theoretic Transform

(NTT).

Following [29], we keep the ciphertext polynomials

c1 and c2 in the NTT domain to reduce the computa-

tion cost of the decryption operation. The decryption

operation thus computes the decrypted message as

m = th
(
INTT(c̃1 · r̃2 + c̃2)

)
. (2)

Here the symbol r̃ represents the NTT of a polyno-

mial r, and INTT(·) represents the inverse NTT oper-

ation. The multiplication of c̃1 · r̃2 is thus performed

coefficient-wise (as well as the addition c̃1 · r̃2 + c̃2.)

For convenience, we drop the tildes in the rest of the
paper and work with c1, c2 and r2 in the NTT domain.

We furthermore refer to r̃2 simply as r. (We recall that

the INTT is a linear transformation applied to the n

coefficients of a = r · c1 + c2.) The decoding function th

applies a threshold function to each coefficient of a as

defined in Equation 1 to output n recovered message

bits.

3 High-level overview

In this section, we give a high-level view of the masked

ring-LWE implementation. The most natural way to
split the computation of the decryption as Equation 2

is to split the secret polynomial r additively into two

shares r′ and r′′ such that r[i] = r′[i] + r′′[i] (mod q)
for all i. The n coefficients of r′ are chosen uniformly at

random in Zq in each execution of the decryption.

The bulk of the computation from Equation 2 is

amenable to this splitting, since by linearity of the mul-

tiplication and INTT operation, we have that INTT(r ·
c2 + c1) = INTT(r′ · c2 + c1) + INTT(r′′ · c2). Thus, we

can split almost the entire computation from Equation 2

into two branches, as drawn in Figure 1. The first branch

computes on r′ to determine the polynomial

a′ = INTT(r′ · c1 + c2) (3)

and the second branch operates on r′′ to determine

a′′ = INTT(r′′ · c1). (4)

The advantage of such a high-level masking is that

the operations of Equation 3 and 4 can be performed

on an arithmetic processor without any particular pro-

tection against DPA. (This is because any intermediate

appearing in either branch is independent of the secret

r. This situation is very similar to, for example, base

point blinding in elliptic curve scalar multiplication.)

We can reuse an existing ring-LWE processor for these

operations, and leverage the numerous optimizations

carried out for this block [21,29,9].

INTT

INTT

masked
decoder

r′

r′′

m′

m′′

c1 c2

c1

a′

a′′

1

13

13

1

13

13

Fig. 1: General data flow of the masked ring-LWE de-

cryption. r′ and r′′ are the arithmetic shares of the

private key r; c1 and c2 are the input unmasked cipher-

text; m′ and m′′ are the Boolean shares of the recovered

plaintext.

The final threshold th(·) operation of Equation 2

is obviously non-linear in the base field Fq, and hence

cannot be independently applied to each branch (Equa-

tion 3 and 4). There are generic approaches to mask

arbitrary functions. For instance, in [5] an approach

based on masked tables was used. However, these generic

approaches are usually quite expensive in terms of area

or randomness. In the following Section 4, we pursue

another direction. We design a bespoke masked decoder

that results in a compact implementation.

4 Masked decoder

In this section we describe a compact, probabilistic

masked decoder. In the sequel, a denotes a single co-

efficient and (a′, a′′) its shares such that a′ + a′′ = a

(mod q). The decoder computes the function th(a) from

the shares (a′, a′′). We also drop the symbol (mod q)

when obvious.

First crack. The key idea of the efficient masked decoder

is that we do not need to know the exact values of the

shares a′ and a′′ of a coefficient a in order to compute

th(a). For example, if 0 < a′ < q/4 and q/4 < a′′ < q/2

then a = a′ + a′′ is bounded by q/4 < a < 3q/4, and

thus th(a) = 1. That is, we learnt th(a) from only a

few most significant bits from a′ and a′′. We can use

this idea to substantially simplify the complexity of the

masked th function.

4 Oscar Reparaz et al.

a a′′

a′

q/4

3q/4

q/2 0

q/4

3q/4

q/2 0

III

III IV

q/4

3q/4

q/2 0

a = a′ + a′′

a = a′ + a′′
a′

a′ a′′

a′′

Fig. 2: Idea for the masked decoder. Elements in Zq are shown in a circle. Adding two elements translates into

adding their respective angles. Left: case 0 < a′ < q/4, q/4 < a′′ < q/2, and therefore th(a) = 1. Center and right:

case 0 < a′ < q/4, 0 < a′′ < q/4, which does not allow to infer th(a).

4.1 Rules

Figure 2, left, illustrates the situation from the last

paragraph. In this case, 0 < a′ < q/4 and q/4 < a′′ <
q/2 so obviously a can range only from q/4 to 3q/4,

and hence th(a) = 1. Analogously to this rule, we can

formulate 3 other rules:

– If q/2 < a′ < 3q/4 and 3q/4 < a′′ < q then q/4 <

a < 3q/4 and thus th(a) = 1.

– If q/4 < a′ < q/2 and q/2 < a′′ < 3q/4 then a

belongs to (0, q/4) ∪ (3q/4, q) and thus th(a) = 0

(quadrants I and IV, left half of the circle).

– If 3q/4 < a′ < q and 0 < a′′ < q/4 then a belongs

to (0, q/4) ∪ (3q/4, q) and thus th(a) = 0.

There are 4 other rules that result from interchang-

ing a′ with a′′ in the above expressions. (This follows

straight from the symmetry of the additive splitting.)

Essentially, with the only information of the quadrant of

each share a′ and a′′ we can, in half of the cases, deduce

the output of th(a). (For the explanation simplicity, we

obviated what happens in the boundaries of the quad-

rant intervals. Similar conclusions hold when including
them.)

What if no rule is hit? In roughly half of the cases, we

can apply one of the 8 rules previously described to

deduce the value of th(a). However, in the other half

of the cases, none of the rules applies. A representative

case of this event is shown in Figure 2, center and right.

In both cases, 0 < a′ < q/4 and 0 < a′′ < q/4. This

situation is not covered by any of the 8 rules previously

described. We see that in the center sub figure th(a) = 0

while in the right sub figure th(a) = 1, so in this case

the quadrants of each share a′ and a′′ do not allow us

to infer th(a).

The solution in this case is to refresh the splitting

(a′, a′′), that is, update a′ ← a′+∆1 and a′′ ← a′′−∆1

for certain ∆1. (This refreshing1 naturally preserves the

unshared value a = a′ + a′′.) After the refreshing, the 8

rules can be checked again. If still no rule applies, the

process is repeated with a different refreshing value ∆i.
Note that in each iteration of the step, roughly half of

the possible values of (a′, a′′) ∈ Zq × Zq are successfully

decoded, and thus the amount of pairs (a′, a′′) that do

not get decoded shrinks exponentially with the number

of iterations. In our implementation, N = 16 iterations

produces a satisfactory result. This will be studied in
detail in Section 7.1.

Optimal cooked values for ∆i. One can determine a se-

quence of ∆i values that maximizes the number of pairs
successfully decoded after N iterations. We performed a

first-order search for such a sequence of ∆i values. Each

∆i maximizes the number of successfully decoded pairs

after i− 1 iterations. For q = 7681 the sequence of ∆i

shown in Appendix A was found.

Architecture. The hardware architecture for the masked

decoder follows from the previous working principle

description. Our implementation is shown in Figure 3.

From left to right, we see the first refreshing step by

the constants ∆i. The constants ∆i vary from itera-

tion to iteration. After the refreshing step, the quadrant

function is applied to each share a′, a′′. This quadrant

function outputs x if a belongs to the x-th quadrant,

and thus the output consists of 2 bits. These blocks

1 We use here the term “refresh” to refer to the process
of modifying the masked representation (a′, a′′) of a without
modifying the unshared value a, but, contrary to other con-
texts in the literature, we do not imply that we are pumping
new randomness in the new representation.

Masking ring-LWE 5

masked table

quad

quad

2

∆i

a′

a′′

1313

r

2

1

1

1

1

1

m′

m′′

q′

q′′

Fig. 3: Data flow for the masked decoder.

are essentially 13-bit comparators, and thus relatively

inexpensive in logic.2 The subsequent rule checking on

(q′, q′′) is performed by a masked table lookup that is

described in the following section. The whole process is

repeated N = 16 iterations, and this number of itera-

tions stays fixed even if the decoding is successful after
the few first iterations.

4.2 Masked table lookup

The final step in the masked decoder is a masked table
lookup. This table implements the rules described in

Section 4.1, and essentially maps the output of each

quadrant q′i and q′′i (2 bits each) after the i-the iteration

(i ∈ [1, N]) to a (Boolean) masked output bit value

(m′i,m
′′
i). In our specific implementation, we have other

inputs: the result of the decoding from the previous
iteration (m′i−1,m

′′
i−1) and an extra randomness bit r

(fresh at each of the N iterations for each of the n

coefficients).

This is a well-studied problem that arises in other sit-

uations (for instance, when masking the sbox lookup in a

typical block cipher) and there are plenty of approaches

here to implement such masked table lookup.

Hardware. In hardware, we opted for the approach
of masked tables as in [31]. We set m′i ← r and we

compute m′′i ← f(r, q′i, q
′′
i ,m

′
i−1,m

′′
i−1). The function f

essentially bypasses the previous decoded value when

no rule applies to q′i, q
′′
i by setting the output m′′i to

r +m′i−1 +m′′i−1 (refreshing the content of the output

registers). If a rule applies to q′i, q
′′
i , it sets the output

m′′i accordingly. By doing this, we can register always

the output of this table and no control logic to enable

such output register is needed (it is implicitly integrated

into this masked table.) This is the reason why the table

sees also the previous decoded value m′i−1 and m′′i−1.

2 Note that in the special case that q is a prime close to a
power of two the construction of the quadrant block can be
further simplified.

The usual precautions are applied when implement-

ing f . For our target FPGA platform, we carefully split

the 7-bit input to 1-bit output function f into a bal-

anced tree of 4-bit input LUTs, in such a way that any

intermediate input or output of LUTs does not leak in

the first order. Note that here we are assuming that each

LUT is an atomic operation. If stronger security guar-

antees are needed, other approaches to implement such

function f should be followed. When implemented in an

ASIC, it may be preferable to store this masked table

in ROM (since the contents of the table are immutable
and the size is small.)

The output of this table is (Boolean) masked, and

thus no unmasked value lives within the implementation.

This is suited for consumption of a masked AES module

(say) after some preprocessing as will be detailed later.

We stress that we use masked tables on the output of

the quadrants. This is the key for our reduced area

requirements, as will be explained in Section 5.

Software. For the software implementation of the masked

table lookup we base our approach on the previous hard-

ware description. We first write an unmasked decoder in

a (software) bitsliced way, and then apply the method

of [1] to provide “gate-level” masking to the bitsliced

software implementation. More details are given in Sec-

tion 6.

5 Hardware implementation

We implemented the fully masked ring-LWE decryp-

tion system with the proof-of-concept parameter set

(n, q, s) = (256, 7681, 11.32) first introduced in [13], cor-
responding to a medium-term security level. Note that

these concrete choice of parameters is not meant to

be deployed. The target platform is a Xilinx Virtex-II

xc2vp7 FPGA. The HDL files were synthesized within

Xilinx ISE v8.2 with optimization settings set to bal-

anced and KEEP HIERARCHY flag when appropriate to

prevent optimization of security-critical components. We

base our arithmetic processor on the design from [29].

5.1 Area

In our case, a single arithmetic coprocessor performs

serially the computations of Equation 3 and then that

of Equation 4. This incurs in a very slight area overhead

(only the control microcode is slightly modified, plus the

masked decoder), at the obvious cost of an increased

execution time. In comparison to the unprotected ver-

sion, our protected decryption scheme consumes more

memory as now we store two shares r′ and r′′ of the

6 Oscar Reparaz et al.

LUTs/FFs/DSPs fmax [MHz] cycles

unprotected 1713/830/1 120 2.8k
protected 2014/959/1 100 7.5k

Table 1: Performance and Comparison on Xilinx Virtex-

II xc2vp7 FPGA. Note that these results are not directly

comparable with [29], since the latter were obtained from

a more advanced Virtex-6 FPGA, which has 6-bit input

LUTs and superior routing mechanisms in comparison

to our target FPGA.

secret polynomial r, and the two output polynomials a′

and a′′ from the two INTT operations.

In Table 1, we can see that the proposed masking

of the ring-LWE architecture incurs an additional area
overhead of only 301 LUTs and 129 FFs in comparison

to the unprotected version. This additional area cost is

mostly due to a pair of masked decoders. Due to its low
area overhead, we chose to keep two masked decoders in

parallel, decoding two coefficients simultaneously. (This

nicely fits with the memory organization of the arith-

metic coprocessor, since it fits two 13-bit coefficients

in each memory word.) Thus, we use two addition and

subtraction circuits for the refreshing with ∆i (account-

ing for 160 LUTs) and two masked tables (90 LUTs in

total).

We note that we could straightforward reduce the

additional area cost by reusing the 13-bit addition and

subtraction circuits present in the arithmetic coproces-

sor. Since during a decoding operation, the arithmetic

coprocessor remains idle, reusing of the addition and

subtraction circuits do not cause any increase in the

cycle count. For simplicity, we did not implement this
approach.

5.2 Cycle count

The cycle count for our approach is decomposed in the

computation of Equation 3, Equation 4 and the masked

decoder. Equation 3 takes 2840 cycles (one unprotected

ring-LWE decryption), Equation 4 takes 2590 cycles,

slightly less than Equation 3 since there is no addition

present in the second branch.

The two-way parallel masked decoder takes 1
2 × n×

N + ε cycles to decode all the coefficients into message

bits. In our case with n = 256, N = 16 the masked

decoder takes 2048 cycles. Thus in total, a masked de-

cryption operation requires 7478 cycles. The arithmetic

coprocessor and the masked decoder run in constant

time and constant flow.

5.3 Comparison with an elliptic-curve cryptosystem

We compare our protected decryption scheme with the

unprotected high-speed elliptic curve scalar multiplier

architecture proposed by Rebeiro et al. in [23]. The ar-

chitecture for the field GF(2233) consumes 23 147 LUTs

and computes an unprotected scalar multiplication in

12.5µs on a more advanced Virtex-4 FPGA. Thus the

scalar multiplier has an area × time product of approx-

imately 289 337. Our protected ring-LWE decryption

(for a similar security) achieves an area × time product

of approximately 151 452 on a Virtex-2 FPGA; thus

achieving at least 1.9 times better figure of merit.

5.4 Trade-offs

The previous figures are subject to trade-offs. If smaller

latency is desired instead of a compact implementation,

two coprocessors can perform the two computations of

Equation 3 and 4 in parallel. Trade-offs also apply to

the masked decoder, and the parallelization could be

extended easily to reduce latency in this stage. Since the

BRAMs present in the Xilinx FPGAs support reading of

multiple consecutive words, we could keep more pairs of

masked decoders in parallel and reduce the number of cy-

cles. Another alternative is to keep the masked decoder

in pipeline with the polynomial arithmetic block. Such

type of setting is suitable for systems where many de-

cryption operations are performed in a chain. While the

masked decoder works on the coefficients of a previous

computation, the polynomial arithmetic unit processes

new ciphertexts. Since the masked decoder is faster than

the polynomial arithmetic unit, the cycle count of the

masked decoder is not an overhead in such type of set-

ting. But of course, in this situation we could not reuse
the arithmetic circuitry of the arithmetic coprocessor

for the refreshing operation of the masked decoder.

5.5 Maximum frequency

We note that the arithmetic coprocessor is a very op-

timized unit with a complex pipeline organization. We

thus insert two pipeline stages in the masked decoder

to match the maximum frequency of the whole system

to that of the arithmetic coprocessor. In this way, the

design can run up to almost 100 MHz. The critical path

is inside the arithmetic multiplier.

6 Software implementation

We wrote a software implementation of the complete sys-

tem for an ARM Cortex-M4F with the same parameter

Masking ring-LWE 7

c1

a0

b0
a0

b1

a1

b1

a1

b0

r
c0

Fig. 4: Trichina AND gate. This masked computes the

unshared function c = ab. Each variable a is shared into

two shares a1, a2. This is the construction we use for our

secure AND instruction in our software implementation.

set as previous section. This Cortex-M4F is a popular

and powerful embedded platform. It has a 32-bit word

size, 13 general-purpose registers, its instruction set

supports single-cycle 32-bit multiplications and 16-bit

SIMD arithmetic.

6.1 Arithmetic operations

Our implementation for the arithmetic part (the two

branches from Eq. 3 and Eq. 4) follows the lines of de

Clercq et al. [9]. We remind here the key ideas of the

software implementation. Each coefficient requires 13-

bits of storage for q = 7681, and we therefore store two

coefficient in every processor word. We use the negative-

wrapped NTT along with computational optimizations

from [29] to implement the polynomial multiplication.

We can reduce the number of memory accesses, pointer

operations, and loop overhead by 50% by performing a

two-fold unrolling of the inner loop of the NTT transfor-

mation. The expensive calculation of twiddle factors can

be avoided by storing precomputed twiddle factors, and

inverse twiddle factors in a lookup table. The code is con-

stant time and constant flow (SPA resistant.) Since each

branch operates on only one share, no special protection

against DPA is required.

6.2 Masked decoder

Quadrants. The quadrant operation is implemented in

a constant-time and constant-flow way. It relies on arith-

metic substraction to perform successive comparisions

against q/4, q/2 and 3q/4. From these comparisions, the

quadrant result is constructed by bitmasks. As in the

previous paragraph, since each quadrant operates on a

single share, no further DPA protection is required.

Table 2: Timings for major operations in software.

Operation kCycles

Equation 3 43
Inverse NTT transform 39
Masked decoder 168

Table lookup. The table lookup is the most sensitive part

since it sees both shares q′ and q′′. We mask the table

lookup following [1]. This approach takes as input an

unprotected software bitsliced implementation written

as a straight-line sequence of XOR and AND instructions.

Then, the input data is shared in a Boolean fashion and

the instructions are replaced by its secure equivalent.

The masked XOR operation is very easy to derive; the

masked AND instruction is more ellaborate due to the

non-linearity of the operation. The dataflow for the AND

instruction is represented in Figure 4. It is essentially

Trichina’s masked AND gate.

We wrote the unmasked function that applies the

rules of Section 4 (including output feedback) in a bit-

sliced fashion. We then used espresso [30] and MisII

(part of Octtools) for logic minimization and synthe-

sis into XOR and AND “gates” = instructions. We then

substituted the XOR and AND instructions for its secure

equivalents. We perform 32 table lookups (for 32 differ-

ent coefficients) concurrently, and the decoder always
performs 16 iterations. This part (a series of XOR and

AND) was prototyped in C and the assembly output

carefully inspected.

6.3 Timings

In Table 2 we can see an overview of the time required

for each major operation. Note that while the arithmetic

part is heavily optimized, we did not focus on achiev-
ing the fastest implementation in the masked decoder

implementation. The most expensive part of arithmetic

computation is the inverse NTT, requiring 39k cycles.

The computation of Eq. 3 takes around 43k cycles. The

masked decoder takes around 168k cycles. (Most of the

time goes to computing the quadrant functions. An

assembler version for these functions would greatly ben-

efit the overall timing.) The overhead in cycles for the

masked version is around 5.8 times more cycles.

7 Discussion

7.1 Error rates

Cryptosystems based on ring-LWE are inherently prob-

abilistic. This means that there is a non-zero probability

8 Oscar Reparaz et al.

0 q/4 q/2 3q/4 q

0

0.2

0.4

0.6

0.8

1

unshared input to decoder

p
su

cc
es

sf
ul

 d
ec

od
in

g

N=16
N=2

Fig. 5: Empirical success distribution for the masked

decoder

that the recovered plaintext after ring-LWE decryption

is not exactly the plaintext before encryption. In our

case, due to the probabilistic nature of our masked de-

coder approach, there is a second source of noise. Since

the number of iterations of the masked decoder is fi-

nite, there are some pair values (a′, a′′) that will not

get decoded within the fixed finite number of iterations.

In this section, we first explain the error rate of the

probabilistic decoding in isolation, and then we switch

to the global system error rate and point out strategies

to mitigate it.

Errors due to the probabilistic decoding. In this section,

we assume that the plaintext bit is 1 and the unmasked

input a to the masked decoder is in (q/4, 3q/4). The ad-

ditional error due to the probabilistic masked decoder is

the probability pe that (a′, a′′) does not get successfully

decoded. Let us write ps = 1− pe.
This probability ps is influenced by two distributions.

We have that

ps =
∑

Pr[successful decode|a] · Pr[a] (5)

where the sum is taken over a ∈ (q/4, 3q/4). On the

one hand, Pr[successful decode|a] is the probability that

the decoder successfully decodes a. On the other, Pr[a]

is the probability with which a takes various values in

(q/4, 3q/4).

The distribution of the decoder success probability

Pr[successful decode|a] as a function of the unshared

input value a to the decoder can be easily computed

0 q/4 q/2 3q/4 q
0

0.2

0.4

0.6

0.8

1
x 10

−3

input to the decoding
p

ap
pe

ar
ea

nc
e

Fig. 6: Distribution of a when plaintext is 1

by averaging over all possible pairs (a′, a′′) such that

a′ + a′′ = a. Since for any given value of a, its shares

a′ or a′′ are (individually) equiprobable, we compute

Pr[successful decode|a] as Pr[successful decode|a] =
1
q

∑
a′+a′′=a Pr[successful decode of (a′, a′′)].

The distribution Pr[successful decode|a] is shown in

Figure 5. We see that the decoder performs best when
a ≈ q/2, in which case all possible inputs get decoded

correctly. Only when the input value a approaches q/4

or 3q/4, the performance degrades. When using a larger

number of iterations N = 16 this effect is less pro-

nounced when compared to N = 2 iterations, as Figure 5
shows.

On the other hand, it is easy to see that not all

unshared inputs a to the decoder are equally likely. By

the construction of the ring-LWE decryption function,

the unshared input to the decoder a is either centered

around q/2 (resp. 0) when the message bit is 1 (resp. 0).

This distribution Pr[a] is plotted in Figure 6.

These two observations combined produce a nice

interaction between the prior distribution Pr[a] of a

(given by the ring-LWE decryption) and the success dis-

tribution of the masked decoder Pr[successful decode|a]

as in Equation 5. Namely, values of a that are difficult

to decode (those with low Pr[successful decode|a]) are

quite unlikely to appear as input to the masked decoder

(their Pr[a] is also low). This positive interaction keeps

the global error rate of the system quite low. This is

precisely quantified in the next paragraph.

Global error rate and number of iterations. We per-

formed simulations to estimate the global error rate and

Masking ring-LWE 9

Iterations pg [×10−5] pg/pbaseline

N =2 332.24 91.41
3 178.44 49.09
4 25.36 6.97
5 20.77 5.71
6 16.22 4.46
8 6.97 1.91
16 4.32 1.19
24 4.06 1.11
30 3.87 1.06

Fig. 7: Global error rates with the probabilistic decoder.

0 5 10 15 20 25 30

100

101

102

Iterations N

p
g
/
p
b
a
s
e
li
n
e

Fig. 8: Evolution of the ratio pg/pbaseline as the number

of iterations N grows.

determine the required number of iterations N in our

design. Over 106 bits, the average error per bit using a

deterministic decoder was pbaseline = 3.634375 × 10−5.

This is a baseline error intrinsic to the ring-LWE con-

struction. When we plug in the probabilistic decoder,

the global, end-to-end, error rate per bit pg increases.

(We have pg = pbaseline + pe.) In Figure 7, we can find

the global error rate for different values of the number

of iterations N of the decoding. At N = 3, for instance,

the error rate is pg = 1.7844×10−3, which is ≈ 49 times

larger than pbaseline. As already hinted, the error rate

quickly decreases with N (roughly exponentially, as can

be see in Figure 8). In our design, we set N = 16 (we

iterate 16 times per coefficient) as a balanced tradeoff

between cycle count and error rate. The impact of the

masked probabilistic decoder on the global error rate is

quite low, adding less than 20% to the intrinsic error

rate when compared to a deterministic decoder, as it can

be see in Figure 7. We note that one could generalize

the masked decoder to trade area for less number of

iterations. For details, see Appendix C.

7.2 Comparison with other decoding strategies

We are only aware of a similar masked decoder, the one

presented in [5]. There the authors resort to a generic

masking method, namely masked tables, to perform the

decoding. Translating the ideas of [5] in our context, we

would need two tables of 213 bits (one of them random).

For a smaller group Zd with d = 257 the authors report

an utilization of 1331 slices on a Virtex 6 FPGA. While

the results in slices are not directly comparable with
ours, we point out that the size of the masked table

following the approach of [5] grows linearly in the group

size q, while for our solution the size of the masked table

stays constant (independent of q), and the quadrant

blocks grow only logarithmically in q. The cycle count,

however, is larger in our solution. The critical obser-

vation of our masked decoder is that we can compress

the input coefficient shares a′ and a′′ to a mere two

bit per share (the output of each quadrant) and then

perform the decoding based on the information of the

two quadrants (4 bits.)

7.3 Post-processing

Albeit the computation from Equation (2) is commonly

referred as the “ring-LWE decryption”, the decryption

process should include a post-processing on the recov-

ered message m. This post-processing consists of error

correction and padding verification.

Linear codes with masking. One approach to deal with

the probabilistic nature of the ring-LWE decryption sys-
tem is to use forward error correcting codes (FEC). The

message prior to encryption is encoded using a FEC

and the resulting composite is ring-LWE encrypted. The

output of the ring-LWE decryption should be corrected

for errors, preferably in the masked domain. For syn-

drome decoding of linear codes, this can easily be done

by masking the syndrome table. A clever choice of the

linear code (for example, perfect codes) can allow very

easy masked implementation. (The only perfect linear

codes are repetition, Hamming and Golay codes.)

Padding schemes. As presented, the ring-LWE system is

malleable. CCA security can be achieved with a padding

mechanism. The Fujisaki-Okamoto [12] padding scheme

is known to work with ring-LWE [20]. This padding

scheme makes use of standard symmetric cryptographic

constructions whose masked implementations are well

studied. We point out that key-encapsulation mecha-

nisms may result in a more compact and simpler imple-

mentation.

10 Oscar Reparaz et al.

1000 2000 3000 4000 5000 6000 7000

time in cycles

sa
m

p
le
ρ

m
ea

n
cu

rv
e

ρ = 0.27, intermediate: a′[0]

ρ = 0.21, intermediate: m′[0]

ρ = 0.3, intermediate: r′′[0] · c1[0]

ρ = 0.25, intermediate: r′[0] · c1[0] + c2[0]

branch 1 branch 2 decoding

Fig. 9: Hardware implementation. PRNG off. On top, black, one power consumption trace. The different computa-

tional stages can be distinguished: first branch, second branch and decoding. Next, in blue, the correlation trace for

the value r′[0] · c1[0] + c2[0]. The correlation achieves a maximum value of ρ = 0.25. Below, in red, correlation for

r′′ · c1 (max ρ ≈ 0.3); in green: correlation for the input of the masked decoder a′[0]. At the bottom: correlation

with one message bit m′[0].

We remind that the Fujisaki-Okamoto padding scheme

requires a negligible decryption error rate for honestly

generated ciphertexts,3 as explained by Peikert [20].

Thus, the designer must ensure that the global error

rate due to the intrisic noise of ring-LWE and the prob-

abilistic decoder is negligible. This can be achieved with

FEC as previously described.

A formal generic analysis to choose a FEC code that

sets the error rate to, say, 2−80 or 2−128 is not straight-

forward. The analysis is greatly simplified if one chooses

(n, p, s) parameters such that there is no error contribu-

tion due to those parameters and at the same time a

required bit security level is maintained. We leave this

as future work.

7.4 Extension to higher-order security

We point out that the approach laid out in Section 3

scales quite well with the security order. To achieve secu-

rity at level d+ 1, one would need to split the computa-

tion of Equation 2 into d branches analogously to Equa-

3 We would like to thank the anonyomus reviewer for bring-
ing this important issue to our attention.

tion 3. The masked decoder can follow the same princi-

ples with the appropriate modifications. The complexity

of this decoder obviously grows. Generic approaches to

perform this computation have been discussed in [8,3,

25].

8 Evaluation

In this section we evaluate both the hardware and the

software implementations described above.

We provide a very advantageous setting for the ad-

versary: we assume that the evaluator knows the details

about the implementation (for example, pipeline stages

and register allocation). In addition, we assume that

while guessing a subkey, the adversary knows the rest of

the key. These assumptions allow to comfortably place

predictions on intermediates arbitrarily deep into the

computation. While this may represent a very powerful

attacker and somewhat unrealistic, the algebraic struc-

ture of such cryptosystem may help the attacker to

predict deep intermediates with relatively low effort. In

the Appendix B we describe an attack on half-masked

Masking ring-LWE 11

ring-LWE decryption that uses these ideas. This stresses

the necessity of masking the decoding function entirely.

The evaluation methodology to test if the masking is

sound is as follows. We first proceed with first-order key-

recovery attacks when the randomness source (PRNG)

is switched off. We demonstrate that in that situation

the attacks are successful, indicating that the setup

and procedure is sound. Then we switch on the PRNG

and repeat the attacks. If the masking is sound, the

first-order attacks shall not succeed. In addition, we per-

form second-order attacks to confirm that the previous

first-order analyses were carried out with enough traces.

We modeled the power consumption as the Ham-

ming distance between two consecutive values held in

a register, and used Pearson’s correlation coefficient to

compare predictions with measurements [6].

8.1 Hardware implementation evaluation

Measurement setup. We implemented the full design on

a SASEBO G board. The design was clocked at 18.75

MHz and the power consumption was sampled at 500

MS/s. This platform is very low noise.

We test 4 different points which covers all the rele-

vant parts of the computation. The targets are the first

13-bit coefficient of r′ · c1 + c2, the first 13-bit coefficient

of r′′ ·c1, the first input coefficient to the shared decoder

and the first output bit.

PRNG off. We first begin the experiments when the

PRNG is off. That is, the sharing of r into r′ and r′′ on

each execution is deterministic. This would not happen

in practice, as an active PRNG would randomize the

representation of r in each execution. In our setting, this

would mean that the masking is switched off.

In Figure 9 we draw the result of correlating against

the 4 intermediates with 10 000 traces. On top, we draw

a mean trace for orientation. The correlation values are,

from top to bottom, 0.25, 0.3, 0.27 and 0.21, respectively.

This means that the attacks are successful, and confirms

the soundness of our setting. In Figure 10 we can see the

evolution of the correlation coefficient as the number

of traces increases for the first two intermediates. We

can see that starting from hundred traces the attack

is successful. Similar behavior was observed for other

intermediates.

PRNG on. In Figure 11 we draw the result of the pre-

vious analysis when the masks are switched on. This

corresponds to the situation that an adversary would

face in reality. We can see that the correct key guess is

no longer distinguishable, even when using 10 000 traces.

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces
sa

m
pl

e
co

rr
el

at
io

n

Fig. 10: Hardware implementation. PRNG off. Evolution

of the correlation coefficient as the number of traces

increases for the intermediates r′[0] · c1[0] + c2[0] (left)

and r′′[0] · c1[0] (right). Correct subkey guess in red, all

other guesses in green. A 99.99 % confidence interval for

ρ = 0 is plotted in black discontinuous line. We can see

that starting from hundred measurements the attacks

are successful.

We repeated the same experiments for other interme-

diates and other intermediate positions with identical

results.

Second-order attacks. To confirm that we used enough

traces in our previous analyses, we perform here second-

order attacks on the masked implementation with the

PRNG on. We will focus on the masked decoder. In

Figure 12 we draw on top a mean curve in the region

of 7 400 to 7 700 cycles, corresponding to the end of

the masked decoding. We target one output bit of the

decoding: m[254].

In Figure 12 we first begin by correlating against

masks and masked values. This is a test scenario, since

for this attack we need to know the masks, something

that would not happen in a real deployment. Correlation

with masks or masked value yield high correlation as

expected (ρ = 0.32 and ρ = 0.34, respectively). In con-

trast, when correlating against the unshared value (in

light blue), the correlation coefficient does not traverse

the confidence interval for ρ = 0. This indicates that

12 Oscar Reparaz et al.

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

Fig. 11: Hardware implementation. Analogous to Fig-

ure 10, but with PRNG on. The correct subkey is no

longer identifiable. This is expected and means that the

masking is effective.

the masking is effective. We can repeat the same attack

against centered and squared traces [7,22]. This is effec-

tively a second-order attack, and is expected to work. It

is shown in magenta in Figure 12, and we can see that

the attack succeeds. Using the centered absolute value

to pre-process traces also works as expected, as shown

in yellow.

In Figure 13 we can see the evolution as a func-

tion of the number of traces. We can see that starting

from ≈ 2000 measurements this second-order attack is

successful. This confirms that the first-order attacks

from above were carried out with enough traces, since a

second-order attack is already successful starting from

≈ 2000 measurements.

We remark that the relatively low number of traces

required for the second-order attack is due to the very

friendly scenario for the evaluator. The platform is low

noise and no other countermeasure except than masking

was implemented. In practice, masking needs a source

of noise to be effective, and consequently the higher-

order attacks would be harder to mount, requiring more

traces [7] and more computation [26].

8.2 Software implementation evaluation

Measurement setup. We deployed the masked software

implementation on a 32-bit ARM STM32F407VG Cortex-

M4. The MCU operates at 168 MHz and has 192 kB of

SRAM. We take contactless power measurements from

a decoupling capacitor in the power loop with a Langer

LF2-5 H-field probe and 20 dB amplification. This lab

setup is very low-noise. DPA on an unprotected byte-

oriented AES succeeds with 20 traces. We focus the

evaluation on the most challenging part: the masked

decoding operation.

Masks off. Figure 15 shows successful correlations when

the adversary knows the secret PRNG seed. This serves

to confirm that our setup is sound. We selected many

different intermediates within the table lookup operation

and used 20k traces to produce a good-looking picture.

The maximum absolute value for the correlation against

the correct key hypothesis is around |ρ| ≈ 0.71. In Fig-

ure 16, top, we see the evolution of sample correlation

coefficient as the number of curves at timesample 1390.

We can see that starting from less than hundred traces

the attack is successful, since the correct subkey stands
out from all other competing key hypotheses.

Masks on. When the PRNG output is unknown, first-

order attacks are expected not to work. This is the case

in our implementation. In Figure 16, middle, the evolu-

tion of the correlation coefficient is plotted at the same

timesample 1390. The correct subkey is indistinguish-

able among competing ones. Similar observations apply

to the entire timespan.

Second-order attacks. We also performed second-order

attacks. Note that our implementation does not claim

second-order security. One can see from Figure 16, bot-

tom, that second-order attacks begin to work from a

couple hundred measurements. This means that the pre-

vious analyses were carried out with enough number of

measurements (up to 20k measurements.) Similar obser-

vations apply here: our software setting is very friendly

towards the evaluator since there is no additional noise

present in the measurements. In reality, one would al-

ways implement masking along with a source of noise

to be effective.

8.3 Horizontal DPA attacks

During the decoder operation, the input coefficients are

refreshed N − 1 = 15 times with publicly known offsets

∆i. The device thus handles consecutively the values

a′, a′ + ∆1, ..., a′ + ∆1 + . . . + ∆15. This may enable

Masking ring-LWE 13

7400 7450 7500 7550 7600 7650 7700

sa
m

p
le
ρ

mask: m′[254]

masked value: m′′[254]

unmasked value: m[254], first order

unmasked value: m[254], squared traces

unmasked value: m[254], abs traces

cu
rv

e
m

ea
n

time [cycles]

ρ = 0.34

ρ = 0.32

ρ = 0.09

ρ = 0.09

Fig. 12: Hardware implementation. Correlation traces for intermediates within the shared decoder. On top, a power

measurement trace showing the last 15 decodings. Below, correlation traces. The first two (masks and masked

values) assume that the adversary knows the masks. The third one, in light blue, is a first-order attack without

knowing the attack, and is unsuccessful. In contrast, the second-order attack against the same intermediate is

successful, as the traces in magenta and yellow show.

a horizontal DPA attack [19] during the operation: the

adversary may collect a single trace, split it into 16

chunks and then perform a DPA on these 16 chunks to

recover the mask a′. Once the masks from all traces are

discovered, a first-order, vertical DPA applies.

There are two factors that mitigate this threat. First,

we note the adversary is given a very limited number

of traces to recover each mask (namely, N = 16). Sec-

ondly, this attack can be easily prevented by shuffling

the public coefficients ∆i. This randomizes the order

of execution of each refreshing with ∆i, and thus the

exposure to horizontal DPA attacks is minimized.

9 Conclusion

In this paper we described a practical side-channel pro-

tected implementation of the lattice-based ring-LWE

asymmetric decryption. Our solution is based on the

sound principles of masking and incurs in a manage-

able overhead (in cycles and area). A key component

of our solution is a bespoke masked decoder. Our im-

plementation performs the entire ring-LWE decryption

computation in the masked domain.

Acknowledgements. The authors would like to thank the

CHES 2015 reviewers for their valuable comments. This work

has been supported in part by the European Commission

through the ICT programme under contracts H2020-ICT-

645622 PQCRYPTO, H2020-ICT-644209 HEAT and FP7-

ICT-2013-10-SEP-210076296 PRACTICE; by the Research

Council KU Leuven TENSE (GOA/11/007); by the Flemish

Government FWO G.0550.12N, G.00130.13N and G.0876.14N;

and by the Hercules Foundation AKUL/11/19. Oscar Reparaz

is funded by a PhD fellowship of the Fund for Scientific Re-

search - Flanders (FWO). Sujoy Sinha Roy was supported by

Erasmus Mundus PhD Scholarship.

References

1. Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and
Ingrid Verbauwhede. Dpa, bitslicing and masking at 1
ghz. In Güneysu and Handschuh [15], pages 599–619.

2. Daniel J. Bernstein, Johannes Buchmann, and Erik Dah-
men. Post Quantum Cryptography. Springer, 1st edition,
2008.

14 Oscar Reparaz et al.

0 0.5 1 1.5 2

x 10
4

−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

0 0.5 1 1.5 2

x 10
4

−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

Fig. 13: Hardware implementation. Top: correlation as

the number of traces increases for the first-order attack

(PRNG on), around clock cycle 7560. Bottom: correla-
tion for the second-order attack with masks on. The

attack begins to be successful with 2 000 measurements.

3. Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Higher-order threshold im-
plementations. In ASIACRYPT, volume 8874 of LNCS,
pages 326–343. Springer, 2014.

4. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael
Naehrig. Improved security for a ring-based fully homo-
morphic encryption scheme. In Cryptography and Coding,
volume 8308 of LNCS, pages 45–64. Springer, 2013.

5. Hai Brenner, Lubos Gaspar, Gaëtan Leurent, Alon Rosen,
and François-Xavier Standaert. FPGA implementations of
SPRING - and their countermeasures against side-channel
attacks. In CHES, volume 8731 of LNCS, pages 414–432.
Springer, 2014.

6. Eric Brier, Christophe Clavier, and Francis Olivier. Cor-
relation power analysis with a leakage model. In CHES,
volume 3156 of LNCS, pages 16–29. Springer, 2004.

7. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and
Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In CRYPTO, volume 1666 of
LNCS, pages 398–412. Springer, 1999.

8. Jean-Sébastien Coron. Higher order masking of look-up
tables. In EUROCRYPT, volume 8441 of LNCS, pages
441–458. Springer, 2014.

9. Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. Efficient software implemen-
tation of ring-LWE encryption. In Wolfgang Nebel and
David Atienza, editors, Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition,

Fig. 14: Hardware implementation. Crosscorrelation

trace. The x and y axes represent time, flowing from the

upper left hand side corner to the lower right. The en-

tire figure spans 7500 cycles (as Figure 9). It is possible

to distinguish the two branch computations (including

its components) and the decoding. Colors enhanced to
improve contrast.

DATE 2015, Grenoble, France, March 9-13, 2015, pages
339–344. ACM, 2015.

10. Léo Ducas, Alain Durmus, Tancréde Lepoint, and Vadim
Lyubashevsky. Lattice signatures and bimodal gaus-
sians. In CRYPTO, volume 8042 of LNCS, pages 40–56.
Springer, 2013.

11. Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, Report 2012/144, 2012. http://eprint.iacr.

org/.
12. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integra-

tion of asymmetric and symmetric encryption schemes.
Journal of Cryptology, 26(1):80–101, 2013.

13. Norman Göttert, Thomas Feller, Michael Schneider, Jo-
hannes Buchmann, and Sorin Huss. On the design of
hardware building blocks for modern lattice-based encryp-
tion schemes. In CHES, volume 7428 of LNCS, pages
512–529. Springer, 2012.

14. Louis Goubin and Jacques Patarin. DES and differential
power analysis the duplication method. In CHES, volume
1717 of LNCS, pages 158–172. Springer, 1999.

15. Tim Güneysu and Helena Handschuh, editors. Cryp-
tographic Hardware and Embedded Systems - CHES
2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, volume 9293 of Lec-
ture Notes in Computer Science. Springer, 2015.

16. Paul Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In CRYPTO,
volume 1109 of LNCS, pages 104–113. Springer, 1996.

17. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differen-
tial power analysis. In CRYPTO, volume 1666 of LNCS,
pages 388–397. Springer, 1999.

18. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
ideal lattices and learning with errors over rings. In EU-

http://eprint.iacr.org/
http://eprint.iacr.org/

Masking ring-LWE 15

200 400 600 800 1000 1200 1400 1600

time [samples]

ex
em

p
la

ry

E
M

tr
a
ce

sa
m

p
le
ρ

Fig. 15: Software implementation. PRNG off. On top, black, one EM consumption trace. The selected region

comprises one masked bitsliced table lookup. Below, different correlation traces for various intermediates. Correlation

for different shares of the same intermediate are drawn in the same color. The 99.99 % confidence interval for ρ = 0

is drawn in light grey.

ROCRYPT, volume 6110 of LNCS, pages 1–23. Springer,
2010. Full Version available at Cryptology ePrint Archive,
Report 2012/230.

19. J. Pan, J.I. den Hartog, and Jiqiang Lu. You cannot hide
behind the mask: Power analysis on a provably secure
s-box implementation. In Information Security Appli-
cations, volume 5932 of LNCS, pages 178–192. Springer,
2009.

20. Chris Peikert. Lattice cryptography for the internet. In
Post-Quantum Cryptography - 6th International Work-
shop, PQCrypto 2014, Waterloo, ON, Canada, October
1-3, 2014. Proceedings, pages 197–219, 2014.

21. Thomas Pöppelmann and Tim Güneysu. Towards practi-
cal lattice-based public-key encryption on reconfigurable
hardware. In Selected Areas in Cryptography – SAC 2013,
volume 8282 of LNCS, pages 68–85. Springer, 2014.

22. E. Prouff, M. Rivain, and R. Bevan. Statistical analysis
of second order differential power analysis. Computers,
IEEE Transactions on, 58(6):799–811, June 2009.

23. Chester Rebeiro, Sujoy Sinha Roy, and Debdeep
Mukhopadhyay. Pushing the limits of high-speed GF(2m)
elliptic curve scalar multiplication on fpgas. In CHES,
volume 7428 of LNCS, pages 494–511. Springer, 2012.

24. Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC ’05, pages 84–93, New York, NY, USA,
2005. ACM.

25. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt
Gierlichs, and Ingrid Verbauwhede. Consolidating mask-
ing schemes. In CRYPTO, volume 9215 of LNCS, pages
764–783. Springer, 2015.

26. Oscar Reparaz, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Selecting time samples for multivariate DPA
attacks. In CHES, volume 7428 of LNCS, pages 155–174.
Springer, 2012.

27. Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. A masked ring-lwe implementa-
tion. In Güneysu and Handschuh [15], pages 683–702.

28. Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren,
and Ingrid Verbauwhede. Compact and side channel se-
cure discrete gaussian sampling. IACR Cryptology ePrint
Archive, 2014:591, 2014.

29. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens,
Donald Donglong Chen, and Ingrid Verbauwhede. Com-
pact ring-lwe cryptoprocessor. In CHES, volume 8731 of
LNCS, pages 371–391. Springer, 2014.

30. Richard L Rudell. Multiple-valued logic minimization for
pla synthesis. Technical report, DTIC Document, 1986.

31. E.V. Trichina. Table lookup operation on masked data,
2013. US Patent 8,422,668.

32. Michael Tunstall, Neil Hanley, Robert P McEvoy, Claire
Whelan, Colin C Murphy, and William P Marnane. Cor-
relation power analysis of large word sizes. IET Irish
Signals and Systems Conference (ISSC) 2007, Septem-

16 Oscar Reparaz et al.

-0.5

0

0.5

-0.1

0

0.1

0 0.5 1 1.5 2

number of traces [×104]

-0.2

0

0.2

Fig. 16: Software implementation. Evolution of Pearson’s

correlation coefficient with number of traces for differ-

ent attacks at timesample 1390. On top: (successful)

first-order attack with PRNG off. Middle: (unsuccessful)

first-order attack with PRNG on. Bottom: (successful)

second-order attack with PRNG on. Correct subkey

in red, incorrect in green. We also plot the 99.99 %

confidence interval for ρ = 0 in dashed line.

ber 2007. Available at http://www.cs.bris.ac.uk/home/
tunstall/papers/THMWMM.pdf.

a′ a′′

I1 I2 I3 I4 I5 I6 I7 I8
I1 = (0, q/8) X × X X X × X X

I2 = (q/8, 2q/8) × X X X × X X X
I3 = (2q/8, 3q/8) X X X × X X X ×
I4 = (3q/8, 4q/8) X X × X X X × X
I5 = (4q/8, 5q/8) X × X X X × X X
I6 = (5q/8, 6q/8) × X X X × X X X
I7 = (6q/8, 7q/8) X X X × X X X ×
I8 = (7q/8, 8q/8) X X × X X X × X

Table 3: The rules for octant-decoding. The cases where

no rule is hit are marked with ×.

A Optimal values of ∆i for q = 7681

∆(i) = (960, 1440, 480, 1680, 240, 720, 1200, 1800, (6)

120, 360, 600, 840, 1080, 1320, 1560, 1860, (7)

60, 180, 300, 420, 540, 660, 780, 900, 1020, (8)

1140, 1260, 1380, 1500, 1620, 1740, 1890, (9)

30, 90, 150, 210, 270, 330, 390, 450, 510, (10)

570, 630, 690, 750, 810, 870, 930, 990, 1050, (11)

1110, 1170, 1230) (12)

These values were found by exhaustive first-order search.
The value ∆i is chosen so that it maximizes the number of
pairs that get decoded after i iterations.

B Attack on half-masked variant

In this section, we analyze the security of a masked ring-
LWE variant where the intermediates just before decoding are
unmasked, and the decoding is performed in the unmasked
domain. This alternative is definitely cheaper than full mask-
ing. In the following, we provide evidence to show that this
clearly does not provide enough security in our case.

(A seemingly similar situation appears in [5]. However,
there are important differences—namely it is not possible to
choose ciphertexts. In the following, we are not analyzing the
variant of [5] but only the half-masked ring-LWE.)

A common argument is that after key-diffusion is com-
plete, prediction of the intermediates is not possible and hence
standard DPA attacks to the half-masked ring-LWE do not
apply. We will see that this is not strictly true, if the attacker
can choose ciphertexts.

Assume that the coefficients of the polynomial a = INTT(r·
c1 + c2) appear unmasked in the implementation. Let the ad-
versary collect measurements with chosen ciphertext. The
ciphertext c1 has the following structure: all the coefficients
fixed except c1[0] randomly varying. The ciphertext c2 has the
same structure. Then observe that due to linearity of the INTT
operation, a[0] can be written as a[0] = α(r[0]·c1[0]+c2[0])+β,
where

– α is a public constant determined by the INTT transfor-
mation.

– β is a secret constant that is a function of the other
(unknown) key coefficients r[1], . . . , r[255]. Note that by
construction β is constant within the set of collected traces.

Thus, an attacker can perform a DPA attack targeting
the intermediate a[0] and placing predictions on (r[0], β). The
adversary recovers r[0] and proceeds to recover other key co-
efficients. We have verified this attack in simulations, even
when using th(a[i]) as intermediate.

(It may seem that the high number of hypotheses, 226

may produce a cumbersome attack. However, one can apply
techniques of partial correlation [6] to alleviate the compu-
tational effort of DPA on large word sizes [32]. And we have
experimented that in practice it makes sense to first recover
r[0] (this is easier due to larger non-linearity of the modular
multiplication) and then β (which may be harder due to the
low non-linearity of the modular addition), splitting the 226

effort in two 213 steps.)

http://www.cs.bris.ac.uk/home/tunstall/papers/THMWMM.pdf
http://www.cs.bris.ac.uk/home/tunstall/papers/THMWMM.pdf

Masking ring-LWE 17

C Generalization of the decoding scheme

The probability of not hitting any rule can be reduced by
increasing the number of rules, i.e. by splitting the domain of
decoding into more than four sections. For example, in Table 3
the rules are shown for the case when the decoding domain is
split into eight sections or octant. As seen from the table, the
probability of not hitting a rule has reduced to 1/4. Hence to
meet a same decryption failure rate, an octant decoder needs
almost half the number of iterations as required by a quad de-
coder. However there are overheads associated with an octant
decoder when it is compared to a quad decoder: the number
of comparisons to locate the position of a coefficient in the
octant chart doubles and the sizes of the tables quadruples.

	Introduction
	Preliminaries
	High-level overview
	Masked decoder
	Hardware implementation
	Software implementation
	Discussion
	Evaluation
	Conclusion
	Optimal values of i for q=7681
	Attack on half-masked variant
	Generalization of the decoding scheme

